nfs_bio.c revision 190380
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 190380 2009-03-24 17:14:34Z rwatson $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mount.h>
46#include <sys/proc.h>
47#include <sys/resourcevar.h>
48#include <sys/signalvar.h>
49#include <sys/vmmeter.h>
50#include <sys/vnode.h>
51
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_page.h>
55#include <vm/vm_object.h>
56#include <vm/vm_pager.h>
57#include <vm/vnode_pager.h>
58
59#include <rpc/rpcclnt.h>
60
61#include <nfs/rpcv2.h>
62#include <nfs/nfsproto.h>
63#include <nfsclient/nfs.h>
64#include <nfsclient/nfsmount.h>
65#include <nfsclient/nfsnode.h>
66#include <nfsclient/nfs_kdtrace.h>
67
68#include <nfs4client/nfs4.h>
69
70static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
71		    struct thread *td);
72static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
73			      struct ucred *cred, int ioflag);
74
75extern int nfs_directio_enable;
76extern int nfs_directio_allow_mmap;
77
78/*
79 * Vnode op for VM getpages.
80 */
81int
82nfs_getpages(struct vop_getpages_args *ap)
83{
84	int i, error, nextoff, size, toff, count, npages;
85	struct uio uio;
86	struct iovec iov;
87	vm_offset_t kva;
88	struct buf *bp;
89	struct vnode *vp;
90	struct thread *td;
91	struct ucred *cred;
92	struct nfsmount *nmp;
93	vm_object_t object;
94	vm_page_t *pages;
95	struct nfsnode *np;
96
97	vp = ap->a_vp;
98	np = VTONFS(vp);
99	td = curthread;				/* XXX */
100	cred = curthread->td_ucred;		/* XXX */
101	nmp = VFSTONFS(vp->v_mount);
102	pages = ap->a_m;
103	count = ap->a_count;
104
105	if ((object = vp->v_object) == NULL) {
106		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
107		return VM_PAGER_ERROR;
108	}
109
110	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
111		mtx_lock(&np->n_mtx);
112		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
113			mtx_unlock(&np->n_mtx);
114			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
115			return VM_PAGER_ERROR;
116		} else
117			mtx_unlock(&np->n_mtx);
118	}
119
120	mtx_lock(&nmp->nm_mtx);
121	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
122	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
123		mtx_unlock(&nmp->nm_mtx);
124		/* We'll never get here for v4, because we always have fsinfo */
125		(void)nfs_fsinfo(nmp, vp, cred, td);
126	} else
127		mtx_unlock(&nmp->nm_mtx);
128
129	npages = btoc(count);
130
131	/*
132	 * If the requested page is partially valid, just return it and
133	 * allow the pager to zero-out the blanks.  Partially valid pages
134	 * can only occur at the file EOF.
135	 */
136
137	{
138		vm_page_t m = pages[ap->a_reqpage];
139
140		VM_OBJECT_LOCK(object);
141		vm_page_lock_queues();
142		if (m->valid != 0) {
143			/* handled by vm_fault now	  */
144			/* vm_page_zero_invalid(m, TRUE); */
145			for (i = 0; i < npages; ++i) {
146				if (i != ap->a_reqpage)
147					vm_page_free(pages[i]);
148			}
149			vm_page_unlock_queues();
150			VM_OBJECT_UNLOCK(object);
151			return(0);
152		}
153		vm_page_unlock_queues();
154		VM_OBJECT_UNLOCK(object);
155	}
156
157	/*
158	 * We use only the kva address for the buffer, but this is extremely
159	 * convienient and fast.
160	 */
161	bp = getpbuf(&nfs_pbuf_freecnt);
162
163	kva = (vm_offset_t) bp->b_data;
164	pmap_qenter(kva, pages, npages);
165	PCPU_INC(cnt.v_vnodein);
166	PCPU_ADD(cnt.v_vnodepgsin, npages);
167
168	iov.iov_base = (caddr_t) kva;
169	iov.iov_len = count;
170	uio.uio_iov = &iov;
171	uio.uio_iovcnt = 1;
172	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
173	uio.uio_resid = count;
174	uio.uio_segflg = UIO_SYSSPACE;
175	uio.uio_rw = UIO_READ;
176	uio.uio_td = td;
177
178	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
179	pmap_qremove(kva, npages);
180
181	relpbuf(bp, &nfs_pbuf_freecnt);
182
183	if (error && (uio.uio_resid == count)) {
184		nfs_printf("nfs_getpages: error %d\n", error);
185		VM_OBJECT_LOCK(object);
186		vm_page_lock_queues();
187		for (i = 0; i < npages; ++i) {
188			if (i != ap->a_reqpage)
189				vm_page_free(pages[i]);
190		}
191		vm_page_unlock_queues();
192		VM_OBJECT_UNLOCK(object);
193		return VM_PAGER_ERROR;
194	}
195
196	/*
197	 * Calculate the number of bytes read and validate only that number
198	 * of bytes.  Note that due to pending writes, size may be 0.  This
199	 * does not mean that the remaining data is invalid!
200	 */
201
202	size = count - uio.uio_resid;
203	VM_OBJECT_LOCK(object);
204	vm_page_lock_queues();
205	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
206		vm_page_t m;
207		nextoff = toff + PAGE_SIZE;
208		m = pages[i];
209
210		if (nextoff <= size) {
211			/*
212			 * Read operation filled an entire page
213			 */
214			m->valid = VM_PAGE_BITS_ALL;
215			vm_page_undirty(m);
216		} else if (size > toff) {
217			/*
218			 * Read operation filled a partial page.
219			 */
220			m->valid = 0;
221			vm_page_set_validclean(m, 0, size - toff);
222			/* handled by vm_fault now	  */
223			/* vm_page_zero_invalid(m, TRUE); */
224		} else {
225			/*
226			 * Read operation was short.  If no error occured
227			 * we may have hit a zero-fill section.   We simply
228			 * leave valid set to 0.
229			 */
230			;
231		}
232		if (i != ap->a_reqpage) {
233			/*
234			 * Whether or not to leave the page activated is up in
235			 * the air, but we should put the page on a page queue
236			 * somewhere (it already is in the object).  Result:
237			 * It appears that emperical results show that
238			 * deactivating pages is best.
239			 */
240
241			/*
242			 * Just in case someone was asking for this page we
243			 * now tell them that it is ok to use.
244			 */
245			if (!error) {
246				if (m->oflags & VPO_WANTED)
247					vm_page_activate(m);
248				else
249					vm_page_deactivate(m);
250				vm_page_wakeup(m);
251			} else {
252				vm_page_free(m);
253			}
254		}
255	}
256	vm_page_unlock_queues();
257	VM_OBJECT_UNLOCK(object);
258	return 0;
259}
260
261/*
262 * Vnode op for VM putpages.
263 */
264int
265nfs_putpages(struct vop_putpages_args *ap)
266{
267	struct uio uio;
268	struct iovec iov;
269	vm_offset_t kva;
270	struct buf *bp;
271	int iomode, must_commit, i, error, npages, count;
272	off_t offset;
273	int *rtvals;
274	struct vnode *vp;
275	struct thread *td;
276	struct ucred *cred;
277	struct nfsmount *nmp;
278	struct nfsnode *np;
279	vm_page_t *pages;
280
281	vp = ap->a_vp;
282	np = VTONFS(vp);
283	td = curthread;				/* XXX */
284	cred = curthread->td_ucred;		/* XXX */
285	nmp = VFSTONFS(vp->v_mount);
286	pages = ap->a_m;
287	count = ap->a_count;
288	rtvals = ap->a_rtvals;
289	npages = btoc(count);
290	offset = IDX_TO_OFF(pages[0]->pindex);
291
292	mtx_lock(&nmp->nm_mtx);
293	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
294	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
295		mtx_unlock(&nmp->nm_mtx);
296		(void)nfs_fsinfo(nmp, vp, cred, td);
297	} else
298		mtx_unlock(&nmp->nm_mtx);
299
300	mtx_lock(&np->n_mtx);
301	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
302	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
303		mtx_unlock(&np->n_mtx);
304		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
305		mtx_lock(&np->n_mtx);
306	}
307
308	for (i = 0; i < npages; i++)
309		rtvals[i] = VM_PAGER_AGAIN;
310
311	/*
312	 * When putting pages, do not extend file past EOF.
313	 */
314	if (offset + count > np->n_size) {
315		count = np->n_size - offset;
316		if (count < 0)
317			count = 0;
318	}
319	mtx_unlock(&np->n_mtx);
320
321	/*
322	 * We use only the kva address for the buffer, but this is extremely
323	 * convienient and fast.
324	 */
325	bp = getpbuf(&nfs_pbuf_freecnt);
326
327	kva = (vm_offset_t) bp->b_data;
328	pmap_qenter(kva, pages, npages);
329	PCPU_INC(cnt.v_vnodeout);
330	PCPU_ADD(cnt.v_vnodepgsout, count);
331
332	iov.iov_base = (caddr_t) kva;
333	iov.iov_len = count;
334	uio.uio_iov = &iov;
335	uio.uio_iovcnt = 1;
336	uio.uio_offset = offset;
337	uio.uio_resid = count;
338	uio.uio_segflg = UIO_SYSSPACE;
339	uio.uio_rw = UIO_WRITE;
340	uio.uio_td = td;
341
342	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
343	    iomode = NFSV3WRITE_UNSTABLE;
344	else
345	    iomode = NFSV3WRITE_FILESYNC;
346
347	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
348
349	pmap_qremove(kva, npages);
350	relpbuf(bp, &nfs_pbuf_freecnt);
351
352	if (!error) {
353		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
354		for (i = 0; i < nwritten; i++) {
355			rtvals[i] = VM_PAGER_OK;
356			vm_page_undirty(pages[i]);
357		}
358		if (must_commit) {
359			nfs_clearcommit(vp->v_mount);
360		}
361	}
362	return rtvals[0];
363}
364
365/*
366 * For nfs, cache consistency can only be maintained approximately.
367 * Although RFC1094 does not specify the criteria, the following is
368 * believed to be compatible with the reference port.
369 * For nfs:
370 * If the file's modify time on the server has changed since the
371 * last read rpc or you have written to the file,
372 * you may have lost data cache consistency with the
373 * server, so flush all of the file's data out of the cache.
374 * Then force a getattr rpc to ensure that you have up to date
375 * attributes.
376 * NB: This implies that cache data can be read when up to
377 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
378 * attributes this could be forced by setting n_attrstamp to 0 before
379 * the VOP_GETATTR() call.
380 */
381static inline int
382nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
383{
384	int error = 0;
385	struct vattr vattr;
386	struct nfsnode *np = VTONFS(vp);
387	int old_lock;
388	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
389
390	/*
391	 * Grab the exclusive lock before checking whether the cache is
392	 * consistent.
393	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
394	 * But for now, this suffices.
395	 */
396	old_lock = nfs_upgrade_vnlock(vp);
397	mtx_lock(&np->n_mtx);
398	if (np->n_flag & NMODIFIED) {
399		mtx_unlock(&np->n_mtx);
400		if (vp->v_type != VREG) {
401			if (vp->v_type != VDIR)
402				panic("nfs: bioread, not dir");
403			(nmp->nm_rpcops->nr_invaldir)(vp);
404			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
405			if (error)
406				goto out;
407		}
408		np->n_attrstamp = 0;
409		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
410		error = VOP_GETATTR(vp, &vattr, cred);
411		if (error)
412			goto out;
413		mtx_lock(&np->n_mtx);
414		np->n_mtime = vattr.va_mtime;
415		mtx_unlock(&np->n_mtx);
416	} else {
417		mtx_unlock(&np->n_mtx);
418		error = VOP_GETATTR(vp, &vattr, cred);
419		if (error)
420			return (error);
421		mtx_lock(&np->n_mtx);
422		if ((np->n_flag & NSIZECHANGED)
423		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
424			mtx_unlock(&np->n_mtx);
425			if (vp->v_type == VDIR)
426				(nmp->nm_rpcops->nr_invaldir)(vp);
427			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
428			if (error)
429				goto out;
430			mtx_lock(&np->n_mtx);
431			np->n_mtime = vattr.va_mtime;
432			np->n_flag &= ~NSIZECHANGED;
433		}
434		mtx_unlock(&np->n_mtx);
435	}
436out:
437	nfs_downgrade_vnlock(vp, old_lock);
438	return error;
439}
440
441/*
442 * Vnode op for read using bio
443 */
444int
445nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
446{
447	struct nfsnode *np = VTONFS(vp);
448	int biosize, i;
449	struct buf *bp, *rabp;
450	struct thread *td;
451	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
452	daddr_t lbn, rabn;
453	int bcount;
454	int seqcount;
455	int nra, error = 0, n = 0, on = 0;
456
457#ifdef DIAGNOSTIC
458	if (uio->uio_rw != UIO_READ)
459		panic("nfs_read mode");
460#endif
461	if (uio->uio_resid == 0)
462		return (0);
463	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
464		return (EINVAL);
465	td = uio->uio_td;
466
467	mtx_lock(&nmp->nm_mtx);
468	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
469	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
470		mtx_unlock(&nmp->nm_mtx);
471		(void)nfs_fsinfo(nmp, vp, cred, td);
472	} else
473		mtx_unlock(&nmp->nm_mtx);
474
475	if (vp->v_type != VDIR &&
476	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
477		return (EFBIG);
478
479	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
480		/* No caching/ no readaheads. Just read data into the user buffer */
481		return nfs_readrpc(vp, uio, cred);
482
483	biosize = vp->v_mount->mnt_stat.f_iosize;
484	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
485
486	error = nfs_bioread_check_cons(vp, td, cred);
487	if (error)
488		return error;
489
490	do {
491	    u_quad_t nsize;
492
493	    mtx_lock(&np->n_mtx);
494	    nsize = np->n_size;
495	    mtx_unlock(&np->n_mtx);
496
497	    switch (vp->v_type) {
498	    case VREG:
499		nfsstats.biocache_reads++;
500		lbn = uio->uio_offset / biosize;
501		on = uio->uio_offset & (biosize - 1);
502
503		/*
504		 * Start the read ahead(s), as required.
505		 */
506		if (nmp->nm_readahead > 0) {
507		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
508			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
509			rabn = lbn + 1 + nra;
510			if (incore(&vp->v_bufobj, rabn) == NULL) {
511			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
512			    if (!rabp) {
513				error = nfs_sigintr(nmp, NULL, td);
514				return (error ? error : EINTR);
515			    }
516			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
517				rabp->b_flags |= B_ASYNC;
518				rabp->b_iocmd = BIO_READ;
519				vfs_busy_pages(rabp, 0);
520				if (nfs_asyncio(nmp, rabp, cred, td)) {
521				    rabp->b_flags |= B_INVAL;
522				    rabp->b_ioflags |= BIO_ERROR;
523				    vfs_unbusy_pages(rabp);
524				    brelse(rabp);
525				    break;
526				}
527			    } else {
528				brelse(rabp);
529			    }
530			}
531		    }
532		}
533
534		/* Note that bcount is *not* DEV_BSIZE aligned. */
535		bcount = biosize;
536		if ((off_t)lbn * biosize >= nsize) {
537			bcount = 0;
538		} else if ((off_t)(lbn + 1) * biosize > nsize) {
539			bcount = nsize - (off_t)lbn * biosize;
540		}
541		bp = nfs_getcacheblk(vp, lbn, bcount, td);
542
543		if (!bp) {
544			error = nfs_sigintr(nmp, NULL, td);
545			return (error ? error : EINTR);
546		}
547
548		/*
549		 * If B_CACHE is not set, we must issue the read.  If this
550		 * fails, we return an error.
551		 */
552
553		if ((bp->b_flags & B_CACHE) == 0) {
554		    bp->b_iocmd = BIO_READ;
555		    vfs_busy_pages(bp, 0);
556		    error = nfs_doio(vp, bp, cred, td);
557		    if (error) {
558			brelse(bp);
559			return (error);
560		    }
561		}
562
563		/*
564		 * on is the offset into the current bp.  Figure out how many
565		 * bytes we can copy out of the bp.  Note that bcount is
566		 * NOT DEV_BSIZE aligned.
567		 *
568		 * Then figure out how many bytes we can copy into the uio.
569		 */
570
571		n = 0;
572		if (on < bcount)
573			n = min((unsigned)(bcount - on), uio->uio_resid);
574		break;
575	    case VLNK:
576		nfsstats.biocache_readlinks++;
577		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
578		if (!bp) {
579			error = nfs_sigintr(nmp, NULL, td);
580			return (error ? error : EINTR);
581		}
582		if ((bp->b_flags & B_CACHE) == 0) {
583		    bp->b_iocmd = BIO_READ;
584		    vfs_busy_pages(bp, 0);
585		    error = nfs_doio(vp, bp, cred, td);
586		    if (error) {
587			bp->b_ioflags |= BIO_ERROR;
588			brelse(bp);
589			return (error);
590		    }
591		}
592		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
593		on = 0;
594		break;
595	    case VDIR:
596		nfsstats.biocache_readdirs++;
597		if (np->n_direofoffset
598		    && uio->uio_offset >= np->n_direofoffset) {
599		    return (0);
600		}
601		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
602		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
603		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
604		if (!bp) {
605		    error = nfs_sigintr(nmp, NULL, td);
606		    return (error ? error : EINTR);
607		}
608		if ((bp->b_flags & B_CACHE) == 0) {
609		    bp->b_iocmd = BIO_READ;
610		    vfs_busy_pages(bp, 0);
611		    error = nfs_doio(vp, bp, cred, td);
612		    if (error) {
613			    brelse(bp);
614		    }
615		    while (error == NFSERR_BAD_COOKIE) {
616			(nmp->nm_rpcops->nr_invaldir)(vp);
617			error = nfs_vinvalbuf(vp, 0, td, 1);
618			/*
619			 * Yuck! The directory has been modified on the
620			 * server. The only way to get the block is by
621			 * reading from the beginning to get all the
622			 * offset cookies.
623			 *
624			 * Leave the last bp intact unless there is an error.
625			 * Loop back up to the while if the error is another
626			 * NFSERR_BAD_COOKIE (double yuch!).
627			 */
628			for (i = 0; i <= lbn && !error; i++) {
629			    if (np->n_direofoffset
630				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
631				    return (0);
632			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
633			    if (!bp) {
634				error = nfs_sigintr(nmp, NULL, td);
635				return (error ? error : EINTR);
636			    }
637			    if ((bp->b_flags & B_CACHE) == 0) {
638				    bp->b_iocmd = BIO_READ;
639				    vfs_busy_pages(bp, 0);
640				    error = nfs_doio(vp, bp, cred, td);
641				    /*
642				     * no error + B_INVAL == directory EOF,
643				     * use the block.
644				     */
645				    if (error == 0 && (bp->b_flags & B_INVAL))
646					    break;
647			    }
648			    /*
649			     * An error will throw away the block and the
650			     * for loop will break out.  If no error and this
651			     * is not the block we want, we throw away the
652			     * block and go for the next one via the for loop.
653			     */
654			    if (error || i < lbn)
655				    brelse(bp);
656			}
657		    }
658		    /*
659		     * The above while is repeated if we hit another cookie
660		     * error.  If we hit an error and it wasn't a cookie error,
661		     * we give up.
662		     */
663		    if (error)
664			    return (error);
665		}
666
667		/*
668		 * If not eof and read aheads are enabled, start one.
669		 * (You need the current block first, so that you have the
670		 *  directory offset cookie of the next block.)
671		 */
672		if (nmp->nm_readahead > 0 &&
673		    (bp->b_flags & B_INVAL) == 0 &&
674		    (np->n_direofoffset == 0 ||
675		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
676		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
677			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
678			if (rabp) {
679			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
680				rabp->b_flags |= B_ASYNC;
681				rabp->b_iocmd = BIO_READ;
682				vfs_busy_pages(rabp, 0);
683				if (nfs_asyncio(nmp, rabp, cred, td)) {
684				    rabp->b_flags |= B_INVAL;
685				    rabp->b_ioflags |= BIO_ERROR;
686				    vfs_unbusy_pages(rabp);
687				    brelse(rabp);
688				}
689			    } else {
690				brelse(rabp);
691			    }
692			}
693		}
694		/*
695		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
696		 * chopped for the EOF condition, we cannot tell how large
697		 * NFS directories are going to be until we hit EOF.  So
698		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
699		 * it just so happens that b_resid will effectively chop it
700		 * to EOF.  *BUT* this information is lost if the buffer goes
701		 * away and is reconstituted into a B_CACHE state ( due to
702		 * being VMIO ) later.  So we keep track of the directory eof
703		 * in np->n_direofoffset and chop it off as an extra step
704		 * right here.
705		 */
706		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
707		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
708			n = np->n_direofoffset - uio->uio_offset;
709		break;
710	    default:
711		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
712		bp = NULL;
713		break;
714	    };
715
716	    if (n > 0) {
717		    error = uiomove(bp->b_data + on, (int)n, uio);
718	    }
719	    if (vp->v_type == VLNK)
720		n = 0;
721	    if (bp != NULL)
722		brelse(bp);
723	} while (error == 0 && uio->uio_resid > 0 && n > 0);
724	return (error);
725}
726
727/*
728 * The NFS write path cannot handle iovecs with len > 1. So we need to
729 * break up iovecs accordingly (restricting them to wsize).
730 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
731 * For the ASYNC case, 2 copies are needed. The first a copy from the
732 * user buffer to a staging buffer and then a second copy from the staging
733 * buffer to mbufs. This can be optimized by copying from the user buffer
734 * directly into mbufs and passing the chain down, but that requires a
735 * fair amount of re-working of the relevant codepaths (and can be done
736 * later).
737 */
738static int
739nfs_directio_write(vp, uiop, cred, ioflag)
740	struct vnode *vp;
741	struct uio *uiop;
742	struct ucred *cred;
743	int ioflag;
744{
745	int error;
746	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
747	struct thread *td = uiop->uio_td;
748	int size;
749	int wsize;
750
751	mtx_lock(&nmp->nm_mtx);
752	wsize = nmp->nm_wsize;
753	mtx_unlock(&nmp->nm_mtx);
754	if (ioflag & IO_SYNC) {
755		int iomode, must_commit;
756		struct uio uio;
757		struct iovec iov;
758do_sync:
759		while (uiop->uio_resid > 0) {
760			size = min(uiop->uio_resid, wsize);
761			size = min(uiop->uio_iov->iov_len, size);
762			iov.iov_base = uiop->uio_iov->iov_base;
763			iov.iov_len = size;
764			uio.uio_iov = &iov;
765			uio.uio_iovcnt = 1;
766			uio.uio_offset = uiop->uio_offset;
767			uio.uio_resid = size;
768			uio.uio_segflg = UIO_USERSPACE;
769			uio.uio_rw = UIO_WRITE;
770			uio.uio_td = td;
771			iomode = NFSV3WRITE_FILESYNC;
772			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
773						      &iomode, &must_commit);
774			KASSERT((must_commit == 0),
775				("nfs_directio_write: Did not commit write"));
776			if (error)
777				return (error);
778			uiop->uio_offset += size;
779			uiop->uio_resid -= size;
780			if (uiop->uio_iov->iov_len <= size) {
781				uiop->uio_iovcnt--;
782				uiop->uio_iov++;
783			} else {
784				uiop->uio_iov->iov_base =
785					(char *)uiop->uio_iov->iov_base + size;
786				uiop->uio_iov->iov_len -= size;
787			}
788		}
789	} else {
790		struct uio *t_uio;
791		struct iovec *t_iov;
792		struct buf *bp;
793
794		/*
795		 * Break up the write into blocksize chunks and hand these
796		 * over to nfsiod's for write back.
797		 * Unfortunately, this incurs a copy of the data. Since
798		 * the user could modify the buffer before the write is
799		 * initiated.
800		 *
801		 * The obvious optimization here is that one of the 2 copies
802		 * in the async write path can be eliminated by copying the
803		 * data here directly into mbufs and passing the mbuf chain
804		 * down. But that will require a fair amount of re-working
805		 * of the code and can be done if there's enough interest
806		 * in NFS directio access.
807		 */
808		while (uiop->uio_resid > 0) {
809			size = min(uiop->uio_resid, wsize);
810			size = min(uiop->uio_iov->iov_len, size);
811			bp = getpbuf(&nfs_pbuf_freecnt);
812			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
813			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
814			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
815			t_iov->iov_len = size;
816			t_uio->uio_iov = t_iov;
817			t_uio->uio_iovcnt = 1;
818			t_uio->uio_offset = uiop->uio_offset;
819			t_uio->uio_resid = size;
820			t_uio->uio_segflg = UIO_SYSSPACE;
821			t_uio->uio_rw = UIO_WRITE;
822			t_uio->uio_td = td;
823			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
824			bp->b_flags |= B_DIRECT;
825			bp->b_iocmd = BIO_WRITE;
826			if (cred != NOCRED) {
827				crhold(cred);
828				bp->b_wcred = cred;
829			} else
830				bp->b_wcred = NOCRED;
831			bp->b_caller1 = (void *)t_uio;
832			bp->b_vp = vp;
833			error = nfs_asyncio(nmp, bp, NOCRED, td);
834			if (error) {
835				free(t_iov->iov_base, M_NFSDIRECTIO);
836				free(t_iov, M_NFSDIRECTIO);
837				free(t_uio, M_NFSDIRECTIO);
838				bp->b_vp = NULL;
839				relpbuf(bp, &nfs_pbuf_freecnt);
840				if (error == EINTR)
841					return (error);
842				goto do_sync;
843			}
844			uiop->uio_offset += size;
845			uiop->uio_resid -= size;
846			if (uiop->uio_iov->iov_len <= size) {
847				uiop->uio_iovcnt--;
848				uiop->uio_iov++;
849			} else {
850				uiop->uio_iov->iov_base =
851					(char *)uiop->uio_iov->iov_base + size;
852				uiop->uio_iov->iov_len -= size;
853			}
854		}
855	}
856	return (0);
857}
858
859/*
860 * Vnode op for write using bio
861 */
862int
863nfs_write(struct vop_write_args *ap)
864{
865	int biosize;
866	struct uio *uio = ap->a_uio;
867	struct thread *td = uio->uio_td;
868	struct vnode *vp = ap->a_vp;
869	struct nfsnode *np = VTONFS(vp);
870	struct ucred *cred = ap->a_cred;
871	int ioflag = ap->a_ioflag;
872	struct buf *bp;
873	struct vattr vattr;
874	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
875	daddr_t lbn;
876	int bcount;
877	int n, on, error = 0;
878	struct proc *p = td?td->td_proc:NULL;
879
880#ifdef DIAGNOSTIC
881	if (uio->uio_rw != UIO_WRITE)
882		panic("nfs_write mode");
883	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
884		panic("nfs_write proc");
885#endif
886	if (vp->v_type != VREG)
887		return (EIO);
888	mtx_lock(&np->n_mtx);
889	if (np->n_flag & NWRITEERR) {
890		np->n_flag &= ~NWRITEERR;
891		mtx_unlock(&np->n_mtx);
892		return (np->n_error);
893	} else
894		mtx_unlock(&np->n_mtx);
895	mtx_lock(&nmp->nm_mtx);
896	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
897	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
898		mtx_unlock(&nmp->nm_mtx);
899		(void)nfs_fsinfo(nmp, vp, cred, td);
900	} else
901		mtx_unlock(&nmp->nm_mtx);
902
903	/*
904	 * Synchronously flush pending buffers if we are in synchronous
905	 * mode or if we are appending.
906	 */
907	if (ioflag & (IO_APPEND | IO_SYNC)) {
908		mtx_lock(&np->n_mtx);
909		if (np->n_flag & NMODIFIED) {
910			mtx_unlock(&np->n_mtx);
911#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
912			/*
913			 * Require non-blocking, synchronous writes to
914			 * dirty files to inform the program it needs
915			 * to fsync(2) explicitly.
916			 */
917			if (ioflag & IO_NDELAY)
918				return (EAGAIN);
919#endif
920flush_and_restart:
921			np->n_attrstamp = 0;
922			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
923			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
924			if (error)
925				return (error);
926		} else
927			mtx_unlock(&np->n_mtx);
928	}
929
930	/*
931	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
932	 * get the append lock.
933	 */
934	if (ioflag & IO_APPEND) {
935		np->n_attrstamp = 0;
936		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
937		error = VOP_GETATTR(vp, &vattr, cred);
938		if (error)
939			return (error);
940		mtx_lock(&np->n_mtx);
941		uio->uio_offset = np->n_size;
942		mtx_unlock(&np->n_mtx);
943	}
944
945	if (uio->uio_offset < 0)
946		return (EINVAL);
947	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
948		return (EFBIG);
949	if (uio->uio_resid == 0)
950		return (0);
951
952	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
953		return nfs_directio_write(vp, uio, cred, ioflag);
954
955	/*
956	 * Maybe this should be above the vnode op call, but so long as
957	 * file servers have no limits, i don't think it matters
958	 */
959	if (p != NULL) {
960		PROC_LOCK(p);
961		if (uio->uio_offset + uio->uio_resid >
962		    lim_cur(p, RLIMIT_FSIZE)) {
963			psignal(p, SIGXFSZ);
964			PROC_UNLOCK(p);
965			return (EFBIG);
966		}
967		PROC_UNLOCK(p);
968	}
969
970	biosize = vp->v_mount->mnt_stat.f_iosize;
971	/*
972	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
973	 * would exceed the local maximum per-file write commit size when
974	 * combined with those, we must decide whether to flush,
975	 * go synchronous, or return error.  We don't bother checking
976	 * IO_UNIT -- we just make all writes atomic anyway, as there's
977	 * no point optimizing for something that really won't ever happen.
978	 */
979	if (!(ioflag & IO_SYNC)) {
980		int nflag;
981
982		mtx_lock(&np->n_mtx);
983		nflag = np->n_flag;
984		mtx_unlock(&np->n_mtx);
985		int needrestart = 0;
986		if (nmp->nm_wcommitsize < uio->uio_resid) {
987			/*
988			 * If this request could not possibly be completed
989			 * without exceeding the maximum outstanding write
990			 * commit size, see if we can convert it into a
991			 * synchronous write operation.
992			 */
993			if (ioflag & IO_NDELAY)
994				return (EAGAIN);
995			ioflag |= IO_SYNC;
996			if (nflag & NMODIFIED)
997				needrestart = 1;
998		} else if (nflag & NMODIFIED) {
999			int wouldcommit = 0;
1000			BO_LOCK(&vp->v_bufobj);
1001			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1002				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1003				    b_bobufs) {
1004					if (bp->b_flags & B_NEEDCOMMIT)
1005						wouldcommit += bp->b_bcount;
1006				}
1007			}
1008			BO_UNLOCK(&vp->v_bufobj);
1009			/*
1010			 * Since we're not operating synchronously and
1011			 * bypassing the buffer cache, we are in a commit
1012			 * and holding all of these buffers whether
1013			 * transmitted or not.  If not limited, this
1014			 * will lead to the buffer cache deadlocking,
1015			 * as no one else can flush our uncommitted buffers.
1016			 */
1017			wouldcommit += uio->uio_resid;
1018			/*
1019			 * If we would initially exceed the maximum
1020			 * outstanding write commit size, flush and restart.
1021			 */
1022			if (wouldcommit > nmp->nm_wcommitsize)
1023				needrestart = 1;
1024		}
1025		if (needrestart)
1026			goto flush_and_restart;
1027	}
1028
1029	do {
1030		nfsstats.biocache_writes++;
1031		lbn = uio->uio_offset / biosize;
1032		on = uio->uio_offset & (biosize-1);
1033		n = min((unsigned)(biosize - on), uio->uio_resid);
1034again:
1035		/*
1036		 * Handle direct append and file extension cases, calculate
1037		 * unaligned buffer size.
1038		 */
1039		mtx_lock(&np->n_mtx);
1040		if (uio->uio_offset == np->n_size && n) {
1041			mtx_unlock(&np->n_mtx);
1042			/*
1043			 * Get the buffer (in its pre-append state to maintain
1044			 * B_CACHE if it was previously set).  Resize the
1045			 * nfsnode after we have locked the buffer to prevent
1046			 * readers from reading garbage.
1047			 */
1048			bcount = on;
1049			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1050
1051			if (bp != NULL) {
1052				long save;
1053
1054				mtx_lock(&np->n_mtx);
1055				np->n_size = uio->uio_offset + n;
1056				np->n_flag |= NMODIFIED;
1057				vnode_pager_setsize(vp, np->n_size);
1058				mtx_unlock(&np->n_mtx);
1059
1060				save = bp->b_flags & B_CACHE;
1061				bcount += n;
1062				allocbuf(bp, bcount);
1063				bp->b_flags |= save;
1064			}
1065		} else {
1066			/*
1067			 * Obtain the locked cache block first, and then
1068			 * adjust the file's size as appropriate.
1069			 */
1070			bcount = on + n;
1071			if ((off_t)lbn * biosize + bcount < np->n_size) {
1072				if ((off_t)(lbn + 1) * biosize < np->n_size)
1073					bcount = biosize;
1074				else
1075					bcount = np->n_size - (off_t)lbn * biosize;
1076			}
1077			mtx_unlock(&np->n_mtx);
1078			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1079			mtx_lock(&np->n_mtx);
1080			if (uio->uio_offset + n > np->n_size) {
1081				np->n_size = uio->uio_offset + n;
1082				np->n_flag |= NMODIFIED;
1083				vnode_pager_setsize(vp, np->n_size);
1084			}
1085			mtx_unlock(&np->n_mtx);
1086		}
1087
1088		if (!bp) {
1089			error = nfs_sigintr(nmp, NULL, td);
1090			if (!error)
1091				error = EINTR;
1092			break;
1093		}
1094
1095		/*
1096		 * Issue a READ if B_CACHE is not set.  In special-append
1097		 * mode, B_CACHE is based on the buffer prior to the write
1098		 * op and is typically set, avoiding the read.  If a read
1099		 * is required in special append mode, the server will
1100		 * probably send us a short-read since we extended the file
1101		 * on our end, resulting in b_resid == 0 and, thusly,
1102		 * B_CACHE getting set.
1103		 *
1104		 * We can also avoid issuing the read if the write covers
1105		 * the entire buffer.  We have to make sure the buffer state
1106		 * is reasonable in this case since we will not be initiating
1107		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1108		 * more information.
1109		 *
1110		 * B_CACHE may also be set due to the buffer being cached
1111		 * normally.
1112		 */
1113
1114		if (on == 0 && n == bcount) {
1115			bp->b_flags |= B_CACHE;
1116			bp->b_flags &= ~B_INVAL;
1117			bp->b_ioflags &= ~BIO_ERROR;
1118		}
1119
1120		if ((bp->b_flags & B_CACHE) == 0) {
1121			bp->b_iocmd = BIO_READ;
1122			vfs_busy_pages(bp, 0);
1123			error = nfs_doio(vp, bp, cred, td);
1124			if (error) {
1125				brelse(bp);
1126				break;
1127			}
1128		}
1129		if (bp->b_wcred == NOCRED)
1130			bp->b_wcred = crhold(cred);
1131		mtx_lock(&np->n_mtx);
1132		np->n_flag |= NMODIFIED;
1133		mtx_unlock(&np->n_mtx);
1134
1135		/*
1136		 * If dirtyend exceeds file size, chop it down.  This should
1137		 * not normally occur but there is an append race where it
1138		 * might occur XXX, so we log it.
1139		 *
1140		 * If the chopping creates a reverse-indexed or degenerate
1141		 * situation with dirtyoff/end, we 0 both of them.
1142		 */
1143
1144		if (bp->b_dirtyend > bcount) {
1145			nfs_printf("NFS append race @%lx:%d\n",
1146			    (long)bp->b_blkno * DEV_BSIZE,
1147			    bp->b_dirtyend - bcount);
1148			bp->b_dirtyend = bcount;
1149		}
1150
1151		if (bp->b_dirtyoff >= bp->b_dirtyend)
1152			bp->b_dirtyoff = bp->b_dirtyend = 0;
1153
1154		/*
1155		 * If the new write will leave a contiguous dirty
1156		 * area, just update the b_dirtyoff and b_dirtyend,
1157		 * otherwise force a write rpc of the old dirty area.
1158		 *
1159		 * While it is possible to merge discontiguous writes due to
1160		 * our having a B_CACHE buffer ( and thus valid read data
1161		 * for the hole), we don't because it could lead to
1162		 * significant cache coherency problems with multiple clients,
1163		 * especially if locking is implemented later on.
1164		 *
1165		 * as an optimization we could theoretically maintain
1166		 * a linked list of discontinuous areas, but we would still
1167		 * have to commit them separately so there isn't much
1168		 * advantage to it except perhaps a bit of asynchronization.
1169		 */
1170
1171		if (bp->b_dirtyend > 0 &&
1172		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1173			if (bwrite(bp) == EINTR) {
1174				error = EINTR;
1175				break;
1176			}
1177			goto again;
1178		}
1179
1180		error = uiomove((char *)bp->b_data + on, n, uio);
1181
1182		/*
1183		 * Since this block is being modified, it must be written
1184		 * again and not just committed.  Since write clustering does
1185		 * not work for the stage 1 data write, only the stage 2
1186		 * commit rpc, we have to clear B_CLUSTEROK as well.
1187		 */
1188		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1189
1190		if (error) {
1191			bp->b_ioflags |= BIO_ERROR;
1192			brelse(bp);
1193			break;
1194		}
1195
1196		/*
1197		 * Only update dirtyoff/dirtyend if not a degenerate
1198		 * condition.
1199		 */
1200		if (n) {
1201			if (bp->b_dirtyend > 0) {
1202				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1203				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1204			} else {
1205				bp->b_dirtyoff = on;
1206				bp->b_dirtyend = on + n;
1207			}
1208			vfs_bio_set_validclean(bp, on, n);
1209		}
1210
1211		/*
1212		 * If IO_SYNC do bwrite().
1213		 *
1214		 * IO_INVAL appears to be unused.  The idea appears to be
1215		 * to turn off caching in this case.  Very odd.  XXX
1216		 */
1217		if ((ioflag & IO_SYNC)) {
1218			if (ioflag & IO_INVAL)
1219				bp->b_flags |= B_NOCACHE;
1220			error = bwrite(bp);
1221			if (error)
1222				break;
1223		} else if ((n + on) == biosize) {
1224			bp->b_flags |= B_ASYNC;
1225			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1226		} else {
1227			bdwrite(bp);
1228		}
1229	} while (uio->uio_resid > 0 && n > 0);
1230
1231	return (error);
1232}
1233
1234/*
1235 * Get an nfs cache block.
1236 *
1237 * Allocate a new one if the block isn't currently in the cache
1238 * and return the block marked busy. If the calling process is
1239 * interrupted by a signal for an interruptible mount point, return
1240 * NULL.
1241 *
1242 * The caller must carefully deal with the possible B_INVAL state of
1243 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1244 * indirectly), so synchronous reads can be issued without worrying about
1245 * the B_INVAL state.  We have to be a little more careful when dealing
1246 * with writes (see comments in nfs_write()) when extending a file past
1247 * its EOF.
1248 */
1249static struct buf *
1250nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1251{
1252	struct buf *bp;
1253	struct mount *mp;
1254	struct nfsmount *nmp;
1255
1256	mp = vp->v_mount;
1257	nmp = VFSTONFS(mp);
1258
1259	if (nmp->nm_flag & NFSMNT_INT) {
1260 		sigset_t oldset;
1261
1262 		nfs_set_sigmask(td, &oldset);
1263		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1264 		nfs_restore_sigmask(td, &oldset);
1265		while (bp == NULL) {
1266			if (nfs_sigintr(nmp, NULL, td))
1267				return (NULL);
1268			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1269		}
1270	} else {
1271		bp = getblk(vp, bn, size, 0, 0, 0);
1272	}
1273
1274	if (vp->v_type == VREG) {
1275		int biosize;
1276
1277		biosize = mp->mnt_stat.f_iosize;
1278		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1279	}
1280	return (bp);
1281}
1282
1283/*
1284 * Flush and invalidate all dirty buffers. If another process is already
1285 * doing the flush, just wait for completion.
1286 */
1287int
1288nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1289{
1290	struct nfsnode *np = VTONFS(vp);
1291	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1292	int error = 0, slpflag, slptimeo;
1293 	int old_lock = 0;
1294
1295	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1296
1297	/*
1298	 * XXX This check stops us from needlessly doing a vinvalbuf when
1299	 * being called through vclean().  It is not clear that this is
1300	 * unsafe.
1301	 */
1302	if (vp->v_iflag & VI_DOOMED)
1303		return (0);
1304
1305	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1306		intrflg = 0;
1307	if (intrflg) {
1308		slpflag = PCATCH;
1309		slptimeo = 2 * hz;
1310	} else {
1311		slpflag = 0;
1312		slptimeo = 0;
1313	}
1314
1315	old_lock = nfs_upgrade_vnlock(vp);
1316	/*
1317	 * Now, flush as required.
1318	 */
1319	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1320		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1321		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1322		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1323		/*
1324		 * If the page clean was interrupted, fail the invalidation.
1325		 * Not doing so, we run the risk of losing dirty pages in the
1326		 * vinvalbuf() call below.
1327		 */
1328		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1329			goto out;
1330	}
1331
1332	error = vinvalbuf(vp, flags, slpflag, 0);
1333	while (error) {
1334		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1335			goto out;
1336		error = vinvalbuf(vp, flags, 0, slptimeo);
1337	}
1338	mtx_lock(&np->n_mtx);
1339	if (np->n_directio_asyncwr == 0)
1340		np->n_flag &= ~NMODIFIED;
1341	mtx_unlock(&np->n_mtx);
1342out:
1343	nfs_downgrade_vnlock(vp, old_lock);
1344	return error;
1345}
1346
1347/*
1348 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1349 * This is mainly to avoid queueing async I/O requests when the nfsiods
1350 * are all hung on a dead server.
1351 *
1352 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1353 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1354 */
1355int
1356nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1357{
1358	int iod;
1359	int gotiod;
1360	int slpflag = 0;
1361	int slptimeo = 0;
1362	int error, error2;
1363
1364	/*
1365	 * Commits are usually short and sweet so lets save some cpu and
1366	 * leave the async daemons for more important rpc's (such as reads
1367	 * and writes).
1368	 */
1369	mtx_lock(&nfs_iod_mtx);
1370	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1371	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1372		mtx_unlock(&nfs_iod_mtx);
1373		return(EIO);
1374	}
1375again:
1376	if (nmp->nm_flag & NFSMNT_INT)
1377		slpflag = PCATCH;
1378	gotiod = FALSE;
1379
1380	/*
1381	 * Find a free iod to process this request.
1382	 */
1383	for (iod = 0; iod < nfs_numasync; iod++)
1384		if (nfs_iodwant[iod]) {
1385			gotiod = TRUE;
1386			break;
1387		}
1388
1389	/*
1390	 * Try to create one if none are free.
1391	 */
1392	if (!gotiod) {
1393		iod = nfs_nfsiodnew();
1394		if (iod != -1)
1395			gotiod = TRUE;
1396	}
1397
1398	if (gotiod) {
1399		/*
1400		 * Found one, so wake it up and tell it which
1401		 * mount to process.
1402		 */
1403		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1404		    iod, nmp));
1405		nfs_iodwant[iod] = NULL;
1406		nfs_iodmount[iod] = nmp;
1407		nmp->nm_bufqiods++;
1408		wakeup(&nfs_iodwant[iod]);
1409	}
1410
1411	/*
1412	 * If none are free, we may already have an iod working on this mount
1413	 * point.  If so, it will process our request.
1414	 */
1415	if (!gotiod) {
1416		if (nmp->nm_bufqiods > 0) {
1417			NFS_DPF(ASYNCIO,
1418				("nfs_asyncio: %d iods are already processing mount %p\n",
1419				 nmp->nm_bufqiods, nmp));
1420			gotiod = TRUE;
1421		}
1422	}
1423
1424	/*
1425	 * If we have an iod which can process the request, then queue
1426	 * the buffer.
1427	 */
1428	if (gotiod) {
1429		/*
1430		 * Ensure that the queue never grows too large.  We still want
1431		 * to asynchronize so we block rather then return EIO.
1432		 */
1433		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1434			NFS_DPF(ASYNCIO,
1435				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1436			nmp->nm_bufqwant = TRUE;
1437 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1438					   slpflag | PRIBIO,
1439 					   "nfsaio", slptimeo);
1440			if (error) {
1441				error2 = nfs_sigintr(nmp, NULL, td);
1442				if (error2) {
1443					mtx_unlock(&nfs_iod_mtx);
1444					return (error2);
1445				}
1446				if (slpflag == PCATCH) {
1447					slpflag = 0;
1448					slptimeo = 2 * hz;
1449				}
1450			}
1451			/*
1452			 * We might have lost our iod while sleeping,
1453			 * so check and loop if nescessary.
1454			 */
1455			if (nmp->nm_bufqiods == 0) {
1456				NFS_DPF(ASYNCIO,
1457					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1458				goto again;
1459			}
1460		}
1461
1462		/* We might have lost our nfsiod */
1463		if (nmp->nm_bufqiods == 0) {
1464			NFS_DPF(ASYNCIO,
1465				("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1466			goto again;
1467		}
1468
1469		if (bp->b_iocmd == BIO_READ) {
1470			if (bp->b_rcred == NOCRED && cred != NOCRED)
1471				bp->b_rcred = crhold(cred);
1472		} else {
1473			if (bp->b_wcred == NOCRED && cred != NOCRED)
1474				bp->b_wcred = crhold(cred);
1475		}
1476
1477		if (bp->b_flags & B_REMFREE)
1478			bremfreef(bp);
1479		BUF_KERNPROC(bp);
1480		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1481		nmp->nm_bufqlen++;
1482		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1483			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1484			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1485			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1486			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1487		}
1488		mtx_unlock(&nfs_iod_mtx);
1489		return (0);
1490	}
1491
1492	mtx_unlock(&nfs_iod_mtx);
1493
1494	/*
1495	 * All the iods are busy on other mounts, so return EIO to
1496	 * force the caller to process the i/o synchronously.
1497	 */
1498	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1499	return (EIO);
1500}
1501
1502void
1503nfs_doio_directwrite(struct buf *bp)
1504{
1505	int iomode, must_commit;
1506	struct uio *uiop = (struct uio *)bp->b_caller1;
1507	char *iov_base = uiop->uio_iov->iov_base;
1508	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1509
1510	iomode = NFSV3WRITE_FILESYNC;
1511	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1512	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1513	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1514	free(iov_base, M_NFSDIRECTIO);
1515	free(uiop->uio_iov, M_NFSDIRECTIO);
1516	free(uiop, M_NFSDIRECTIO);
1517	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1518		struct nfsnode *np = VTONFS(bp->b_vp);
1519		mtx_lock(&np->n_mtx);
1520		np->n_directio_asyncwr--;
1521		if (np->n_directio_asyncwr == 0) {
1522			VTONFS(bp->b_vp)->n_flag &= ~NMODIFIED;
1523			if ((np->n_flag & NFSYNCWAIT)) {
1524				np->n_flag &= ~NFSYNCWAIT;
1525				wakeup((caddr_t)&np->n_directio_asyncwr);
1526			}
1527		}
1528		mtx_unlock(&np->n_mtx);
1529	}
1530	bp->b_vp = NULL;
1531	relpbuf(bp, &nfs_pbuf_freecnt);
1532}
1533
1534/*
1535 * Do an I/O operation to/from a cache block. This may be called
1536 * synchronously or from an nfsiod.
1537 */
1538int
1539nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1540{
1541	struct uio *uiop;
1542	struct nfsnode *np;
1543	struct nfsmount *nmp;
1544	int error = 0, iomode, must_commit = 0;
1545	struct uio uio;
1546	struct iovec io;
1547	struct proc *p = td ? td->td_proc : NULL;
1548	uint8_t	iocmd;
1549
1550	np = VTONFS(vp);
1551	nmp = VFSTONFS(vp->v_mount);
1552	uiop = &uio;
1553	uiop->uio_iov = &io;
1554	uiop->uio_iovcnt = 1;
1555	uiop->uio_segflg = UIO_SYSSPACE;
1556	uiop->uio_td = td;
1557
1558	/*
1559	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1560	 * do this here so we do not have to do it in all the code that
1561	 * calls us.
1562	 */
1563	bp->b_flags &= ~B_INVAL;
1564	bp->b_ioflags &= ~BIO_ERROR;
1565
1566	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1567	iocmd = bp->b_iocmd;
1568	if (iocmd == BIO_READ) {
1569	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1570	    io.iov_base = bp->b_data;
1571	    uiop->uio_rw = UIO_READ;
1572
1573	    switch (vp->v_type) {
1574	    case VREG:
1575		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1576		nfsstats.read_bios++;
1577		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1578
1579		if (!error) {
1580		    if (uiop->uio_resid) {
1581			/*
1582			 * If we had a short read with no error, we must have
1583			 * hit a file hole.  We should zero-fill the remainder.
1584			 * This can also occur if the server hits the file EOF.
1585			 *
1586			 * Holes used to be able to occur due to pending
1587			 * writes, but that is not possible any longer.
1588			 */
1589			int nread = bp->b_bcount - uiop->uio_resid;
1590			int left  = uiop->uio_resid;
1591
1592			if (left > 0)
1593				bzero((char *)bp->b_data + nread, left);
1594			uiop->uio_resid = 0;
1595		    }
1596		}
1597		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1598		if (p && (vp->v_vflag & VV_TEXT)) {
1599			mtx_lock(&np->n_mtx);
1600			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1601				mtx_unlock(&np->n_mtx);
1602				PROC_LOCK(p);
1603				killproc(p, "text file modification");
1604				PROC_UNLOCK(p);
1605			} else
1606				mtx_unlock(&np->n_mtx);
1607		}
1608		break;
1609	    case VLNK:
1610		uiop->uio_offset = (off_t)0;
1611		nfsstats.readlink_bios++;
1612		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1613		break;
1614	    case VDIR:
1615		nfsstats.readdir_bios++;
1616		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1617		if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
1618			error = nfs4_readdirrpc(vp, uiop, cr);
1619		else {
1620			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1621				error = nfs_readdirplusrpc(vp, uiop, cr);
1622				if (error == NFSERR_NOTSUPP)
1623					nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1624			}
1625			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1626				error = nfs_readdirrpc(vp, uiop, cr);
1627		}
1628		/*
1629		 * end-of-directory sets B_INVAL but does not generate an
1630		 * error.
1631		 */
1632		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1633			bp->b_flags |= B_INVAL;
1634		break;
1635	    default:
1636		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1637		break;
1638	    };
1639	    if (error) {
1640		bp->b_ioflags |= BIO_ERROR;
1641		bp->b_error = error;
1642	    }
1643	} else {
1644	    /*
1645	     * If we only need to commit, try to commit
1646	     */
1647	    if (bp->b_flags & B_NEEDCOMMIT) {
1648		    int retv;
1649		    off_t off;
1650
1651		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1652		    retv = (nmp->nm_rpcops->nr_commit)(
1653				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1654				bp->b_wcred, td);
1655		    if (retv == 0) {
1656			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1657			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1658			    bp->b_resid = 0;
1659			    bufdone(bp);
1660			    return (0);
1661		    }
1662		    if (retv == NFSERR_STALEWRITEVERF) {
1663			    nfs_clearcommit(vp->v_mount);
1664		    }
1665	    }
1666
1667	    /*
1668	     * Setup for actual write
1669	     */
1670	    mtx_lock(&np->n_mtx);
1671	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1672		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1673	    mtx_unlock(&np->n_mtx);
1674
1675	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1676		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1677		    - bp->b_dirtyoff;
1678		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1679		    + bp->b_dirtyoff;
1680		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1681		uiop->uio_rw = UIO_WRITE;
1682		nfsstats.write_bios++;
1683
1684		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1685		    iomode = NFSV3WRITE_UNSTABLE;
1686		else
1687		    iomode = NFSV3WRITE_FILESYNC;
1688
1689		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1690
1691		/*
1692		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1693		 * to cluster the buffers needing commit.  This will allow
1694		 * the system to submit a single commit rpc for the whole
1695		 * cluster.  We can do this even if the buffer is not 100%
1696		 * dirty (relative to the NFS blocksize), so we optimize the
1697		 * append-to-file-case.
1698		 *
1699		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1700		 * cleared because write clustering only works for commit
1701		 * rpc's, not for the data portion of the write).
1702		 */
1703
1704		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1705		    bp->b_flags |= B_NEEDCOMMIT;
1706		    if (bp->b_dirtyoff == 0
1707			&& bp->b_dirtyend == bp->b_bcount)
1708			bp->b_flags |= B_CLUSTEROK;
1709		} else {
1710		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1711		}
1712
1713		/*
1714		 * For an interrupted write, the buffer is still valid
1715		 * and the write hasn't been pushed to the server yet,
1716		 * so we can't set BIO_ERROR and report the interruption
1717		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1718		 * is not relevant, so the rpc attempt is essentially
1719		 * a noop.  For the case of a V3 write rpc not being
1720		 * committed to stable storage, the block is still
1721		 * dirty and requires either a commit rpc or another
1722		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1723		 * the block is reused. This is indicated by setting
1724		 * the B_DELWRI and B_NEEDCOMMIT flags.
1725		 *
1726		 * If the buffer is marked B_PAGING, it does not reside on
1727		 * the vp's paging queues so we cannot call bdirty().  The
1728		 * bp in this case is not an NFS cache block so we should
1729		 * be safe. XXX
1730		 *
1731		 * The logic below breaks up errors into recoverable and
1732		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1733		 * and keep the buffer around for potential write retries.
1734		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1735		 * and save the error in the nfsnode. This is less than ideal
1736		 * but necessary. Keeping such buffers around could potentially
1737		 * cause buffer exhaustion eventually (they can never be written
1738		 * out, so will get constantly be re-dirtied). It also causes
1739		 * all sorts of vfs panics. For non-recoverable write errors,
1740		 * also invalidate the attrcache, so we'll be forced to go over
1741		 * the wire for this object, returning an error to user on next
1742		 * call (most of the time).
1743		 */
1744    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1745		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1746			int s;
1747
1748			s = splbio();
1749			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1750			if ((bp->b_flags & B_PAGING) == 0) {
1751			    bdirty(bp);
1752			    bp->b_flags &= ~B_DONE;
1753			}
1754			if (error && (bp->b_flags & B_ASYNC) == 0)
1755			    bp->b_flags |= B_EINTR;
1756			splx(s);
1757	    	} else {
1758		    if (error) {
1759			bp->b_ioflags |= BIO_ERROR;
1760			bp->b_flags |= B_INVAL;
1761			bp->b_error = np->n_error = error;
1762			mtx_lock(&np->n_mtx);
1763			np->n_flag |= NWRITEERR;
1764			np->n_attrstamp = 0;
1765			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1766			mtx_unlock(&np->n_mtx);
1767		    }
1768		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1769		}
1770	    } else {
1771		bp->b_resid = 0;
1772		bufdone(bp);
1773		return (0);
1774	    }
1775	}
1776	bp->b_resid = uiop->uio_resid;
1777	if (must_commit)
1778	    nfs_clearcommit(vp->v_mount);
1779	bufdone(bp);
1780	return (error);
1781}
1782
1783/*
1784 * Used to aid in handling ftruncate() operations on the NFS client side.
1785 * Truncation creates a number of special problems for NFS.  We have to
1786 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1787 * we have to properly handle VM pages or (potentially dirty) buffers
1788 * that straddle the truncation point.
1789 */
1790
1791int
1792nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1793{
1794	struct nfsnode *np = VTONFS(vp);
1795	u_quad_t tsize;
1796	int biosize = vp->v_mount->mnt_stat.f_iosize;
1797	int error = 0;
1798
1799	mtx_lock(&np->n_mtx);
1800	tsize = np->n_size;
1801	np->n_size = nsize;
1802	mtx_unlock(&np->n_mtx);
1803
1804	if (nsize < tsize) {
1805		struct buf *bp;
1806		daddr_t lbn;
1807		int bufsize;
1808
1809		/*
1810		 * vtruncbuf() doesn't get the buffer overlapping the
1811		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1812		 * buffer that now needs to be truncated.
1813		 */
1814		error = vtruncbuf(vp, cred, td, nsize, biosize);
1815		lbn = nsize / biosize;
1816		bufsize = nsize & (biosize - 1);
1817		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1818 		if (!bp)
1819 			return EINTR;
1820		if (bp->b_dirtyoff > bp->b_bcount)
1821			bp->b_dirtyoff = bp->b_bcount;
1822		if (bp->b_dirtyend > bp->b_bcount)
1823			bp->b_dirtyend = bp->b_bcount;
1824		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1825		brelse(bp);
1826	} else {
1827		vnode_pager_setsize(vp, nsize);
1828	}
1829	return(error);
1830}
1831
1832