nfs_bio.c revision 192010
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 192010 2009-05-12 05:49:02Z alc $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mount.h>
46#include <sys/proc.h>
47#include <sys/resourcevar.h>
48#include <sys/signalvar.h>
49#include <sys/vmmeter.h>
50#include <sys/vnode.h>
51
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_page.h>
55#include <vm/vm_object.h>
56#include <vm/vm_pager.h>
57#include <vm/vnode_pager.h>
58
59#include <rpc/rpcclnt.h>
60
61#include <nfs/rpcv2.h>
62#include <nfs/nfsproto.h>
63#include <nfsclient/nfs.h>
64#include <nfsclient/nfsmount.h>
65#include <nfsclient/nfsnode.h>
66#include <nfsclient/nfs_kdtrace.h>
67
68#include <nfs4client/nfs4.h>
69
70static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
71		    struct thread *td);
72static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
73			      struct ucred *cred, int ioflag);
74
75extern int nfs_directio_enable;
76extern int nfs_directio_allow_mmap;
77
78/*
79 * Vnode op for VM getpages.
80 */
81int
82nfs_getpages(struct vop_getpages_args *ap)
83{
84	int i, error, nextoff, size, toff, count, npages;
85	struct uio uio;
86	struct iovec iov;
87	vm_offset_t kva;
88	struct buf *bp;
89	struct vnode *vp;
90	struct thread *td;
91	struct ucred *cred;
92	struct nfsmount *nmp;
93	vm_object_t object;
94	vm_page_t *pages;
95	struct nfsnode *np;
96
97	vp = ap->a_vp;
98	np = VTONFS(vp);
99	td = curthread;				/* XXX */
100	cred = curthread->td_ucred;		/* XXX */
101	nmp = VFSTONFS(vp->v_mount);
102	pages = ap->a_m;
103	count = ap->a_count;
104
105	if ((object = vp->v_object) == NULL) {
106		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
107		return VM_PAGER_ERROR;
108	}
109
110	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
111		mtx_lock(&np->n_mtx);
112		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
113			mtx_unlock(&np->n_mtx);
114			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
115			return VM_PAGER_ERROR;
116		} else
117			mtx_unlock(&np->n_mtx);
118	}
119
120	mtx_lock(&nmp->nm_mtx);
121	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
122	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
123		mtx_unlock(&nmp->nm_mtx);
124		/* We'll never get here for v4, because we always have fsinfo */
125		(void)nfs_fsinfo(nmp, vp, cred, td);
126	} else
127		mtx_unlock(&nmp->nm_mtx);
128
129	npages = btoc(count);
130
131	/*
132	 * If the requested page is partially valid, just return it and
133	 * allow the pager to zero-out the blanks.  Partially valid pages
134	 * can only occur at the file EOF.
135	 */
136
137	{
138		vm_page_t m = pages[ap->a_reqpage];
139
140		VM_OBJECT_LOCK(object);
141		if (m->valid != 0) {
142			vm_page_lock_queues();
143			for (i = 0; i < npages; ++i) {
144				if (i != ap->a_reqpage)
145					vm_page_free(pages[i]);
146			}
147			vm_page_unlock_queues();
148			VM_OBJECT_UNLOCK(object);
149			return(0);
150		}
151		VM_OBJECT_UNLOCK(object);
152	}
153
154	/*
155	 * We use only the kva address for the buffer, but this is extremely
156	 * convienient and fast.
157	 */
158	bp = getpbuf(&nfs_pbuf_freecnt);
159
160	kva = (vm_offset_t) bp->b_data;
161	pmap_qenter(kva, pages, npages);
162	PCPU_INC(cnt.v_vnodein);
163	PCPU_ADD(cnt.v_vnodepgsin, npages);
164
165	iov.iov_base = (caddr_t) kva;
166	iov.iov_len = count;
167	uio.uio_iov = &iov;
168	uio.uio_iovcnt = 1;
169	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
170	uio.uio_resid = count;
171	uio.uio_segflg = UIO_SYSSPACE;
172	uio.uio_rw = UIO_READ;
173	uio.uio_td = td;
174
175	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
176	pmap_qremove(kva, npages);
177
178	relpbuf(bp, &nfs_pbuf_freecnt);
179
180	if (error && (uio.uio_resid == count)) {
181		nfs_printf("nfs_getpages: error %d\n", error);
182		VM_OBJECT_LOCK(object);
183		vm_page_lock_queues();
184		for (i = 0; i < npages; ++i) {
185			if (i != ap->a_reqpage)
186				vm_page_free(pages[i]);
187		}
188		vm_page_unlock_queues();
189		VM_OBJECT_UNLOCK(object);
190		return VM_PAGER_ERROR;
191	}
192
193	/*
194	 * Calculate the number of bytes read and validate only that number
195	 * of bytes.  Note that due to pending writes, size may be 0.  This
196	 * does not mean that the remaining data is invalid!
197	 */
198
199	size = count - uio.uio_resid;
200	VM_OBJECT_LOCK(object);
201	vm_page_lock_queues();
202	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
203		vm_page_t m;
204		nextoff = toff + PAGE_SIZE;
205		m = pages[i];
206
207		if (nextoff <= size) {
208			/*
209			 * Read operation filled an entire page
210			 */
211			m->valid = VM_PAGE_BITS_ALL;
212			KASSERT(m->dirty == 0,
213			    ("nfs_getpages: page %p is dirty", m));
214		} else if (size > toff) {
215			/*
216			 * Read operation filled a partial page.
217			 */
218			m->valid = 0;
219			vm_page_set_validclean(m, 0, size - toff);
220		} else {
221			/*
222			 * Read operation was short.  If no error occured
223			 * we may have hit a zero-fill section.   We simply
224			 * leave valid set to 0.
225			 */
226			;
227		}
228		if (i != ap->a_reqpage) {
229			/*
230			 * Whether or not to leave the page activated is up in
231			 * the air, but we should put the page on a page queue
232			 * somewhere (it already is in the object).  Result:
233			 * It appears that emperical results show that
234			 * deactivating pages is best.
235			 */
236
237			/*
238			 * Just in case someone was asking for this page we
239			 * now tell them that it is ok to use.
240			 */
241			if (!error) {
242				if (m->oflags & VPO_WANTED)
243					vm_page_activate(m);
244				else
245					vm_page_deactivate(m);
246				vm_page_wakeup(m);
247			} else {
248				vm_page_free(m);
249			}
250		}
251	}
252	vm_page_unlock_queues();
253	VM_OBJECT_UNLOCK(object);
254	return 0;
255}
256
257/*
258 * Vnode op for VM putpages.
259 */
260int
261nfs_putpages(struct vop_putpages_args *ap)
262{
263	struct uio uio;
264	struct iovec iov;
265	vm_offset_t kva;
266	struct buf *bp;
267	int iomode, must_commit, i, error, npages, count;
268	off_t offset;
269	int *rtvals;
270	struct vnode *vp;
271	struct thread *td;
272	struct ucred *cred;
273	struct nfsmount *nmp;
274	struct nfsnode *np;
275	vm_page_t *pages;
276
277	vp = ap->a_vp;
278	np = VTONFS(vp);
279	td = curthread;				/* XXX */
280	cred = curthread->td_ucred;		/* XXX */
281	nmp = VFSTONFS(vp->v_mount);
282	pages = ap->a_m;
283	count = ap->a_count;
284	rtvals = ap->a_rtvals;
285	npages = btoc(count);
286	offset = IDX_TO_OFF(pages[0]->pindex);
287
288	mtx_lock(&nmp->nm_mtx);
289	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
290	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
291		mtx_unlock(&nmp->nm_mtx);
292		(void)nfs_fsinfo(nmp, vp, cred, td);
293	} else
294		mtx_unlock(&nmp->nm_mtx);
295
296	mtx_lock(&np->n_mtx);
297	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
298	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
299		mtx_unlock(&np->n_mtx);
300		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
301		mtx_lock(&np->n_mtx);
302	}
303
304	for (i = 0; i < npages; i++)
305		rtvals[i] = VM_PAGER_AGAIN;
306
307	/*
308	 * When putting pages, do not extend file past EOF.
309	 */
310	if (offset + count > np->n_size) {
311		count = np->n_size - offset;
312		if (count < 0)
313			count = 0;
314	}
315	mtx_unlock(&np->n_mtx);
316
317	/*
318	 * We use only the kva address for the buffer, but this is extremely
319	 * convienient and fast.
320	 */
321	bp = getpbuf(&nfs_pbuf_freecnt);
322
323	kva = (vm_offset_t) bp->b_data;
324	pmap_qenter(kva, pages, npages);
325	PCPU_INC(cnt.v_vnodeout);
326	PCPU_ADD(cnt.v_vnodepgsout, count);
327
328	iov.iov_base = (caddr_t) kva;
329	iov.iov_len = count;
330	uio.uio_iov = &iov;
331	uio.uio_iovcnt = 1;
332	uio.uio_offset = offset;
333	uio.uio_resid = count;
334	uio.uio_segflg = UIO_SYSSPACE;
335	uio.uio_rw = UIO_WRITE;
336	uio.uio_td = td;
337
338	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
339	    iomode = NFSV3WRITE_UNSTABLE;
340	else
341	    iomode = NFSV3WRITE_FILESYNC;
342
343	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
344
345	pmap_qremove(kva, npages);
346	relpbuf(bp, &nfs_pbuf_freecnt);
347
348	if (!error) {
349		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
350		for (i = 0; i < nwritten; i++) {
351			rtvals[i] = VM_PAGER_OK;
352			vm_page_undirty(pages[i]);
353		}
354		if (must_commit) {
355			nfs_clearcommit(vp->v_mount);
356		}
357	}
358	return rtvals[0];
359}
360
361/*
362 * For nfs, cache consistency can only be maintained approximately.
363 * Although RFC1094 does not specify the criteria, the following is
364 * believed to be compatible with the reference port.
365 * For nfs:
366 * If the file's modify time on the server has changed since the
367 * last read rpc or you have written to the file,
368 * you may have lost data cache consistency with the
369 * server, so flush all of the file's data out of the cache.
370 * Then force a getattr rpc to ensure that you have up to date
371 * attributes.
372 * NB: This implies that cache data can be read when up to
373 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
374 * attributes this could be forced by setting n_attrstamp to 0 before
375 * the VOP_GETATTR() call.
376 */
377static inline int
378nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
379{
380	int error = 0;
381	struct vattr vattr;
382	struct nfsnode *np = VTONFS(vp);
383	int old_lock;
384	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
385
386	/*
387	 * Grab the exclusive lock before checking whether the cache is
388	 * consistent.
389	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
390	 * But for now, this suffices.
391	 */
392	old_lock = nfs_upgrade_vnlock(vp);
393	mtx_lock(&np->n_mtx);
394	if (np->n_flag & NMODIFIED) {
395		mtx_unlock(&np->n_mtx);
396		if (vp->v_type != VREG) {
397			if (vp->v_type != VDIR)
398				panic("nfs: bioread, not dir");
399			(nmp->nm_rpcops->nr_invaldir)(vp);
400			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
401			if (error)
402				goto out;
403		}
404		np->n_attrstamp = 0;
405		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
406		error = VOP_GETATTR(vp, &vattr, cred);
407		if (error)
408			goto out;
409		mtx_lock(&np->n_mtx);
410		np->n_mtime = vattr.va_mtime;
411		mtx_unlock(&np->n_mtx);
412	} else {
413		mtx_unlock(&np->n_mtx);
414		error = VOP_GETATTR(vp, &vattr, cred);
415		if (error)
416			return (error);
417		mtx_lock(&np->n_mtx);
418		if ((np->n_flag & NSIZECHANGED)
419		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
420			mtx_unlock(&np->n_mtx);
421			if (vp->v_type == VDIR)
422				(nmp->nm_rpcops->nr_invaldir)(vp);
423			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
424			if (error)
425				goto out;
426			mtx_lock(&np->n_mtx);
427			np->n_mtime = vattr.va_mtime;
428			np->n_flag &= ~NSIZECHANGED;
429		}
430		mtx_unlock(&np->n_mtx);
431	}
432out:
433	nfs_downgrade_vnlock(vp, old_lock);
434	return error;
435}
436
437/*
438 * Vnode op for read using bio
439 */
440int
441nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
442{
443	struct nfsnode *np = VTONFS(vp);
444	int biosize, i;
445	struct buf *bp, *rabp;
446	struct thread *td;
447	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
448	daddr_t lbn, rabn;
449	int bcount;
450	int seqcount;
451	int nra, error = 0, n = 0, on = 0;
452
453#ifdef DIAGNOSTIC
454	if (uio->uio_rw != UIO_READ)
455		panic("nfs_read mode");
456#endif
457	if (uio->uio_resid == 0)
458		return (0);
459	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
460		return (EINVAL);
461	td = uio->uio_td;
462
463	mtx_lock(&nmp->nm_mtx);
464	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
465	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
466		mtx_unlock(&nmp->nm_mtx);
467		(void)nfs_fsinfo(nmp, vp, cred, td);
468	} else
469		mtx_unlock(&nmp->nm_mtx);
470
471	if (vp->v_type != VDIR &&
472	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
473		return (EFBIG);
474
475	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
476		/* No caching/ no readaheads. Just read data into the user buffer */
477		return nfs_readrpc(vp, uio, cred);
478
479	biosize = vp->v_mount->mnt_stat.f_iosize;
480	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
481
482	error = nfs_bioread_check_cons(vp, td, cred);
483	if (error)
484		return error;
485
486	do {
487	    u_quad_t nsize;
488
489	    mtx_lock(&np->n_mtx);
490	    nsize = np->n_size;
491	    mtx_unlock(&np->n_mtx);
492
493	    switch (vp->v_type) {
494	    case VREG:
495		nfsstats.biocache_reads++;
496		lbn = uio->uio_offset / biosize;
497		on = uio->uio_offset & (biosize - 1);
498
499		/*
500		 * Start the read ahead(s), as required.
501		 */
502		if (nmp->nm_readahead > 0) {
503		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
504			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
505			rabn = lbn + 1 + nra;
506			if (incore(&vp->v_bufobj, rabn) == NULL) {
507			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
508			    if (!rabp) {
509				error = nfs_sigintr(nmp, NULL, td);
510				return (error ? error : EINTR);
511			    }
512			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
513				rabp->b_flags |= B_ASYNC;
514				rabp->b_iocmd = BIO_READ;
515				vfs_busy_pages(rabp, 0);
516				if (nfs_asyncio(nmp, rabp, cred, td)) {
517				    rabp->b_flags |= B_INVAL;
518				    rabp->b_ioflags |= BIO_ERROR;
519				    vfs_unbusy_pages(rabp);
520				    brelse(rabp);
521				    break;
522				}
523			    } else {
524				brelse(rabp);
525			    }
526			}
527		    }
528		}
529
530		/* Note that bcount is *not* DEV_BSIZE aligned. */
531		bcount = biosize;
532		if ((off_t)lbn * biosize >= nsize) {
533			bcount = 0;
534		} else if ((off_t)(lbn + 1) * biosize > nsize) {
535			bcount = nsize - (off_t)lbn * biosize;
536		}
537		bp = nfs_getcacheblk(vp, lbn, bcount, td);
538
539		if (!bp) {
540			error = nfs_sigintr(nmp, NULL, td);
541			return (error ? error : EINTR);
542		}
543
544		/*
545		 * If B_CACHE is not set, we must issue the read.  If this
546		 * fails, we return an error.
547		 */
548
549		if ((bp->b_flags & B_CACHE) == 0) {
550		    bp->b_iocmd = BIO_READ;
551		    vfs_busy_pages(bp, 0);
552		    error = nfs_doio(vp, bp, cred, td);
553		    if (error) {
554			brelse(bp);
555			return (error);
556		    }
557		}
558
559		/*
560		 * on is the offset into the current bp.  Figure out how many
561		 * bytes we can copy out of the bp.  Note that bcount is
562		 * NOT DEV_BSIZE aligned.
563		 *
564		 * Then figure out how many bytes we can copy into the uio.
565		 */
566
567		n = 0;
568		if (on < bcount)
569			n = min((unsigned)(bcount - on), uio->uio_resid);
570		break;
571	    case VLNK:
572		nfsstats.biocache_readlinks++;
573		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
574		if (!bp) {
575			error = nfs_sigintr(nmp, NULL, td);
576			return (error ? error : EINTR);
577		}
578		if ((bp->b_flags & B_CACHE) == 0) {
579		    bp->b_iocmd = BIO_READ;
580		    vfs_busy_pages(bp, 0);
581		    error = nfs_doio(vp, bp, cred, td);
582		    if (error) {
583			bp->b_ioflags |= BIO_ERROR;
584			brelse(bp);
585			return (error);
586		    }
587		}
588		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
589		on = 0;
590		break;
591	    case VDIR:
592		nfsstats.biocache_readdirs++;
593		if (np->n_direofoffset
594		    && uio->uio_offset >= np->n_direofoffset) {
595		    return (0);
596		}
597		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
598		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
599		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
600		if (!bp) {
601		    error = nfs_sigintr(nmp, NULL, td);
602		    return (error ? error : EINTR);
603		}
604		if ((bp->b_flags & B_CACHE) == 0) {
605		    bp->b_iocmd = BIO_READ;
606		    vfs_busy_pages(bp, 0);
607		    error = nfs_doio(vp, bp, cred, td);
608		    if (error) {
609			    brelse(bp);
610		    }
611		    while (error == NFSERR_BAD_COOKIE) {
612			(nmp->nm_rpcops->nr_invaldir)(vp);
613			error = nfs_vinvalbuf(vp, 0, td, 1);
614			/*
615			 * Yuck! The directory has been modified on the
616			 * server. The only way to get the block is by
617			 * reading from the beginning to get all the
618			 * offset cookies.
619			 *
620			 * Leave the last bp intact unless there is an error.
621			 * Loop back up to the while if the error is another
622			 * NFSERR_BAD_COOKIE (double yuch!).
623			 */
624			for (i = 0; i <= lbn && !error; i++) {
625			    if (np->n_direofoffset
626				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
627				    return (0);
628			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
629			    if (!bp) {
630				error = nfs_sigintr(nmp, NULL, td);
631				return (error ? error : EINTR);
632			    }
633			    if ((bp->b_flags & B_CACHE) == 0) {
634				    bp->b_iocmd = BIO_READ;
635				    vfs_busy_pages(bp, 0);
636				    error = nfs_doio(vp, bp, cred, td);
637				    /*
638				     * no error + B_INVAL == directory EOF,
639				     * use the block.
640				     */
641				    if (error == 0 && (bp->b_flags & B_INVAL))
642					    break;
643			    }
644			    /*
645			     * An error will throw away the block and the
646			     * for loop will break out.  If no error and this
647			     * is not the block we want, we throw away the
648			     * block and go for the next one via the for loop.
649			     */
650			    if (error || i < lbn)
651				    brelse(bp);
652			}
653		    }
654		    /*
655		     * The above while is repeated if we hit another cookie
656		     * error.  If we hit an error and it wasn't a cookie error,
657		     * we give up.
658		     */
659		    if (error)
660			    return (error);
661		}
662
663		/*
664		 * If not eof and read aheads are enabled, start one.
665		 * (You need the current block first, so that you have the
666		 *  directory offset cookie of the next block.)
667		 */
668		if (nmp->nm_readahead > 0 &&
669		    (bp->b_flags & B_INVAL) == 0 &&
670		    (np->n_direofoffset == 0 ||
671		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
672		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
673			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
674			if (rabp) {
675			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
676				rabp->b_flags |= B_ASYNC;
677				rabp->b_iocmd = BIO_READ;
678				vfs_busy_pages(rabp, 0);
679				if (nfs_asyncio(nmp, rabp, cred, td)) {
680				    rabp->b_flags |= B_INVAL;
681				    rabp->b_ioflags |= BIO_ERROR;
682				    vfs_unbusy_pages(rabp);
683				    brelse(rabp);
684				}
685			    } else {
686				brelse(rabp);
687			    }
688			}
689		}
690		/*
691		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
692		 * chopped for the EOF condition, we cannot tell how large
693		 * NFS directories are going to be until we hit EOF.  So
694		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
695		 * it just so happens that b_resid will effectively chop it
696		 * to EOF.  *BUT* this information is lost if the buffer goes
697		 * away and is reconstituted into a B_CACHE state ( due to
698		 * being VMIO ) later.  So we keep track of the directory eof
699		 * in np->n_direofoffset and chop it off as an extra step
700		 * right here.
701		 */
702		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
703		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
704			n = np->n_direofoffset - uio->uio_offset;
705		break;
706	    default:
707		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
708		bp = NULL;
709		break;
710	    };
711
712	    if (n > 0) {
713		    error = uiomove(bp->b_data + on, (int)n, uio);
714	    }
715	    if (vp->v_type == VLNK)
716		n = 0;
717	    if (bp != NULL)
718		brelse(bp);
719	} while (error == 0 && uio->uio_resid > 0 && n > 0);
720	return (error);
721}
722
723/*
724 * The NFS write path cannot handle iovecs with len > 1. So we need to
725 * break up iovecs accordingly (restricting them to wsize).
726 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
727 * For the ASYNC case, 2 copies are needed. The first a copy from the
728 * user buffer to a staging buffer and then a second copy from the staging
729 * buffer to mbufs. This can be optimized by copying from the user buffer
730 * directly into mbufs and passing the chain down, but that requires a
731 * fair amount of re-working of the relevant codepaths (and can be done
732 * later).
733 */
734static int
735nfs_directio_write(vp, uiop, cred, ioflag)
736	struct vnode *vp;
737	struct uio *uiop;
738	struct ucred *cred;
739	int ioflag;
740{
741	int error;
742	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
743	struct thread *td = uiop->uio_td;
744	int size;
745	int wsize;
746
747	mtx_lock(&nmp->nm_mtx);
748	wsize = nmp->nm_wsize;
749	mtx_unlock(&nmp->nm_mtx);
750	if (ioflag & IO_SYNC) {
751		int iomode, must_commit;
752		struct uio uio;
753		struct iovec iov;
754do_sync:
755		while (uiop->uio_resid > 0) {
756			size = min(uiop->uio_resid, wsize);
757			size = min(uiop->uio_iov->iov_len, size);
758			iov.iov_base = uiop->uio_iov->iov_base;
759			iov.iov_len = size;
760			uio.uio_iov = &iov;
761			uio.uio_iovcnt = 1;
762			uio.uio_offset = uiop->uio_offset;
763			uio.uio_resid = size;
764			uio.uio_segflg = UIO_USERSPACE;
765			uio.uio_rw = UIO_WRITE;
766			uio.uio_td = td;
767			iomode = NFSV3WRITE_FILESYNC;
768			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
769						      &iomode, &must_commit);
770			KASSERT((must_commit == 0),
771				("nfs_directio_write: Did not commit write"));
772			if (error)
773				return (error);
774			uiop->uio_offset += size;
775			uiop->uio_resid -= size;
776			if (uiop->uio_iov->iov_len <= size) {
777				uiop->uio_iovcnt--;
778				uiop->uio_iov++;
779			} else {
780				uiop->uio_iov->iov_base =
781					(char *)uiop->uio_iov->iov_base + size;
782				uiop->uio_iov->iov_len -= size;
783			}
784		}
785	} else {
786		struct uio *t_uio;
787		struct iovec *t_iov;
788		struct buf *bp;
789
790		/*
791		 * Break up the write into blocksize chunks and hand these
792		 * over to nfsiod's for write back.
793		 * Unfortunately, this incurs a copy of the data. Since
794		 * the user could modify the buffer before the write is
795		 * initiated.
796		 *
797		 * The obvious optimization here is that one of the 2 copies
798		 * in the async write path can be eliminated by copying the
799		 * data here directly into mbufs and passing the mbuf chain
800		 * down. But that will require a fair amount of re-working
801		 * of the code and can be done if there's enough interest
802		 * in NFS directio access.
803		 */
804		while (uiop->uio_resid > 0) {
805			size = min(uiop->uio_resid, wsize);
806			size = min(uiop->uio_iov->iov_len, size);
807			bp = getpbuf(&nfs_pbuf_freecnt);
808			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
809			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
810			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
811			t_iov->iov_len = size;
812			t_uio->uio_iov = t_iov;
813			t_uio->uio_iovcnt = 1;
814			t_uio->uio_offset = uiop->uio_offset;
815			t_uio->uio_resid = size;
816			t_uio->uio_segflg = UIO_SYSSPACE;
817			t_uio->uio_rw = UIO_WRITE;
818			t_uio->uio_td = td;
819			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
820			bp->b_flags |= B_DIRECT;
821			bp->b_iocmd = BIO_WRITE;
822			if (cred != NOCRED) {
823				crhold(cred);
824				bp->b_wcred = cred;
825			} else
826				bp->b_wcred = NOCRED;
827			bp->b_caller1 = (void *)t_uio;
828			bp->b_vp = vp;
829			error = nfs_asyncio(nmp, bp, NOCRED, td);
830			if (error) {
831				free(t_iov->iov_base, M_NFSDIRECTIO);
832				free(t_iov, M_NFSDIRECTIO);
833				free(t_uio, M_NFSDIRECTIO);
834				bp->b_vp = NULL;
835				relpbuf(bp, &nfs_pbuf_freecnt);
836				if (error == EINTR)
837					return (error);
838				goto do_sync;
839			}
840			uiop->uio_offset += size;
841			uiop->uio_resid -= size;
842			if (uiop->uio_iov->iov_len <= size) {
843				uiop->uio_iovcnt--;
844				uiop->uio_iov++;
845			} else {
846				uiop->uio_iov->iov_base =
847					(char *)uiop->uio_iov->iov_base + size;
848				uiop->uio_iov->iov_len -= size;
849			}
850		}
851	}
852	return (0);
853}
854
855/*
856 * Vnode op for write using bio
857 */
858int
859nfs_write(struct vop_write_args *ap)
860{
861	int biosize;
862	struct uio *uio = ap->a_uio;
863	struct thread *td = uio->uio_td;
864	struct vnode *vp = ap->a_vp;
865	struct nfsnode *np = VTONFS(vp);
866	struct ucred *cred = ap->a_cred;
867	int ioflag = ap->a_ioflag;
868	struct buf *bp;
869	struct vattr vattr;
870	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
871	daddr_t lbn;
872	int bcount;
873	int n, on, error = 0;
874	struct proc *p = td?td->td_proc:NULL;
875
876#ifdef DIAGNOSTIC
877	if (uio->uio_rw != UIO_WRITE)
878		panic("nfs_write mode");
879	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
880		panic("nfs_write proc");
881#endif
882	if (vp->v_type != VREG)
883		return (EIO);
884	mtx_lock(&np->n_mtx);
885	if (np->n_flag & NWRITEERR) {
886		np->n_flag &= ~NWRITEERR;
887		mtx_unlock(&np->n_mtx);
888		return (np->n_error);
889	} else
890		mtx_unlock(&np->n_mtx);
891	mtx_lock(&nmp->nm_mtx);
892	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
893	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
894		mtx_unlock(&nmp->nm_mtx);
895		(void)nfs_fsinfo(nmp, vp, cred, td);
896	} else
897		mtx_unlock(&nmp->nm_mtx);
898
899	/*
900	 * Synchronously flush pending buffers if we are in synchronous
901	 * mode or if we are appending.
902	 */
903	if (ioflag & (IO_APPEND | IO_SYNC)) {
904		mtx_lock(&np->n_mtx);
905		if (np->n_flag & NMODIFIED) {
906			mtx_unlock(&np->n_mtx);
907#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
908			/*
909			 * Require non-blocking, synchronous writes to
910			 * dirty files to inform the program it needs
911			 * to fsync(2) explicitly.
912			 */
913			if (ioflag & IO_NDELAY)
914				return (EAGAIN);
915#endif
916flush_and_restart:
917			np->n_attrstamp = 0;
918			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
919			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
920			if (error)
921				return (error);
922		} else
923			mtx_unlock(&np->n_mtx);
924	}
925
926	/*
927	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
928	 * get the append lock.
929	 */
930	if (ioflag & IO_APPEND) {
931		np->n_attrstamp = 0;
932		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
933		error = VOP_GETATTR(vp, &vattr, cred);
934		if (error)
935			return (error);
936		mtx_lock(&np->n_mtx);
937		uio->uio_offset = np->n_size;
938		mtx_unlock(&np->n_mtx);
939	}
940
941	if (uio->uio_offset < 0)
942		return (EINVAL);
943	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
944		return (EFBIG);
945	if (uio->uio_resid == 0)
946		return (0);
947
948	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
949		return nfs_directio_write(vp, uio, cred, ioflag);
950
951	/*
952	 * Maybe this should be above the vnode op call, but so long as
953	 * file servers have no limits, i don't think it matters
954	 */
955	if (p != NULL) {
956		PROC_LOCK(p);
957		if (uio->uio_offset + uio->uio_resid >
958		    lim_cur(p, RLIMIT_FSIZE)) {
959			psignal(p, SIGXFSZ);
960			PROC_UNLOCK(p);
961			return (EFBIG);
962		}
963		PROC_UNLOCK(p);
964	}
965
966	biosize = vp->v_mount->mnt_stat.f_iosize;
967	/*
968	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
969	 * would exceed the local maximum per-file write commit size when
970	 * combined with those, we must decide whether to flush,
971	 * go synchronous, or return error.  We don't bother checking
972	 * IO_UNIT -- we just make all writes atomic anyway, as there's
973	 * no point optimizing for something that really won't ever happen.
974	 */
975	if (!(ioflag & IO_SYNC)) {
976		int nflag;
977
978		mtx_lock(&np->n_mtx);
979		nflag = np->n_flag;
980		mtx_unlock(&np->n_mtx);
981		int needrestart = 0;
982		if (nmp->nm_wcommitsize < uio->uio_resid) {
983			/*
984			 * If this request could not possibly be completed
985			 * without exceeding the maximum outstanding write
986			 * commit size, see if we can convert it into a
987			 * synchronous write operation.
988			 */
989			if (ioflag & IO_NDELAY)
990				return (EAGAIN);
991			ioflag |= IO_SYNC;
992			if (nflag & NMODIFIED)
993				needrestart = 1;
994		} else if (nflag & NMODIFIED) {
995			int wouldcommit = 0;
996			BO_LOCK(&vp->v_bufobj);
997			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
998				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
999				    b_bobufs) {
1000					if (bp->b_flags & B_NEEDCOMMIT)
1001						wouldcommit += bp->b_bcount;
1002				}
1003			}
1004			BO_UNLOCK(&vp->v_bufobj);
1005			/*
1006			 * Since we're not operating synchronously and
1007			 * bypassing the buffer cache, we are in a commit
1008			 * and holding all of these buffers whether
1009			 * transmitted or not.  If not limited, this
1010			 * will lead to the buffer cache deadlocking,
1011			 * as no one else can flush our uncommitted buffers.
1012			 */
1013			wouldcommit += uio->uio_resid;
1014			/*
1015			 * If we would initially exceed the maximum
1016			 * outstanding write commit size, flush and restart.
1017			 */
1018			if (wouldcommit > nmp->nm_wcommitsize)
1019				needrestart = 1;
1020		}
1021		if (needrestart)
1022			goto flush_and_restart;
1023	}
1024
1025	do {
1026		nfsstats.biocache_writes++;
1027		lbn = uio->uio_offset / biosize;
1028		on = uio->uio_offset & (biosize-1);
1029		n = min((unsigned)(biosize - on), uio->uio_resid);
1030again:
1031		/*
1032		 * Handle direct append and file extension cases, calculate
1033		 * unaligned buffer size.
1034		 */
1035		mtx_lock(&np->n_mtx);
1036		if (uio->uio_offset == np->n_size && n) {
1037			mtx_unlock(&np->n_mtx);
1038			/*
1039			 * Get the buffer (in its pre-append state to maintain
1040			 * B_CACHE if it was previously set).  Resize the
1041			 * nfsnode after we have locked the buffer to prevent
1042			 * readers from reading garbage.
1043			 */
1044			bcount = on;
1045			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1046
1047			if (bp != NULL) {
1048				long save;
1049
1050				mtx_lock(&np->n_mtx);
1051				np->n_size = uio->uio_offset + n;
1052				np->n_flag |= NMODIFIED;
1053				vnode_pager_setsize(vp, np->n_size);
1054				mtx_unlock(&np->n_mtx);
1055
1056				save = bp->b_flags & B_CACHE;
1057				bcount += n;
1058				allocbuf(bp, bcount);
1059				bp->b_flags |= save;
1060			}
1061		} else {
1062			/*
1063			 * Obtain the locked cache block first, and then
1064			 * adjust the file's size as appropriate.
1065			 */
1066			bcount = on + n;
1067			if ((off_t)lbn * biosize + bcount < np->n_size) {
1068				if ((off_t)(lbn + 1) * biosize < np->n_size)
1069					bcount = biosize;
1070				else
1071					bcount = np->n_size - (off_t)lbn * biosize;
1072			}
1073			mtx_unlock(&np->n_mtx);
1074			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1075			mtx_lock(&np->n_mtx);
1076			if (uio->uio_offset + n > np->n_size) {
1077				np->n_size = uio->uio_offset + n;
1078				np->n_flag |= NMODIFIED;
1079				vnode_pager_setsize(vp, np->n_size);
1080			}
1081			mtx_unlock(&np->n_mtx);
1082		}
1083
1084		if (!bp) {
1085			error = nfs_sigintr(nmp, NULL, td);
1086			if (!error)
1087				error = EINTR;
1088			break;
1089		}
1090
1091		/*
1092		 * Issue a READ if B_CACHE is not set.  In special-append
1093		 * mode, B_CACHE is based on the buffer prior to the write
1094		 * op and is typically set, avoiding the read.  If a read
1095		 * is required in special append mode, the server will
1096		 * probably send us a short-read since we extended the file
1097		 * on our end, resulting in b_resid == 0 and, thusly,
1098		 * B_CACHE getting set.
1099		 *
1100		 * We can also avoid issuing the read if the write covers
1101		 * the entire buffer.  We have to make sure the buffer state
1102		 * is reasonable in this case since we will not be initiating
1103		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1104		 * more information.
1105		 *
1106		 * B_CACHE may also be set due to the buffer being cached
1107		 * normally.
1108		 */
1109
1110		if (on == 0 && n == bcount) {
1111			bp->b_flags |= B_CACHE;
1112			bp->b_flags &= ~B_INVAL;
1113			bp->b_ioflags &= ~BIO_ERROR;
1114		}
1115
1116		if ((bp->b_flags & B_CACHE) == 0) {
1117			bp->b_iocmd = BIO_READ;
1118			vfs_busy_pages(bp, 0);
1119			error = nfs_doio(vp, bp, cred, td);
1120			if (error) {
1121				brelse(bp);
1122				break;
1123			}
1124		}
1125		if (bp->b_wcred == NOCRED)
1126			bp->b_wcred = crhold(cred);
1127		mtx_lock(&np->n_mtx);
1128		np->n_flag |= NMODIFIED;
1129		mtx_unlock(&np->n_mtx);
1130
1131		/*
1132		 * If dirtyend exceeds file size, chop it down.  This should
1133		 * not normally occur but there is an append race where it
1134		 * might occur XXX, so we log it.
1135		 *
1136		 * If the chopping creates a reverse-indexed or degenerate
1137		 * situation with dirtyoff/end, we 0 both of them.
1138		 */
1139
1140		if (bp->b_dirtyend > bcount) {
1141			nfs_printf("NFS append race @%lx:%d\n",
1142			    (long)bp->b_blkno * DEV_BSIZE,
1143			    bp->b_dirtyend - bcount);
1144			bp->b_dirtyend = bcount;
1145		}
1146
1147		if (bp->b_dirtyoff >= bp->b_dirtyend)
1148			bp->b_dirtyoff = bp->b_dirtyend = 0;
1149
1150		/*
1151		 * If the new write will leave a contiguous dirty
1152		 * area, just update the b_dirtyoff and b_dirtyend,
1153		 * otherwise force a write rpc of the old dirty area.
1154		 *
1155		 * While it is possible to merge discontiguous writes due to
1156		 * our having a B_CACHE buffer ( and thus valid read data
1157		 * for the hole), we don't because it could lead to
1158		 * significant cache coherency problems with multiple clients,
1159		 * especially if locking is implemented later on.
1160		 *
1161		 * as an optimization we could theoretically maintain
1162		 * a linked list of discontinuous areas, but we would still
1163		 * have to commit them separately so there isn't much
1164		 * advantage to it except perhaps a bit of asynchronization.
1165		 */
1166
1167		if (bp->b_dirtyend > 0 &&
1168		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1169			if (bwrite(bp) == EINTR) {
1170				error = EINTR;
1171				break;
1172			}
1173			goto again;
1174		}
1175
1176		error = uiomove((char *)bp->b_data + on, n, uio);
1177
1178		/*
1179		 * Since this block is being modified, it must be written
1180		 * again and not just committed.  Since write clustering does
1181		 * not work for the stage 1 data write, only the stage 2
1182		 * commit rpc, we have to clear B_CLUSTEROK as well.
1183		 */
1184		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1185
1186		if (error) {
1187			bp->b_ioflags |= BIO_ERROR;
1188			brelse(bp);
1189			break;
1190		}
1191
1192		/*
1193		 * Only update dirtyoff/dirtyend if not a degenerate
1194		 * condition.
1195		 */
1196		if (n) {
1197			if (bp->b_dirtyend > 0) {
1198				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1199				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1200			} else {
1201				bp->b_dirtyoff = on;
1202				bp->b_dirtyend = on + n;
1203			}
1204			vfs_bio_set_validclean(bp, on, n);
1205		}
1206
1207		/*
1208		 * If IO_SYNC do bwrite().
1209		 *
1210		 * IO_INVAL appears to be unused.  The idea appears to be
1211		 * to turn off caching in this case.  Very odd.  XXX
1212		 */
1213		if ((ioflag & IO_SYNC)) {
1214			if (ioflag & IO_INVAL)
1215				bp->b_flags |= B_NOCACHE;
1216			error = bwrite(bp);
1217			if (error)
1218				break;
1219		} else if ((n + on) == biosize) {
1220			bp->b_flags |= B_ASYNC;
1221			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1222		} else {
1223			bdwrite(bp);
1224		}
1225	} while (uio->uio_resid > 0 && n > 0);
1226
1227	return (error);
1228}
1229
1230/*
1231 * Get an nfs cache block.
1232 *
1233 * Allocate a new one if the block isn't currently in the cache
1234 * and return the block marked busy. If the calling process is
1235 * interrupted by a signal for an interruptible mount point, return
1236 * NULL.
1237 *
1238 * The caller must carefully deal with the possible B_INVAL state of
1239 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1240 * indirectly), so synchronous reads can be issued without worrying about
1241 * the B_INVAL state.  We have to be a little more careful when dealing
1242 * with writes (see comments in nfs_write()) when extending a file past
1243 * its EOF.
1244 */
1245static struct buf *
1246nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1247{
1248	struct buf *bp;
1249	struct mount *mp;
1250	struct nfsmount *nmp;
1251
1252	mp = vp->v_mount;
1253	nmp = VFSTONFS(mp);
1254
1255	if (nmp->nm_flag & NFSMNT_INT) {
1256 		sigset_t oldset;
1257
1258 		nfs_set_sigmask(td, &oldset);
1259		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1260 		nfs_restore_sigmask(td, &oldset);
1261		while (bp == NULL) {
1262			if (nfs_sigintr(nmp, NULL, td))
1263				return (NULL);
1264			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1265		}
1266	} else {
1267		bp = getblk(vp, bn, size, 0, 0, 0);
1268	}
1269
1270	if (vp->v_type == VREG) {
1271		int biosize;
1272
1273		biosize = mp->mnt_stat.f_iosize;
1274		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1275	}
1276	return (bp);
1277}
1278
1279/*
1280 * Flush and invalidate all dirty buffers. If another process is already
1281 * doing the flush, just wait for completion.
1282 */
1283int
1284nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1285{
1286	struct nfsnode *np = VTONFS(vp);
1287	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1288	int error = 0, slpflag, slptimeo;
1289 	int old_lock = 0;
1290
1291	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1292
1293	/*
1294	 * XXX This check stops us from needlessly doing a vinvalbuf when
1295	 * being called through vclean().  It is not clear that this is
1296	 * unsafe.
1297	 */
1298	if (vp->v_iflag & VI_DOOMED)
1299		return (0);
1300
1301	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1302		intrflg = 0;
1303	if (intrflg) {
1304		slpflag = PCATCH;
1305		slptimeo = 2 * hz;
1306	} else {
1307		slpflag = 0;
1308		slptimeo = 0;
1309	}
1310
1311	old_lock = nfs_upgrade_vnlock(vp);
1312	/*
1313	 * Now, flush as required.
1314	 */
1315	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1316		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1317		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1318		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1319		/*
1320		 * If the page clean was interrupted, fail the invalidation.
1321		 * Not doing so, we run the risk of losing dirty pages in the
1322		 * vinvalbuf() call below.
1323		 */
1324		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1325			goto out;
1326	}
1327
1328	error = vinvalbuf(vp, flags, slpflag, 0);
1329	while (error) {
1330		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1331			goto out;
1332		error = vinvalbuf(vp, flags, 0, slptimeo);
1333	}
1334	mtx_lock(&np->n_mtx);
1335	if (np->n_directio_asyncwr == 0)
1336		np->n_flag &= ~NMODIFIED;
1337	mtx_unlock(&np->n_mtx);
1338out:
1339	nfs_downgrade_vnlock(vp, old_lock);
1340	return error;
1341}
1342
1343/*
1344 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1345 * This is mainly to avoid queueing async I/O requests when the nfsiods
1346 * are all hung on a dead server.
1347 *
1348 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1349 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1350 */
1351int
1352nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1353{
1354	int iod;
1355	int gotiod;
1356	int slpflag = 0;
1357	int slptimeo = 0;
1358	int error, error2;
1359
1360	/*
1361	 * Commits are usually short and sweet so lets save some cpu and
1362	 * leave the async daemons for more important rpc's (such as reads
1363	 * and writes).
1364	 */
1365	mtx_lock(&nfs_iod_mtx);
1366	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1367	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1368		mtx_unlock(&nfs_iod_mtx);
1369		return(EIO);
1370	}
1371again:
1372	if (nmp->nm_flag & NFSMNT_INT)
1373		slpflag = PCATCH;
1374	gotiod = FALSE;
1375
1376	/*
1377	 * Find a free iod to process this request.
1378	 */
1379	for (iod = 0; iod < nfs_numasync; iod++)
1380		if (nfs_iodwant[iod]) {
1381			gotiod = TRUE;
1382			break;
1383		}
1384
1385	/*
1386	 * Try to create one if none are free.
1387	 */
1388	if (!gotiod) {
1389		iod = nfs_nfsiodnew();
1390		if (iod != -1)
1391			gotiod = TRUE;
1392	}
1393
1394	if (gotiod) {
1395		/*
1396		 * Found one, so wake it up and tell it which
1397		 * mount to process.
1398		 */
1399		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1400		    iod, nmp));
1401		nfs_iodwant[iod] = NULL;
1402		nfs_iodmount[iod] = nmp;
1403		nmp->nm_bufqiods++;
1404		wakeup(&nfs_iodwant[iod]);
1405	}
1406
1407	/*
1408	 * If none are free, we may already have an iod working on this mount
1409	 * point.  If so, it will process our request.
1410	 */
1411	if (!gotiod) {
1412		if (nmp->nm_bufqiods > 0) {
1413			NFS_DPF(ASYNCIO,
1414				("nfs_asyncio: %d iods are already processing mount %p\n",
1415				 nmp->nm_bufqiods, nmp));
1416			gotiod = TRUE;
1417		}
1418	}
1419
1420	/*
1421	 * If we have an iod which can process the request, then queue
1422	 * the buffer.
1423	 */
1424	if (gotiod) {
1425		/*
1426		 * Ensure that the queue never grows too large.  We still want
1427		 * to asynchronize so we block rather then return EIO.
1428		 */
1429		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1430			NFS_DPF(ASYNCIO,
1431				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1432			nmp->nm_bufqwant = TRUE;
1433 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1434					   slpflag | PRIBIO,
1435 					   "nfsaio", slptimeo);
1436			if (error) {
1437				error2 = nfs_sigintr(nmp, NULL, td);
1438				if (error2) {
1439					mtx_unlock(&nfs_iod_mtx);
1440					return (error2);
1441				}
1442				if (slpflag == PCATCH) {
1443					slpflag = 0;
1444					slptimeo = 2 * hz;
1445				}
1446			}
1447			/*
1448			 * We might have lost our iod while sleeping,
1449			 * so check and loop if nescessary.
1450			 */
1451			if (nmp->nm_bufqiods == 0) {
1452				NFS_DPF(ASYNCIO,
1453					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1454				goto again;
1455			}
1456		}
1457
1458		/* We might have lost our nfsiod */
1459		if (nmp->nm_bufqiods == 0) {
1460			NFS_DPF(ASYNCIO,
1461				("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1462			goto again;
1463		}
1464
1465		if (bp->b_iocmd == BIO_READ) {
1466			if (bp->b_rcred == NOCRED && cred != NOCRED)
1467				bp->b_rcred = crhold(cred);
1468		} else {
1469			if (bp->b_wcred == NOCRED && cred != NOCRED)
1470				bp->b_wcred = crhold(cred);
1471		}
1472
1473		if (bp->b_flags & B_REMFREE)
1474			bremfreef(bp);
1475		BUF_KERNPROC(bp);
1476		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1477		nmp->nm_bufqlen++;
1478		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1479			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1480			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1481			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1482			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1483		}
1484		mtx_unlock(&nfs_iod_mtx);
1485		return (0);
1486	}
1487
1488	mtx_unlock(&nfs_iod_mtx);
1489
1490	/*
1491	 * All the iods are busy on other mounts, so return EIO to
1492	 * force the caller to process the i/o synchronously.
1493	 */
1494	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1495	return (EIO);
1496}
1497
1498void
1499nfs_doio_directwrite(struct buf *bp)
1500{
1501	int iomode, must_commit;
1502	struct uio *uiop = (struct uio *)bp->b_caller1;
1503	char *iov_base = uiop->uio_iov->iov_base;
1504	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1505
1506	iomode = NFSV3WRITE_FILESYNC;
1507	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1508	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1509	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1510	free(iov_base, M_NFSDIRECTIO);
1511	free(uiop->uio_iov, M_NFSDIRECTIO);
1512	free(uiop, M_NFSDIRECTIO);
1513	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1514		struct nfsnode *np = VTONFS(bp->b_vp);
1515		mtx_lock(&np->n_mtx);
1516		np->n_directio_asyncwr--;
1517		if (np->n_directio_asyncwr == 0) {
1518			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1519			if ((np->n_flag & NFSYNCWAIT)) {
1520				np->n_flag &= ~NFSYNCWAIT;
1521				wakeup((caddr_t)&np->n_directio_asyncwr);
1522			}
1523		}
1524		mtx_unlock(&np->n_mtx);
1525	}
1526	bp->b_vp = NULL;
1527	relpbuf(bp, &nfs_pbuf_freecnt);
1528}
1529
1530/*
1531 * Do an I/O operation to/from a cache block. This may be called
1532 * synchronously or from an nfsiod.
1533 */
1534int
1535nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1536{
1537	struct uio *uiop;
1538	struct nfsnode *np;
1539	struct nfsmount *nmp;
1540	int error = 0, iomode, must_commit = 0;
1541	struct uio uio;
1542	struct iovec io;
1543	struct proc *p = td ? td->td_proc : NULL;
1544	uint8_t	iocmd;
1545
1546	np = VTONFS(vp);
1547	nmp = VFSTONFS(vp->v_mount);
1548	uiop = &uio;
1549	uiop->uio_iov = &io;
1550	uiop->uio_iovcnt = 1;
1551	uiop->uio_segflg = UIO_SYSSPACE;
1552	uiop->uio_td = td;
1553
1554	/*
1555	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1556	 * do this here so we do not have to do it in all the code that
1557	 * calls us.
1558	 */
1559	bp->b_flags &= ~B_INVAL;
1560	bp->b_ioflags &= ~BIO_ERROR;
1561
1562	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1563	iocmd = bp->b_iocmd;
1564	if (iocmd == BIO_READ) {
1565	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1566	    io.iov_base = bp->b_data;
1567	    uiop->uio_rw = UIO_READ;
1568
1569	    switch (vp->v_type) {
1570	    case VREG:
1571		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1572		nfsstats.read_bios++;
1573		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1574
1575		if (!error) {
1576		    if (uiop->uio_resid) {
1577			/*
1578			 * If we had a short read with no error, we must have
1579			 * hit a file hole.  We should zero-fill the remainder.
1580			 * This can also occur if the server hits the file EOF.
1581			 *
1582			 * Holes used to be able to occur due to pending
1583			 * writes, but that is not possible any longer.
1584			 */
1585			int nread = bp->b_bcount - uiop->uio_resid;
1586			int left  = uiop->uio_resid;
1587
1588			if (left > 0)
1589				bzero((char *)bp->b_data + nread, left);
1590			uiop->uio_resid = 0;
1591		    }
1592		}
1593		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1594		if (p && (vp->v_vflag & VV_TEXT)) {
1595			mtx_lock(&np->n_mtx);
1596			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1597				mtx_unlock(&np->n_mtx);
1598				PROC_LOCK(p);
1599				killproc(p, "text file modification");
1600				PROC_UNLOCK(p);
1601			} else
1602				mtx_unlock(&np->n_mtx);
1603		}
1604		break;
1605	    case VLNK:
1606		uiop->uio_offset = (off_t)0;
1607		nfsstats.readlink_bios++;
1608		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1609		break;
1610	    case VDIR:
1611		nfsstats.readdir_bios++;
1612		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1613		if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
1614			error = nfs4_readdirrpc(vp, uiop, cr);
1615		else {
1616			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1617				error = nfs_readdirplusrpc(vp, uiop, cr);
1618				if (error == NFSERR_NOTSUPP)
1619					nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1620			}
1621			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1622				error = nfs_readdirrpc(vp, uiop, cr);
1623		}
1624		/*
1625		 * end-of-directory sets B_INVAL but does not generate an
1626		 * error.
1627		 */
1628		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1629			bp->b_flags |= B_INVAL;
1630		break;
1631	    default:
1632		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1633		break;
1634	    };
1635	    if (error) {
1636		bp->b_ioflags |= BIO_ERROR;
1637		bp->b_error = error;
1638	    }
1639	} else {
1640	    /*
1641	     * If we only need to commit, try to commit
1642	     */
1643	    if (bp->b_flags & B_NEEDCOMMIT) {
1644		    int retv;
1645		    off_t off;
1646
1647		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1648		    retv = (nmp->nm_rpcops->nr_commit)(
1649				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1650				bp->b_wcred, td);
1651		    if (retv == 0) {
1652			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1653			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1654			    bp->b_resid = 0;
1655			    bufdone(bp);
1656			    return (0);
1657		    }
1658		    if (retv == NFSERR_STALEWRITEVERF) {
1659			    nfs_clearcommit(vp->v_mount);
1660		    }
1661	    }
1662
1663	    /*
1664	     * Setup for actual write
1665	     */
1666	    mtx_lock(&np->n_mtx);
1667	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1668		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1669	    mtx_unlock(&np->n_mtx);
1670
1671	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1672		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1673		    - bp->b_dirtyoff;
1674		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1675		    + bp->b_dirtyoff;
1676		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1677		uiop->uio_rw = UIO_WRITE;
1678		nfsstats.write_bios++;
1679
1680		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1681		    iomode = NFSV3WRITE_UNSTABLE;
1682		else
1683		    iomode = NFSV3WRITE_FILESYNC;
1684
1685		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1686
1687		/*
1688		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1689		 * to cluster the buffers needing commit.  This will allow
1690		 * the system to submit a single commit rpc for the whole
1691		 * cluster.  We can do this even if the buffer is not 100%
1692		 * dirty (relative to the NFS blocksize), so we optimize the
1693		 * append-to-file-case.
1694		 *
1695		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1696		 * cleared because write clustering only works for commit
1697		 * rpc's, not for the data portion of the write).
1698		 */
1699
1700		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1701		    bp->b_flags |= B_NEEDCOMMIT;
1702		    if (bp->b_dirtyoff == 0
1703			&& bp->b_dirtyend == bp->b_bcount)
1704			bp->b_flags |= B_CLUSTEROK;
1705		} else {
1706		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1707		}
1708
1709		/*
1710		 * For an interrupted write, the buffer is still valid
1711		 * and the write hasn't been pushed to the server yet,
1712		 * so we can't set BIO_ERROR and report the interruption
1713		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1714		 * is not relevant, so the rpc attempt is essentially
1715		 * a noop.  For the case of a V3 write rpc not being
1716		 * committed to stable storage, the block is still
1717		 * dirty and requires either a commit rpc or another
1718		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1719		 * the block is reused. This is indicated by setting
1720		 * the B_DELWRI and B_NEEDCOMMIT flags.
1721		 *
1722		 * If the buffer is marked B_PAGING, it does not reside on
1723		 * the vp's paging queues so we cannot call bdirty().  The
1724		 * bp in this case is not an NFS cache block so we should
1725		 * be safe. XXX
1726		 *
1727		 * The logic below breaks up errors into recoverable and
1728		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1729		 * and keep the buffer around for potential write retries.
1730		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1731		 * and save the error in the nfsnode. This is less than ideal
1732		 * but necessary. Keeping such buffers around could potentially
1733		 * cause buffer exhaustion eventually (they can never be written
1734		 * out, so will get constantly be re-dirtied). It also causes
1735		 * all sorts of vfs panics. For non-recoverable write errors,
1736		 * also invalidate the attrcache, so we'll be forced to go over
1737		 * the wire for this object, returning an error to user on next
1738		 * call (most of the time).
1739		 */
1740    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1741		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1742			int s;
1743
1744			s = splbio();
1745			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1746			if ((bp->b_flags & B_PAGING) == 0) {
1747			    bdirty(bp);
1748			    bp->b_flags &= ~B_DONE;
1749			}
1750			if (error && (bp->b_flags & B_ASYNC) == 0)
1751			    bp->b_flags |= B_EINTR;
1752			splx(s);
1753	    	} else {
1754		    if (error) {
1755			bp->b_ioflags |= BIO_ERROR;
1756			bp->b_flags |= B_INVAL;
1757			bp->b_error = np->n_error = error;
1758			mtx_lock(&np->n_mtx);
1759			np->n_flag |= NWRITEERR;
1760			np->n_attrstamp = 0;
1761			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1762			mtx_unlock(&np->n_mtx);
1763		    }
1764		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1765		}
1766	    } else {
1767		bp->b_resid = 0;
1768		bufdone(bp);
1769		return (0);
1770	    }
1771	}
1772	bp->b_resid = uiop->uio_resid;
1773	if (must_commit)
1774	    nfs_clearcommit(vp->v_mount);
1775	bufdone(bp);
1776	return (error);
1777}
1778
1779/*
1780 * Used to aid in handling ftruncate() operations on the NFS client side.
1781 * Truncation creates a number of special problems for NFS.  We have to
1782 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1783 * we have to properly handle VM pages or (potentially dirty) buffers
1784 * that straddle the truncation point.
1785 */
1786
1787int
1788nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1789{
1790	struct nfsnode *np = VTONFS(vp);
1791	u_quad_t tsize;
1792	int biosize = vp->v_mount->mnt_stat.f_iosize;
1793	int error = 0;
1794
1795	mtx_lock(&np->n_mtx);
1796	tsize = np->n_size;
1797	np->n_size = nsize;
1798	mtx_unlock(&np->n_mtx);
1799
1800	if (nsize < tsize) {
1801		struct buf *bp;
1802		daddr_t lbn;
1803		int bufsize;
1804
1805		/*
1806		 * vtruncbuf() doesn't get the buffer overlapping the
1807		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1808		 * buffer that now needs to be truncated.
1809		 */
1810		error = vtruncbuf(vp, cred, td, nsize, biosize);
1811		lbn = nsize / biosize;
1812		bufsize = nsize & (biosize - 1);
1813		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1814 		if (!bp)
1815 			return EINTR;
1816		if (bp->b_dirtyoff > bp->b_bcount)
1817			bp->b_dirtyoff = bp->b_bcount;
1818		if (bp->b_dirtyend > bp->b_bcount)
1819			bp->b_dirtyend = bp->b_bcount;
1820		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1821		brelse(bp);
1822	} else {
1823		vnode_pager_setsize(vp, nsize);
1824	}
1825	return(error);
1826}
1827
1828