nfs_bio.c revision 138644
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 138644 2004-12-10 03:27:12Z ps $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/bio.h>
41#include <sys/buf.h>
42#include <sys/kernel.h>
43#include <sys/mount.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/signalvar.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49
50#include <vm/vm.h>
51#include <vm/vm_extern.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_pager.h>
55#include <vm/vnode_pager.h>
56
57#include <rpc/rpcclnt.h>
58
59#include <nfs/rpcv2.h>
60#include <nfs/nfsproto.h>
61#include <nfsclient/nfs.h>
62#include <nfsclient/nfsmount.h>
63#include <nfsclient/nfsnode.h>
64
65#include <nfs4client/nfs4.h>
66
67static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
68		    struct thread *td);
69
70/*
71 * Vnode op for VM getpages.
72 */
73int
74nfs_getpages(struct vop_getpages_args *ap)
75{
76	int i, error, nextoff, size, toff, count, npages;
77	struct uio uio;
78	struct iovec iov;
79	vm_offset_t kva;
80	struct buf *bp;
81	struct vnode *vp;
82	struct thread *td;
83	struct ucred *cred;
84	struct nfsmount *nmp;
85	vm_object_t object;
86	vm_page_t *pages;
87
88	GIANT_REQUIRED;
89
90	vp = ap->a_vp;
91	td = curthread;				/* XXX */
92	cred = curthread->td_ucred;		/* XXX */
93	nmp = VFSTONFS(vp->v_mount);
94	pages = ap->a_m;
95	count = ap->a_count;
96
97	if ((object = vp->v_object) == NULL) {
98		printf("nfs_getpages: called with non-merged cache vnode??\n");
99		return VM_PAGER_ERROR;
100	}
101
102	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
103	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
104		/* We'll never get here for v4, because we always have fsinfo */
105		(void)nfs_fsinfo(nmp, vp, cred, td);
106	}
107
108	npages = btoc(count);
109
110	/*
111	 * If the requested page is partially valid, just return it and
112	 * allow the pager to zero-out the blanks.  Partially valid pages
113	 * can only occur at the file EOF.
114	 */
115
116	{
117		vm_page_t m = pages[ap->a_reqpage];
118
119		VM_OBJECT_LOCK(object);
120		vm_page_lock_queues();
121		if (m->valid != 0) {
122			/* handled by vm_fault now	  */
123			/* vm_page_zero_invalid(m, TRUE); */
124			for (i = 0; i < npages; ++i) {
125				if (i != ap->a_reqpage)
126					vm_page_free(pages[i]);
127			}
128			vm_page_unlock_queues();
129			VM_OBJECT_UNLOCK(object);
130			return(0);
131		}
132		vm_page_unlock_queues();
133		VM_OBJECT_UNLOCK(object);
134	}
135
136	/*
137	 * We use only the kva address for the buffer, but this is extremely
138	 * convienient and fast.
139	 */
140	bp = getpbuf(&nfs_pbuf_freecnt);
141
142	kva = (vm_offset_t) bp->b_data;
143	pmap_qenter(kva, pages, npages);
144	cnt.v_vnodein++;
145	cnt.v_vnodepgsin += npages;
146
147	iov.iov_base = (caddr_t) kva;
148	iov.iov_len = count;
149	uio.uio_iov = &iov;
150	uio.uio_iovcnt = 1;
151	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
152	uio.uio_resid = count;
153	uio.uio_segflg = UIO_SYSSPACE;
154	uio.uio_rw = UIO_READ;
155	uio.uio_td = td;
156
157	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
158	pmap_qremove(kva, npages);
159
160	relpbuf(bp, &nfs_pbuf_freecnt);
161
162	if (error && (uio.uio_resid == count)) {
163		printf("nfs_getpages: error %d\n", error);
164		VM_OBJECT_LOCK(object);
165		vm_page_lock_queues();
166		for (i = 0; i < npages; ++i) {
167			if (i != ap->a_reqpage)
168				vm_page_free(pages[i]);
169		}
170		vm_page_unlock_queues();
171		VM_OBJECT_UNLOCK(object);
172		return VM_PAGER_ERROR;
173	}
174
175	/*
176	 * Calculate the number of bytes read and validate only that number
177	 * of bytes.  Note that due to pending writes, size may be 0.  This
178	 * does not mean that the remaining data is invalid!
179	 */
180
181	size = count - uio.uio_resid;
182	VM_OBJECT_LOCK(object);
183	vm_page_lock_queues();
184	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
185		vm_page_t m;
186		nextoff = toff + PAGE_SIZE;
187		m = pages[i];
188
189		if (nextoff <= size) {
190			/*
191			 * Read operation filled an entire page
192			 */
193			m->valid = VM_PAGE_BITS_ALL;
194			vm_page_undirty(m);
195		} else if (size > toff) {
196			/*
197			 * Read operation filled a partial page.
198			 */
199			m->valid = 0;
200			vm_page_set_validclean(m, 0, size - toff);
201			/* handled by vm_fault now	  */
202			/* vm_page_zero_invalid(m, TRUE); */
203		} else {
204			/*
205			 * Read operation was short.  If no error occured
206			 * we may have hit a zero-fill section.   We simply
207			 * leave valid set to 0.
208			 */
209			;
210		}
211		if (i != ap->a_reqpage) {
212			/*
213			 * Whether or not to leave the page activated is up in
214			 * the air, but we should put the page on a page queue
215			 * somewhere (it already is in the object).  Result:
216			 * It appears that emperical results show that
217			 * deactivating pages is best.
218			 */
219
220			/*
221			 * Just in case someone was asking for this page we
222			 * now tell them that it is ok to use.
223			 */
224			if (!error) {
225				if (m->flags & PG_WANTED)
226					vm_page_activate(m);
227				else
228					vm_page_deactivate(m);
229				vm_page_wakeup(m);
230			} else {
231				vm_page_free(m);
232			}
233		}
234	}
235	vm_page_unlock_queues();
236	VM_OBJECT_UNLOCK(object);
237	return 0;
238}
239
240/*
241 * Vnode op for VM putpages.
242 */
243int
244nfs_putpages(struct vop_putpages_args *ap)
245{
246	struct uio uio;
247	struct iovec iov;
248	vm_offset_t kva;
249	struct buf *bp;
250	int iomode, must_commit, i, error, npages, count;
251	off_t offset;
252	int *rtvals;
253	struct vnode *vp;
254	struct thread *td;
255	struct ucred *cred;
256	struct nfsmount *nmp;
257	struct nfsnode *np;
258	vm_page_t *pages;
259
260	GIANT_REQUIRED;
261
262	vp = ap->a_vp;
263	np = VTONFS(vp);
264	td = curthread;				/* XXX */
265	cred = curthread->td_ucred;		/* XXX */
266	nmp = VFSTONFS(vp->v_mount);
267	pages = ap->a_m;
268	count = ap->a_count;
269	rtvals = ap->a_rtvals;
270	npages = btoc(count);
271	offset = IDX_TO_OFF(pages[0]->pindex);
272
273	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
274	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
275		(void)nfs_fsinfo(nmp, vp, cred, td);
276	}
277
278	for (i = 0; i < npages; i++)
279		rtvals[i] = VM_PAGER_AGAIN;
280
281	/*
282	 * When putting pages, do not extend file past EOF.
283	 */
284
285	if (offset + count > np->n_size) {
286		count = np->n_size - offset;
287		if (count < 0)
288			count = 0;
289	}
290
291	/*
292	 * We use only the kva address for the buffer, but this is extremely
293	 * convienient and fast.
294	 */
295	bp = getpbuf(&nfs_pbuf_freecnt);
296
297	kva = (vm_offset_t) bp->b_data;
298	pmap_qenter(kva, pages, npages);
299	cnt.v_vnodeout++;
300	cnt.v_vnodepgsout += count;
301
302	iov.iov_base = (caddr_t) kva;
303	iov.iov_len = count;
304	uio.uio_iov = &iov;
305	uio.uio_iovcnt = 1;
306	uio.uio_offset = offset;
307	uio.uio_resid = count;
308	uio.uio_segflg = UIO_SYSSPACE;
309	uio.uio_rw = UIO_WRITE;
310	uio.uio_td = td;
311
312	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
313	    iomode = NFSV3WRITE_UNSTABLE;
314	else
315	    iomode = NFSV3WRITE_FILESYNC;
316
317	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
318
319	pmap_qremove(kva, npages);
320	relpbuf(bp, &nfs_pbuf_freecnt);
321
322	if (!error) {
323		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
324		for (i = 0; i < nwritten; i++) {
325			rtvals[i] = VM_PAGER_OK;
326			vm_page_undirty(pages[i]);
327		}
328		if (must_commit) {
329			nfs_clearcommit(vp->v_mount);
330		}
331	}
332	return rtvals[0];
333}
334
335/*
336 * Vnode op for read using bio
337 */
338int
339nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
340{
341	struct nfsnode *np = VTONFS(vp);
342	int biosize, i;
343	struct buf *bp = 0, *rabp;
344	struct vattr vattr;
345	struct thread *td;
346	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
347	daddr_t lbn, rabn;
348	int bcount;
349	int seqcount;
350	int nra, error = 0, n = 0, on = 0;
351
352#ifdef DIAGNOSTIC
353	if (uio->uio_rw != UIO_READ)
354		panic("nfs_read mode");
355#endif
356	if (uio->uio_resid == 0)
357		return (0);
358	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
359		return (EINVAL);
360	td = uio->uio_td;
361
362	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
363	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
364		(void)nfs_fsinfo(nmp, vp, cred, td);
365	if (vp->v_type != VDIR &&
366	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
367		return (EFBIG);
368	biosize = vp->v_mount->mnt_stat.f_iosize;
369	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
370	/*
371	 * For nfs, cache consistency can only be maintained approximately.
372	 * Although RFC1094 does not specify the criteria, the following is
373	 * believed to be compatible with the reference port.
374	 * For nfs:
375	 * If the file's modify time on the server has changed since the
376	 * last read rpc or you have written to the file,
377	 * you may have lost data cache consistency with the
378	 * server, so flush all of the file's data out of the cache.
379	 * Then force a getattr rpc to ensure that you have up to date
380	 * attributes.
381	 * NB: This implies that cache data can be read when up to
382	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
383	 * attributes this could be forced by setting n_attrstamp to 0 before
384	 * the VOP_GETATTR() call.
385	 */
386	if (np->n_flag & NMODIFIED) {
387		if (vp->v_type != VREG) {
388			if (vp->v_type != VDIR)
389				panic("nfs: bioread, not dir");
390			(nmp->nm_rpcops->nr_invaldir)(vp);
391			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
392			if (error)
393				return (error);
394		}
395		np->n_attrstamp = 0;
396		error = VOP_GETATTR(vp, &vattr, cred, td);
397		if (error)
398			return (error);
399		np->n_mtime = vattr.va_mtime;
400	} else {
401		error = VOP_GETATTR(vp, &vattr, cred, td);
402		if (error)
403			return (error);
404		if ((np->n_flag & NSIZECHANGED)
405		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
406			if (vp->v_type == VDIR)
407				(nmp->nm_rpcops->nr_invaldir)(vp);
408			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
409			if (error)
410				return (error);
411			np->n_mtime = vattr.va_mtime;
412			np->n_flag &= ~NSIZECHANGED;
413		}
414	}
415	do {
416	    switch (vp->v_type) {
417	    case VREG:
418		nfsstats.biocache_reads++;
419		lbn = uio->uio_offset / biosize;
420		on = uio->uio_offset & (biosize - 1);
421
422		/*
423		 * Start the read ahead(s), as required.
424		 * The readahead is kicked off only if sequential access
425		 * is detected, based on the readahead hint (ra_expect_lbn).
426		 */
427		if (nmp->nm_readahead > 0 && np->ra_expect_lbn == lbn) {
428		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
429			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
430			rabn = lbn + 1 + nra;
431			if (incore(&vp->v_bufobj, rabn) == NULL) {
432			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
433			    if (!rabp) {
434				error = nfs_sigintr(nmp, NULL, td);
435				return (error ? error : EINTR);
436			    }
437			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
438				rabp->b_flags |= B_ASYNC;
439				rabp->b_iocmd = BIO_READ;
440				vfs_busy_pages(rabp, 0);
441				if (nfs_asyncio(nmp, rabp, cred, td)) {
442				    rabp->b_flags |= B_INVAL;
443				    rabp->b_ioflags |= BIO_ERROR;
444				    vfs_unbusy_pages(rabp);
445				    brelse(rabp);
446				    break;
447				}
448			    } else {
449				brelse(rabp);
450			    }
451			}
452		    }
453		    np->ra_expect_lbn = lbn + 1;
454		}
455
456		/*
457		 * Obtain the buffer cache block.  Figure out the buffer size
458		 * when we are at EOF.  If we are modifying the size of the
459		 * buffer based on an EOF condition we need to hold
460		 * nfs_rslock() through obtaining the buffer to prevent
461		 * a potential writer-appender from messing with n_size.
462		 * Otherwise we may accidently truncate the buffer and
463		 * lose dirty data.
464		 *
465		 * Note that bcount is *not* DEV_BSIZE aligned.
466		 */
467
468again:
469		bcount = biosize;
470		if ((off_t)lbn * biosize >= np->n_size) {
471			bcount = 0;
472		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
473			bcount = np->n_size - (off_t)lbn * biosize;
474		}
475		if (bcount != biosize) {
476			switch(nfs_rslock(np, td)) {
477			case ENOLCK:
478				goto again;
479				/* not reached */
480			case EIO:
481				return (EIO);
482			case EINTR:
483			case ERESTART:
484				return(EINTR);
485				/* not reached */
486			default:
487				break;
488			}
489		}
490
491		bp = nfs_getcacheblk(vp, lbn, bcount, td);
492
493		if (bcount != biosize)
494			nfs_rsunlock(np, td);
495		if (!bp) {
496			error = nfs_sigintr(nmp, NULL, td);
497			return (error ? error : EINTR);
498		}
499
500		/*
501		 * If B_CACHE is not set, we must issue the read.  If this
502		 * fails, we return an error.
503		 */
504
505		if ((bp->b_flags & B_CACHE) == 0) {
506		    bp->b_iocmd = BIO_READ;
507		    vfs_busy_pages(bp, 0);
508		    error = nfs_doio(vp, bp, cred, td);
509		    if (error) {
510			brelse(bp);
511			return (error);
512		    }
513		}
514
515		/*
516		 * on is the offset into the current bp.  Figure out how many
517		 * bytes we can copy out of the bp.  Note that bcount is
518		 * NOT DEV_BSIZE aligned.
519		 *
520		 * Then figure out how many bytes we can copy into the uio.
521		 */
522
523		n = 0;
524		if (on < bcount)
525			n = min((unsigned)(bcount - on), uio->uio_resid);
526		break;
527	    case VLNK:
528		nfsstats.biocache_readlinks++;
529		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
530		if (!bp) {
531			error = nfs_sigintr(nmp, NULL, td);
532			return (error ? error : EINTR);
533		}
534		if ((bp->b_flags & B_CACHE) == 0) {
535		    bp->b_iocmd = BIO_READ;
536		    vfs_busy_pages(bp, 0);
537		    error = nfs_doio(vp, bp, cred, td);
538		    if (error) {
539			bp->b_ioflags |= BIO_ERROR;
540			brelse(bp);
541			return (error);
542		    }
543		}
544		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
545		on = 0;
546		break;
547	    case VDIR:
548		nfsstats.biocache_readdirs++;
549		if (np->n_direofoffset
550		    && uio->uio_offset >= np->n_direofoffset) {
551		    return (0);
552		}
553		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
554		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
555		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
556		if (!bp) {
557		    error = nfs_sigintr(nmp, NULL, td);
558		    return (error ? error : EINTR);
559		}
560		if ((bp->b_flags & B_CACHE) == 0) {
561		    bp->b_iocmd = BIO_READ;
562		    vfs_busy_pages(bp, 0);
563		    error = nfs_doio(vp, bp, cred, td);
564		    if (error) {
565			    brelse(bp);
566		    }
567		    while (error == NFSERR_BAD_COOKIE) {
568			(nmp->nm_rpcops->nr_invaldir)(vp);
569			error = nfs_vinvalbuf(vp, 0, cred, td, 1);
570			/*
571			 * Yuck! The directory has been modified on the
572			 * server. The only way to get the block is by
573			 * reading from the beginning to get all the
574			 * offset cookies.
575			 *
576			 * Leave the last bp intact unless there is an error.
577			 * Loop back up to the while if the error is another
578			 * NFSERR_BAD_COOKIE (double yuch!).
579			 */
580			for (i = 0; i <= lbn && !error; i++) {
581			    if (np->n_direofoffset
582				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
583				    return (0);
584			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
585			    if (!bp) {
586				error = nfs_sigintr(nmp, NULL, td);
587				return (error ? error : EINTR);
588			    }
589			    if ((bp->b_flags & B_CACHE) == 0) {
590				    bp->b_iocmd = BIO_READ;
591				    vfs_busy_pages(bp, 0);
592				    error = nfs_doio(vp, bp, cred, td);
593				    /*
594				     * no error + B_INVAL == directory EOF,
595				     * use the block.
596				     */
597				    if (error == 0 && (bp->b_flags & B_INVAL))
598					    break;
599			    }
600			    /*
601			     * An error will throw away the block and the
602			     * for loop will break out.  If no error and this
603			     * is not the block we want, we throw away the
604			     * block and go for the next one via the for loop.
605			     */
606			    if (error || i < lbn)
607				    brelse(bp);
608			}
609		    }
610		    /*
611		     * The above while is repeated if we hit another cookie
612		     * error.  If we hit an error and it wasn't a cookie error,
613		     * we give up.
614		     */
615		    if (error)
616			    return (error);
617		}
618
619		/*
620		 * If not eof and read aheads are enabled, start one.
621		 * (You need the current block first, so that you have the
622		 *  directory offset cookie of the next block.)
623		 */
624		if (nmp->nm_readahead > 0 &&
625		    (bp->b_flags & B_INVAL) == 0 &&
626		    (np->n_direofoffset == 0 ||
627		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
628		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
629			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
630			if (rabp) {
631			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
632				rabp->b_flags |= B_ASYNC;
633				rabp->b_iocmd = BIO_READ;
634				vfs_busy_pages(rabp, 0);
635				if (nfs_asyncio(nmp, rabp, cred, td)) {
636				    rabp->b_flags |= B_INVAL;
637				    rabp->b_ioflags |= BIO_ERROR;
638				    vfs_unbusy_pages(rabp);
639				    brelse(rabp);
640				}
641			    } else {
642				brelse(rabp);
643			    }
644			}
645		}
646		/*
647		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
648		 * chopped for the EOF condition, we cannot tell how large
649		 * NFS directories are going to be until we hit EOF.  So
650		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
651		 * it just so happens that b_resid will effectively chop it
652		 * to EOF.  *BUT* this information is lost if the buffer goes
653		 * away and is reconstituted into a B_CACHE state ( due to
654		 * being VMIO ) later.  So we keep track of the directory eof
655		 * in np->n_direofoffset and chop it off as an extra step
656		 * right here.
657		 */
658		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
659		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
660			n = np->n_direofoffset - uio->uio_offset;
661		break;
662	    default:
663		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
664		break;
665	    };
666
667	    if (n > 0) {
668		    error = uiomove(bp->b_data + on, (int)n, uio);
669	    }
670	    switch (vp->v_type) {
671	    case VREG:
672		break;
673	    case VLNK:
674		n = 0;
675		break;
676	    case VDIR:
677		break;
678	    default:
679		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
680	    }
681	    brelse(bp);
682	} while (error == 0 && uio->uio_resid > 0 && n > 0);
683	return (error);
684}
685
686/*
687 * Vnode op for write using bio
688 */
689int
690nfs_write(struct vop_write_args *ap)
691{
692	int biosize;
693	struct uio *uio = ap->a_uio;
694	struct thread *td = uio->uio_td;
695	struct vnode *vp = ap->a_vp;
696	struct nfsnode *np = VTONFS(vp);
697	struct ucred *cred = ap->a_cred;
698	int ioflag = ap->a_ioflag;
699	struct buf *bp;
700	struct vattr vattr;
701	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
702	daddr_t lbn;
703	int bcount;
704	int n, on, error = 0;
705	int haverslock = 0;
706	struct proc *p = td?td->td_proc:NULL;
707
708	GIANT_REQUIRED;
709
710#ifdef DIAGNOSTIC
711	if (uio->uio_rw != UIO_WRITE)
712		panic("nfs_write mode");
713	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
714		panic("nfs_write proc");
715#endif
716	if (vp->v_type != VREG)
717		return (EIO);
718	if (np->n_flag & NWRITEERR) {
719		np->n_flag &= ~NWRITEERR;
720		return (np->n_error);
721	}
722	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
723	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
724		(void)nfs_fsinfo(nmp, vp, cred, td);
725
726	/*
727	 * Synchronously flush pending buffers if we are in synchronous
728	 * mode or if we are appending.
729	 */
730	if (ioflag & (IO_APPEND | IO_SYNC)) {
731		if (np->n_flag & NMODIFIED) {
732			np->n_attrstamp = 0;
733			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
734			if (error)
735				return (error);
736		}
737	}
738
739	/*
740	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
741	 * get the append lock.
742	 */
743restart:
744	if (ioflag & IO_APPEND) {
745		np->n_attrstamp = 0;
746		error = VOP_GETATTR(vp, &vattr, cred, td);
747		if (error)
748			return (error);
749		uio->uio_offset = np->n_size;
750	}
751
752	if (uio->uio_offset < 0)
753		return (EINVAL);
754	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
755		return (EFBIG);
756	if (uio->uio_resid == 0)
757		return (0);
758
759	/*
760	 * We need to obtain the rslock if we intend to modify np->n_size
761	 * in order to guarentee the append point with multiple contending
762	 * writers, to guarentee that no other appenders modify n_size
763	 * while we are trying to obtain a truncated buffer (i.e. to avoid
764	 * accidently truncating data written by another appender due to
765	 * the race), and to ensure that the buffer is populated prior to
766	 * our extending of the file.  We hold rslock through the entire
767	 * operation.
768	 *
769	 * Note that we do not synchronize the case where someone truncates
770	 * the file while we are appending to it because attempting to lock
771	 * this case may deadlock other parts of the system unexpectedly.
772	 */
773	if ((ioflag & IO_APPEND) ||
774	    uio->uio_offset + uio->uio_resid > np->n_size) {
775		switch(nfs_rslock(np, td)) {
776		case ENOLCK:
777			goto restart;
778			/* not reached */
779		case EIO:
780			return (EIO);
781		case EINTR:
782		case ERESTART:
783			return(EINTR);
784			/* not reached */
785		default:
786			break;
787		}
788		haverslock = 1;
789	}
790
791	/*
792	 * Maybe this should be above the vnode op call, but so long as
793	 * file servers have no limits, i don't think it matters
794	 */
795	if (p != NULL) {
796		PROC_LOCK(p);
797		if (uio->uio_offset + uio->uio_resid >
798		    lim_cur(p, RLIMIT_FSIZE)) {
799			psignal(p, SIGXFSZ);
800			PROC_UNLOCK(p);
801			if (haverslock)
802				nfs_rsunlock(np, td);
803			return (EFBIG);
804		}
805		PROC_UNLOCK(p);
806	}
807
808	biosize = vp->v_mount->mnt_stat.f_iosize;
809
810	do {
811		nfsstats.biocache_writes++;
812		lbn = uio->uio_offset / biosize;
813		on = uio->uio_offset & (biosize-1);
814		n = min((unsigned)(biosize - on), uio->uio_resid);
815again:
816		/*
817		 * Handle direct append and file extension cases, calculate
818		 * unaligned buffer size.
819		 */
820
821		if (uio->uio_offset == np->n_size && n) {
822			/*
823			 * Get the buffer (in its pre-append state to maintain
824			 * B_CACHE if it was previously set).  Resize the
825			 * nfsnode after we have locked the buffer to prevent
826			 * readers from reading garbage.
827			 */
828			bcount = on;
829			bp = nfs_getcacheblk(vp, lbn, bcount, td);
830
831			if (bp != NULL) {
832				long save;
833
834				np->n_size = uio->uio_offset + n;
835				np->n_flag |= NMODIFIED;
836				vnode_pager_setsize(vp, np->n_size);
837
838				save = bp->b_flags & B_CACHE;
839				bcount += n;
840				allocbuf(bp, bcount);
841				bp->b_flags |= save;
842			}
843		} else {
844			/*
845			 * Obtain the locked cache block first, and then
846			 * adjust the file's size as appropriate.
847			 */
848			bcount = on + n;
849			if ((off_t)lbn * biosize + bcount < np->n_size) {
850				if ((off_t)(lbn + 1) * biosize < np->n_size)
851					bcount = biosize;
852				else
853					bcount = np->n_size - (off_t)lbn * biosize;
854			}
855			bp = nfs_getcacheblk(vp, lbn, bcount, td);
856			if (uio->uio_offset + n > np->n_size) {
857				np->n_size = uio->uio_offset + n;
858				np->n_flag |= NMODIFIED;
859				vnode_pager_setsize(vp, np->n_size);
860			}
861		}
862
863		if (!bp) {
864			error = nfs_sigintr(nmp, NULL, td);
865			if (!error)
866				error = EINTR;
867			break;
868		}
869
870		/*
871		 * Issue a READ if B_CACHE is not set.  In special-append
872		 * mode, B_CACHE is based on the buffer prior to the write
873		 * op and is typically set, avoiding the read.  If a read
874		 * is required in special append mode, the server will
875		 * probably send us a short-read since we extended the file
876		 * on our end, resulting in b_resid == 0 and, thusly,
877		 * B_CACHE getting set.
878		 *
879		 * We can also avoid issuing the read if the write covers
880		 * the entire buffer.  We have to make sure the buffer state
881		 * is reasonable in this case since we will not be initiating
882		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
883		 * more information.
884		 *
885		 * B_CACHE may also be set due to the buffer being cached
886		 * normally.
887		 */
888
889		if (on == 0 && n == bcount) {
890			bp->b_flags |= B_CACHE;
891			bp->b_flags &= ~B_INVAL;
892			bp->b_ioflags &= ~BIO_ERROR;
893		}
894
895		if ((bp->b_flags & B_CACHE) == 0) {
896			bp->b_iocmd = BIO_READ;
897			vfs_busy_pages(bp, 0);
898			error = nfs_doio(vp, bp, cred, td);
899			if (error) {
900				brelse(bp);
901				break;
902			}
903		}
904		if (!bp) {
905			error = nfs_sigintr(nmp, NULL, td);
906			if (!error)
907				error = EINTR;
908			break;
909		}
910		if (bp->b_wcred == NOCRED)
911			bp->b_wcred = crhold(cred);
912		np->n_flag |= NMODIFIED;
913
914		/*
915		 * If dirtyend exceeds file size, chop it down.  This should
916		 * not normally occur but there is an append race where it
917		 * might occur XXX, so we log it.
918		 *
919		 * If the chopping creates a reverse-indexed or degenerate
920		 * situation with dirtyoff/end, we 0 both of them.
921		 */
922
923		if (bp->b_dirtyend > bcount) {
924			printf("NFS append race @%lx:%d\n",
925			    (long)bp->b_blkno * DEV_BSIZE,
926			    bp->b_dirtyend - bcount);
927			bp->b_dirtyend = bcount;
928		}
929
930		if (bp->b_dirtyoff >= bp->b_dirtyend)
931			bp->b_dirtyoff = bp->b_dirtyend = 0;
932
933		/*
934		 * If the new write will leave a contiguous dirty
935		 * area, just update the b_dirtyoff and b_dirtyend,
936		 * otherwise force a write rpc of the old dirty area.
937		 *
938		 * While it is possible to merge discontiguous writes due to
939		 * our having a B_CACHE buffer ( and thus valid read data
940		 * for the hole), we don't because it could lead to
941		 * significant cache coherency problems with multiple clients,
942		 * especially if locking is implemented later on.
943		 *
944		 * as an optimization we could theoretically maintain
945		 * a linked list of discontinuous areas, but we would still
946		 * have to commit them separately so there isn't much
947		 * advantage to it except perhaps a bit of asynchronization.
948		 */
949
950		if (bp->b_dirtyend > 0 &&
951		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
952			if (bwrite(bp) == EINTR) {
953				error = EINTR;
954				break;
955			}
956			goto again;
957		}
958
959		error = uiomove((char *)bp->b_data + on, n, uio);
960
961		/*
962		 * Since this block is being modified, it must be written
963		 * again and not just committed.  Since write clustering does
964		 * not work for the stage 1 data write, only the stage 2
965		 * commit rpc, we have to clear B_CLUSTEROK as well.
966		 */
967		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
968
969		if (error) {
970			bp->b_ioflags |= BIO_ERROR;
971			brelse(bp);
972			break;
973		}
974
975		/*
976		 * Only update dirtyoff/dirtyend if not a degenerate
977		 * condition.
978		 */
979		if (n) {
980			if (bp->b_dirtyend > 0) {
981				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
982				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
983			} else {
984				bp->b_dirtyoff = on;
985				bp->b_dirtyend = on + n;
986			}
987			vfs_bio_set_validclean(bp, on, n);
988		}
989
990		/*
991		 * If IO_SYNC do bwrite().
992		 *
993		 * IO_INVAL appears to be unused.  The idea appears to be
994		 * to turn off caching in this case.  Very odd.  XXX
995		 */
996		if ((ioflag & IO_SYNC)) {
997			if (ioflag & IO_INVAL)
998				bp->b_flags |= B_NOCACHE;
999			error = bwrite(bp);
1000			if (error)
1001				break;
1002		} else if ((n + on) == biosize) {
1003			bp->b_flags |= B_ASYNC;
1004			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, 0);
1005		} else {
1006			bdwrite(bp);
1007		}
1008	} while (uio->uio_resid > 0 && n > 0);
1009
1010	if (haverslock)
1011		nfs_rsunlock(np, td);
1012
1013	return (error);
1014}
1015
1016/*
1017 * Get an nfs cache block.
1018 *
1019 * Allocate a new one if the block isn't currently in the cache
1020 * and return the block marked busy. If the calling process is
1021 * interrupted by a signal for an interruptible mount point, return
1022 * NULL.
1023 *
1024 * The caller must carefully deal with the possible B_INVAL state of
1025 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1026 * indirectly), so synchronous reads can be issued without worrying about
1027 * the B_INVAL state.  We have to be a little more careful when dealing
1028 * with writes (see comments in nfs_write()) when extending a file past
1029 * its EOF.
1030 */
1031static struct buf *
1032nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1033{
1034	struct buf *bp;
1035	struct mount *mp;
1036	struct nfsmount *nmp;
1037
1038	mp = vp->v_mount;
1039	nmp = VFSTONFS(mp);
1040
1041	if (nmp->nm_flag & NFSMNT_INT) {
1042 		sigset_t oldset;
1043
1044 		nfs_set_sigmask(td, &oldset);
1045		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1046 		nfs_restore_sigmask(td, &oldset);
1047		while (bp == NULL) {
1048			if (nfs_sigintr(nmp, NULL, td))
1049				return (NULL);
1050			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1051		}
1052	} else {
1053		bp = getblk(vp, bn, size, 0, 0, 0);
1054	}
1055
1056	if (vp->v_type == VREG) {
1057		int biosize;
1058
1059		biosize = mp->mnt_stat.f_iosize;
1060		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1061	}
1062	return (bp);
1063}
1064
1065/*
1066 * Flush and invalidate all dirty buffers. If another process is already
1067 * doing the flush, just wait for completion.
1068 */
1069int
1070nfs_vinvalbuf(struct vnode *vp, int flags, struct ucred *cred,
1071    struct thread *td, int intrflg)
1072{
1073	struct nfsnode *np = VTONFS(vp);
1074	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1075	int error = 0, slpflag, slptimeo;
1076 	int old_lock = 0;
1077
1078	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1079
1080	/*
1081	 * XXX This check stops us from needlessly doing a vinvalbuf when
1082	 * being called through vclean().  It is not clear that this is
1083	 * unsafe.
1084	 */
1085	if (vp->v_iflag & VI_XLOCK)
1086		return (0);
1087
1088	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1089		intrflg = 0;
1090	if (intrflg) {
1091		slpflag = PCATCH;
1092		slptimeo = 2 * hz;
1093	} else {
1094		slpflag = 0;
1095		slptimeo = 0;
1096	}
1097
1098 	if ((old_lock = VOP_ISLOCKED(vp, td)) != LK_EXCLUSIVE) {
1099 		if (old_lock == LK_SHARED) {
1100 			/* Upgrade to exclusive lock, this might block */
1101 			vn_lock(vp, LK_UPGRADE | LK_RETRY, td);
1102 		} else {
1103 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1104 		}
1105  	}
1106
1107	/*
1108	 * Now, flush as required.
1109	 */
1110	error = vinvalbuf(vp, flags, cred, td, slpflag, 0);
1111	while (error) {
1112		if (intrflg && (error = nfs_sigintr(nmp, NULL, td)))
1113			goto out;
1114		error = vinvalbuf(vp, flags, cred, td, 0, slptimeo);
1115	}
1116	np->n_flag &= ~NMODIFIED;
1117out:
1118 	if (old_lock != LK_EXCLUSIVE) {
1119 		if (old_lock == LK_SHARED) {
1120 			/* Downgrade from exclusive lock, this might block */
1121 			vn_lock(vp, LK_DOWNGRADE, td);
1122 		} else {
1123 			VOP_UNLOCK(vp, 0, td);
1124 		}
1125  	}
1126	return error;
1127}
1128
1129/*
1130 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1131 * This is mainly to avoid queueing async I/O requests when the nfsiods
1132 * are all hung on a dead server.
1133 *
1134 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1135 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1136 */
1137int
1138nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1139{
1140	int iod;
1141	int gotiod;
1142	int slpflag = 0;
1143	int slptimeo = 0;
1144	int error, error2;
1145
1146	/*
1147	 * Commits are usually short and sweet so lets save some cpu and
1148	 * leave the async daemons for more important rpc's (such as reads
1149	 * and writes).
1150	 */
1151	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1152	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1153		return(EIO);
1154	}
1155
1156again:
1157	if (nmp->nm_flag & NFSMNT_INT)
1158		slpflag = PCATCH;
1159	gotiod = FALSE;
1160
1161	/*
1162	 * Find a free iod to process this request.
1163	 */
1164	for (iod = 0; iod < nfs_numasync; iod++)
1165		if (nfs_iodwant[iod]) {
1166			gotiod = TRUE;
1167			break;
1168		}
1169
1170	/*
1171	 * Try to create one if none are free.
1172	 */
1173	if (!gotiod) {
1174		iod = nfs_nfsiodnew();
1175		if (iod != -1)
1176			gotiod = TRUE;
1177	}
1178
1179	if (gotiod) {
1180		/*
1181		 * Found one, so wake it up and tell it which
1182		 * mount to process.
1183		 */
1184		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1185		    iod, nmp));
1186		nfs_iodwant[iod] = NULL;
1187		nfs_iodmount[iod] = nmp;
1188		nmp->nm_bufqiods++;
1189		wakeup(&nfs_iodwant[iod]);
1190	}
1191
1192	/*
1193	 * If none are free, we may already have an iod working on this mount
1194	 * point.  If so, it will process our request.
1195	 */
1196	if (!gotiod) {
1197		if (nmp->nm_bufqiods > 0) {
1198			NFS_DPF(ASYNCIO,
1199				("nfs_asyncio: %d iods are already processing mount %p\n",
1200				 nmp->nm_bufqiods, nmp));
1201			gotiod = TRUE;
1202		}
1203	}
1204
1205	/*
1206	 * If we have an iod which can process the request, then queue
1207	 * the buffer.
1208	 */
1209	if (gotiod) {
1210		/*
1211		 * Ensure that the queue never grows too large.  We still want
1212		 * to asynchronize so we block rather then return EIO.
1213		 */
1214		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1215			NFS_DPF(ASYNCIO,
1216				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1217			nmp->nm_bufqwant = TRUE;
1218 			error = nfs_tsleep(td, &nmp->nm_bufq, slpflag | PRIBIO,
1219 					   "nfsaio", slptimeo);
1220			if (error) {
1221				error2 = nfs_sigintr(nmp, NULL, td);
1222				if (error2)
1223					return (error2);
1224				if (slpflag == PCATCH) {
1225					slpflag = 0;
1226					slptimeo = 2 * hz;
1227				}
1228			}
1229			/*
1230			 * We might have lost our iod while sleeping,
1231			 * so check and loop if nescessary.
1232			 */
1233			if (nmp->nm_bufqiods == 0) {
1234				NFS_DPF(ASYNCIO,
1235					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1236				goto again;
1237			}
1238		}
1239
1240		if (bp->b_iocmd == BIO_READ) {
1241			if (bp->b_rcred == NOCRED && cred != NOCRED)
1242				bp->b_rcred = crhold(cred);
1243		} else {
1244			if (bp->b_wcred == NOCRED && cred != NOCRED)
1245				bp->b_wcred = crhold(cred);
1246		}
1247
1248		if (bp->b_flags & B_REMFREE)
1249			bremfreef(bp);
1250		BUF_KERNPROC(bp);
1251		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1252		nmp->nm_bufqlen++;
1253		return (0);
1254	}
1255
1256	/*
1257	 * All the iods are busy on other mounts, so return EIO to
1258	 * force the caller to process the i/o synchronously.
1259	 */
1260	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1261	return (EIO);
1262}
1263
1264/*
1265 * Do an I/O operation to/from a cache block. This may be called
1266 * synchronously or from an nfsiod.
1267 */
1268int
1269nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1270{
1271	struct uio *uiop;
1272	struct nfsnode *np;
1273	struct nfsmount *nmp;
1274	int error = 0, iomode, must_commit = 0;
1275	struct uio uio;
1276	struct iovec io;
1277	struct proc *p = td ? td->td_proc : NULL;
1278
1279	np = VTONFS(vp);
1280	nmp = VFSTONFS(vp->v_mount);
1281	uiop = &uio;
1282	uiop->uio_iov = &io;
1283	uiop->uio_iovcnt = 1;
1284	uiop->uio_segflg = UIO_SYSSPACE;
1285	uiop->uio_td = td;
1286
1287	/*
1288	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1289	 * do this here so we do not have to do it in all the code that
1290	 * calls us.
1291	 */
1292	bp->b_flags &= ~B_INVAL;
1293	bp->b_ioflags &= ~BIO_ERROR;
1294
1295	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1296
1297	if (bp->b_iocmd == BIO_READ) {
1298	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1299	    io.iov_base = bp->b_data;
1300	    uiop->uio_rw = UIO_READ;
1301
1302	    switch (vp->v_type) {
1303	    case VREG:
1304		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1305		nfsstats.read_bios++;
1306		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1307
1308		if (!error) {
1309		    if (uiop->uio_resid) {
1310			/*
1311			 * If we had a short read with no error, we must have
1312			 * hit a file hole.  We should zero-fill the remainder.
1313			 * This can also occur if the server hits the file EOF.
1314			 *
1315			 * Holes used to be able to occur due to pending
1316			 * writes, but that is not possible any longer.
1317			 */
1318			int nread = bp->b_bcount - uiop->uio_resid;
1319			int left  = uiop->uio_resid;
1320
1321			if (left > 0)
1322				bzero((char *)bp->b_data + nread, left);
1323			uiop->uio_resid = 0;
1324		    }
1325		}
1326		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1327		if (p && (vp->v_vflag & VV_TEXT) &&
1328		    (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.va_mtime))) {
1329			PROC_LOCK(p);
1330			killproc(p, "text file modification");
1331			PROC_UNLOCK(p);
1332		}
1333		break;
1334	    case VLNK:
1335		uiop->uio_offset = (off_t)0;
1336		nfsstats.readlink_bios++;
1337		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1338		break;
1339	    case VDIR:
1340		nfsstats.readdir_bios++;
1341		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1342		if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
1343			error = nfs4_readdirrpc(vp, uiop, cr);
1344		else {
1345			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1346				error = nfs_readdirplusrpc(vp, uiop, cr);
1347				if (error == NFSERR_NOTSUPP)
1348					nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1349			}
1350			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1351				error = nfs_readdirrpc(vp, uiop, cr);
1352		}
1353		/*
1354		 * end-of-directory sets B_INVAL but does not generate an
1355		 * error.
1356		 */
1357		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1358			bp->b_flags |= B_INVAL;
1359		break;
1360	    default:
1361		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1362		break;
1363	    };
1364	    if (error) {
1365		bp->b_ioflags |= BIO_ERROR;
1366		bp->b_error = error;
1367	    }
1368	} else {
1369	    /*
1370	     * If we only need to commit, try to commit
1371	     */
1372	    if (bp->b_flags & B_NEEDCOMMIT) {
1373		    int retv;
1374		    off_t off;
1375
1376		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1377		    retv = (nmp->nm_rpcops->nr_commit)(
1378				vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1379				bp->b_wcred, td);
1380		    if (retv == 0) {
1381			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1382			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1383			    bp->b_resid = 0;
1384			    bufdone(bp);
1385			    return (0);
1386		    }
1387		    if (retv == NFSERR_STALEWRITEVERF) {
1388			    nfs_clearcommit(vp->v_mount);
1389		    }
1390	    }
1391
1392	    /*
1393	     * Setup for actual write
1394	     */
1395
1396	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1397		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1398
1399	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1400		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1401		    - bp->b_dirtyoff;
1402		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1403		    + bp->b_dirtyoff;
1404		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1405		uiop->uio_rw = UIO_WRITE;
1406		nfsstats.write_bios++;
1407
1408		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1409		    iomode = NFSV3WRITE_UNSTABLE;
1410		else
1411		    iomode = NFSV3WRITE_FILESYNC;
1412
1413		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1414
1415		/*
1416		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1417		 * to cluster the buffers needing commit.  This will allow
1418		 * the system to submit a single commit rpc for the whole
1419		 * cluster.  We can do this even if the buffer is not 100%
1420		 * dirty (relative to the NFS blocksize), so we optimize the
1421		 * append-to-file-case.
1422		 *
1423		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1424		 * cleared because write clustering only works for commit
1425		 * rpc's, not for the data portion of the write).
1426		 */
1427
1428		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1429		    bp->b_flags |= B_NEEDCOMMIT;
1430		    if (bp->b_dirtyoff == 0
1431			&& bp->b_dirtyend == bp->b_bcount)
1432			bp->b_flags |= B_CLUSTEROK;
1433		} else {
1434		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1435		}
1436
1437		/*
1438		 * For an interrupted write, the buffer is still valid
1439		 * and the write hasn't been pushed to the server yet,
1440		 * so we can't set BIO_ERROR and report the interruption
1441		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1442		 * is not relevant, so the rpc attempt is essentially
1443		 * a noop.  For the case of a V3 write rpc not being
1444		 * committed to stable storage, the block is still
1445		 * dirty and requires either a commit rpc or another
1446		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1447		 * the block is reused. This is indicated by setting
1448		 * the B_DELWRI and B_NEEDCOMMIT flags.
1449		 *
1450		 * If the buffer is marked B_PAGING, it does not reside on
1451		 * the vp's paging queues so we cannot call bdirty().  The
1452		 * bp in this case is not an NFS cache block so we should
1453		 * be safe. XXX
1454		 */
1455    		if (error == EINTR || error == EIO
1456		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1457			int s;
1458
1459			s = splbio();
1460			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1461			if ((bp->b_flags & B_PAGING) == 0) {
1462			    bdirty(bp);
1463			    bp->b_flags &= ~B_DONE;
1464			}
1465			if (error && (bp->b_flags & B_ASYNC) == 0)
1466			    bp->b_flags |= B_EINTR;
1467			splx(s);
1468	    	} else {
1469		    if (error) {
1470			bp->b_ioflags |= BIO_ERROR;
1471			bp->b_error = np->n_error = error;
1472			np->n_flag |= NWRITEERR;
1473		    }
1474		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1475		}
1476	    } else {
1477		bp->b_resid = 0;
1478		bufdone(bp);
1479		return (0);
1480	    }
1481	}
1482	bp->b_resid = uiop->uio_resid;
1483	if (must_commit)
1484	    nfs_clearcommit(vp->v_mount);
1485	bufdone(bp);
1486	return (error);
1487}
1488
1489/*
1490 * Used to aid in handling ftruncate() operations on the NFS client side.
1491 * Truncation creates a number of special problems for NFS.  We have to
1492 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1493 * we have to properly handle VM pages or (potentially dirty) buffers
1494 * that straddle the truncation point.
1495 */
1496
1497int
1498nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1499{
1500	struct nfsnode *np = VTONFS(vp);
1501	u_quad_t tsize = np->n_size;
1502	int biosize = vp->v_mount->mnt_stat.f_iosize;
1503	int error = 0;
1504
1505	np->n_size = nsize;
1506
1507	if (np->n_size < tsize) {
1508		struct buf *bp;
1509		daddr_t lbn;
1510		int bufsize;
1511
1512		/*
1513		 * vtruncbuf() doesn't get the buffer overlapping the
1514		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1515		 * buffer that now needs to be truncated.
1516		 */
1517		error = vtruncbuf(vp, cred, td, nsize, biosize);
1518		lbn = nsize / biosize;
1519		bufsize = nsize & (biosize - 1);
1520		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1521 		if (!bp)
1522 			return EINTR;
1523		if (bp->b_dirtyoff > bp->b_bcount)
1524			bp->b_dirtyoff = bp->b_bcount;
1525		if (bp->b_dirtyend > bp->b_bcount)
1526			bp->b_dirtyend = bp->b_bcount;
1527		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1528		brelse(bp);
1529	} else {
1530		vnode_pager_setsize(vp, nsize);
1531	}
1532	return(error);
1533}
1534
1535