nfs_bio.c revision 136767
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 136767 2004-10-22 08:47:20Z phk $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/bio.h>
41#include <sys/buf.h>
42#include <sys/kernel.h>
43#include <sys/mount.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/signalvar.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49
50#include <vm/vm.h>
51#include <vm/vm_extern.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_pager.h>
55#include <vm/vnode_pager.h>
56
57#include <rpc/rpcclnt.h>
58
59#include <nfs/rpcv2.h>
60#include <nfs/nfsproto.h>
61#include <nfsclient/nfs.h>
62#include <nfsclient/nfsmount.h>
63#include <nfsclient/nfsnode.h>
64
65#include <nfs4client/nfs4.h>
66
67/*
68 * Just call nfs_writebp() with the force argument set to 1.
69 *
70 * NOTE: B_DONE may or may not be set in a_bp on call.
71 */
72static int
73nfs4_bwrite(struct buf *bp)
74{
75
76	return (nfs4_writebp(bp, 1, curthread));
77}
78
79static int
80nfs_bwrite(struct buf *bp)
81{
82
83	return (nfs_writebp(bp, 1, curthread));
84}
85
86struct buf_ops buf_ops_nfs4 = {
87	"buf_ops_nfs4",
88	nfs4_bwrite
89};
90
91struct buf_ops buf_ops_nfs = {
92	"buf_ops_nfs",
93	nfs_bwrite
94};
95
96static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
97		    struct thread *td);
98
99/*
100 * Vnode op for VM getpages.
101 */
102int
103nfs_getpages(struct vop_getpages_args *ap)
104{
105	int i, error, nextoff, size, toff, count, npages;
106	struct uio uio;
107	struct iovec iov;
108	vm_offset_t kva;
109	struct buf *bp;
110	struct vnode *vp;
111	struct thread *td;
112	struct ucred *cred;
113	struct nfsmount *nmp;
114	vm_object_t object;
115	vm_page_t *pages;
116
117	GIANT_REQUIRED;
118
119	vp = ap->a_vp;
120	td = curthread;				/* XXX */
121	cred = curthread->td_ucred;		/* XXX */
122	nmp = VFSTONFS(vp->v_mount);
123	pages = ap->a_m;
124	count = ap->a_count;
125
126	if ((object = vp->v_object) == NULL) {
127		printf("nfs_getpages: called with non-merged cache vnode??\n");
128		return VM_PAGER_ERROR;
129	}
130
131	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
132	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
133		/* We'll never get here for v4, because we always have fsinfo */
134		(void)nfs_fsinfo(nmp, vp, cred, td);
135	}
136
137	npages = btoc(count);
138
139	/*
140	 * If the requested page is partially valid, just return it and
141	 * allow the pager to zero-out the blanks.  Partially valid pages
142	 * can only occur at the file EOF.
143	 */
144
145	{
146		vm_page_t m = pages[ap->a_reqpage];
147
148		VM_OBJECT_LOCK(object);
149		vm_page_lock_queues();
150		if (m->valid != 0) {
151			/* handled by vm_fault now	  */
152			/* vm_page_zero_invalid(m, TRUE); */
153			for (i = 0; i < npages; ++i) {
154				if (i != ap->a_reqpage)
155					vm_page_free(pages[i]);
156			}
157			vm_page_unlock_queues();
158			VM_OBJECT_UNLOCK(object);
159			return(0);
160		}
161		vm_page_unlock_queues();
162		VM_OBJECT_UNLOCK(object);
163	}
164
165	/*
166	 * We use only the kva address for the buffer, but this is extremely
167	 * convienient and fast.
168	 */
169	bp = getpbuf(&nfs_pbuf_freecnt);
170
171	kva = (vm_offset_t) bp->b_data;
172	pmap_qenter(kva, pages, npages);
173	cnt.v_vnodein++;
174	cnt.v_vnodepgsin += npages;
175
176	iov.iov_base = (caddr_t) kva;
177	iov.iov_len = count;
178	uio.uio_iov = &iov;
179	uio.uio_iovcnt = 1;
180	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
181	uio.uio_resid = count;
182	uio.uio_segflg = UIO_SYSSPACE;
183	uio.uio_rw = UIO_READ;
184	uio.uio_td = td;
185
186	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
187	pmap_qremove(kva, npages);
188
189	relpbuf(bp, &nfs_pbuf_freecnt);
190
191	if (error && (uio.uio_resid == count)) {
192		printf("nfs_getpages: error %d\n", error);
193		VM_OBJECT_LOCK(object);
194		vm_page_lock_queues();
195		for (i = 0; i < npages; ++i) {
196			if (i != ap->a_reqpage)
197				vm_page_free(pages[i]);
198		}
199		vm_page_unlock_queues();
200		VM_OBJECT_UNLOCK(object);
201		return VM_PAGER_ERROR;
202	}
203
204	/*
205	 * Calculate the number of bytes read and validate only that number
206	 * of bytes.  Note that due to pending writes, size may be 0.  This
207	 * does not mean that the remaining data is invalid!
208	 */
209
210	size = count - uio.uio_resid;
211	VM_OBJECT_LOCK(object);
212	vm_page_lock_queues();
213	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
214		vm_page_t m;
215		nextoff = toff + PAGE_SIZE;
216		m = pages[i];
217
218		if (nextoff <= size) {
219			/*
220			 * Read operation filled an entire page
221			 */
222			m->valid = VM_PAGE_BITS_ALL;
223			vm_page_undirty(m);
224		} else if (size > toff) {
225			/*
226			 * Read operation filled a partial page.
227			 */
228			m->valid = 0;
229			vm_page_set_validclean(m, 0, size - toff);
230			/* handled by vm_fault now	  */
231			/* vm_page_zero_invalid(m, TRUE); */
232		} else {
233			/*
234			 * Read operation was short.  If no error occured
235			 * we may have hit a zero-fill section.   We simply
236			 * leave valid set to 0.
237			 */
238			;
239		}
240		if (i != ap->a_reqpage) {
241			/*
242			 * Whether or not to leave the page activated is up in
243			 * the air, but we should put the page on a page queue
244			 * somewhere (it already is in the object).  Result:
245			 * It appears that emperical results show that
246			 * deactivating pages is best.
247			 */
248
249			/*
250			 * Just in case someone was asking for this page we
251			 * now tell them that it is ok to use.
252			 */
253			if (!error) {
254				if (m->flags & PG_WANTED)
255					vm_page_activate(m);
256				else
257					vm_page_deactivate(m);
258				vm_page_wakeup(m);
259			} else {
260				vm_page_free(m);
261			}
262		}
263	}
264	vm_page_unlock_queues();
265	VM_OBJECT_UNLOCK(object);
266	return 0;
267}
268
269/*
270 * Vnode op for VM putpages.
271 */
272int
273nfs_putpages(struct vop_putpages_args *ap)
274{
275	struct uio uio;
276	struct iovec iov;
277	vm_offset_t kva;
278	struct buf *bp;
279	int iomode, must_commit, i, error, npages, count;
280	off_t offset;
281	int *rtvals;
282	struct vnode *vp;
283	struct thread *td;
284	struct ucred *cred;
285	struct nfsmount *nmp;
286	struct nfsnode *np;
287	vm_page_t *pages;
288
289	GIANT_REQUIRED;
290
291	vp = ap->a_vp;
292	np = VTONFS(vp);
293	td = curthread;				/* XXX */
294	cred = curthread->td_ucred;		/* XXX */
295	nmp = VFSTONFS(vp->v_mount);
296	pages = ap->a_m;
297	count = ap->a_count;
298	rtvals = ap->a_rtvals;
299	npages = btoc(count);
300	offset = IDX_TO_OFF(pages[0]->pindex);
301
302	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
303	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
304		(void)nfs_fsinfo(nmp, vp, cred, td);
305	}
306
307	for (i = 0; i < npages; i++)
308		rtvals[i] = VM_PAGER_AGAIN;
309
310	/*
311	 * When putting pages, do not extend file past EOF.
312	 */
313
314	if (offset + count > np->n_size) {
315		count = np->n_size - offset;
316		if (count < 0)
317			count = 0;
318	}
319
320	/*
321	 * We use only the kva address for the buffer, but this is extremely
322	 * convienient and fast.
323	 */
324	bp = getpbuf(&nfs_pbuf_freecnt);
325
326	kva = (vm_offset_t) bp->b_data;
327	pmap_qenter(kva, pages, npages);
328	cnt.v_vnodeout++;
329	cnt.v_vnodepgsout += count;
330
331	iov.iov_base = (caddr_t) kva;
332	iov.iov_len = count;
333	uio.uio_iov = &iov;
334	uio.uio_iovcnt = 1;
335	uio.uio_offset = offset;
336	uio.uio_resid = count;
337	uio.uio_segflg = UIO_SYSSPACE;
338	uio.uio_rw = UIO_WRITE;
339	uio.uio_td = td;
340
341	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
342	    iomode = NFSV3WRITE_UNSTABLE;
343	else
344	    iomode = NFSV3WRITE_FILESYNC;
345
346	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
347
348	pmap_qremove(kva, npages);
349	relpbuf(bp, &nfs_pbuf_freecnt);
350
351	if (!error) {
352		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
353		for (i = 0; i < nwritten; i++) {
354			rtvals[i] = VM_PAGER_OK;
355			vm_page_undirty(pages[i]);
356		}
357		if (must_commit) {
358			nfs_clearcommit(vp->v_mount);
359		}
360	}
361	return rtvals[0];
362}
363
364/*
365 * Vnode op for read using bio
366 */
367int
368nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
369{
370	struct nfsnode *np = VTONFS(vp);
371	int biosize, i;
372	struct buf *bp = 0, *rabp;
373	struct vattr vattr;
374	struct thread *td;
375	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
376	daddr_t lbn, rabn;
377	int bcount;
378	int seqcount;
379	int nra, error = 0, n = 0, on = 0;
380
381#ifdef DIAGNOSTIC
382	if (uio->uio_rw != UIO_READ)
383		panic("nfs_read mode");
384#endif
385	if (uio->uio_resid == 0)
386		return (0);
387	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
388		return (EINVAL);
389	td = uio->uio_td;
390
391	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
392	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
393		(void)nfs_fsinfo(nmp, vp, cred, td);
394	if (vp->v_type != VDIR &&
395	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
396		return (EFBIG);
397	biosize = vp->v_mount->mnt_stat.f_iosize;
398	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
399	/*
400	 * For nfs, cache consistency can only be maintained approximately.
401	 * Although RFC1094 does not specify the criteria, the following is
402	 * believed to be compatible with the reference port.
403	 * For nfs:
404	 * If the file's modify time on the server has changed since the
405	 * last read rpc or you have written to the file,
406	 * you may have lost data cache consistency with the
407	 * server, so flush all of the file's data out of the cache.
408	 * Then force a getattr rpc to ensure that you have up to date
409	 * attributes.
410	 * NB: This implies that cache data can be read when up to
411	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
412	 * attributes this could be forced by setting n_attrstamp to 0 before
413	 * the VOP_GETATTR() call.
414	 */
415	if (np->n_flag & NMODIFIED) {
416		if (vp->v_type != VREG) {
417			if (vp->v_type != VDIR)
418				panic("nfs: bioread, not dir");
419			(nmp->nm_rpcops->nr_invaldir)(vp);
420			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
421			if (error)
422				return (error);
423		}
424		np->n_attrstamp = 0;
425		error = VOP_GETATTR(vp, &vattr, cred, td);
426		if (error)
427			return (error);
428		np->n_mtime = vattr.va_mtime.tv_sec;
429	} else {
430		error = VOP_GETATTR(vp, &vattr, cred, td);
431		if (error)
432			return (error);
433		if ((np->n_flag & NSIZECHANGED)
434		    || (np->n_mtime != vattr.va_mtime.tv_sec)) {
435			if (vp->v_type == VDIR)
436				(nmp->nm_rpcops->nr_invaldir)(vp);
437			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
438			if (error)
439				return (error);
440			np->n_mtime = vattr.va_mtime.tv_sec;
441			np->n_flag &= ~NSIZECHANGED;
442		}
443	}
444	do {
445	    switch (vp->v_type) {
446	    case VREG:
447		nfsstats.biocache_reads++;
448		lbn = uio->uio_offset / biosize;
449		on = uio->uio_offset & (biosize - 1);
450
451		/*
452		 * Start the read ahead(s), as required.
453		 */
454		if (nmp->nm_readahead > 0) {
455		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
456			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
457			rabn = lbn + 1 + nra;
458			if (incore(&vp->v_bufobj, rabn) == NULL) {
459			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
460			    if (!rabp) {
461				error = nfs_sigintr(nmp, NULL, td);
462				return (error ? error : EINTR);
463			    }
464			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
465				rabp->b_flags |= B_ASYNC;
466				rabp->b_iocmd = BIO_READ;
467				vfs_busy_pages(rabp, 0);
468				if (nfs_asyncio(nmp, rabp, cred, td)) {
469				    rabp->b_flags |= B_INVAL;
470				    rabp->b_ioflags |= BIO_ERROR;
471				    vfs_unbusy_pages(rabp);
472				    brelse(rabp);
473				    break;
474				}
475			    } else {
476				brelse(rabp);
477			    }
478			}
479		    }
480		}
481
482		/*
483		 * Obtain the buffer cache block.  Figure out the buffer size
484		 * when we are at EOF.  If we are modifying the size of the
485		 * buffer based on an EOF condition we need to hold
486		 * nfs_rslock() through obtaining the buffer to prevent
487		 * a potential writer-appender from messing with n_size.
488		 * Otherwise we may accidently truncate the buffer and
489		 * lose dirty data.
490		 *
491		 * Note that bcount is *not* DEV_BSIZE aligned.
492		 */
493
494again:
495		bcount = biosize;
496		if ((off_t)lbn * biosize >= np->n_size) {
497			bcount = 0;
498		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
499			bcount = np->n_size - (off_t)lbn * biosize;
500		}
501		if (bcount != biosize) {
502			switch(nfs_rslock(np, td)) {
503			case ENOLCK:
504				goto again;
505				/* not reached */
506			case EIO:
507				return (EIO);
508			case EINTR:
509			case ERESTART:
510				return(EINTR);
511				/* not reached */
512			default:
513				break;
514			}
515		}
516
517		bp = nfs_getcacheblk(vp, lbn, bcount, td);
518
519		if (bcount != biosize)
520			nfs_rsunlock(np, td);
521		if (!bp) {
522			error = nfs_sigintr(nmp, NULL, td);
523			return (error ? error : EINTR);
524		}
525
526		/*
527		 * If B_CACHE is not set, we must issue the read.  If this
528		 * fails, we return an error.
529		 */
530
531		if ((bp->b_flags & B_CACHE) == 0) {
532		    bp->b_iocmd = BIO_READ;
533		    vfs_busy_pages(bp, 0);
534		    error = nfs_doio(vp, bp, cred, td);
535		    if (error) {
536			brelse(bp);
537			return (error);
538		    }
539		}
540
541		/*
542		 * on is the offset into the current bp.  Figure out how many
543		 * bytes we can copy out of the bp.  Note that bcount is
544		 * NOT DEV_BSIZE aligned.
545		 *
546		 * Then figure out how many bytes we can copy into the uio.
547		 */
548
549		n = 0;
550		if (on < bcount)
551			n = min((unsigned)(bcount - on), uio->uio_resid);
552		break;
553	    case VLNK:
554		nfsstats.biocache_readlinks++;
555		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
556		if (!bp) {
557			error = nfs_sigintr(nmp, NULL, td);
558			return (error ? error : EINTR);
559		}
560		if ((bp->b_flags & B_CACHE) == 0) {
561		    bp->b_iocmd = BIO_READ;
562		    vfs_busy_pages(bp, 0);
563		    error = nfs_doio(vp, bp, cred, td);
564		    if (error) {
565			bp->b_ioflags |= BIO_ERROR;
566			brelse(bp);
567			return (error);
568		    }
569		}
570		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
571		on = 0;
572		break;
573	    case VDIR:
574		nfsstats.biocache_readdirs++;
575		if (np->n_direofoffset
576		    && uio->uio_offset >= np->n_direofoffset) {
577		    return (0);
578		}
579		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
580		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
581		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
582		if (!bp) {
583		    error = nfs_sigintr(nmp, NULL, td);
584		    return (error ? error : EINTR);
585		}
586		if ((bp->b_flags & B_CACHE) == 0) {
587		    bp->b_iocmd = BIO_READ;
588		    vfs_busy_pages(bp, 0);
589		    error = nfs_doio(vp, bp, cred, td);
590		    if (error) {
591			    brelse(bp);
592		    }
593		    while (error == NFSERR_BAD_COOKIE) {
594			(nmp->nm_rpcops->nr_invaldir)(vp);
595			error = nfs_vinvalbuf(vp, 0, cred, td, 1);
596			/*
597			 * Yuck! The directory has been modified on the
598			 * server. The only way to get the block is by
599			 * reading from the beginning to get all the
600			 * offset cookies.
601			 *
602			 * Leave the last bp intact unless there is an error.
603			 * Loop back up to the while if the error is another
604			 * NFSERR_BAD_COOKIE (double yuch!).
605			 */
606			for (i = 0; i <= lbn && !error; i++) {
607			    if (np->n_direofoffset
608				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
609				    return (0);
610			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
611			    if (!bp) {
612				error = nfs_sigintr(nmp, NULL, td);
613				return (error ? error : EINTR);
614			    }
615			    if ((bp->b_flags & B_CACHE) == 0) {
616				    bp->b_iocmd = BIO_READ;
617				    vfs_busy_pages(bp, 0);
618				    error = nfs_doio(vp, bp, cred, td);
619				    /*
620				     * no error + B_INVAL == directory EOF,
621				     * use the block.
622				     */
623				    if (error == 0 && (bp->b_flags & B_INVAL))
624					    break;
625			    }
626			    /*
627			     * An error will throw away the block and the
628			     * for loop will break out.  If no error and this
629			     * is not the block we want, we throw away the
630			     * block and go for the next one via the for loop.
631			     */
632			    if (error || i < lbn)
633				    brelse(bp);
634			}
635		    }
636		    /*
637		     * The above while is repeated if we hit another cookie
638		     * error.  If we hit an error and it wasn't a cookie error,
639		     * we give up.
640		     */
641		    if (error)
642			    return (error);
643		}
644
645		/*
646		 * If not eof and read aheads are enabled, start one.
647		 * (You need the current block first, so that you have the
648		 *  directory offset cookie of the next block.)
649		 */
650		if (nmp->nm_readahead > 0 &&
651		    (bp->b_flags & B_INVAL) == 0 &&
652		    (np->n_direofoffset == 0 ||
653		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
654		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
655			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
656			if (rabp) {
657			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
658				rabp->b_flags |= B_ASYNC;
659				rabp->b_iocmd = BIO_READ;
660				vfs_busy_pages(rabp, 0);
661				if (nfs_asyncio(nmp, rabp, cred, td)) {
662				    rabp->b_flags |= B_INVAL;
663				    rabp->b_ioflags |= BIO_ERROR;
664				    vfs_unbusy_pages(rabp);
665				    brelse(rabp);
666				}
667			    } else {
668				brelse(rabp);
669			    }
670			}
671		}
672		/*
673		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
674		 * chopped for the EOF condition, we cannot tell how large
675		 * NFS directories are going to be until we hit EOF.  So
676		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
677		 * it just so happens that b_resid will effectively chop it
678		 * to EOF.  *BUT* this information is lost if the buffer goes
679		 * away and is reconstituted into a B_CACHE state ( due to
680		 * being VMIO ) later.  So we keep track of the directory eof
681		 * in np->n_direofoffset and chop it off as an extra step
682		 * right here.
683		 */
684		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
685		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
686			n = np->n_direofoffset - uio->uio_offset;
687		break;
688	    default:
689		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
690		break;
691	    };
692
693	    if (n > 0) {
694		    error = uiomove(bp->b_data + on, (int)n, uio);
695	    }
696	    switch (vp->v_type) {
697	    case VREG:
698		break;
699	    case VLNK:
700		n = 0;
701		break;
702	    case VDIR:
703		break;
704	    default:
705		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
706	    }
707	    brelse(bp);
708	} while (error == 0 && uio->uio_resid > 0 && n > 0);
709	return (error);
710}
711
712/*
713 * Vnode op for write using bio
714 */
715int
716nfs_write(struct vop_write_args *ap)
717{
718	int biosize;
719	struct uio *uio = ap->a_uio;
720	struct thread *td = uio->uio_td;
721	struct vnode *vp = ap->a_vp;
722	struct nfsnode *np = VTONFS(vp);
723	struct ucred *cred = ap->a_cred;
724	int ioflag = ap->a_ioflag;
725	struct buf *bp;
726	struct vattr vattr;
727	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
728	daddr_t lbn;
729	int bcount;
730	int n, on, error = 0;
731	int haverslock = 0;
732	struct proc *p = td?td->td_proc:NULL;
733
734	GIANT_REQUIRED;
735
736#ifdef DIAGNOSTIC
737	if (uio->uio_rw != UIO_WRITE)
738		panic("nfs_write mode");
739	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
740		panic("nfs_write proc");
741#endif
742	if (vp->v_type != VREG)
743		return (EIO);
744	if (np->n_flag & NWRITEERR) {
745		np->n_flag &= ~NWRITEERR;
746		return (np->n_error);
747	}
748	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
749	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
750		(void)nfs_fsinfo(nmp, vp, cred, td);
751
752	/*
753	 * Synchronously flush pending buffers if we are in synchronous
754	 * mode or if we are appending.
755	 */
756	if (ioflag & (IO_APPEND | IO_SYNC)) {
757		if (np->n_flag & NMODIFIED) {
758			np->n_attrstamp = 0;
759			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
760			if (error)
761				return (error);
762		}
763	}
764
765	/*
766	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
767	 * get the append lock.
768	 */
769restart:
770	if (ioflag & IO_APPEND) {
771		np->n_attrstamp = 0;
772		error = VOP_GETATTR(vp, &vattr, cred, td);
773		if (error)
774			return (error);
775		uio->uio_offset = np->n_size;
776	}
777
778	if (uio->uio_offset < 0)
779		return (EINVAL);
780	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
781		return (EFBIG);
782	if (uio->uio_resid == 0)
783		return (0);
784
785	/*
786	 * We need to obtain the rslock if we intend to modify np->n_size
787	 * in order to guarentee the append point with multiple contending
788	 * writers, to guarentee that no other appenders modify n_size
789	 * while we are trying to obtain a truncated buffer (i.e. to avoid
790	 * accidently truncating data written by another appender due to
791	 * the race), and to ensure that the buffer is populated prior to
792	 * our extending of the file.  We hold rslock through the entire
793	 * operation.
794	 *
795	 * Note that we do not synchronize the case where someone truncates
796	 * the file while we are appending to it because attempting to lock
797	 * this case may deadlock other parts of the system unexpectedly.
798	 */
799	if ((ioflag & IO_APPEND) ||
800	    uio->uio_offset + uio->uio_resid > np->n_size) {
801		switch(nfs_rslock(np, td)) {
802		case ENOLCK:
803			goto restart;
804			/* not reached */
805		case EIO:
806			return (EIO);
807		case EINTR:
808		case ERESTART:
809			return(EINTR);
810			/* not reached */
811		default:
812			break;
813		}
814		haverslock = 1;
815	}
816
817	/*
818	 * Maybe this should be above the vnode op call, but so long as
819	 * file servers have no limits, i don't think it matters
820	 */
821	if (p != NULL) {
822		PROC_LOCK(p);
823		if (uio->uio_offset + uio->uio_resid >
824		    lim_cur(p, RLIMIT_FSIZE)) {
825			psignal(p, SIGXFSZ);
826			PROC_UNLOCK(p);
827			if (haverslock)
828				nfs_rsunlock(np, td);
829			return (EFBIG);
830		}
831		PROC_UNLOCK(p);
832	}
833
834	biosize = vp->v_mount->mnt_stat.f_iosize;
835
836	do {
837		nfsstats.biocache_writes++;
838		lbn = uio->uio_offset / biosize;
839		on = uio->uio_offset & (biosize-1);
840		n = min((unsigned)(biosize - on), uio->uio_resid);
841again:
842		/*
843		 * Handle direct append and file extension cases, calculate
844		 * unaligned buffer size.
845		 */
846
847		if (uio->uio_offset == np->n_size && n) {
848			/*
849			 * Get the buffer (in its pre-append state to maintain
850			 * B_CACHE if it was previously set).  Resize the
851			 * nfsnode after we have locked the buffer to prevent
852			 * readers from reading garbage.
853			 */
854			bcount = on;
855			bp = nfs_getcacheblk(vp, lbn, bcount, td);
856
857			if (bp != NULL) {
858				long save;
859
860				np->n_size = uio->uio_offset + n;
861				np->n_flag |= NMODIFIED;
862				vnode_pager_setsize(vp, np->n_size);
863
864				save = bp->b_flags & B_CACHE;
865				bcount += n;
866				allocbuf(bp, bcount);
867				bp->b_flags |= save;
868				bp->b_magic = B_MAGIC_NFS;
869				if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
870					bp->b_op = &buf_ops_nfs4;
871				else
872					bp->b_op = &buf_ops_nfs;
873			}
874		} else {
875			/*
876			 * Obtain the locked cache block first, and then
877			 * adjust the file's size as appropriate.
878			 */
879			bcount = on + n;
880			if ((off_t)lbn * biosize + bcount < np->n_size) {
881				if ((off_t)(lbn + 1) * biosize < np->n_size)
882					bcount = biosize;
883				else
884					bcount = np->n_size - (off_t)lbn * biosize;
885			}
886			bp = nfs_getcacheblk(vp, lbn, bcount, td);
887			if (uio->uio_offset + n > np->n_size) {
888				np->n_size = uio->uio_offset + n;
889				np->n_flag |= NMODIFIED;
890				vnode_pager_setsize(vp, np->n_size);
891			}
892		}
893
894		if (!bp) {
895			error = nfs_sigintr(nmp, NULL, td);
896			if (!error)
897				error = EINTR;
898			break;
899		}
900
901		/*
902		 * Issue a READ if B_CACHE is not set.  In special-append
903		 * mode, B_CACHE is based on the buffer prior to the write
904		 * op and is typically set, avoiding the read.  If a read
905		 * is required in special append mode, the server will
906		 * probably send us a short-read since we extended the file
907		 * on our end, resulting in b_resid == 0 and, thusly,
908		 * B_CACHE getting set.
909		 *
910		 * We can also avoid issuing the read if the write covers
911		 * the entire buffer.  We have to make sure the buffer state
912		 * is reasonable in this case since we will not be initiating
913		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
914		 * more information.
915		 *
916		 * B_CACHE may also be set due to the buffer being cached
917		 * normally.
918		 */
919
920		if (on == 0 && n == bcount) {
921			bp->b_flags |= B_CACHE;
922			bp->b_flags &= ~B_INVAL;
923			bp->b_ioflags &= ~BIO_ERROR;
924		}
925
926		if ((bp->b_flags & B_CACHE) == 0) {
927			bp->b_iocmd = BIO_READ;
928			vfs_busy_pages(bp, 0);
929			error = nfs_doio(vp, bp, cred, td);
930			if (error) {
931				brelse(bp);
932				break;
933			}
934		}
935		if (!bp) {
936			error = nfs_sigintr(nmp, NULL, td);
937			if (!error)
938				error = EINTR;
939			break;
940		}
941		if (bp->b_wcred == NOCRED)
942			bp->b_wcred = crhold(cred);
943		np->n_flag |= NMODIFIED;
944
945		/*
946		 * If dirtyend exceeds file size, chop it down.  This should
947		 * not normally occur but there is an append race where it
948		 * might occur XXX, so we log it.
949		 *
950		 * If the chopping creates a reverse-indexed or degenerate
951		 * situation with dirtyoff/end, we 0 both of them.
952		 */
953
954		if (bp->b_dirtyend > bcount) {
955			printf("NFS append race @%lx:%d\n",
956			    (long)bp->b_blkno * DEV_BSIZE,
957			    bp->b_dirtyend - bcount);
958			bp->b_dirtyend = bcount;
959		}
960
961		if (bp->b_dirtyoff >= bp->b_dirtyend)
962			bp->b_dirtyoff = bp->b_dirtyend = 0;
963
964		/*
965		 * If the new write will leave a contiguous dirty
966		 * area, just update the b_dirtyoff and b_dirtyend,
967		 * otherwise force a write rpc of the old dirty area.
968		 *
969		 * While it is possible to merge discontiguous writes due to
970		 * our having a B_CACHE buffer ( and thus valid read data
971		 * for the hole), we don't because it could lead to
972		 * significant cache coherency problems with multiple clients,
973		 * especially if locking is implemented later on.
974		 *
975		 * as an optimization we could theoretically maintain
976		 * a linked list of discontinuous areas, but we would still
977		 * have to commit them separately so there isn't much
978		 * advantage to it except perhaps a bit of asynchronization.
979		 */
980
981		if (bp->b_dirtyend > 0 &&
982		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
983			if (bwrite(bp) == EINTR) {
984				error = EINTR;
985				break;
986			}
987			goto again;
988		}
989
990		error = uiomove((char *)bp->b_data + on, n, uio);
991
992		/*
993		 * Since this block is being modified, it must be written
994		 * again and not just committed.  Since write clustering does
995		 * not work for the stage 1 data write, only the stage 2
996		 * commit rpc, we have to clear B_CLUSTEROK as well.
997		 */
998		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
999
1000		if (error) {
1001			bp->b_ioflags |= BIO_ERROR;
1002			brelse(bp);
1003			break;
1004		}
1005
1006		/*
1007		 * Only update dirtyoff/dirtyend if not a degenerate
1008		 * condition.
1009		 */
1010		if (n) {
1011			if (bp->b_dirtyend > 0) {
1012				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1013				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1014			} else {
1015				bp->b_dirtyoff = on;
1016				bp->b_dirtyend = on + n;
1017			}
1018			vfs_bio_set_validclean(bp, on, n);
1019		}
1020
1021		/*
1022		 * If IO_SYNC do bwrite().
1023		 *
1024		 * IO_INVAL appears to be unused.  The idea appears to be
1025		 * to turn off caching in this case.  Very odd.  XXX
1026		 */
1027		if ((ioflag & IO_SYNC)) {
1028			if (ioflag & IO_INVAL)
1029				bp->b_flags |= B_NOCACHE;
1030			error = bwrite(bp);
1031			if (error)
1032				break;
1033		} else if ((n + on) == biosize) {
1034			bp->b_flags |= B_ASYNC;
1035			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, 0);
1036		} else {
1037			bdwrite(bp);
1038		}
1039	} while (uio->uio_resid > 0 && n > 0);
1040
1041	if (haverslock)
1042		nfs_rsunlock(np, td);
1043
1044	return (error);
1045}
1046
1047/*
1048 * Get an nfs cache block.
1049 *
1050 * Allocate a new one if the block isn't currently in the cache
1051 * and return the block marked busy. If the calling process is
1052 * interrupted by a signal for an interruptible mount point, return
1053 * NULL.
1054 *
1055 * The caller must carefully deal with the possible B_INVAL state of
1056 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1057 * indirectly), so synchronous reads can be issued without worrying about
1058 * the B_INVAL state.  We have to be a little more careful when dealing
1059 * with writes (see comments in nfs_write()) when extending a file past
1060 * its EOF.
1061 */
1062static struct buf *
1063nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1064{
1065	struct buf *bp;
1066	struct mount *mp;
1067	struct nfsmount *nmp;
1068
1069	mp = vp->v_mount;
1070	nmp = VFSTONFS(mp);
1071
1072	if (nmp->nm_flag & NFSMNT_INT) {
1073		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1074		while (bp == NULL) {
1075			if (nfs_sigintr(nmp, NULL, td))
1076				return (NULL);
1077			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1078		}
1079	} else {
1080		bp = getblk(vp, bn, size, 0, 0, 0);
1081	}
1082
1083	if (vp->v_type == VREG) {
1084		int biosize;
1085
1086		biosize = mp->mnt_stat.f_iosize;
1087		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1088	}
1089	return (bp);
1090}
1091
1092/*
1093 * Flush and invalidate all dirty buffers. If another process is already
1094 * doing the flush, just wait for completion.
1095 */
1096int
1097nfs_vinvalbuf(struct vnode *vp, int flags, struct ucred *cred,
1098    struct thread *td, int intrflg)
1099{
1100	struct nfsnode *np = VTONFS(vp);
1101	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1102	int error = 0, slpflag, slptimeo;
1103
1104	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1105
1106	/*
1107	 * XXX This check stops us from needlessly doing a vinvalbuf when
1108	 * being called through vclean().  It is not clear that this is
1109	 * unsafe.
1110	 */
1111	if (vp->v_iflag & VI_XLOCK)
1112		return (0);
1113
1114	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1115		intrflg = 0;
1116	if (intrflg) {
1117		slpflag = PCATCH;
1118		slptimeo = 2 * hz;
1119	} else {
1120		slpflag = 0;
1121		slptimeo = 0;
1122	}
1123	/*
1124	 * First wait for any other process doing a flush to complete.
1125	 */
1126	while (np->n_flag & NFLUSHINPROG) {
1127		np->n_flag |= NFLUSHWANT;
1128		error = tsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
1129			slptimeo);
1130		if (error && intrflg &&
1131		    nfs_sigintr(nmp, NULL, td))
1132			return (EINTR);
1133	}
1134
1135	/*
1136	 * Now, flush as required.
1137	 */
1138	np->n_flag |= NFLUSHINPROG;
1139	error = vinvalbuf(vp, flags, cred, td, slpflag, 0);
1140	while (error) {
1141		if (intrflg && (error = nfs_sigintr(nmp, NULL, td))) {
1142			np->n_flag &= ~NFLUSHINPROG;
1143			if (np->n_flag & NFLUSHWANT) {
1144				np->n_flag &= ~NFLUSHWANT;
1145				wakeup(&np->n_flag);
1146			}
1147			return (error);
1148		}
1149		error = vinvalbuf(vp, flags, cred, td, 0, slptimeo);
1150	}
1151	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1152	if (np->n_flag & NFLUSHWANT) {
1153		np->n_flag &= ~NFLUSHWANT;
1154		wakeup(&np->n_flag);
1155	}
1156	return (0);
1157}
1158
1159/*
1160 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1161 * This is mainly to avoid queueing async I/O requests when the nfsiods
1162 * are all hung on a dead server.
1163 *
1164 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1165 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1166 */
1167int
1168nfs_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1169{
1170	int iod;
1171	int gotiod;
1172	int slpflag = 0;
1173	int slptimeo = 0;
1174	int error, error2;
1175
1176	/*
1177	 * Commits are usually short and sweet so lets save some cpu and
1178	 * leave the async daemons for more important rpc's (such as reads
1179	 * and writes).
1180	 */
1181	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1182	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1183		return(EIO);
1184	}
1185
1186again:
1187	if (nmp->nm_flag & NFSMNT_INT)
1188		slpflag = PCATCH;
1189	gotiod = FALSE;
1190
1191	/*
1192	 * Find a free iod to process this request.
1193	 */
1194	for (iod = 0; iod < nfs_numasync; iod++)
1195		if (nfs_iodwant[iod]) {
1196			gotiod = TRUE;
1197			break;
1198		}
1199
1200	/*
1201	 * Try to create one if none are free.
1202	 */
1203	if (!gotiod) {
1204		iod = nfs_nfsiodnew();
1205		if (iod != -1)
1206			gotiod = TRUE;
1207	}
1208
1209	if (gotiod) {
1210		/*
1211		 * Found one, so wake it up and tell it which
1212		 * mount to process.
1213		 */
1214		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1215		    iod, nmp));
1216		nfs_iodwant[iod] = NULL;
1217		nfs_iodmount[iod] = nmp;
1218		nmp->nm_bufqiods++;
1219		wakeup(&nfs_iodwant[iod]);
1220	}
1221
1222	/*
1223	 * If none are free, we may already have an iod working on this mount
1224	 * point.  If so, it will process our request.
1225	 */
1226	if (!gotiod) {
1227		if (nmp->nm_bufqiods > 0) {
1228			NFS_DPF(ASYNCIO,
1229				("nfs_asyncio: %d iods are already processing mount %p\n",
1230				 nmp->nm_bufqiods, nmp));
1231			gotiod = TRUE;
1232		}
1233	}
1234
1235	/*
1236	 * If we have an iod which can process the request, then queue
1237	 * the buffer.
1238	 */
1239	if (gotiod) {
1240		/*
1241		 * Ensure that the queue never grows too large.  We still want
1242		 * to asynchronize so we block rather then return EIO.
1243		 */
1244		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1245			NFS_DPF(ASYNCIO,
1246				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1247			nmp->nm_bufqwant = TRUE;
1248			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1249				       "nfsaio", slptimeo);
1250			if (error) {
1251				error2 = nfs_sigintr(nmp, NULL, td);
1252				if (error2)
1253					return (error2);
1254				if (slpflag == PCATCH) {
1255					slpflag = 0;
1256					slptimeo = 2 * hz;
1257				}
1258			}
1259			/*
1260			 * We might have lost our iod while sleeping,
1261			 * so check and loop if nescessary.
1262			 */
1263			if (nmp->nm_bufqiods == 0) {
1264				NFS_DPF(ASYNCIO,
1265					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1266				goto again;
1267			}
1268		}
1269
1270		if (bp->b_iocmd == BIO_READ) {
1271			if (bp->b_rcred == NOCRED && cred != NOCRED)
1272				bp->b_rcred = crhold(cred);
1273		} else {
1274			if (bp->b_wcred == NOCRED && cred != NOCRED)
1275				bp->b_wcred = crhold(cred);
1276		}
1277
1278		BUF_KERNPROC(bp);
1279		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1280		nmp->nm_bufqlen++;
1281		return (0);
1282	}
1283
1284	/*
1285	 * All the iods are busy on other mounts, so return EIO to
1286	 * force the caller to process the i/o synchronously.
1287	 */
1288	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1289	return (EIO);
1290}
1291
1292/*
1293 * Do an I/O operation to/from a cache block. This may be called
1294 * synchronously or from an nfsiod.
1295 */
1296int
1297nfs_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td)
1298{
1299	struct uio *uiop;
1300	struct nfsnode *np;
1301	struct nfsmount *nmp;
1302	int error = 0, iomode, must_commit = 0;
1303	struct uio uio;
1304	struct iovec io;
1305	struct proc *p = td ? td->td_proc : NULL;
1306
1307	np = VTONFS(vp);
1308	nmp = VFSTONFS(vp->v_mount);
1309	uiop = &uio;
1310	uiop->uio_iov = &io;
1311	uiop->uio_iovcnt = 1;
1312	uiop->uio_segflg = UIO_SYSSPACE;
1313	uiop->uio_td = td;
1314
1315	/*
1316	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1317	 * do this here so we do not have to do it in all the code that
1318	 * calls us.
1319	 */
1320	bp->b_flags &= ~B_INVAL;
1321	bp->b_ioflags &= ~BIO_ERROR;
1322
1323	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1324
1325	if (bp->b_iocmd == BIO_READ) {
1326	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1327	    io.iov_base = bp->b_data;
1328	    uiop->uio_rw = UIO_READ;
1329
1330	    switch (vp->v_type) {
1331	    case VREG:
1332		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1333		nfsstats.read_bios++;
1334		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1335
1336		if (!error) {
1337		    if (uiop->uio_resid) {
1338			/*
1339			 * If we had a short read with no error, we must have
1340			 * hit a file hole.  We should zero-fill the remainder.
1341			 * This can also occur if the server hits the file EOF.
1342			 *
1343			 * Holes used to be able to occur due to pending
1344			 * writes, but that is not possible any longer.
1345			 */
1346			int nread = bp->b_bcount - uiop->uio_resid;
1347			int left  = uiop->uio_resid;
1348
1349			if (left > 0)
1350				bzero((char *)bp->b_data + nread, left);
1351			uiop->uio_resid = 0;
1352		    }
1353		}
1354		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1355		if (p && (vp->v_vflag & VV_TEXT) &&
1356			(np->n_mtime != np->n_vattr.va_mtime.tv_sec)) {
1357			PROC_LOCK(p);
1358			killproc(p, "text file modification");
1359			PROC_UNLOCK(p);
1360		}
1361		break;
1362	    case VLNK:
1363		uiop->uio_offset = (off_t)0;
1364		nfsstats.readlink_bios++;
1365		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1366		break;
1367	    case VDIR:
1368		nfsstats.readdir_bios++;
1369		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1370		if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
1371			error = nfs4_readdirrpc(vp, uiop, cr);
1372		else {
1373			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1374				error = nfs_readdirplusrpc(vp, uiop, cr);
1375				if (error == NFSERR_NOTSUPP)
1376					nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1377			}
1378			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1379				error = nfs_readdirrpc(vp, uiop, cr);
1380		}
1381		/*
1382		 * end-of-directory sets B_INVAL but does not generate an
1383		 * error.
1384		 */
1385		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1386			bp->b_flags |= B_INVAL;
1387		break;
1388	    default:
1389		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1390		break;
1391	    };
1392	    if (error) {
1393		bp->b_ioflags |= BIO_ERROR;
1394		bp->b_error = error;
1395	    }
1396	} else {
1397	    /*
1398	     * If we only need to commit, try to commit
1399	     */
1400	    if (bp->b_flags & B_NEEDCOMMIT) {
1401		    int retv;
1402		    off_t off;
1403
1404		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1405		    retv = (nmp->nm_rpcops->nr_commit)(
1406				bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1407				bp->b_wcred, td);
1408		    if (retv == 0) {
1409			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1410			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1411			    bp->b_resid = 0;
1412			    bufdone(bp);
1413			    return (0);
1414		    }
1415		    if (retv == NFSERR_STALEWRITEVERF) {
1416			    nfs_clearcommit(bp->b_vp->v_mount);
1417		    }
1418	    }
1419
1420	    /*
1421	     * Setup for actual write
1422	     */
1423
1424	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1425		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1426
1427	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1428		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1429		    - bp->b_dirtyoff;
1430		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1431		    + bp->b_dirtyoff;
1432		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1433		uiop->uio_rw = UIO_WRITE;
1434		nfsstats.write_bios++;
1435
1436		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1437		    iomode = NFSV3WRITE_UNSTABLE;
1438		else
1439		    iomode = NFSV3WRITE_FILESYNC;
1440
1441		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1442
1443		/*
1444		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1445		 * to cluster the buffers needing commit.  This will allow
1446		 * the system to submit a single commit rpc for the whole
1447		 * cluster.  We can do this even if the buffer is not 100%
1448		 * dirty (relative to the NFS blocksize), so we optimize the
1449		 * append-to-file-case.
1450		 *
1451		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1452		 * cleared because write clustering only works for commit
1453		 * rpc's, not for the data portion of the write).
1454		 */
1455
1456		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1457		    bp->b_flags |= B_NEEDCOMMIT;
1458		    if (bp->b_dirtyoff == 0
1459			&& bp->b_dirtyend == bp->b_bcount)
1460			bp->b_flags |= B_CLUSTEROK;
1461		} else {
1462		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1463		}
1464
1465		/*
1466		 * For an interrupted write, the buffer is still valid
1467		 * and the write hasn't been pushed to the server yet,
1468		 * so we can't set BIO_ERROR and report the interruption
1469		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1470		 * is not relevant, so the rpc attempt is essentially
1471		 * a noop.  For the case of a V3 write rpc not being
1472		 * committed to stable storage, the block is still
1473		 * dirty and requires either a commit rpc or another
1474		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1475		 * the block is reused. This is indicated by setting
1476		 * the B_DELWRI and B_NEEDCOMMIT flags.
1477		 *
1478		 * If the buffer is marked B_PAGING, it does not reside on
1479		 * the vp's paging queues so we cannot call bdirty().  The
1480		 * bp in this case is not an NFS cache block so we should
1481		 * be safe. XXX
1482		 */
1483    		if (error == EINTR || error == EIO
1484		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1485			int s;
1486
1487			s = splbio();
1488			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1489			if ((bp->b_flags & B_PAGING) == 0) {
1490			    bdirty(bp);
1491			    bp->b_flags &= ~B_DONE;
1492			}
1493			if (error && (bp->b_flags & B_ASYNC) == 0)
1494			    bp->b_flags |= B_EINTR;
1495			splx(s);
1496	    	} else {
1497		    if (error) {
1498			bp->b_ioflags |= BIO_ERROR;
1499			bp->b_error = np->n_error = error;
1500			np->n_flag |= NWRITEERR;
1501		    }
1502		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1503		}
1504	    } else {
1505		bp->b_resid = 0;
1506		bufdone(bp);
1507		return (0);
1508	    }
1509	}
1510	bp->b_resid = uiop->uio_resid;
1511	if (must_commit)
1512	    nfs_clearcommit(vp->v_mount);
1513	bufdone(bp);
1514	return (error);
1515}
1516
1517/*
1518 * Used to aid in handling ftruncate() operations on the NFS client side.
1519 * Truncation creates a number of special problems for NFS.  We have to
1520 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1521 * we have to properly handle VM pages or (potentially dirty) buffers
1522 * that straddle the truncation point.
1523 */
1524
1525int
1526nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1527{
1528	struct nfsnode *np = VTONFS(vp);
1529	u_quad_t tsize = np->n_size;
1530	int biosize = vp->v_mount->mnt_stat.f_iosize;
1531	int error = 0;
1532
1533	np->n_size = nsize;
1534
1535	if (np->n_size < tsize) {
1536		struct buf *bp;
1537		daddr_t lbn;
1538		int bufsize;
1539
1540		/*
1541		 * vtruncbuf() doesn't get the buffer overlapping the
1542		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1543		 * buffer that now needs to be truncated.
1544		 */
1545		error = vtruncbuf(vp, cred, td, nsize, biosize);
1546		lbn = nsize / biosize;
1547		bufsize = nsize & (biosize - 1);
1548		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1549		if (bp->b_dirtyoff > bp->b_bcount)
1550			bp->b_dirtyoff = bp->b_bcount;
1551		if (bp->b_dirtyend > bp->b_bcount)
1552			bp->b_dirtyend = bp->b_bcount;
1553		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1554		brelse(bp);
1555	} else {
1556		vnode_pager_setsize(vp, nsize);
1557	}
1558	return(error);
1559}
1560
1561