nfs_bio.c revision 158739
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 158739 2006-05-19 00:04:24Z mohans $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/bio.h>
41#include <sys/buf.h>
42#include <sys/kernel.h>
43#include <sys/mount.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/signalvar.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49
50#include <vm/vm.h>
51#include <vm/vm_extern.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_pager.h>
55#include <vm/vnode_pager.h>
56
57#include <rpc/rpcclnt.h>
58
59#include <nfs/rpcv2.h>
60#include <nfs/nfsproto.h>
61#include <nfsclient/nfs.h>
62#include <nfsclient/nfsmount.h>
63#include <nfsclient/nfsnode.h>
64
65#include <nfs4client/nfs4.h>
66
67static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
68		    struct thread *td);
69static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
70			      struct ucred *cred, int ioflag);
71
72extern int nfs_directio_enable;
73extern int nfs_directio_allow_mmap;
74
75/*
76 * Vnode op for VM getpages.
77 */
78int
79nfs_getpages(struct vop_getpages_args *ap)
80{
81	int i, error, nextoff, size, toff, count, npages;
82	struct uio uio;
83	struct iovec iov;
84	vm_offset_t kva;
85	struct buf *bp;
86	struct vnode *vp;
87	struct thread *td;
88	struct ucred *cred;
89	struct nfsmount *nmp;
90	vm_object_t object;
91	vm_page_t *pages;
92	struct nfsnode *np;
93
94	vp = ap->a_vp;
95	np = VTONFS(vp);
96	td = curthread;				/* XXX */
97	cred = curthread->td_ucred;		/* XXX */
98	nmp = VFSTONFS(vp->v_mount);
99	pages = ap->a_m;
100	count = ap->a_count;
101
102	if ((object = vp->v_object) == NULL) {
103		nfs_printf("nfs_getpages: called with non-merged cache vnode??\n");
104		return VM_PAGER_ERROR;
105	}
106
107	if (nfs_directio_enable && !nfs_directio_allow_mmap) {
108		mtx_lock(&np->n_mtx);
109		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
110			mtx_unlock(&np->n_mtx);
111			nfs_printf("nfs_getpages: called on non-cacheable vnode??\n");
112			return VM_PAGER_ERROR;
113		} else
114			mtx_unlock(&np->n_mtx);
115	}
116
117	mtx_lock(&nmp->nm_mtx);
118	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
119	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
120		mtx_unlock(&nmp->nm_mtx);
121		/* We'll never get here for v4, because we always have fsinfo */
122		(void)nfs_fsinfo(nmp, vp, cred, td);
123	} else
124		mtx_unlock(&nmp->nm_mtx);
125
126	npages = btoc(count);
127
128	/*
129	 * If the requested page is partially valid, just return it and
130	 * allow the pager to zero-out the blanks.  Partially valid pages
131	 * can only occur at the file EOF.
132	 */
133
134	{
135		vm_page_t m = pages[ap->a_reqpage];
136
137		VM_OBJECT_LOCK(object);
138		vm_page_lock_queues();
139		if (m->valid != 0) {
140			/* handled by vm_fault now	  */
141			/* vm_page_zero_invalid(m, TRUE); */
142			for (i = 0; i < npages; ++i) {
143				if (i != ap->a_reqpage)
144					vm_page_free(pages[i]);
145			}
146			vm_page_unlock_queues();
147			VM_OBJECT_UNLOCK(object);
148			return(0);
149		}
150		vm_page_unlock_queues();
151		VM_OBJECT_UNLOCK(object);
152	}
153
154	/*
155	 * We use only the kva address for the buffer, but this is extremely
156	 * convienient and fast.
157	 */
158	bp = getpbuf(&nfs_pbuf_freecnt);
159
160	kva = (vm_offset_t) bp->b_data;
161	pmap_qenter(kva, pages, npages);
162	cnt.v_vnodein++;
163	cnt.v_vnodepgsin += npages;
164
165	iov.iov_base = (caddr_t) kva;
166	iov.iov_len = count;
167	uio.uio_iov = &iov;
168	uio.uio_iovcnt = 1;
169	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
170	uio.uio_resid = count;
171	uio.uio_segflg = UIO_SYSSPACE;
172	uio.uio_rw = UIO_READ;
173	uio.uio_td = td;
174
175	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
176	pmap_qremove(kva, npages);
177
178	relpbuf(bp, &nfs_pbuf_freecnt);
179
180	if (error && (uio.uio_resid == count)) {
181		nfs_printf("nfs_getpages: error %d\n", error);
182		VM_OBJECT_LOCK(object);
183		vm_page_lock_queues();
184		for (i = 0; i < npages; ++i) {
185			if (i != ap->a_reqpage)
186				vm_page_free(pages[i]);
187		}
188		vm_page_unlock_queues();
189		VM_OBJECT_UNLOCK(object);
190		return VM_PAGER_ERROR;
191	}
192
193	/*
194	 * Calculate the number of bytes read and validate only that number
195	 * of bytes.  Note that due to pending writes, size may be 0.  This
196	 * does not mean that the remaining data is invalid!
197	 */
198
199	size = count - uio.uio_resid;
200	VM_OBJECT_LOCK(object);
201	vm_page_lock_queues();
202	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
203		vm_page_t m;
204		nextoff = toff + PAGE_SIZE;
205		m = pages[i];
206
207		if (nextoff <= size) {
208			/*
209			 * Read operation filled an entire page
210			 */
211			m->valid = VM_PAGE_BITS_ALL;
212			vm_page_undirty(m);
213		} else if (size > toff) {
214			/*
215			 * Read operation filled a partial page.
216			 */
217			m->valid = 0;
218			vm_page_set_validclean(m, 0, size - toff);
219			/* handled by vm_fault now	  */
220			/* vm_page_zero_invalid(m, TRUE); */
221		} else {
222			/*
223			 * Read operation was short.  If no error occured
224			 * we may have hit a zero-fill section.   We simply
225			 * leave valid set to 0.
226			 */
227			;
228		}
229		if (i != ap->a_reqpage) {
230			/*
231			 * Whether or not to leave the page activated is up in
232			 * the air, but we should put the page on a page queue
233			 * somewhere (it already is in the object).  Result:
234			 * It appears that emperical results show that
235			 * deactivating pages is best.
236			 */
237
238			/*
239			 * Just in case someone was asking for this page we
240			 * now tell them that it is ok to use.
241			 */
242			if (!error) {
243				if (m->flags & PG_WANTED)
244					vm_page_activate(m);
245				else
246					vm_page_deactivate(m);
247				vm_page_wakeup(m);
248			} else {
249				vm_page_free(m);
250			}
251		}
252	}
253	vm_page_unlock_queues();
254	VM_OBJECT_UNLOCK(object);
255	return 0;
256}
257
258/*
259 * Vnode op for VM putpages.
260 */
261int
262nfs_putpages(struct vop_putpages_args *ap)
263{
264	struct uio uio;
265	struct iovec iov;
266	vm_offset_t kva;
267	struct buf *bp;
268	int iomode, must_commit, i, error, npages, count;
269	off_t offset;
270	int *rtvals;
271	struct vnode *vp;
272	struct thread *td;
273	struct ucred *cred;
274	struct nfsmount *nmp;
275	struct nfsnode *np;
276	vm_page_t *pages;
277
278	vp = ap->a_vp;
279	np = VTONFS(vp);
280	td = curthread;				/* XXX */
281	cred = curthread->td_ucred;		/* XXX */
282	nmp = VFSTONFS(vp->v_mount);
283	pages = ap->a_m;
284	count = ap->a_count;
285	rtvals = ap->a_rtvals;
286	npages = btoc(count);
287	offset = IDX_TO_OFF(pages[0]->pindex);
288
289	mtx_lock(&nmp->nm_mtx);
290	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
291	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
292		mtx_unlock(&nmp->nm_mtx);
293		(void)nfs_fsinfo(nmp, vp, cred, td);
294	} else
295		mtx_unlock(&nmp->nm_mtx);
296
297	mtx_lock(&np->n_mtx);
298	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
299	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
300		mtx_unlock(&np->n_mtx);
301		nfs_printf("nfs_putpages: called on noncache-able vnode??\n");
302		mtx_lock(&np->n_mtx);
303	}
304
305	for (i = 0; i < npages; i++)
306		rtvals[i] = VM_PAGER_AGAIN;
307
308	/*
309	 * When putting pages, do not extend file past EOF.
310	 */
311	if (offset + count > np->n_size) {
312		count = np->n_size - offset;
313		if (count < 0)
314			count = 0;
315	}
316	mtx_unlock(&np->n_mtx);
317
318	/*
319	 * We use only the kva address for the buffer, but this is extremely
320	 * convienient and fast.
321	 */
322	bp = getpbuf(&nfs_pbuf_freecnt);
323
324	kva = (vm_offset_t) bp->b_data;
325	pmap_qenter(kva, pages, npages);
326	cnt.v_vnodeout++;
327	cnt.v_vnodepgsout += count;
328
329	iov.iov_base = (caddr_t) kva;
330	iov.iov_len = count;
331	uio.uio_iov = &iov;
332	uio.uio_iovcnt = 1;
333	uio.uio_offset = offset;
334	uio.uio_resid = count;
335	uio.uio_segflg = UIO_SYSSPACE;
336	uio.uio_rw = UIO_WRITE;
337	uio.uio_td = td;
338
339	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
340	    iomode = NFSV3WRITE_UNSTABLE;
341	else
342	    iomode = NFSV3WRITE_FILESYNC;
343
344	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
345
346	pmap_qremove(kva, npages);
347	relpbuf(bp, &nfs_pbuf_freecnt);
348
349	if (!error) {
350		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
351		for (i = 0; i < nwritten; i++) {
352			rtvals[i] = VM_PAGER_OK;
353			vm_page_undirty(pages[i]);
354		}
355		if (must_commit) {
356			nfs_clearcommit(vp->v_mount);
357		}
358	}
359	return rtvals[0];
360}
361
362/*
363 * For nfs, cache consistency can only be maintained approximately.
364 * Although RFC1094 does not specify the criteria, the following is
365 * believed to be compatible with the reference port.
366 * For nfs:
367 * If the file's modify time on the server has changed since the
368 * last read rpc or you have written to the file,
369 * you may have lost data cache consistency with the
370 * server, so flush all of the file's data out of the cache.
371 * Then force a getattr rpc to ensure that you have up to date
372 * attributes.
373 * NB: This implies that cache data can be read when up to
374 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
375 * attributes this could be forced by setting n_attrstamp to 0 before
376 * the VOP_GETATTR() call.
377 */
378static inline int
379nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
380{
381	int error = 0;
382	struct vattr vattr;
383	struct nfsnode *np = VTONFS(vp);
384	int old_lock;
385	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
386
387	/*
388	 * Grab the exclusive lock before checking whether the cache is
389	 * consistent.
390	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
391	 * But for now, this suffices.
392	 */
393	old_lock = nfs_upgrade_vnlock(vp, td);
394	mtx_lock(&np->n_mtx);
395	if (np->n_flag & NMODIFIED) {
396		mtx_unlock(&np->n_mtx);
397		if (vp->v_type != VREG) {
398			if (vp->v_type != VDIR)
399				panic("nfs: bioread, not dir");
400			(nmp->nm_rpcops->nr_invaldir)(vp);
401			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
402			if (error)
403				goto out;
404		}
405		np->n_attrstamp = 0;
406		error = VOP_GETATTR(vp, &vattr, cred, td);
407		if (error)
408			goto out;
409		mtx_lock(&np->n_mtx);
410		np->n_mtime = vattr.va_mtime;
411		mtx_unlock(&np->n_mtx);
412	} else {
413		mtx_unlock(&np->n_mtx);
414		error = VOP_GETATTR(vp, &vattr, cred, td);
415		if (error)
416			return (error);
417		mtx_lock(&np->n_mtx);
418		if ((np->n_flag & NSIZECHANGED)
419		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
420			mtx_unlock(&np->n_mtx);
421			if (vp->v_type == VDIR)
422				(nmp->nm_rpcops->nr_invaldir)(vp);
423			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
424			if (error)
425				goto out;
426			mtx_lock(&np->n_mtx);
427			np->n_mtime = vattr.va_mtime;
428			np->n_flag &= ~NSIZECHANGED;
429		}
430		mtx_unlock(&np->n_mtx);
431	}
432out:
433	nfs_downgrade_vnlock(vp, td, old_lock);
434	return error;
435}
436
437/*
438 * Vnode op for read using bio
439 */
440int
441nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
442{
443	struct nfsnode *np = VTONFS(vp);
444	int biosize, i;
445	struct buf *bp, *rabp;
446	struct thread *td;
447	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
448	daddr_t lbn, rabn;
449	int bcount;
450	int seqcount;
451	int nra, error = 0, n = 0, on = 0;
452
453#ifdef DIAGNOSTIC
454	if (uio->uio_rw != UIO_READ)
455		panic("nfs_read mode");
456#endif
457	if (uio->uio_resid == 0)
458		return (0);
459	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
460		return (EINVAL);
461	td = uio->uio_td;
462
463	mtx_lock(&nmp->nm_mtx);
464	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
465	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
466		mtx_unlock(&nmp->nm_mtx);
467		(void)nfs_fsinfo(nmp, vp, cred, td);
468	} else
469		mtx_unlock(&nmp->nm_mtx);
470
471	if (vp->v_type != VDIR &&
472	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
473		return (EFBIG);
474
475	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
476		/* No caching/ no readaheads. Just read data into the user buffer */
477		return nfs_readrpc(vp, uio, cred);
478
479	biosize = vp->v_mount->mnt_stat.f_iosize;
480	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
481
482	error = nfs_bioread_check_cons(vp, td, cred);
483	if (error)
484		return error;
485
486	do {
487	    u_quad_t nsize;
488
489	    mtx_lock(&np->n_mtx);
490	    nsize = np->n_size;
491	    mtx_unlock(&np->n_mtx);
492
493	    switch (vp->v_type) {
494	    case VREG:
495		nfsstats.biocache_reads++;
496		lbn = uio->uio_offset / biosize;
497		on = uio->uio_offset & (biosize - 1);
498
499		/*
500		 * Start the read ahead(s), as required.
501		 */
502		if (nmp->nm_readahead > 0) {
503		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
504			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
505			rabn = lbn + 1 + nra;
506			if (incore(&vp->v_bufobj, rabn) == NULL) {
507			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
508			    if (!rabp) {
509				error = nfs_sigintr(nmp, NULL, td);
510				return (error ? error : EINTR);
511			    }
512			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
513				rabp->b_flags |= B_ASYNC;
514				rabp->b_iocmd = BIO_READ;
515				vfs_busy_pages(rabp, 0);
516				if (nfs_asyncio(nmp, rabp, cred, td)) {
517				    rabp->b_flags |= B_INVAL;
518				    rabp->b_ioflags |= BIO_ERROR;
519				    vfs_unbusy_pages(rabp);
520				    brelse(rabp);
521				    break;
522				}
523			    } else {
524				brelse(rabp);
525			    }
526			}
527		    }
528		}
529
530		/* Note that bcount is *not* DEV_BSIZE aligned. */
531		bcount = biosize;
532		if ((off_t)lbn * biosize >= nsize) {
533			bcount = 0;
534		} else if ((off_t)(lbn + 1) * biosize > nsize) {
535			bcount = nsize - (off_t)lbn * biosize;
536		}
537		bp = nfs_getcacheblk(vp, lbn, bcount, td);
538
539		if (!bp) {
540			error = nfs_sigintr(nmp, NULL, td);
541			return (error ? error : EINTR);
542		}
543
544		/*
545		 * If B_CACHE is not set, we must issue the read.  If this
546		 * fails, we return an error.
547		 */
548
549		if ((bp->b_flags & B_CACHE) == 0) {
550		    bp->b_iocmd = BIO_READ;
551		    vfs_busy_pages(bp, 0);
552		    error = nfs_doio(vp, bp, cred, td);
553		    if (error) {
554			brelse(bp);
555			return (error);
556		    }
557		}
558
559		/*
560		 * on is the offset into the current bp.  Figure out how many
561		 * bytes we can copy out of the bp.  Note that bcount is
562		 * NOT DEV_BSIZE aligned.
563		 *
564		 * Then figure out how many bytes we can copy into the uio.
565		 */
566
567		n = 0;
568		if (on < bcount)
569			n = min((unsigned)(bcount - on), uio->uio_resid);
570		break;
571	    case VLNK:
572		nfsstats.biocache_readlinks++;
573		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
574		if (!bp) {
575			error = nfs_sigintr(nmp, NULL, td);
576			return (error ? error : EINTR);
577		}
578		if ((bp->b_flags & B_CACHE) == 0) {
579		    bp->b_iocmd = BIO_READ;
580		    vfs_busy_pages(bp, 0);
581		    error = nfs_doio(vp, bp, cred, td);
582		    if (error) {
583			bp->b_ioflags |= BIO_ERROR;
584			brelse(bp);
585			return (error);
586		    }
587		}
588		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
589		on = 0;
590		break;
591	    case VDIR:
592		nfsstats.biocache_readdirs++;
593		if (np->n_direofoffset
594		    && uio->uio_offset >= np->n_direofoffset) {
595		    return (0);
596		}
597		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
598		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
599		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
600		if (!bp) {
601		    error = nfs_sigintr(nmp, NULL, td);
602		    return (error ? error : EINTR);
603		}
604		if ((bp->b_flags & B_CACHE) == 0) {
605		    bp->b_iocmd = BIO_READ;
606		    vfs_busy_pages(bp, 0);
607		    error = nfs_doio(vp, bp, cred, td);
608		    if (error) {
609			    brelse(bp);
610		    }
611		    while (error == NFSERR_BAD_COOKIE) {
612			(nmp->nm_rpcops->nr_invaldir)(vp);
613			error = nfs_vinvalbuf(vp, 0, td, 1);
614			/*
615			 * Yuck! The directory has been modified on the
616			 * server. The only way to get the block is by
617			 * reading from the beginning to get all the
618			 * offset cookies.
619			 *
620			 * Leave the last bp intact unless there is an error.
621			 * Loop back up to the while if the error is another
622			 * NFSERR_BAD_COOKIE (double yuch!).
623			 */
624			for (i = 0; i <= lbn && !error; i++) {
625			    if (np->n_direofoffset
626				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
627				    return (0);
628			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
629			    if (!bp) {
630				error = nfs_sigintr(nmp, NULL, td);
631				return (error ? error : EINTR);
632			    }
633			    if ((bp->b_flags & B_CACHE) == 0) {
634				    bp->b_iocmd = BIO_READ;
635				    vfs_busy_pages(bp, 0);
636				    error = nfs_doio(vp, bp, cred, td);
637				    /*
638				     * no error + B_INVAL == directory EOF,
639				     * use the block.
640				     */
641				    if (error == 0 && (bp->b_flags & B_INVAL))
642					    break;
643			    }
644			    /*
645			     * An error will throw away the block and the
646			     * for loop will break out.  If no error and this
647			     * is not the block we want, we throw away the
648			     * block and go for the next one via the for loop.
649			     */
650			    if (error || i < lbn)
651				    brelse(bp);
652			}
653		    }
654		    /*
655		     * The above while is repeated if we hit another cookie
656		     * error.  If we hit an error and it wasn't a cookie error,
657		     * we give up.
658		     */
659		    if (error)
660			    return (error);
661		}
662
663		/*
664		 * If not eof and read aheads are enabled, start one.
665		 * (You need the current block first, so that you have the
666		 *  directory offset cookie of the next block.)
667		 */
668		if (nmp->nm_readahead > 0 &&
669		    (bp->b_flags & B_INVAL) == 0 &&
670		    (np->n_direofoffset == 0 ||
671		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
672		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
673			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
674			if (rabp) {
675			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
676				rabp->b_flags |= B_ASYNC;
677				rabp->b_iocmd = BIO_READ;
678				vfs_busy_pages(rabp, 0);
679				if (nfs_asyncio(nmp, rabp, cred, td)) {
680				    rabp->b_flags |= B_INVAL;
681				    rabp->b_ioflags |= BIO_ERROR;
682				    vfs_unbusy_pages(rabp);
683				    brelse(rabp);
684				}
685			    } else {
686				brelse(rabp);
687			    }
688			}
689		}
690		/*
691		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
692		 * chopped for the EOF condition, we cannot tell how large
693		 * NFS directories are going to be until we hit EOF.  So
694		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
695		 * it just so happens that b_resid will effectively chop it
696		 * to EOF.  *BUT* this information is lost if the buffer goes
697		 * away and is reconstituted into a B_CACHE state ( due to
698		 * being VMIO ) later.  So we keep track of the directory eof
699		 * in np->n_direofoffset and chop it off as an extra step
700		 * right here.
701		 */
702		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
703		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
704			n = np->n_direofoffset - uio->uio_offset;
705		break;
706	    default:
707		nfs_printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
708		bp = NULL;
709		break;
710	    };
711
712	    if (n > 0) {
713		    error = uiomove(bp->b_data + on, (int)n, uio);
714	    }
715	    if (vp->v_type == VLNK)
716		n = 0;
717	    if (bp != NULL)
718		brelse(bp);
719	} while (error == 0 && uio->uio_resid > 0 && n > 0);
720	return (error);
721}
722
723/*
724 * The NFS write path cannot handle iovecs with len > 1. So we need to
725 * break up iovecs accordingly (restricting them to wsize).
726 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
727 * For the ASYNC case, 2 copies are needed. The first a copy from the
728 * user buffer to a staging buffer and then a second copy from the staging
729 * buffer to mbufs. This can be optimized by copying from the user buffer
730 * directly into mbufs and passing the chain down, but that requires a
731 * fair amount of re-working of the relevant codepaths (and can be done
732 * later).
733 */
734static int
735nfs_directio_write(vp, uiop, cred, ioflag)
736	struct vnode *vp;
737	struct uio *uiop;
738	struct ucred *cred;
739	int ioflag;
740{
741	int error;
742	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
743	struct thread *td = uiop->uio_td;
744	int size;
745	int wsize;
746
747	mtx_lock(&nmp->nm_mtx);
748	wsize = nmp->nm_wsize;
749	mtx_unlock(&nmp->nm_mtx);
750	if (ioflag & IO_SYNC) {
751		int iomode, must_commit;
752		struct uio uio;
753		struct iovec iov;
754do_sync:
755		while (uiop->uio_resid > 0) {
756			size = min(uiop->uio_resid, wsize);
757			size = min(uiop->uio_iov->iov_len, size);
758			iov.iov_base = uiop->uio_iov->iov_base;
759			iov.iov_len = size;
760			uio.uio_iov = &iov;
761			uio.uio_iovcnt = 1;
762			uio.uio_offset = uiop->uio_offset;
763			uio.uio_resid = size;
764			uio.uio_segflg = UIO_USERSPACE;
765			uio.uio_rw = UIO_WRITE;
766			uio.uio_td = td;
767			iomode = NFSV3WRITE_FILESYNC;
768			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
769						      &iomode, &must_commit);
770			KASSERT((must_commit == 0),
771				("nfs_directio_write: Did not commit write"));
772			if (error)
773				return (error);
774			uiop->uio_offset += size;
775			uiop->uio_resid -= size;
776			if (uiop->uio_iov->iov_len <= size) {
777				uiop->uio_iovcnt--;
778				uiop->uio_iov++;
779			} else {
780				uiop->uio_iov->iov_base =
781					(char *)uiop->uio_iov->iov_base + size;
782				uiop->uio_iov->iov_len -= size;
783			}
784		}
785	} else {
786		struct uio *t_uio;
787		struct iovec *t_iov;
788		struct buf *bp;
789
790		/*
791		 * Break up the write into blocksize chunks and hand these
792		 * over to nfsiod's for write back.
793		 * Unfortunately, this incurs a copy of the data. Since
794		 * the user could modify the buffer before the write is
795		 * initiated.
796		 *
797		 * The obvious optimization here is that one of the 2 copies
798		 * in the async write path can be eliminated by copying the
799		 * data here directly into mbufs and passing the mbuf chain
800		 * down. But that will require a fair amount of re-working
801		 * of the code and can be done if there's enough interest
802		 * in NFS directio access.
803		 */
804		while (uiop->uio_resid > 0) {
805			size = min(uiop->uio_resid, wsize);
806			size = min(uiop->uio_iov->iov_len, size);
807			bp = getpbuf(&nfs_pbuf_freecnt);
808			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
809			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
810			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
811			t_iov->iov_len = size;
812			t_uio->uio_iov = t_iov;
813			t_uio->uio_iovcnt = 1;
814			t_uio->uio_offset = uiop->uio_offset;
815			t_uio->uio_resid = size;
816			t_uio->uio_segflg = UIO_SYSSPACE;
817			t_uio->uio_rw = UIO_WRITE;
818			t_uio->uio_td = td;
819			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
820			bp->b_flags |= B_DIRECT;
821			bp->b_iocmd = BIO_WRITE;
822			if (cred != NOCRED) {
823				crhold(cred);
824				bp->b_wcred = cred;
825			} else
826				bp->b_wcred = NOCRED;
827			bp->b_caller1 = (void *)t_uio;
828			bp->b_vp = vp;
829			vhold(vp);
830			error = nfs_asyncio(nmp, bp, NOCRED, td);
831			if (error) {
832				free(t_iov->iov_base, M_NFSDIRECTIO);
833				free(t_iov, M_NFSDIRECTIO);
834				free(t_uio, M_NFSDIRECTIO);
835				vdrop(bp->b_vp);
836				bp->b_vp = NULL;
837				relpbuf(bp, &nfs_pbuf_freecnt);
838				if (error == EINTR)
839					return (error);
840				goto do_sync;
841			}
842			uiop->uio_offset += size;
843			uiop->uio_resid -= size;
844			if (uiop->uio_iov->iov_len <= size) {
845				uiop->uio_iovcnt--;
846				uiop->uio_iov++;
847			} else {
848				uiop->uio_iov->iov_base =
849					(char *)uiop->uio_iov->iov_base + size;
850				uiop->uio_iov->iov_len -= size;
851			}
852		}
853	}
854	return (0);
855}
856
857/*
858 * Vnode op for write using bio
859 */
860int
861nfs_write(struct vop_write_args *ap)
862{
863	int biosize;
864	struct uio *uio = ap->a_uio;
865	struct thread *td = uio->uio_td;
866	struct vnode *vp = ap->a_vp;
867	struct nfsnode *np = VTONFS(vp);
868	struct ucred *cred = ap->a_cred;
869	int ioflag = ap->a_ioflag;
870	struct buf *bp;
871	struct vattr vattr;
872	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
873	daddr_t lbn;
874	int bcount;
875	int n, on, error = 0;
876	struct proc *p = td?td->td_proc:NULL;
877
878#ifdef DIAGNOSTIC
879	if (uio->uio_rw != UIO_WRITE)
880		panic("nfs_write mode");
881	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
882		panic("nfs_write proc");
883#endif
884	if (vp->v_type != VREG)
885		return (EIO);
886	mtx_lock(&np->n_mtx);
887	if (np->n_flag & NWRITEERR) {
888		np->n_flag &= ~NWRITEERR;
889		mtx_unlock(&np->n_mtx);
890		return (np->n_error);
891	} else
892		mtx_unlock(&np->n_mtx);
893	mtx_lock(&nmp->nm_mtx);
894	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
895	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
896		mtx_unlock(&nmp->nm_mtx);
897		(void)nfs_fsinfo(nmp, vp, cred, td);
898	} else
899		mtx_unlock(&nmp->nm_mtx);
900
901	/*
902	 * Synchronously flush pending buffers if we are in synchronous
903	 * mode or if we are appending.
904	 */
905	if (ioflag & (IO_APPEND | IO_SYNC)) {
906		mtx_lock(&np->n_mtx);
907		if (np->n_flag & NMODIFIED) {
908			mtx_unlock(&np->n_mtx);
909#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
910			/*
911			 * Require non-blocking, synchronous writes to
912			 * dirty files to inform the program it needs
913			 * to fsync(2) explicitly.
914			 */
915			if (ioflag & IO_NDELAY)
916				return (EAGAIN);
917#endif
918flush_and_restart:
919			np->n_attrstamp = 0;
920			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
921			if (error)
922				return (error);
923		} else
924			mtx_unlock(&np->n_mtx);
925	}
926
927	/*
928	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
929	 * get the append lock.
930	 */
931	if (ioflag & IO_APPEND) {
932		np->n_attrstamp = 0;
933		error = VOP_GETATTR(vp, &vattr, cred, td);
934		if (error)
935			return (error);
936		mtx_lock(&np->n_mtx);
937		uio->uio_offset = np->n_size;
938		mtx_unlock(&np->n_mtx);
939	}
940
941	if (uio->uio_offset < 0)
942		return (EINVAL);
943	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
944		return (EFBIG);
945	if (uio->uio_resid == 0)
946		return (0);
947
948	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
949		return nfs_directio_write(vp, uio, cred, ioflag);
950
951	/*
952	 * Maybe this should be above the vnode op call, but so long as
953	 * file servers have no limits, i don't think it matters
954	 */
955	if (p != NULL) {
956		PROC_LOCK(p);
957		if (uio->uio_offset + uio->uio_resid >
958		    lim_cur(p, RLIMIT_FSIZE)) {
959			psignal(p, SIGXFSZ);
960			PROC_UNLOCK(p);
961			return (EFBIG);
962		}
963		PROC_UNLOCK(p);
964	}
965
966	biosize = vp->v_mount->mnt_stat.f_iosize;
967	/*
968	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
969	 * would exceed the local maximum per-file write commit size when
970	 * combined with those, we must decide whether to flush,
971	 * go synchronous, or return error.  We don't bother checking
972	 * IO_UNIT -- we just make all writes atomic anyway, as there's
973	 * no point optimizing for something that really won't ever happen.
974	 */
975	if (!(ioflag & IO_SYNC)) {
976		int nflag;
977
978		mtx_lock(&np->n_mtx);
979		nflag = np->n_flag;
980		mtx_unlock(&np->n_mtx);
981		int needrestart = 0;
982		if (nmp->nm_wcommitsize < uio->uio_resid) {
983			/*
984			 * If this request could not possibly be completed
985			 * without exceeding the maximum outstanding write
986			 * commit size, see if we can convert it into a
987			 * synchronous write operation.
988			 */
989			if (ioflag & IO_NDELAY)
990				return (EAGAIN);
991			ioflag |= IO_SYNC;
992			if (nflag & NMODIFIED)
993				needrestart = 1;
994		} else if (nflag & NMODIFIED) {
995			int wouldcommit = 0;
996			BO_LOCK(&vp->v_bufobj);
997			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
998				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
999				    b_bobufs) {
1000					if (bp->b_flags & B_NEEDCOMMIT)
1001						wouldcommit += bp->b_bcount;
1002				}
1003			}
1004			BO_UNLOCK(&vp->v_bufobj);
1005			/*
1006			 * Since we're not operating synchronously and
1007			 * bypassing the buffer cache, we are in a commit
1008			 * and holding all of these buffers whether
1009			 * transmitted or not.  If not limited, this
1010			 * will lead to the buffer cache deadlocking,
1011			 * as no one else can flush our uncommitted buffers.
1012			 */
1013			wouldcommit += uio->uio_resid;
1014			/*
1015			 * If we would initially exceed the maximum
1016			 * outstanding write commit size, flush and restart.
1017			 */
1018			if (wouldcommit > nmp->nm_wcommitsize)
1019				needrestart = 1;
1020		}
1021		if (needrestart)
1022			goto flush_and_restart;
1023	}
1024
1025	do {
1026		nfsstats.biocache_writes++;
1027		lbn = uio->uio_offset / biosize;
1028		on = uio->uio_offset & (biosize-1);
1029		n = min((unsigned)(biosize - on), uio->uio_resid);
1030again:
1031		/*
1032		 * Handle direct append and file extension cases, calculate
1033		 * unaligned buffer size.
1034		 */
1035		mtx_lock(&np->n_mtx);
1036		if (uio->uio_offset == np->n_size && n) {
1037			mtx_unlock(&np->n_mtx);
1038			/*
1039			 * Get the buffer (in its pre-append state to maintain
1040			 * B_CACHE if it was previously set).  Resize the
1041			 * nfsnode after we have locked the buffer to prevent
1042			 * readers from reading garbage.
1043			 */
1044			bcount = on;
1045			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1046
1047			if (bp != NULL) {
1048				long save;
1049
1050				mtx_lock(&np->n_mtx);
1051				np->n_size = uio->uio_offset + n;
1052				np->n_flag |= NMODIFIED;
1053				vnode_pager_setsize(vp, np->n_size);
1054				mtx_unlock(&np->n_mtx);
1055
1056				save = bp->b_flags & B_CACHE;
1057				bcount += n;
1058				allocbuf(bp, bcount);
1059				bp->b_flags |= save;
1060			}
1061		} else {
1062			/*
1063			 * Obtain the locked cache block first, and then
1064			 * adjust the file's size as appropriate.
1065			 */
1066			bcount = on + n;
1067			if ((off_t)lbn * biosize + bcount < np->n_size) {
1068				if ((off_t)(lbn + 1) * biosize < np->n_size)
1069					bcount = biosize;
1070				else
1071					bcount = np->n_size - (off_t)lbn * biosize;
1072			}
1073			mtx_unlock(&np->n_mtx);
1074			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1075			mtx_lock(&np->n_mtx);
1076			if (uio->uio_offset + n > np->n_size) {
1077				np->n_size = uio->uio_offset + n;
1078				np->n_flag |= NMODIFIED;
1079				vnode_pager_setsize(vp, np->n_size);
1080			}
1081			mtx_unlock(&np->n_mtx);
1082		}
1083
1084		if (!bp) {
1085			error = nfs_sigintr(nmp, NULL, td);
1086			if (!error)
1087				error = EINTR;
1088			break;
1089		}
1090
1091		/*
1092		 * Issue a READ if B_CACHE is not set.  In special-append
1093		 * mode, B_CACHE is based on the buffer prior to the write
1094		 * op and is typically set, avoiding the read.  If a read
1095		 * is required in special append mode, the server will
1096		 * probably send us a short-read since we extended the file
1097		 * on our end, resulting in b_resid == 0 and, thusly,
1098		 * B_CACHE getting set.
1099		 *
1100		 * We can also avoid issuing the read if the write covers
1101		 * the entire buffer.  We have to make sure the buffer state
1102		 * is reasonable in this case since we will not be initiating
1103		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1104		 * more information.
1105		 *
1106		 * B_CACHE may also be set due to the buffer being cached
1107		 * normally.
1108		 */
1109
1110		if (on == 0 && n == bcount) {
1111			bp->b_flags |= B_CACHE;
1112			bp->b_flags &= ~B_INVAL;
1113			bp->b_ioflags &= ~BIO_ERROR;
1114		}
1115
1116		if ((bp->b_flags & B_CACHE) == 0) {
1117			bp->b_iocmd = BIO_READ;
1118			vfs_busy_pages(bp, 0);
1119			error = nfs_doio(vp, bp, cred, td);
1120			if (error) {
1121				brelse(bp);
1122				break;
1123			}
1124		}
1125		if (bp->b_wcred == NOCRED)
1126			bp->b_wcred = crhold(cred);
1127		mtx_lock(&np->n_mtx);
1128		np->n_flag |= NMODIFIED;
1129		mtx_unlock(&np->n_mtx);
1130
1131		/*
1132		 * If dirtyend exceeds file size, chop it down.  This should
1133		 * not normally occur but there is an append race where it
1134		 * might occur XXX, so we log it.
1135		 *
1136		 * If the chopping creates a reverse-indexed or degenerate
1137		 * situation with dirtyoff/end, we 0 both of them.
1138		 */
1139
1140		if (bp->b_dirtyend > bcount) {
1141			nfs_printf("NFS append race @%lx:%d\n",
1142			    (long)bp->b_blkno * DEV_BSIZE,
1143			    bp->b_dirtyend - bcount);
1144			bp->b_dirtyend = bcount;
1145		}
1146
1147		if (bp->b_dirtyoff >= bp->b_dirtyend)
1148			bp->b_dirtyoff = bp->b_dirtyend = 0;
1149
1150		/*
1151		 * If the new write will leave a contiguous dirty
1152		 * area, just update the b_dirtyoff and b_dirtyend,
1153		 * otherwise force a write rpc of the old dirty area.
1154		 *
1155		 * While it is possible to merge discontiguous writes due to
1156		 * our having a B_CACHE buffer ( and thus valid read data
1157		 * for the hole), we don't because it could lead to
1158		 * significant cache coherency problems with multiple clients,
1159		 * especially if locking is implemented later on.
1160		 *
1161		 * as an optimization we could theoretically maintain
1162		 * a linked list of discontinuous areas, but we would still
1163		 * have to commit them separately so there isn't much
1164		 * advantage to it except perhaps a bit of asynchronization.
1165		 */
1166
1167		if (bp->b_dirtyend > 0 &&
1168		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1169			if (bwrite(bp) == EINTR) {
1170				error = EINTR;
1171				break;
1172			}
1173			goto again;
1174		}
1175
1176		error = uiomove((char *)bp->b_data + on, n, uio);
1177
1178		/*
1179		 * Since this block is being modified, it must be written
1180		 * again and not just committed.  Since write clustering does
1181		 * not work for the stage 1 data write, only the stage 2
1182		 * commit rpc, we have to clear B_CLUSTEROK as well.
1183		 */
1184		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1185
1186		if (error) {
1187			bp->b_ioflags |= BIO_ERROR;
1188			brelse(bp);
1189			break;
1190		}
1191
1192		/*
1193		 * Only update dirtyoff/dirtyend if not a degenerate
1194		 * condition.
1195		 */
1196		if (n) {
1197			if (bp->b_dirtyend > 0) {
1198				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1199				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1200			} else {
1201				bp->b_dirtyoff = on;
1202				bp->b_dirtyend = on + n;
1203			}
1204			vfs_bio_set_validclean(bp, on, n);
1205		}
1206
1207		/*
1208		 * If IO_SYNC do bwrite().
1209		 *
1210		 * IO_INVAL appears to be unused.  The idea appears to be
1211		 * to turn off caching in this case.  Very odd.  XXX
1212		 */
1213		if ((ioflag & IO_SYNC)) {
1214			if (ioflag & IO_INVAL)
1215				bp->b_flags |= B_NOCACHE;
1216			error = bwrite(bp);
1217			if (error)
1218				break;
1219		} else if ((n + on) == biosize) {
1220			bp->b_flags |= B_ASYNC;
1221			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, NULL);
1222		} else {
1223			bdwrite(bp);
1224		}
1225	} while (uio->uio_resid > 0 && n > 0);
1226
1227	return (error);
1228}
1229
1230/*
1231 * Get an nfs cache block.
1232 *
1233 * Allocate a new one if the block isn't currently in the cache
1234 * and return the block marked busy. If the calling process is
1235 * interrupted by a signal for an interruptible mount point, return
1236 * NULL.
1237 *
1238 * The caller must carefully deal with the possible B_INVAL state of
1239 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1240 * indirectly), so synchronous reads can be issued without worrying about
1241 * the B_INVAL state.  We have to be a little more careful when dealing
1242 * with writes (see comments in nfs_write()) when extending a file past
1243 * its EOF.
1244 */
1245static struct buf *
1246nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1247{
1248	struct buf *bp;
1249	struct mount *mp;
1250	struct nfsmount *nmp;
1251
1252	mp = vp->v_mount;
1253	nmp = VFSTONFS(mp);
1254
1255	if (nmp->nm_flag & NFSMNT_INT) {
1256 		sigset_t oldset;
1257
1258 		nfs_set_sigmask(td, &oldset);
1259		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1260 		nfs_restore_sigmask(td, &oldset);
1261		while (bp == NULL) {
1262			if (nfs_sigintr(nmp, NULL, td))
1263				return (NULL);
1264			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1265		}
1266	} else {
1267		bp = getblk(vp, bn, size, 0, 0, 0);
1268	}
1269
1270	if (vp->v_type == VREG) {
1271		int biosize;
1272
1273		biosize = mp->mnt_stat.f_iosize;
1274		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1275	}
1276	return (bp);
1277}
1278
1279/*
1280 * Flush and invalidate all dirty buffers. If another process is already
1281 * doing the flush, just wait for completion.
1282 */
1283int
1284nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1285{
1286	struct nfsnode *np = VTONFS(vp);
1287	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1288	int error = 0, slpflag, slptimeo;
1289 	int old_lock = 0;
1290
1291	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1292
1293	/*
1294	 * XXX This check stops us from needlessly doing a vinvalbuf when
1295	 * being called through vclean().  It is not clear that this is
1296	 * unsafe.
1297	 */
1298	if (vp->v_iflag & VI_DOOMED)
1299		return (0);
1300
1301	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1302		intrflg = 0;
1303	if (intrflg) {
1304		slpflag = PCATCH;
1305		slptimeo = 2 * hz;
1306	} else {
1307		slpflag = 0;
1308		slptimeo = 0;
1309	}
1310
1311	old_lock = nfs_upgrade_vnlock(vp, td);
1312	/*
1313	 * Now, flush as required.
1314	 */
1315	error = vinvalbuf(vp, flags, td, slpflag, 0);
1316	while (error) {
1317		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1318			goto out;
1319		error = vinvalbuf(vp, flags, td, 0, slptimeo);
1320	}
1321	mtx_lock(&np->n_mtx);
1322	if (np->n_directio_asyncwr == 0)
1323		np->n_flag &= ~NMODIFIED;
1324	mtx_unlock(&np->n_mtx);
1325out:
1326	nfs_downgrade_vnlock(vp, td, old_lock);
1327	return error;
1328}
1329
1330/*
1331 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1332 * This is mainly to avoid queueing async I/O requests when the nfsiods
1333 * are all hung on a dead server.
1334 *
1335 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1336 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1337 */
1338int
1339nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1340{
1341	int iod;
1342	int gotiod;
1343	int slpflag = 0;
1344	int slptimeo = 0;
1345	int error, error2;
1346
1347	/*
1348	 * Commits are usually short and sweet so lets save some cpu and
1349	 * leave the async daemons for more important rpc's (such as reads
1350	 * and writes).
1351	 */
1352	mtx_lock(&nfs_iod_mtx);
1353	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1354	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1355		mtx_unlock(&nfs_iod_mtx);
1356		return(EIO);
1357	}
1358again:
1359	if (nmp->nm_flag & NFSMNT_INT)
1360		slpflag = PCATCH;
1361	gotiod = FALSE;
1362
1363	/*
1364	 * Find a free iod to process this request.
1365	 */
1366	for (iod = 0; iod < nfs_numasync; iod++)
1367		if (nfs_iodwant[iod]) {
1368			gotiod = TRUE;
1369			break;
1370		}
1371
1372	/*
1373	 * Try to create one if none are free.
1374	 */
1375	if (!gotiod) {
1376		iod = nfs_nfsiodnew();
1377		if (iod != -1)
1378			gotiod = TRUE;
1379	}
1380
1381	if (gotiod) {
1382		/*
1383		 * Found one, so wake it up and tell it which
1384		 * mount to process.
1385		 */
1386		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1387		    iod, nmp));
1388		nfs_iodwant[iod] = NULL;
1389		nfs_iodmount[iod] = nmp;
1390		nmp->nm_bufqiods++;
1391		wakeup(&nfs_iodwant[iod]);
1392	}
1393
1394	/*
1395	 * If none are free, we may already have an iod working on this mount
1396	 * point.  If so, it will process our request.
1397	 */
1398	if (!gotiod) {
1399		if (nmp->nm_bufqiods > 0) {
1400			NFS_DPF(ASYNCIO,
1401				("nfs_asyncio: %d iods are already processing mount %p\n",
1402				 nmp->nm_bufqiods, nmp));
1403			gotiod = TRUE;
1404		}
1405	}
1406
1407	/*
1408	 * If we have an iod which can process the request, then queue
1409	 * the buffer.
1410	 */
1411	if (gotiod) {
1412		/*
1413		 * Ensure that the queue never grows too large.  We still want
1414		 * to asynchronize so we block rather then return EIO.
1415		 */
1416		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1417			NFS_DPF(ASYNCIO,
1418				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1419			nmp->nm_bufqwant = TRUE;
1420 			error = nfs_msleep(td, &nmp->nm_bufq, &nfs_iod_mtx,
1421					   slpflag | PRIBIO,
1422 					   "nfsaio", slptimeo);
1423			if (error) {
1424				error2 = nfs_sigintr(nmp, NULL, td);
1425				if (error2) {
1426					mtx_unlock(&nfs_iod_mtx);
1427					return (error2);
1428				}
1429				if (slpflag == PCATCH) {
1430					slpflag = 0;
1431					slptimeo = 2 * hz;
1432				}
1433			}
1434			/*
1435			 * We might have lost our iod while sleeping,
1436			 * so check and loop if nescessary.
1437			 */
1438			if (nmp->nm_bufqiods == 0) {
1439				NFS_DPF(ASYNCIO,
1440					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1441				goto again;
1442			}
1443		}
1444
1445		if (bp->b_iocmd == BIO_READ) {
1446			if (bp->b_rcred == NOCRED && cred != NOCRED)
1447				bp->b_rcred = crhold(cred);
1448		} else {
1449			if (bp->b_wcred == NOCRED && cred != NOCRED)
1450				bp->b_wcred = crhold(cred);
1451		}
1452
1453		if (bp->b_flags & B_REMFREE)
1454			bremfreef(bp);
1455		BUF_KERNPROC(bp);
1456		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1457		nmp->nm_bufqlen++;
1458		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1459			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1460			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1461			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1462		}
1463		mtx_unlock(&nfs_iod_mtx);
1464		return (0);
1465	}
1466
1467	mtx_unlock(&nfs_iod_mtx);
1468
1469	/*
1470	 * All the iods are busy on other mounts, so return EIO to
1471	 * force the caller to process the i/o synchronously.
1472	 */
1473	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1474	return (EIO);
1475}
1476
1477void
1478nfs_doio_directwrite(struct buf *bp)
1479{
1480	int iomode, must_commit;
1481	struct uio *uiop = (struct uio *)bp->b_caller1;
1482	char *iov_base = uiop->uio_iov->iov_base;
1483	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1484
1485	iomode = NFSV3WRITE_FILESYNC;
1486	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1487	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1488	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1489	free(iov_base, M_NFSDIRECTIO);
1490	free(uiop->uio_iov, M_NFSDIRECTIO);
1491	free(uiop, M_NFSDIRECTIO);
1492	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1493		struct nfsnode *np = VTONFS(bp->b_vp);
1494		mtx_lock(&np->n_mtx);
1495		np->n_directio_asyncwr--;
1496		if ((np->n_flag & NFSYNCWAIT) && np->n_directio_asyncwr == 0) {
1497			np->n_flag &= ~NFSYNCWAIT;
1498			wakeup((caddr_t)&np->n_directio_asyncwr);
1499		}
1500		mtx_unlock(&np->n_mtx);
1501	}
1502	vdrop(bp->b_vp);
1503	bp->b_vp = NULL;
1504	relpbuf(bp, &nfs_pbuf_freecnt);
1505}
1506
1507/*
1508 * Do an I/O operation to/from a cache block. This may be called
1509 * synchronously or from an nfsiod.
1510 */
1511int
1512nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1513{
1514	struct uio *uiop;
1515	struct nfsnode *np;
1516	struct nfsmount *nmp;
1517	int error = 0, iomode, must_commit = 0;
1518	struct uio uio;
1519	struct iovec io;
1520	struct proc *p = td ? td->td_proc : NULL;
1521	uint8_t	iocmd;
1522
1523	np = VTONFS(vp);
1524	nmp = VFSTONFS(vp->v_mount);
1525	uiop = &uio;
1526	uiop->uio_iov = &io;
1527	uiop->uio_iovcnt = 1;
1528	uiop->uio_segflg = UIO_SYSSPACE;
1529	uiop->uio_td = td;
1530
1531	/*
1532	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1533	 * do this here so we do not have to do it in all the code that
1534	 * calls us.
1535	 */
1536	bp->b_flags &= ~B_INVAL;
1537	bp->b_ioflags &= ~BIO_ERROR;
1538
1539	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1540	iocmd = bp->b_iocmd;
1541	if (iocmd == BIO_READ) {
1542	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1543	    io.iov_base = bp->b_data;
1544	    uiop->uio_rw = UIO_READ;
1545
1546	    switch (vp->v_type) {
1547	    case VREG:
1548		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1549		nfsstats.read_bios++;
1550		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1551
1552		if (!error) {
1553		    if (uiop->uio_resid) {
1554			/*
1555			 * If we had a short read with no error, we must have
1556			 * hit a file hole.  We should zero-fill the remainder.
1557			 * This can also occur if the server hits the file EOF.
1558			 *
1559			 * Holes used to be able to occur due to pending
1560			 * writes, but that is not possible any longer.
1561			 */
1562			int nread = bp->b_bcount - uiop->uio_resid;
1563			int left  = uiop->uio_resid;
1564
1565			if (left > 0)
1566				bzero((char *)bp->b_data + nread, left);
1567			uiop->uio_resid = 0;
1568		    }
1569		}
1570		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1571		if (p && (vp->v_vflag & VV_TEXT)) {
1572			mtx_lock(&np->n_mtx);
1573			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime)) {
1574				mtx_unlock(&np->n_mtx);
1575				PROC_LOCK(p);
1576				killproc(p, "text file modification");
1577				PROC_UNLOCK(p);
1578			} else
1579				mtx_unlock(&np->n_mtx);
1580		}
1581		break;
1582	    case VLNK:
1583		uiop->uio_offset = (off_t)0;
1584		nfsstats.readlink_bios++;
1585		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1586		break;
1587	    case VDIR:
1588		nfsstats.readdir_bios++;
1589		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1590		if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
1591			error = nfs4_readdirrpc(vp, uiop, cr);
1592		else {
1593			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1594				error = nfs_readdirplusrpc(vp, uiop, cr);
1595				if (error == NFSERR_NOTSUPP)
1596					nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1597			}
1598			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1599				error = nfs_readdirrpc(vp, uiop, cr);
1600		}
1601		/*
1602		 * end-of-directory sets B_INVAL but does not generate an
1603		 * error.
1604		 */
1605		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1606			bp->b_flags |= B_INVAL;
1607		break;
1608	    default:
1609		nfs_printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1610		break;
1611	    };
1612	    if (error) {
1613		bp->b_ioflags |= BIO_ERROR;
1614		bp->b_error = error;
1615	    }
1616	} else {
1617	    /*
1618	     * If we only need to commit, try to commit
1619	     */
1620	    if (bp->b_flags & B_NEEDCOMMIT) {
1621		    int retv;
1622		    off_t off;
1623
1624		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1625		    retv = (nmp->nm_rpcops->nr_commit)(
1626				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1627				bp->b_wcred, td);
1628		    if (retv == 0) {
1629			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1630			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1631			    bp->b_resid = 0;
1632			    bufdone(bp);
1633			    return (0);
1634		    }
1635		    if (retv == NFSERR_STALEWRITEVERF) {
1636			    nfs_clearcommit(vp->v_mount);
1637		    }
1638	    }
1639
1640	    /*
1641	     * Setup for actual write
1642	     */
1643	    mtx_lock(&np->n_mtx);
1644	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1645		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1646	    mtx_unlock(&np->n_mtx);
1647
1648	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1649		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1650		    - bp->b_dirtyoff;
1651		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1652		    + bp->b_dirtyoff;
1653		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1654		uiop->uio_rw = UIO_WRITE;
1655		nfsstats.write_bios++;
1656
1657		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1658		    iomode = NFSV3WRITE_UNSTABLE;
1659		else
1660		    iomode = NFSV3WRITE_FILESYNC;
1661
1662		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1663
1664		/*
1665		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1666		 * to cluster the buffers needing commit.  This will allow
1667		 * the system to submit a single commit rpc for the whole
1668		 * cluster.  We can do this even if the buffer is not 100%
1669		 * dirty (relative to the NFS blocksize), so we optimize the
1670		 * append-to-file-case.
1671		 *
1672		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1673		 * cleared because write clustering only works for commit
1674		 * rpc's, not for the data portion of the write).
1675		 */
1676
1677		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1678		    bp->b_flags |= B_NEEDCOMMIT;
1679		    if (bp->b_dirtyoff == 0
1680			&& bp->b_dirtyend == bp->b_bcount)
1681			bp->b_flags |= B_CLUSTEROK;
1682		} else {
1683		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1684		}
1685
1686		/*
1687		 * For an interrupted write, the buffer is still valid
1688		 * and the write hasn't been pushed to the server yet,
1689		 * so we can't set BIO_ERROR and report the interruption
1690		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1691		 * is not relevant, so the rpc attempt is essentially
1692		 * a noop.  For the case of a V3 write rpc not being
1693		 * committed to stable storage, the block is still
1694		 * dirty and requires either a commit rpc or another
1695		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1696		 * the block is reused. This is indicated by setting
1697		 * the B_DELWRI and B_NEEDCOMMIT flags.
1698		 *
1699		 * If the buffer is marked B_PAGING, it does not reside on
1700		 * the vp's paging queues so we cannot call bdirty().  The
1701		 * bp in this case is not an NFS cache block so we should
1702		 * be safe. XXX
1703		 */
1704    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1705		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1706			int s;
1707
1708			s = splbio();
1709			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1710			if ((bp->b_flags & B_PAGING) == 0) {
1711			    bdirty(bp);
1712			    bp->b_flags &= ~B_DONE;
1713			}
1714			if (error && (bp->b_flags & B_ASYNC) == 0)
1715			    bp->b_flags |= B_EINTR;
1716			splx(s);
1717	    	} else {
1718		    if (error) {
1719			bp->b_ioflags |= BIO_ERROR;
1720			bp->b_error = np->n_error = error;
1721			mtx_lock(&np->n_mtx);
1722			np->n_flag |= NWRITEERR;
1723			mtx_unlock(&np->n_mtx);
1724		    }
1725		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1726		}
1727	    } else {
1728		bp->b_resid = 0;
1729		bufdone(bp);
1730		return (0);
1731	    }
1732	}
1733	bp->b_resid = uiop->uio_resid;
1734	if (must_commit)
1735	    nfs_clearcommit(vp->v_mount);
1736	bufdone(bp);
1737	return (error);
1738}
1739
1740/*
1741 * Used to aid in handling ftruncate() operations on the NFS client side.
1742 * Truncation creates a number of special problems for NFS.  We have to
1743 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1744 * we have to properly handle VM pages or (potentially dirty) buffers
1745 * that straddle the truncation point.
1746 */
1747
1748int
1749nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1750{
1751	struct nfsnode *np = VTONFS(vp);
1752	u_quad_t tsize;
1753	int biosize = vp->v_mount->mnt_stat.f_iosize;
1754	int error = 0;
1755
1756	mtx_lock(&np->n_mtx);
1757	tsize = np->n_size;
1758	np->n_size = nsize;
1759	mtx_unlock(&np->n_mtx);
1760
1761	if (nsize < tsize) {
1762		struct buf *bp;
1763		daddr_t lbn;
1764		int bufsize;
1765
1766		/*
1767		 * vtruncbuf() doesn't get the buffer overlapping the
1768		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1769		 * buffer that now needs to be truncated.
1770		 */
1771		error = vtruncbuf(vp, cred, td, nsize, biosize);
1772		lbn = nsize / biosize;
1773		bufsize = nsize & (biosize - 1);
1774		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1775 		if (!bp)
1776 			return EINTR;
1777		if (bp->b_dirtyoff > bp->b_bcount)
1778			bp->b_dirtyoff = bp->b_bcount;
1779		if (bp->b_dirtyend > bp->b_bcount)
1780			bp->b_dirtyend = bp->b_bcount;
1781		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1782		brelse(bp);
1783	} else {
1784		vnode_pager_setsize(vp, nsize);
1785	}
1786	return(error);
1787}
1788
1789