nfs_bio.c revision 157557
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 157557 2006-04-06 01:20:30Z mohans $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/bio.h>
41#include <sys/buf.h>
42#include <sys/kernel.h>
43#include <sys/mount.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/signalvar.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49
50#include <vm/vm.h>
51#include <vm/vm_extern.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_pager.h>
55#include <vm/vnode_pager.h>
56
57#include <rpc/rpcclnt.h>
58
59#include <nfs/rpcv2.h>
60#include <nfs/nfsproto.h>
61#include <nfsclient/nfs.h>
62#include <nfsclient/nfsmount.h>
63#include <nfsclient/nfsnode.h>
64
65#include <nfs4client/nfs4.h>
66
67static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
68		    struct thread *td);
69static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
70			      struct ucred *cred, int ioflag);
71
72extern int nfs_directio_enable;
73extern int nfs_directio_allow_mmap;
74/*
75 * Vnode op for VM getpages.
76 */
77int
78nfs_getpages(struct vop_getpages_args *ap)
79{
80	int i, error, nextoff, size, toff, count, npages;
81	struct uio uio;
82	struct iovec iov;
83	vm_offset_t kva;
84	struct buf *bp;
85	struct vnode *vp;
86	struct thread *td;
87	struct ucred *cred;
88	struct nfsmount *nmp;
89	vm_object_t object;
90	vm_page_t *pages;
91	struct nfsnode *np;
92
93	GIANT_REQUIRED;
94
95	vp = ap->a_vp;
96	np = VTONFS(vp);
97	td = curthread;				/* XXX */
98	cred = curthread->td_ucred;		/* XXX */
99	nmp = VFSTONFS(vp->v_mount);
100	pages = ap->a_m;
101	count = ap->a_count;
102
103	if ((object = vp->v_object) == NULL) {
104		printf("nfs_getpages: called with non-merged cache vnode??\n");
105		return VM_PAGER_ERROR;
106	}
107
108	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
109	    (np->n_flag & NNONCACHE) &&
110	    (vp->v_type == VREG)) {
111		printf("nfs_getpages: called on non-cacheable vnode??\n");
112		return VM_PAGER_ERROR;
113	}
114
115	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
116	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
117		/* We'll never get here for v4, because we always have fsinfo */
118		(void)nfs_fsinfo(nmp, vp, cred, td);
119	}
120
121	npages = btoc(count);
122
123	/*
124	 * If the requested page is partially valid, just return it and
125	 * allow the pager to zero-out the blanks.  Partially valid pages
126	 * can only occur at the file EOF.
127	 */
128
129	{
130		vm_page_t m = pages[ap->a_reqpage];
131
132		VM_OBJECT_LOCK(object);
133		vm_page_lock_queues();
134		if (m->valid != 0) {
135			/* handled by vm_fault now	  */
136			/* vm_page_zero_invalid(m, TRUE); */
137			for (i = 0; i < npages; ++i) {
138				if (i != ap->a_reqpage)
139					vm_page_free(pages[i]);
140			}
141			vm_page_unlock_queues();
142			VM_OBJECT_UNLOCK(object);
143			return(0);
144		}
145		vm_page_unlock_queues();
146		VM_OBJECT_UNLOCK(object);
147	}
148
149	/*
150	 * We use only the kva address for the buffer, but this is extremely
151	 * convienient and fast.
152	 */
153	bp = getpbuf(&nfs_pbuf_freecnt);
154
155	kva = (vm_offset_t) bp->b_data;
156	pmap_qenter(kva, pages, npages);
157	cnt.v_vnodein++;
158	cnt.v_vnodepgsin += npages;
159
160	iov.iov_base = (caddr_t) kva;
161	iov.iov_len = count;
162	uio.uio_iov = &iov;
163	uio.uio_iovcnt = 1;
164	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
165	uio.uio_resid = count;
166	uio.uio_segflg = UIO_SYSSPACE;
167	uio.uio_rw = UIO_READ;
168	uio.uio_td = td;
169
170	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
171	pmap_qremove(kva, npages);
172
173	relpbuf(bp, &nfs_pbuf_freecnt);
174
175	if (error && (uio.uio_resid == count)) {
176		printf("nfs_getpages: error %d\n", error);
177		VM_OBJECT_LOCK(object);
178		vm_page_lock_queues();
179		for (i = 0; i < npages; ++i) {
180			if (i != ap->a_reqpage)
181				vm_page_free(pages[i]);
182		}
183		vm_page_unlock_queues();
184		VM_OBJECT_UNLOCK(object);
185		return VM_PAGER_ERROR;
186	}
187
188	/*
189	 * Calculate the number of bytes read and validate only that number
190	 * of bytes.  Note that due to pending writes, size may be 0.  This
191	 * does not mean that the remaining data is invalid!
192	 */
193
194	size = count - uio.uio_resid;
195	VM_OBJECT_LOCK(object);
196	vm_page_lock_queues();
197	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
198		vm_page_t m;
199		nextoff = toff + PAGE_SIZE;
200		m = pages[i];
201
202		if (nextoff <= size) {
203			/*
204			 * Read operation filled an entire page
205			 */
206			m->valid = VM_PAGE_BITS_ALL;
207			vm_page_undirty(m);
208		} else if (size > toff) {
209			/*
210			 * Read operation filled a partial page.
211			 */
212			m->valid = 0;
213			vm_page_set_validclean(m, 0, size - toff);
214			/* handled by vm_fault now	  */
215			/* vm_page_zero_invalid(m, TRUE); */
216		} else {
217			/*
218			 * Read operation was short.  If no error occured
219			 * we may have hit a zero-fill section.   We simply
220			 * leave valid set to 0.
221			 */
222			;
223		}
224		if (i != ap->a_reqpage) {
225			/*
226			 * Whether or not to leave the page activated is up in
227			 * the air, but we should put the page on a page queue
228			 * somewhere (it already is in the object).  Result:
229			 * It appears that emperical results show that
230			 * deactivating pages is best.
231			 */
232
233			/*
234			 * Just in case someone was asking for this page we
235			 * now tell them that it is ok to use.
236			 */
237			if (!error) {
238				if (m->flags & PG_WANTED)
239					vm_page_activate(m);
240				else
241					vm_page_deactivate(m);
242				vm_page_wakeup(m);
243			} else {
244				vm_page_free(m);
245			}
246		}
247	}
248	vm_page_unlock_queues();
249	VM_OBJECT_UNLOCK(object);
250	return 0;
251}
252
253/*
254 * Vnode op for VM putpages.
255 */
256int
257nfs_putpages(struct vop_putpages_args *ap)
258{
259	struct uio uio;
260	struct iovec iov;
261	vm_offset_t kva;
262	struct buf *bp;
263	int iomode, must_commit, i, error, npages, count;
264	off_t offset;
265	int *rtvals;
266	struct vnode *vp;
267	struct thread *td;
268	struct ucred *cred;
269	struct nfsmount *nmp;
270	struct nfsnode *np;
271	vm_page_t *pages;
272
273	GIANT_REQUIRED;
274
275	vp = ap->a_vp;
276	np = VTONFS(vp);
277	td = curthread;				/* XXX */
278	cred = curthread->td_ucred;		/* XXX */
279	nmp = VFSTONFS(vp->v_mount);
280	pages = ap->a_m;
281	count = ap->a_count;
282	rtvals = ap->a_rtvals;
283	npages = btoc(count);
284	offset = IDX_TO_OFF(pages[0]->pindex);
285
286	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
287	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
288		(void)nfs_fsinfo(nmp, vp, cred, td);
289	}
290
291	if (nfs_directio_enable && !nfs_directio_allow_mmap &&
292	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG))
293		printf("nfs_putpages: called on noncache-able vnode??\n");
294
295	for (i = 0; i < npages; i++)
296		rtvals[i] = VM_PAGER_AGAIN;
297
298	/*
299	 * When putting pages, do not extend file past EOF.
300	 */
301
302	if (offset + count > np->n_size) {
303		count = np->n_size - offset;
304		if (count < 0)
305			count = 0;
306	}
307
308	/*
309	 * We use only the kva address for the buffer, but this is extremely
310	 * convienient and fast.
311	 */
312	bp = getpbuf(&nfs_pbuf_freecnt);
313
314	kva = (vm_offset_t) bp->b_data;
315	pmap_qenter(kva, pages, npages);
316	cnt.v_vnodeout++;
317	cnt.v_vnodepgsout += count;
318
319	iov.iov_base = (caddr_t) kva;
320	iov.iov_len = count;
321	uio.uio_iov = &iov;
322	uio.uio_iovcnt = 1;
323	uio.uio_offset = offset;
324	uio.uio_resid = count;
325	uio.uio_segflg = UIO_SYSSPACE;
326	uio.uio_rw = UIO_WRITE;
327	uio.uio_td = td;
328
329	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
330	    iomode = NFSV3WRITE_UNSTABLE;
331	else
332	    iomode = NFSV3WRITE_FILESYNC;
333
334	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
335
336	pmap_qremove(kva, npages);
337	relpbuf(bp, &nfs_pbuf_freecnt);
338
339	if (!error) {
340		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
341		for (i = 0; i < nwritten; i++) {
342			rtvals[i] = VM_PAGER_OK;
343			vm_page_undirty(pages[i]);
344		}
345		if (must_commit) {
346			nfs_clearcommit(vp->v_mount);
347		}
348	}
349	return rtvals[0];
350}
351
352/*
353 * Vnode op for read using bio
354 */
355int
356nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
357{
358	struct nfsnode *np = VTONFS(vp);
359	int biosize, i;
360	struct buf *bp, *rabp;
361	struct vattr vattr;
362	struct thread *td;
363	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
364	daddr_t lbn, rabn;
365	int bcount;
366	int seqcount;
367	int nra, error = 0, n = 0, on = 0;
368
369#ifdef DIAGNOSTIC
370	if (uio->uio_rw != UIO_READ)
371		panic("nfs_read mode");
372#endif
373	if (uio->uio_resid == 0)
374		return (0);
375	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
376		return (EINVAL);
377	td = uio->uio_td;
378
379	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
380	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
381		(void)nfs_fsinfo(nmp, vp, cred, td);
382	if (vp->v_type != VDIR &&
383	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
384		return (EFBIG);
385
386	if (nfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
387		/* No caching/ no readaheads. Just read data into the user buffer */
388		return nfs_readrpc(vp, uio, cred);
389
390	biosize = vp->v_mount->mnt_stat.f_iosize;
391	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
392	/*
393	 * For nfs, cache consistency can only be maintained approximately.
394	 * Although RFC1094 does not specify the criteria, the following is
395	 * believed to be compatible with the reference port.
396	 * For nfs:
397	 * If the file's modify time on the server has changed since the
398	 * last read rpc or you have written to the file,
399	 * you may have lost data cache consistency with the
400	 * server, so flush all of the file's data out of the cache.
401	 * Then force a getattr rpc to ensure that you have up to date
402	 * attributes.
403	 * NB: This implies that cache data can be read when up to
404	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
405	 * attributes this could be forced by setting n_attrstamp to 0 before
406	 * the VOP_GETATTR() call.
407	 */
408	if (np->n_flag & NMODIFIED) {
409		if (vp->v_type != VREG) {
410			if (vp->v_type != VDIR)
411				panic("nfs: bioread, not dir");
412			(nmp->nm_rpcops->nr_invaldir)(vp);
413			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
414			if (error)
415				return (error);
416		}
417		np->n_attrstamp = 0;
418		error = VOP_GETATTR(vp, &vattr, cred, td);
419		if (error)
420			return (error);
421		np->n_mtime = vattr.va_mtime;
422	} else {
423		error = VOP_GETATTR(vp, &vattr, cred, td);
424		if (error)
425			return (error);
426		if ((np->n_flag & NSIZECHANGED)
427		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
428			if (vp->v_type == VDIR)
429				(nmp->nm_rpcops->nr_invaldir)(vp);
430			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
431			if (error)
432				return (error);
433			np->n_mtime = vattr.va_mtime;
434			np->n_flag &= ~NSIZECHANGED;
435		}
436	}
437	do {
438	    switch (vp->v_type) {
439	    case VREG:
440		nfsstats.biocache_reads++;
441		lbn = uio->uio_offset / biosize;
442		on = uio->uio_offset & (biosize - 1);
443
444		/*
445		 * Start the read ahead(s), as required.
446		 * The readahead is kicked off only if sequential access
447		 * is detected, based on the readahead hint (ra_expect_lbn).
448		 */
449		if (nmp->nm_readahead > 0 && np->ra_expect_lbn == lbn) {
450		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
451			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
452			rabn = lbn + 1 + nra;
453			if (incore(&vp->v_bufobj, rabn) == NULL) {
454			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
455			    if (!rabp) {
456				error = nfs_sigintr(nmp, NULL, td);
457				return (error ? error : EINTR);
458			    }
459			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
460				rabp->b_flags |= B_ASYNC;
461				rabp->b_iocmd = BIO_READ;
462				vfs_busy_pages(rabp, 0);
463				if (nfs_asyncio(nmp, rabp, cred, td)) {
464				    rabp->b_flags |= B_INVAL;
465				    rabp->b_ioflags |= BIO_ERROR;
466				    vfs_unbusy_pages(rabp);
467				    brelse(rabp);
468				    break;
469				}
470			    } else {
471				brelse(rabp);
472			    }
473			}
474		    }
475		    np->ra_expect_lbn = lbn + 1;
476		}
477
478		/* Note that bcount is *not* DEV_BSIZE aligned. */
479		bcount = biosize;
480		if ((off_t)lbn * biosize >= np->n_size) {
481			bcount = 0;
482		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
483			bcount = np->n_size - (off_t)lbn * biosize;
484		}
485		bp = nfs_getcacheblk(vp, lbn, bcount, td);
486
487		if (!bp) {
488			error = nfs_sigintr(nmp, NULL, td);
489			return (error ? error : EINTR);
490		}
491
492		/*
493		 * If B_CACHE is not set, we must issue the read.  If this
494		 * fails, we return an error.
495		 */
496
497		if ((bp->b_flags & B_CACHE) == 0) {
498		    bp->b_iocmd = BIO_READ;
499		    vfs_busy_pages(bp, 0);
500		    error = nfs_doio(vp, bp, cred, td);
501		    if (error) {
502			brelse(bp);
503			return (error);
504		    }
505		}
506
507		/*
508		 * on is the offset into the current bp.  Figure out how many
509		 * bytes we can copy out of the bp.  Note that bcount is
510		 * NOT DEV_BSIZE aligned.
511		 *
512		 * Then figure out how many bytes we can copy into the uio.
513		 */
514
515		n = 0;
516		if (on < bcount)
517			n = min((unsigned)(bcount - on), uio->uio_resid);
518		break;
519	    case VLNK:
520		nfsstats.biocache_readlinks++;
521		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
522		if (!bp) {
523			error = nfs_sigintr(nmp, NULL, td);
524			return (error ? error : EINTR);
525		}
526		if ((bp->b_flags & B_CACHE) == 0) {
527		    bp->b_iocmd = BIO_READ;
528		    vfs_busy_pages(bp, 0);
529		    error = nfs_doio(vp, bp, cred, td);
530		    if (error) {
531			bp->b_ioflags |= BIO_ERROR;
532			brelse(bp);
533			return (error);
534		    }
535		}
536		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
537		on = 0;
538		break;
539	    case VDIR:
540		nfsstats.biocache_readdirs++;
541		if (np->n_direofoffset
542		    && uio->uio_offset >= np->n_direofoffset) {
543		    return (0);
544		}
545		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
546		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
547		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
548		if (!bp) {
549		    error = nfs_sigintr(nmp, NULL, td);
550		    return (error ? error : EINTR);
551		}
552		if ((bp->b_flags & B_CACHE) == 0) {
553		    bp->b_iocmd = BIO_READ;
554		    vfs_busy_pages(bp, 0);
555		    error = nfs_doio(vp, bp, cred, td);
556		    if (error) {
557			    brelse(bp);
558		    }
559		    while (error == NFSERR_BAD_COOKIE) {
560			(nmp->nm_rpcops->nr_invaldir)(vp);
561			error = nfs_vinvalbuf(vp, 0, td, 1);
562			/*
563			 * Yuck! The directory has been modified on the
564			 * server. The only way to get the block is by
565			 * reading from the beginning to get all the
566			 * offset cookies.
567			 *
568			 * Leave the last bp intact unless there is an error.
569			 * Loop back up to the while if the error is another
570			 * NFSERR_BAD_COOKIE (double yuch!).
571			 */
572			for (i = 0; i <= lbn && !error; i++) {
573			    if (np->n_direofoffset
574				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
575				    return (0);
576			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
577			    if (!bp) {
578				error = nfs_sigintr(nmp, NULL, td);
579				return (error ? error : EINTR);
580			    }
581			    if ((bp->b_flags & B_CACHE) == 0) {
582				    bp->b_iocmd = BIO_READ;
583				    vfs_busy_pages(bp, 0);
584				    error = nfs_doio(vp, bp, cred, td);
585				    /*
586				     * no error + B_INVAL == directory EOF,
587				     * use the block.
588				     */
589				    if (error == 0 && (bp->b_flags & B_INVAL))
590					    break;
591			    }
592			    /*
593			     * An error will throw away the block and the
594			     * for loop will break out.  If no error and this
595			     * is not the block we want, we throw away the
596			     * block and go for the next one via the for loop.
597			     */
598			    if (error || i < lbn)
599				    brelse(bp);
600			}
601		    }
602		    /*
603		     * The above while is repeated if we hit another cookie
604		     * error.  If we hit an error and it wasn't a cookie error,
605		     * we give up.
606		     */
607		    if (error)
608			    return (error);
609		}
610
611		/*
612		 * If not eof and read aheads are enabled, start one.
613		 * (You need the current block first, so that you have the
614		 *  directory offset cookie of the next block.)
615		 */
616		if (nmp->nm_readahead > 0 &&
617		    (bp->b_flags & B_INVAL) == 0 &&
618		    (np->n_direofoffset == 0 ||
619		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
620		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
621			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
622			if (rabp) {
623			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
624				rabp->b_flags |= B_ASYNC;
625				rabp->b_iocmd = BIO_READ;
626				vfs_busy_pages(rabp, 0);
627				if (nfs_asyncio(nmp, rabp, cred, td)) {
628				    rabp->b_flags |= B_INVAL;
629				    rabp->b_ioflags |= BIO_ERROR;
630				    vfs_unbusy_pages(rabp);
631				    brelse(rabp);
632				}
633			    } else {
634				brelse(rabp);
635			    }
636			}
637		}
638		/*
639		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
640		 * chopped for the EOF condition, we cannot tell how large
641		 * NFS directories are going to be until we hit EOF.  So
642		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
643		 * it just so happens that b_resid will effectively chop it
644		 * to EOF.  *BUT* this information is lost if the buffer goes
645		 * away and is reconstituted into a B_CACHE state ( due to
646		 * being VMIO ) later.  So we keep track of the directory eof
647		 * in np->n_direofoffset and chop it off as an extra step
648		 * right here.
649		 */
650		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
651		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
652			n = np->n_direofoffset - uio->uio_offset;
653		break;
654	    default:
655		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
656		bp = NULL;
657		break;
658	    };
659
660	    if (n > 0) {
661		    error = uiomove(bp->b_data + on, (int)n, uio);
662	    }
663	    if (vp->v_type == VLNK)
664		n = 0;
665	    if (bp != NULL)
666		brelse(bp);
667	} while (error == 0 && uio->uio_resid > 0 && n > 0);
668	return (error);
669}
670
671/*
672 * The NFS write path cannot handle iovecs with len > 1. So we need to
673 * break up iovecs accordingly (restricting them to wsize).
674 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
675 * For the ASYNC case, 2 copies are needed. The first a copy from the
676 * user buffer to a staging buffer and then a second copy from the staging
677 * buffer to mbufs. This can be optimized by copying from the user buffer
678 * directly into mbufs and passing the chain down, but that requires a
679 * fair amount of re-working of the relevant codepaths (and can be done
680 * later).
681 */
682static int
683nfs_directio_write(vp, uiop, cred, ioflag)
684	struct vnode *vp;
685	struct uio *uiop;
686	struct ucred *cred;
687	int ioflag;
688{
689	int error;
690	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
691	struct thread *td = uiop->uio_td;
692	int size;
693
694	if (ioflag & IO_SYNC) {
695		int iomode, must_commit;
696		struct uio uio;
697		struct iovec iov;
698do_sync:
699		while (uiop->uio_resid > 0) {
700			size = min(uiop->uio_resid, nmp->nm_wsize);
701			size = min(uiop->uio_iov->iov_len, size);
702			iov.iov_base = uiop->uio_iov->iov_base;
703			iov.iov_len = size;
704			uio.uio_iov = &iov;
705			uio.uio_iovcnt = 1;
706			uio.uio_offset = uiop->uio_offset;
707			uio.uio_resid = size;
708			uio.uio_segflg = UIO_USERSPACE;
709			uio.uio_rw = UIO_WRITE;
710			uio.uio_td = td;
711			iomode = NFSV3WRITE_FILESYNC;
712			error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred,
713						      &iomode, &must_commit);
714			KASSERT((must_commit == 0),
715				("nfs_directio_write: Did not commit write"));
716			if (error)
717				return (error);
718			uiop->uio_offset += size;
719			uiop->uio_resid -= size;
720			if (uiop->uio_iov->iov_len <= size) {
721				uiop->uio_iovcnt--;
722				uiop->uio_iov++;
723			} else {
724				uiop->uio_iov->iov_base =
725					(char *)uiop->uio_iov->iov_base + size;
726				uiop->uio_iov->iov_len -= size;
727			}
728		}
729	} else {
730		struct uio *t_uio;
731		struct iovec *t_iov;
732		struct buf *bp;
733
734		/*
735		 * Break up the write into blocksize chunks and hand these
736		 * over to nfsiod's for write back.
737		 * Unfortunately, this incurs a copy of the data. Since
738		 * the user could modify the buffer before the write is
739		 * initiated.
740		 *
741		 * The obvious optimization here is that one of the 2 copies
742		 * in the async write path can be eliminated by copying the
743		 * data here directly into mbufs and passing the mbuf chain
744		 * down. But that will require a fair amount of re-working
745		 * of the code and can be done if there's enough interest
746		 * in NFS directio access.
747		 */
748		while (uiop->uio_resid > 0) {
749			size = min(uiop->uio_resid, nmp->nm_wsize);
750			size = min(uiop->uio_iov->iov_len, size);
751			bp = getpbuf(&nfs_pbuf_freecnt);
752			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
753			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
754			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
755			t_iov->iov_len = size;
756			t_uio->uio_iov = t_iov;
757			t_uio->uio_iovcnt = 1;
758			t_uio->uio_offset = uiop->uio_offset;
759			t_uio->uio_resid = size;
760			t_uio->uio_segflg = UIO_SYSSPACE;
761			t_uio->uio_rw = UIO_WRITE;
762			t_uio->uio_td = td;
763			bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, size);
764			bp->b_flags |= B_DIRECT;
765			bp->b_iocmd = BIO_WRITE;
766			if (cred != NOCRED) {
767				crhold(cred);
768				bp->b_wcred = cred;
769			} else
770				bp->b_wcred = NOCRED;
771			bp->b_caller1 = (void *)t_uio;
772			bp->b_vp = vp;
773			vhold(vp);
774			error = nfs_asyncio(nmp, bp, NOCRED, td);
775			if (error) {
776				free(t_iov->iov_base, M_NFSDIRECTIO);
777				free(t_iov, M_NFSDIRECTIO);
778				free(t_uio, M_NFSDIRECTIO);
779				vdrop(bp->b_vp);
780				bp->b_vp = NULL;
781				relpbuf(bp, &nfs_pbuf_freecnt);
782				if (error == EINTR)
783					return (error);
784				goto do_sync;
785			}
786			uiop->uio_offset += size;
787			uiop->uio_resid -= size;
788			if (uiop->uio_iov->iov_len <= size) {
789				uiop->uio_iovcnt--;
790				uiop->uio_iov++;
791			} else {
792				uiop->uio_iov->iov_base =
793					(char *)uiop->uio_iov->iov_base + size;
794				uiop->uio_iov->iov_len -= size;
795			}
796		}
797	}
798	return (0);
799}
800
801/*
802 * Vnode op for write using bio
803 */
804int
805nfs_write(struct vop_write_args *ap)
806{
807	int biosize;
808	struct uio *uio = ap->a_uio;
809	struct thread *td = uio->uio_td;
810	struct vnode *vp = ap->a_vp;
811	struct nfsnode *np = VTONFS(vp);
812	struct ucred *cred = ap->a_cred;
813	int ioflag = ap->a_ioflag;
814	struct buf *bp;
815	struct vattr vattr;
816	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
817	daddr_t lbn;
818	int bcount;
819	int n, on, error = 0;
820	struct proc *p = td?td->td_proc:NULL;
821
822	GIANT_REQUIRED;
823
824#ifdef DIAGNOSTIC
825	if (uio->uio_rw != UIO_WRITE)
826		panic("nfs_write mode");
827	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
828		panic("nfs_write proc");
829#endif
830	if (vp->v_type != VREG)
831		return (EIO);
832	if (np->n_flag & NWRITEERR) {
833		np->n_flag &= ~NWRITEERR;
834		return (np->n_error);
835	}
836	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
837	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
838		(void)nfs_fsinfo(nmp, vp, cred, td);
839
840	/*
841	 * Synchronously flush pending buffers if we are in synchronous
842	 * mode or if we are appending.
843	 */
844	if (ioflag & (IO_APPEND | IO_SYNC)) {
845		if (np->n_flag & NMODIFIED) {
846#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
847			/*
848			 * Require non-blocking, synchronous writes to
849			 * dirty files to inform the program it needs
850			 * to fsync(2) explicitly.
851			 */
852			if (ioflag & IO_NDELAY)
853				return (EAGAIN);
854#endif
855flush_and_restart:
856			np->n_attrstamp = 0;
857			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
858			if (error)
859				return (error);
860		}
861	}
862
863	/*
864	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
865	 * get the append lock.
866	 */
867	if (ioflag & IO_APPEND) {
868		np->n_attrstamp = 0;
869		error = VOP_GETATTR(vp, &vattr, cred, td);
870		if (error)
871			return (error);
872		uio->uio_offset = np->n_size;
873	}
874
875	if (uio->uio_offset < 0)
876		return (EINVAL);
877	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
878		return (EFBIG);
879	if (uio->uio_resid == 0)
880		return (0);
881
882	if (nfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
883		return nfs_directio_write(vp, uio, cred, ioflag);
884
885	/*
886	 * Maybe this should be above the vnode op call, but so long as
887	 * file servers have no limits, i don't think it matters
888	 */
889	if (p != NULL) {
890		PROC_LOCK(p);
891		if (uio->uio_offset + uio->uio_resid >
892		    lim_cur(p, RLIMIT_FSIZE)) {
893			psignal(p, SIGXFSZ);
894			PROC_UNLOCK(p);
895			return (EFBIG);
896		}
897		PROC_UNLOCK(p);
898	}
899
900	biosize = vp->v_mount->mnt_stat.f_iosize;
901	/*
902	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
903	 * would exceed the local maximum per-file write commit size when
904	 * combined with those, we must decide whether to flush,
905	 * go synchronous, or return error.  We don't bother checking
906	 * IO_UNIT -- we just make all writes atomic anyway, as there's
907	 * no point optimizing for something that really won't ever happen.
908	 */
909	if (!(ioflag & IO_SYNC)) {
910		int needrestart = 0;
911		if (nmp->nm_wcommitsize < uio->uio_resid) {
912			/*
913			 * If this request could not possibly be completed
914			 * without exceeding the maximum outstanding write
915			 * commit size, see if we can convert it into a
916			 * synchronous write operation.
917			 */
918			if (ioflag & IO_NDELAY)
919				return (EAGAIN);
920			ioflag |= IO_SYNC;
921			if (np->n_flag & NMODIFIED)
922				needrestart = 1;
923		} else if (np->n_flag & NMODIFIED) {
924			int wouldcommit = 0;
925			BO_LOCK(&vp->v_bufobj);
926			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
927				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
928				    b_bobufs) {
929					if (bp->b_flags & B_NEEDCOMMIT)
930						wouldcommit += bp->b_bcount;
931				}
932			}
933			BO_UNLOCK(&vp->v_bufobj);
934			/*
935			 * Since we're not operating synchronously and
936			 * bypassing the buffer cache, we are in a commit
937			 * and holding all of these buffers whether
938			 * transmitted or not.  If not limited, this
939			 * will lead to the buffer cache deadlocking,
940			 * as no one else can flush our uncommitted buffers.
941			 */
942			wouldcommit += uio->uio_resid;
943			/*
944			 * If we would initially exceed the maximum
945			 * outstanding write commit size, flush and restart.
946			 */
947			if (wouldcommit > nmp->nm_wcommitsize)
948				needrestart = 1;
949		}
950		if (needrestart)
951			goto flush_and_restart;
952	}
953
954	do {
955		nfsstats.biocache_writes++;
956		lbn = uio->uio_offset / biosize;
957		on = uio->uio_offset & (biosize-1);
958		n = min((unsigned)(biosize - on), uio->uio_resid);
959again:
960		/*
961		 * Handle direct append and file extension cases, calculate
962		 * unaligned buffer size.
963		 */
964
965		if (uio->uio_offset == np->n_size && n) {
966			/*
967			 * Get the buffer (in its pre-append state to maintain
968			 * B_CACHE if it was previously set).  Resize the
969			 * nfsnode after we have locked the buffer to prevent
970			 * readers from reading garbage.
971			 */
972			bcount = on;
973			bp = nfs_getcacheblk(vp, lbn, bcount, td);
974
975			if (bp != NULL) {
976				long save;
977
978				np->n_size = uio->uio_offset + n;
979				np->n_flag |= NMODIFIED;
980				vnode_pager_setsize(vp, np->n_size);
981
982				save = bp->b_flags & B_CACHE;
983				bcount += n;
984				allocbuf(bp, bcount);
985				bp->b_flags |= save;
986			}
987		} else {
988			/*
989			 * Obtain the locked cache block first, and then
990			 * adjust the file's size as appropriate.
991			 */
992			bcount = on + n;
993			if ((off_t)lbn * biosize + bcount < np->n_size) {
994				if ((off_t)(lbn + 1) * biosize < np->n_size)
995					bcount = biosize;
996				else
997					bcount = np->n_size - (off_t)lbn * biosize;
998			}
999			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1000			if (uio->uio_offset + n > np->n_size) {
1001				np->n_size = uio->uio_offset + n;
1002				np->n_flag |= NMODIFIED;
1003				vnode_pager_setsize(vp, np->n_size);
1004			}
1005		}
1006
1007		if (!bp) {
1008			error = nfs_sigintr(nmp, NULL, td);
1009			if (!error)
1010				error = EINTR;
1011			break;
1012		}
1013
1014		/*
1015		 * Issue a READ if B_CACHE is not set.  In special-append
1016		 * mode, B_CACHE is based on the buffer prior to the write
1017		 * op and is typically set, avoiding the read.  If a read
1018		 * is required in special append mode, the server will
1019		 * probably send us a short-read since we extended the file
1020		 * on our end, resulting in b_resid == 0 and, thusly,
1021		 * B_CACHE getting set.
1022		 *
1023		 * We can also avoid issuing the read if the write covers
1024		 * the entire buffer.  We have to make sure the buffer state
1025		 * is reasonable in this case since we will not be initiating
1026		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1027		 * more information.
1028		 *
1029		 * B_CACHE may also be set due to the buffer being cached
1030		 * normally.
1031		 */
1032
1033		if (on == 0 && n == bcount) {
1034			bp->b_flags |= B_CACHE;
1035			bp->b_flags &= ~B_INVAL;
1036			bp->b_ioflags &= ~BIO_ERROR;
1037		}
1038
1039		if ((bp->b_flags & B_CACHE) == 0) {
1040			bp->b_iocmd = BIO_READ;
1041			vfs_busy_pages(bp, 0);
1042			error = nfs_doio(vp, bp, cred, td);
1043			if (error) {
1044				brelse(bp);
1045				break;
1046			}
1047		}
1048		if (bp->b_wcred == NOCRED)
1049			bp->b_wcred = crhold(cred);
1050		np->n_flag |= NMODIFIED;
1051
1052		/*
1053		 * If dirtyend exceeds file size, chop it down.  This should
1054		 * not normally occur but there is an append race where it
1055		 * might occur XXX, so we log it.
1056		 *
1057		 * If the chopping creates a reverse-indexed or degenerate
1058		 * situation with dirtyoff/end, we 0 both of them.
1059		 */
1060
1061		if (bp->b_dirtyend > bcount) {
1062			printf("NFS append race @%lx:%d\n",
1063			    (long)bp->b_blkno * DEV_BSIZE,
1064			    bp->b_dirtyend - bcount);
1065			bp->b_dirtyend = bcount;
1066		}
1067
1068		if (bp->b_dirtyoff >= bp->b_dirtyend)
1069			bp->b_dirtyoff = bp->b_dirtyend = 0;
1070
1071		/*
1072		 * If the new write will leave a contiguous dirty
1073		 * area, just update the b_dirtyoff and b_dirtyend,
1074		 * otherwise force a write rpc of the old dirty area.
1075		 *
1076		 * While it is possible to merge discontiguous writes due to
1077		 * our having a B_CACHE buffer ( and thus valid read data
1078		 * for the hole), we don't because it could lead to
1079		 * significant cache coherency problems with multiple clients,
1080		 * especially if locking is implemented later on.
1081		 *
1082		 * as an optimization we could theoretically maintain
1083		 * a linked list of discontinuous areas, but we would still
1084		 * have to commit them separately so there isn't much
1085		 * advantage to it except perhaps a bit of asynchronization.
1086		 */
1087
1088		if (bp->b_dirtyend > 0 &&
1089		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1090			if (bwrite(bp) == EINTR) {
1091				error = EINTR;
1092				break;
1093			}
1094			goto again;
1095		}
1096
1097		error = uiomove((char *)bp->b_data + on, n, uio);
1098
1099		/*
1100		 * Since this block is being modified, it must be written
1101		 * again and not just committed.  Since write clustering does
1102		 * not work for the stage 1 data write, only the stage 2
1103		 * commit rpc, we have to clear B_CLUSTEROK as well.
1104		 */
1105		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1106
1107		if (error) {
1108			bp->b_ioflags |= BIO_ERROR;
1109			brelse(bp);
1110			break;
1111		}
1112
1113		/*
1114		 * Only update dirtyoff/dirtyend if not a degenerate
1115		 * condition.
1116		 */
1117		if (n) {
1118			if (bp->b_dirtyend > 0) {
1119				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1120				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1121			} else {
1122				bp->b_dirtyoff = on;
1123				bp->b_dirtyend = on + n;
1124			}
1125			vfs_bio_set_validclean(bp, on, n);
1126		}
1127
1128		/*
1129		 * If IO_SYNC do bwrite().
1130		 *
1131		 * IO_INVAL appears to be unused.  The idea appears to be
1132		 * to turn off caching in this case.  Very odd.  XXX
1133		 */
1134		if ((ioflag & IO_SYNC)) {
1135			if (ioflag & IO_INVAL)
1136				bp->b_flags |= B_NOCACHE;
1137			error = bwrite(bp);
1138			if (error)
1139				break;
1140		} else if ((n + on) == biosize) {
1141			bp->b_flags |= B_ASYNC;
1142			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, 0);
1143		} else {
1144			bdwrite(bp);
1145		}
1146	} while (uio->uio_resid > 0 && n > 0);
1147
1148	return (error);
1149}
1150
1151/*
1152 * Get an nfs cache block.
1153 *
1154 * Allocate a new one if the block isn't currently in the cache
1155 * and return the block marked busy. If the calling process is
1156 * interrupted by a signal for an interruptible mount point, return
1157 * NULL.
1158 *
1159 * The caller must carefully deal with the possible B_INVAL state of
1160 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1161 * indirectly), so synchronous reads can be issued without worrying about
1162 * the B_INVAL state.  We have to be a little more careful when dealing
1163 * with writes (see comments in nfs_write()) when extending a file past
1164 * its EOF.
1165 */
1166static struct buf *
1167nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1168{
1169	struct buf *bp;
1170	struct mount *mp;
1171	struct nfsmount *nmp;
1172
1173	mp = vp->v_mount;
1174	nmp = VFSTONFS(mp);
1175
1176	if (nmp->nm_flag & NFSMNT_INT) {
1177 		sigset_t oldset;
1178
1179 		nfs_set_sigmask(td, &oldset);
1180		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1181 		nfs_restore_sigmask(td, &oldset);
1182		while (bp == NULL) {
1183			if (nfs_sigintr(nmp, NULL, td))
1184				return (NULL);
1185			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1186		}
1187	} else {
1188		bp = getblk(vp, bn, size, 0, 0, 0);
1189	}
1190
1191	if (vp->v_type == VREG) {
1192		int biosize;
1193
1194		biosize = mp->mnt_stat.f_iosize;
1195		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1196	}
1197	return (bp);
1198}
1199
1200/*
1201 * Flush and invalidate all dirty buffers. If another process is already
1202 * doing the flush, just wait for completion.
1203 */
1204int
1205nfs_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1206{
1207	struct nfsnode *np = VTONFS(vp);
1208	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1209	int error = 0, slpflag, slptimeo;
1210 	int old_lock = 0;
1211
1212	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1213
1214	/*
1215	 * XXX This check stops us from needlessly doing a vinvalbuf when
1216	 * being called through vclean().  It is not clear that this is
1217	 * unsafe.
1218	 */
1219	if (vp->v_iflag & VI_DOOMED)
1220		return (0);
1221
1222	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1223		intrflg = 0;
1224	if (intrflg) {
1225		slpflag = PCATCH;
1226		slptimeo = 2 * hz;
1227	} else {
1228		slpflag = 0;
1229		slptimeo = 0;
1230	}
1231
1232 	if ((old_lock = VOP_ISLOCKED(vp, td)) != LK_EXCLUSIVE) {
1233 		if (old_lock == LK_SHARED) {
1234 			/* Upgrade to exclusive lock, this might block */
1235 			vn_lock(vp, LK_UPGRADE | LK_RETRY, td);
1236 		} else {
1237 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1238 		}
1239  	}
1240
1241	/*
1242	 * Now, flush as required.
1243	 */
1244	error = vinvalbuf(vp, flags, td, slpflag, 0);
1245	while (error) {
1246		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1247			goto out;
1248		error = vinvalbuf(vp, flags, td, 0, slptimeo);
1249	}
1250	if (np->n_directio_asyncwr == 0)
1251		np->n_flag &= ~NMODIFIED;
1252out:
1253 	if (old_lock != LK_EXCLUSIVE) {
1254 		if (old_lock == LK_SHARED) {
1255 			/* Downgrade from exclusive lock, this might block */
1256 			vn_lock(vp, LK_DOWNGRADE, td);
1257 		} else {
1258 			VOP_UNLOCK(vp, 0, td);
1259 		}
1260  	}
1261	return error;
1262}
1263
1264/*
1265 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1266 * This is mainly to avoid queueing async I/O requests when the nfsiods
1267 * are all hung on a dead server.
1268 *
1269 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1270 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1271 */
1272int
1273nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1274{
1275	int iod;
1276	int gotiod;
1277	int slpflag = 0;
1278	int slptimeo = 0;
1279	int error, error2;
1280
1281	/*
1282	 * Commits are usually short and sweet so lets save some cpu and
1283	 * leave the async daemons for more important rpc's (such as reads
1284	 * and writes).
1285	 */
1286	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1287	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1288		return(EIO);
1289	}
1290
1291again:
1292	if (nmp->nm_flag & NFSMNT_INT)
1293		slpflag = PCATCH;
1294	gotiod = FALSE;
1295
1296	/*
1297	 * Find a free iod to process this request.
1298	 */
1299	for (iod = 0; iod < nfs_numasync; iod++)
1300		if (nfs_iodwant[iod]) {
1301			gotiod = TRUE;
1302			break;
1303		}
1304
1305	/*
1306	 * Try to create one if none are free.
1307	 */
1308	if (!gotiod) {
1309		iod = nfs_nfsiodnew();
1310		if (iod != -1)
1311			gotiod = TRUE;
1312	}
1313
1314	if (gotiod) {
1315		/*
1316		 * Found one, so wake it up and tell it which
1317		 * mount to process.
1318		 */
1319		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1320		    iod, nmp));
1321		nfs_iodwant[iod] = NULL;
1322		nfs_iodmount[iod] = nmp;
1323		nmp->nm_bufqiods++;
1324		wakeup(&nfs_iodwant[iod]);
1325	}
1326
1327	/*
1328	 * If none are free, we may already have an iod working on this mount
1329	 * point.  If so, it will process our request.
1330	 */
1331	if (!gotiod) {
1332		if (nmp->nm_bufqiods > 0) {
1333			NFS_DPF(ASYNCIO,
1334				("nfs_asyncio: %d iods are already processing mount %p\n",
1335				 nmp->nm_bufqiods, nmp));
1336			gotiod = TRUE;
1337		}
1338	}
1339
1340	/*
1341	 * If we have an iod which can process the request, then queue
1342	 * the buffer.
1343	 */
1344	if (gotiod) {
1345		/*
1346		 * Ensure that the queue never grows too large.  We still want
1347		 * to asynchronize so we block rather then return EIO.
1348		 */
1349		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1350			NFS_DPF(ASYNCIO,
1351				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1352			nmp->nm_bufqwant = TRUE;
1353 			error = nfs_tsleep(td, &nmp->nm_bufq, slpflag | PRIBIO,
1354 					   "nfsaio", slptimeo);
1355			if (error) {
1356				error2 = nfs_sigintr(nmp, NULL, td);
1357				if (error2)
1358					return (error2);
1359				if (slpflag == PCATCH) {
1360					slpflag = 0;
1361					slptimeo = 2 * hz;
1362				}
1363			}
1364			/*
1365			 * We might have lost our iod while sleeping,
1366			 * so check and loop if nescessary.
1367			 */
1368			if (nmp->nm_bufqiods == 0) {
1369				NFS_DPF(ASYNCIO,
1370					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1371				goto again;
1372			}
1373		}
1374
1375		if (bp->b_iocmd == BIO_READ) {
1376			if (bp->b_rcred == NOCRED && cred != NOCRED)
1377				bp->b_rcred = crhold(cred);
1378		} else {
1379			if (bp->b_wcred == NOCRED && cred != NOCRED)
1380				bp->b_wcred = crhold(cred);
1381		}
1382
1383		if (bp->b_flags & B_REMFREE)
1384			bremfreef(bp);
1385		BUF_KERNPROC(bp);
1386		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1387		nmp->nm_bufqlen++;
1388		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE)
1389			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1390		return (0);
1391	}
1392
1393	/*
1394	 * All the iods are busy on other mounts, so return EIO to
1395	 * force the caller to process the i/o synchronously.
1396	 */
1397	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1398	return (EIO);
1399}
1400
1401void
1402nfs_doio_directwrite(struct buf *bp)
1403{
1404	int iomode, must_commit;
1405	struct uio *uiop = (struct uio *)bp->b_caller1;
1406	char *iov_base = uiop->uio_iov->iov_base;
1407	struct nfsmount *nmp = VFSTONFS(bp->b_vp->v_mount);
1408
1409	iomode = NFSV3WRITE_FILESYNC;
1410	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1411	(nmp->nm_rpcops->nr_writerpc)(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit);
1412	KASSERT((must_commit == 0), ("nfs_doio_directwrite: Did not commit write"));
1413	free(iov_base, M_NFSDIRECTIO);
1414	free(uiop->uio_iov, M_NFSDIRECTIO);
1415	free(uiop, M_NFSDIRECTIO);
1416	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1417		struct nfsnode *np = VTONFS(bp->b_vp);
1418
1419		np->n_directio_asyncwr--;
1420		if ((np->n_flag & NFSYNCWAIT) && np->n_directio_asyncwr == 0) {
1421			np->n_flag &= ~NFSYNCWAIT;
1422			wakeup((caddr_t)&np->n_directio_asyncwr);
1423		}
1424	}
1425	vdrop(bp->b_vp);
1426	bp->b_vp = NULL;
1427	relpbuf(bp, &nfs_pbuf_freecnt);
1428}
1429
1430/*
1431 * Do an I/O operation to/from a cache block. This may be called
1432 * synchronously or from an nfsiod.
1433 */
1434int
1435nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1436{
1437	struct uio *uiop;
1438	struct nfsnode *np;
1439	struct nfsmount *nmp;
1440	int error = 0, iomode, must_commit = 0;
1441	struct uio uio;
1442	struct iovec io;
1443	struct proc *p = td ? td->td_proc : NULL;
1444
1445	np = VTONFS(vp);
1446	nmp = VFSTONFS(vp->v_mount);
1447	uiop = &uio;
1448	uiop->uio_iov = &io;
1449	uiop->uio_iovcnt = 1;
1450	uiop->uio_segflg = UIO_SYSSPACE;
1451	uiop->uio_td = td;
1452
1453	/*
1454	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1455	 * do this here so we do not have to do it in all the code that
1456	 * calls us.
1457	 */
1458	bp->b_flags &= ~B_INVAL;
1459	bp->b_ioflags &= ~BIO_ERROR;
1460
1461	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1462
1463	if (bp->b_iocmd == BIO_READ) {
1464	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1465	    io.iov_base = bp->b_data;
1466	    uiop->uio_rw = UIO_READ;
1467
1468	    switch (vp->v_type) {
1469	    case VREG:
1470		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1471		nfsstats.read_bios++;
1472		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1473
1474		if (!error) {
1475		    if (uiop->uio_resid) {
1476			/*
1477			 * If we had a short read with no error, we must have
1478			 * hit a file hole.  We should zero-fill the remainder.
1479			 * This can also occur if the server hits the file EOF.
1480			 *
1481			 * Holes used to be able to occur due to pending
1482			 * writes, but that is not possible any longer.
1483			 */
1484			int nread = bp->b_bcount - uiop->uio_resid;
1485			int left  = uiop->uio_resid;
1486
1487			if (left > 0)
1488				bzero((char *)bp->b_data + nread, left);
1489			uiop->uio_resid = 0;
1490		    }
1491		}
1492		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1493		if (p && (vp->v_vflag & VV_TEXT) &&
1494		    (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime))) {
1495			PROC_LOCK(p);
1496			killproc(p, "text file modification");
1497			PROC_UNLOCK(p);
1498		}
1499		break;
1500	    case VLNK:
1501		uiop->uio_offset = (off_t)0;
1502		nfsstats.readlink_bios++;
1503		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1504		break;
1505	    case VDIR:
1506		nfsstats.readdir_bios++;
1507		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1508		if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
1509			error = nfs4_readdirrpc(vp, uiop, cr);
1510		else {
1511			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1512				error = nfs_readdirplusrpc(vp, uiop, cr);
1513				if (error == NFSERR_NOTSUPP)
1514					nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1515			}
1516			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1517				error = nfs_readdirrpc(vp, uiop, cr);
1518		}
1519		/*
1520		 * end-of-directory sets B_INVAL but does not generate an
1521		 * error.
1522		 */
1523		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1524			bp->b_flags |= B_INVAL;
1525		break;
1526	    default:
1527		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1528		break;
1529	    };
1530	    if (error) {
1531		bp->b_ioflags |= BIO_ERROR;
1532		bp->b_error = error;
1533	    }
1534	} else {
1535	    /*
1536	     * If we only need to commit, try to commit
1537	     */
1538	    if (bp->b_flags & B_NEEDCOMMIT) {
1539		    int retv;
1540		    off_t off;
1541
1542		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1543		    retv = (nmp->nm_rpcops->nr_commit)(
1544				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1545				bp->b_wcred, td);
1546		    if (retv == 0) {
1547			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1548			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1549			    bp->b_resid = 0;
1550			    bufdone(bp);
1551			    return (0);
1552		    }
1553		    if (retv == NFSERR_STALEWRITEVERF) {
1554			    nfs_clearcommit(vp->v_mount);
1555		    }
1556	    }
1557
1558	    /*
1559	     * Setup for actual write
1560	     */
1561
1562	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1563		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1564
1565	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1566		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1567		    - bp->b_dirtyoff;
1568		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1569		    + bp->b_dirtyoff;
1570		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1571		uiop->uio_rw = UIO_WRITE;
1572		nfsstats.write_bios++;
1573
1574		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1575		    iomode = NFSV3WRITE_UNSTABLE;
1576		else
1577		    iomode = NFSV3WRITE_FILESYNC;
1578
1579		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1580
1581		/*
1582		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1583		 * to cluster the buffers needing commit.  This will allow
1584		 * the system to submit a single commit rpc for the whole
1585		 * cluster.  We can do this even if the buffer is not 100%
1586		 * dirty (relative to the NFS blocksize), so we optimize the
1587		 * append-to-file-case.
1588		 *
1589		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1590		 * cleared because write clustering only works for commit
1591		 * rpc's, not for the data portion of the write).
1592		 */
1593
1594		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1595		    bp->b_flags |= B_NEEDCOMMIT;
1596		    if (bp->b_dirtyoff == 0
1597			&& bp->b_dirtyend == bp->b_bcount)
1598			bp->b_flags |= B_CLUSTEROK;
1599		} else {
1600		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1601		}
1602
1603		/*
1604		 * For an interrupted write, the buffer is still valid
1605		 * and the write hasn't been pushed to the server yet,
1606		 * so we can't set BIO_ERROR and report the interruption
1607		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1608		 * is not relevant, so the rpc attempt is essentially
1609		 * a noop.  For the case of a V3 write rpc not being
1610		 * committed to stable storage, the block is still
1611		 * dirty and requires either a commit rpc or another
1612		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1613		 * the block is reused. This is indicated by setting
1614		 * the B_DELWRI and B_NEEDCOMMIT flags.
1615		 *
1616		 * If the buffer is marked B_PAGING, it does not reside on
1617		 * the vp's paging queues so we cannot call bdirty().  The
1618		 * bp in this case is not an NFS cache block so we should
1619		 * be safe. XXX
1620		 */
1621    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1622		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1623			int s;
1624
1625			s = splbio();
1626			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1627			if ((bp->b_flags & B_PAGING) == 0) {
1628			    bdirty(bp);
1629			    bp->b_flags &= ~B_DONE;
1630			}
1631			if (error && (bp->b_flags & B_ASYNC) == 0)
1632			    bp->b_flags |= B_EINTR;
1633			splx(s);
1634	    	} else {
1635		    if (error) {
1636			bp->b_ioflags |= BIO_ERROR;
1637			bp->b_error = np->n_error = error;
1638			np->n_flag |= NWRITEERR;
1639		    }
1640		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1641		}
1642	    } else {
1643		bp->b_resid = 0;
1644		bufdone(bp);
1645		return (0);
1646	    }
1647	}
1648	bp->b_resid = uiop->uio_resid;
1649	if (must_commit)
1650	    nfs_clearcommit(vp->v_mount);
1651	bufdone(bp);
1652	return (error);
1653}
1654
1655/*
1656 * Used to aid in handling ftruncate() operations on the NFS client side.
1657 * Truncation creates a number of special problems for NFS.  We have to
1658 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1659 * we have to properly handle VM pages or (potentially dirty) buffers
1660 * that straddle the truncation point.
1661 */
1662
1663int
1664nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1665{
1666	struct nfsnode *np = VTONFS(vp);
1667	u_quad_t tsize = np->n_size;
1668	int biosize = vp->v_mount->mnt_stat.f_iosize;
1669	int error = 0;
1670
1671	np->n_size = nsize;
1672
1673	if (np->n_size < tsize) {
1674		struct buf *bp;
1675		daddr_t lbn;
1676		int bufsize;
1677
1678		/*
1679		 * vtruncbuf() doesn't get the buffer overlapping the
1680		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1681		 * buffer that now needs to be truncated.
1682		 */
1683		error = vtruncbuf(vp, cred, td, nsize, biosize);
1684		lbn = nsize / biosize;
1685		bufsize = nsize & (biosize - 1);
1686		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1687 		if (!bp)
1688 			return EINTR;
1689		if (bp->b_dirtyoff > bp->b_bcount)
1690			bp->b_dirtyoff = bp->b_bcount;
1691		if (bp->b_dirtyend > bp->b_bcount)
1692			bp->b_dirtyend = bp->b_bcount;
1693		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1694		brelse(bp);
1695	} else {
1696		vnode_pager_setsize(vp, nsize);
1697	}
1698	return(error);
1699}
1700
1701