nfs_bio.c revision 122953
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 122953 2003-11-22 02:21:49Z alfred $");
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bio.h>
45#include <sys/buf.h>
46#include <sys/kernel.h>
47#include <sys/mount.h>
48#include <sys/proc.h>
49#include <sys/resourcevar.h>
50#include <sys/signalvar.h>
51#include <sys/vmmeter.h>
52#include <sys/vnode.h>
53
54#include <vm/vm.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_page.h>
57#include <vm/vm_object.h>
58#include <vm/vm_pager.h>
59#include <vm/vnode_pager.h>
60
61#include <rpc/rpcclnt.h>
62
63#include <nfs/rpcv2.h>
64#include <nfs/nfsproto.h>
65#include <nfsclient/nfs.h>
66#include <nfsclient/nfsmount.h>
67#include <nfsclient/nfsnode.h>
68
69#include <nfs4client/nfs4.h>
70
71/*
72 * Just call nfs_writebp() with the force argument set to 1.
73 *
74 * NOTE: B_DONE may or may not be set in a_bp on call.
75 */
76static int
77nfs4_bwrite(struct buf *bp)
78{
79
80	return (nfs4_writebp(bp, 1, curthread));
81}
82
83static int
84nfs_bwrite(struct buf *bp)
85{
86
87	return (nfs_writebp(bp, 1, curthread));
88}
89
90struct buf_ops buf_ops_nfs4 = {
91	"buf_ops_nfs4",
92	nfs4_bwrite
93};
94
95struct buf_ops buf_ops_nfs = {
96	"buf_ops_nfs",
97	nfs_bwrite
98};
99
100static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
101		    struct thread *td);
102
103/*
104 * Vnode op for VM getpages.
105 */
106int
107nfs_getpages(struct vop_getpages_args *ap)
108{
109	int i, error, nextoff, size, toff, count, npages;
110	struct uio uio;
111	struct iovec iov;
112	vm_offset_t kva;
113	struct buf *bp;
114	struct vnode *vp;
115	struct thread *td;
116	struct ucred *cred;
117	struct nfsmount *nmp;
118	vm_object_t object;
119	vm_page_t *pages;
120
121	GIANT_REQUIRED;
122
123	vp = ap->a_vp;
124	td = curthread;				/* XXX */
125	cred = curthread->td_ucred;		/* XXX */
126	nmp = VFSTONFS(vp->v_mount);
127	pages = ap->a_m;
128	count = ap->a_count;
129
130	if ((object = vp->v_object) == NULL) {
131		printf("nfs_getpages: called with non-merged cache vnode??\n");
132		return VM_PAGER_ERROR;
133	}
134
135	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
136	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
137		/* We'll never get here for v4, because we always have fsinfo */
138		(void)nfs_fsinfo(nmp, vp, cred, td);
139	}
140
141	npages = btoc(count);
142
143	/*
144	 * If the requested page is partially valid, just return it and
145	 * allow the pager to zero-out the blanks.  Partially valid pages
146	 * can only occur at the file EOF.
147	 */
148
149	{
150		vm_page_t m = pages[ap->a_reqpage];
151
152		VM_OBJECT_LOCK(object);
153		vm_page_lock_queues();
154		if (m->valid != 0) {
155			/* handled by vm_fault now	  */
156			/* vm_page_zero_invalid(m, TRUE); */
157			for (i = 0; i < npages; ++i) {
158				if (i != ap->a_reqpage)
159					vm_page_free(pages[i]);
160			}
161			vm_page_unlock_queues();
162			VM_OBJECT_UNLOCK(object);
163			return(0);
164		}
165		vm_page_unlock_queues();
166		VM_OBJECT_UNLOCK(object);
167	}
168
169	/*
170	 * We use only the kva address for the buffer, but this is extremely
171	 * convienient and fast.
172	 */
173	bp = getpbuf(&nfs_pbuf_freecnt);
174
175	kva = (vm_offset_t) bp->b_data;
176	pmap_qenter(kva, pages, npages);
177	cnt.v_vnodein++;
178	cnt.v_vnodepgsin += npages;
179
180	iov.iov_base = (caddr_t) kva;
181	iov.iov_len = count;
182	uio.uio_iov = &iov;
183	uio.uio_iovcnt = 1;
184	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
185	uio.uio_resid = count;
186	uio.uio_segflg = UIO_SYSSPACE;
187	uio.uio_rw = UIO_READ;
188	uio.uio_td = td;
189
190	error = (nmp->nm_rpcops->nr_readrpc)(vp, &uio, cred);
191	pmap_qremove(kva, npages);
192
193	relpbuf(bp, &nfs_pbuf_freecnt);
194
195	if (error && (uio.uio_resid == count)) {
196		printf("nfs_getpages: error %d\n", error);
197		VM_OBJECT_LOCK(object);
198		vm_page_lock_queues();
199		for (i = 0; i < npages; ++i) {
200			if (i != ap->a_reqpage)
201				vm_page_free(pages[i]);
202		}
203		vm_page_unlock_queues();
204		VM_OBJECT_UNLOCK(object);
205		return VM_PAGER_ERROR;
206	}
207
208	/*
209	 * Calculate the number of bytes read and validate only that number
210	 * of bytes.  Note that due to pending writes, size may be 0.  This
211	 * does not mean that the remaining data is invalid!
212	 */
213
214	size = count - uio.uio_resid;
215	VM_OBJECT_LOCK(object);
216	vm_page_lock_queues();
217	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
218		vm_page_t m;
219		nextoff = toff + PAGE_SIZE;
220		m = pages[i];
221
222		m->flags &= ~PG_ZERO;
223
224		if (nextoff <= size) {
225			/*
226			 * Read operation filled an entire page
227			 */
228			m->valid = VM_PAGE_BITS_ALL;
229			vm_page_undirty(m);
230		} else if (size > toff) {
231			/*
232			 * Read operation filled a partial page.
233			 */
234			m->valid = 0;
235			vm_page_set_validclean(m, 0, size - toff);
236			/* handled by vm_fault now	  */
237			/* vm_page_zero_invalid(m, TRUE); */
238		} else {
239			/*
240			 * Read operation was short.  If no error occured
241			 * we may have hit a zero-fill section.   We simply
242			 * leave valid set to 0.
243			 */
244			;
245		}
246		if (i != ap->a_reqpage) {
247			/*
248			 * Whether or not to leave the page activated is up in
249			 * the air, but we should put the page on a page queue
250			 * somewhere (it already is in the object).  Result:
251			 * It appears that emperical results show that
252			 * deactivating pages is best.
253			 */
254
255			/*
256			 * Just in case someone was asking for this page we
257			 * now tell them that it is ok to use.
258			 */
259			if (!error) {
260				if (m->flags & PG_WANTED)
261					vm_page_activate(m);
262				else
263					vm_page_deactivate(m);
264				vm_page_wakeup(m);
265			} else {
266				vm_page_free(m);
267			}
268		}
269	}
270	vm_page_unlock_queues();
271	VM_OBJECT_UNLOCK(object);
272	return 0;
273}
274
275/*
276 * Vnode op for VM putpages.
277 */
278int
279nfs_putpages(struct vop_putpages_args *ap)
280{
281	struct uio uio;
282	struct iovec iov;
283	vm_offset_t kva;
284	struct buf *bp;
285	int iomode, must_commit, i, error, npages, count;
286	off_t offset;
287	int *rtvals;
288	struct vnode *vp;
289	struct thread *td;
290	struct ucred *cred;
291	struct nfsmount *nmp;
292	struct nfsnode *np;
293	vm_page_t *pages;
294
295	GIANT_REQUIRED;
296
297	vp = ap->a_vp;
298	np = VTONFS(vp);
299	td = curthread;				/* XXX */
300	cred = curthread->td_ucred;		/* XXX */
301	nmp = VFSTONFS(vp->v_mount);
302	pages = ap->a_m;
303	count = ap->a_count;
304	rtvals = ap->a_rtvals;
305	npages = btoc(count);
306	offset = IDX_TO_OFF(pages[0]->pindex);
307
308	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
309	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
310		(void)nfs_fsinfo(nmp, vp, cred, td);
311	}
312
313	for (i = 0; i < npages; i++)
314		rtvals[i] = VM_PAGER_AGAIN;
315
316	/*
317	 * When putting pages, do not extend file past EOF.
318	 */
319
320	if (offset + count > np->n_size) {
321		count = np->n_size - offset;
322		if (count < 0)
323			count = 0;
324	}
325
326	/*
327	 * We use only the kva address for the buffer, but this is extremely
328	 * convienient and fast.
329	 */
330	bp = getpbuf(&nfs_pbuf_freecnt);
331
332	kva = (vm_offset_t) bp->b_data;
333	pmap_qenter(kva, pages, npages);
334	cnt.v_vnodeout++;
335	cnt.v_vnodepgsout += count;
336
337	iov.iov_base = (caddr_t) kva;
338	iov.iov_len = count;
339	uio.uio_iov = &iov;
340	uio.uio_iovcnt = 1;
341	uio.uio_offset = offset;
342	uio.uio_resid = count;
343	uio.uio_segflg = UIO_SYSSPACE;
344	uio.uio_rw = UIO_WRITE;
345	uio.uio_td = td;
346
347	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
348	    iomode = NFSV3WRITE_UNSTABLE;
349	else
350	    iomode = NFSV3WRITE_FILESYNC;
351
352	error = (nmp->nm_rpcops->nr_writerpc)(vp, &uio, cred, &iomode, &must_commit);
353
354	pmap_qremove(kva, npages);
355	relpbuf(bp, &nfs_pbuf_freecnt);
356
357	if (!error) {
358		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
359		for (i = 0; i < nwritten; i++) {
360			rtvals[i] = VM_PAGER_OK;
361			vm_page_undirty(pages[i]);
362		}
363		if (must_commit) {
364			nfs_clearcommit(vp->v_mount);
365		}
366	}
367	return rtvals[0];
368}
369
370/*
371 * Vnode op for read using bio
372 */
373int
374nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
375{
376	struct nfsnode *np = VTONFS(vp);
377	int biosize, i;
378	struct buf *bp = 0, *rabp;
379	struct vattr vattr;
380	struct thread *td;
381	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
382	daddr_t lbn, rabn;
383	int bcount;
384	int seqcount;
385	int nra, error = 0, n = 0, on = 0;
386
387#ifdef DIAGNOSTIC
388	if (uio->uio_rw != UIO_READ)
389		panic("nfs_read mode");
390#endif
391	if (uio->uio_resid == 0)
392		return (0);
393	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
394		return (EINVAL);
395	td = uio->uio_td;
396
397	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
398	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
399		(void)nfs_fsinfo(nmp, vp, cred, td);
400	if (vp->v_type != VDIR &&
401	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
402		return (EFBIG);
403	biosize = vp->v_mount->mnt_stat.f_iosize;
404	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
405	/*
406	 * For nfs, cache consistency can only be maintained approximately.
407	 * Although RFC1094 does not specify the criteria, the following is
408	 * believed to be compatible with the reference port.
409	 * For nfs:
410	 * If the file's modify time on the server has changed since the
411	 * last read rpc or you have written to the file,
412	 * you may have lost data cache consistency with the
413	 * server, so flush all of the file's data out of the cache.
414	 * Then force a getattr rpc to ensure that you have up to date
415	 * attributes.
416	 * NB: This implies that cache data can be read when up to
417	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
418	 * attributes this could be forced by setting n_attrstamp to 0 before
419	 * the VOP_GETATTR() call.
420	 */
421	if (np->n_flag & NMODIFIED) {
422		if (vp->v_type != VREG) {
423			if (vp->v_type != VDIR)
424				panic("nfs: bioread, not dir");
425			(nmp->nm_rpcops->nr_invaldir)(vp);
426			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
427			if (error)
428				return (error);
429		}
430		np->n_attrstamp = 0;
431		error = VOP_GETATTR(vp, &vattr, cred, td);
432		if (error)
433			return (error);
434		np->n_mtime = vattr.va_mtime.tv_sec;
435	} else {
436		error = VOP_GETATTR(vp, &vattr, cred, td);
437		if (error)
438			return (error);
439		if (np->n_mtime != vattr.va_mtime.tv_sec) {
440			if (vp->v_type == VDIR)
441				(nmp->nm_rpcops->nr_invaldir)(vp);
442			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
443			if (error)
444				return (error);
445			np->n_mtime = vattr.va_mtime.tv_sec;
446		}
447	}
448	do {
449	    switch (vp->v_type) {
450	    case VREG:
451		nfsstats.biocache_reads++;
452		lbn = uio->uio_offset / biosize;
453		on = uio->uio_offset & (biosize - 1);
454
455		/*
456		 * Start the read ahead(s), as required.
457		 */
458		if (nmp->nm_readahead > 0) {
459		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
460			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
461			rabn = lbn + 1 + nra;
462			if (incore(vp, rabn) == NULL) {
463			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
464			    if (!rabp)
465				return (EINTR);
466			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
467				rabp->b_flags |= B_ASYNC;
468				rabp->b_iocmd = BIO_READ;
469				vfs_busy_pages(rabp, 0);
470				if (nfs_asyncio(rabp, cred, td)) {
471				    rabp->b_flags |= B_INVAL;
472				    rabp->b_ioflags |= BIO_ERROR;
473				    vfs_unbusy_pages(rabp);
474				    brelse(rabp);
475				    break;
476				}
477			    } else {
478				brelse(rabp);
479			    }
480			}
481		    }
482		}
483
484		/*
485		 * Obtain the buffer cache block.  Figure out the buffer size
486		 * when we are at EOF.  If we are modifying the size of the
487		 * buffer based on an EOF condition we need to hold
488		 * nfs_rslock() through obtaining the buffer to prevent
489		 * a potential writer-appender from messing with n_size.
490		 * Otherwise we may accidently truncate the buffer and
491		 * lose dirty data.
492		 *
493		 * Note that bcount is *not* DEV_BSIZE aligned.
494		 */
495
496again:
497		bcount = biosize;
498		if ((off_t)lbn * biosize >= np->n_size) {
499			bcount = 0;
500		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
501			bcount = np->n_size - (off_t)lbn * biosize;
502		}
503		if (bcount != biosize) {
504			switch(nfs_rslock(np, td)) {
505			case ENOLCK:
506				goto again;
507				/* not reached */
508			case EINTR:
509			case ERESTART:
510				return(EINTR);
511				/* not reached */
512			default:
513				break;
514			}
515		}
516
517		bp = nfs_getcacheblk(vp, lbn, bcount, td);
518
519		if (bcount != biosize)
520			nfs_rsunlock(np, td);
521		if (!bp)
522			return (EINTR);
523
524		/*
525		 * If B_CACHE is not set, we must issue the read.  If this
526		 * fails, we return an error.
527		 */
528
529		if ((bp->b_flags & B_CACHE) == 0) {
530		    bp->b_iocmd = BIO_READ;
531		    vfs_busy_pages(bp, 0);
532		    error = nfs_doio(bp, cred, td);
533		    if (error) {
534			brelse(bp);
535			return (error);
536		    }
537		}
538
539		/*
540		 * on is the offset into the current bp.  Figure out how many
541		 * bytes we can copy out of the bp.  Note that bcount is
542		 * NOT DEV_BSIZE aligned.
543		 *
544		 * Then figure out how many bytes we can copy into the uio.
545		 */
546
547		n = 0;
548		if (on < bcount)
549			n = min((unsigned)(bcount - on), uio->uio_resid);
550		break;
551	    case VLNK:
552		nfsstats.biocache_readlinks++;
553		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
554		if (!bp)
555			return (EINTR);
556		if ((bp->b_flags & B_CACHE) == 0) {
557		    bp->b_iocmd = BIO_READ;
558		    vfs_busy_pages(bp, 0);
559		    error = nfs_doio(bp, cred, td);
560		    if (error) {
561			bp->b_ioflags |= BIO_ERROR;
562			brelse(bp);
563			return (error);
564		    }
565		}
566		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
567		on = 0;
568		break;
569	    case VDIR:
570		nfsstats.biocache_readdirs++;
571		if (np->n_direofoffset
572		    && uio->uio_offset >= np->n_direofoffset) {
573		    return (0);
574		}
575		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
576		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
577		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
578		if (!bp)
579		    return (EINTR);
580		if ((bp->b_flags & B_CACHE) == 0) {
581		    bp->b_iocmd = BIO_READ;
582		    vfs_busy_pages(bp, 0);
583		    error = nfs_doio(bp, cred, td);
584		    if (error) {
585			    brelse(bp);
586		    }
587		    while (error == NFSERR_BAD_COOKIE) {
588			printf("got bad cookie vp %p bp %p\n", vp, bp);
589			(nmp->nm_rpcops->nr_invaldir)(vp);
590			error = nfs_vinvalbuf(vp, 0, cred, td, 1);
591			/*
592			 * Yuck! The directory has been modified on the
593			 * server. The only way to get the block is by
594			 * reading from the beginning to get all the
595			 * offset cookies.
596			 *
597			 * Leave the last bp intact unless there is an error.
598			 * Loop back up to the while if the error is another
599			 * NFSERR_BAD_COOKIE (double yuch!).
600			 */
601			for (i = 0; i <= lbn && !error; i++) {
602			    if (np->n_direofoffset
603				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
604				    return (0);
605			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
606			    if (!bp)
607				return (EINTR);
608			    if ((bp->b_flags & B_CACHE) == 0) {
609				    bp->b_iocmd = BIO_READ;
610				    vfs_busy_pages(bp, 0);
611				    error = nfs_doio(bp, cred, td);
612				    /*
613				     * no error + B_INVAL == directory EOF,
614				     * use the block.
615				     */
616				    if (error == 0 && (bp->b_flags & B_INVAL))
617					    break;
618			    }
619			    /*
620			     * An error will throw away the block and the
621			     * for loop will break out.  If no error and this
622			     * is not the block we want, we throw away the
623			     * block and go for the next one via the for loop.
624			     */
625			    if (error || i < lbn)
626				    brelse(bp);
627			}
628		    }
629		    /*
630		     * The above while is repeated if we hit another cookie
631		     * error.  If we hit an error and it wasn't a cookie error,
632		     * we give up.
633		     */
634		    if (error)
635			    return (error);
636		}
637
638		/*
639		 * If not eof and read aheads are enabled, start one.
640		 * (You need the current block first, so that you have the
641		 *  directory offset cookie of the next block.)
642		 */
643		if (nmp->nm_readahead > 0 &&
644		    (bp->b_flags & B_INVAL) == 0 &&
645		    (np->n_direofoffset == 0 ||
646		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
647		    incore(vp, lbn + 1) == NULL) {
648			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
649			if (rabp) {
650			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
651				rabp->b_flags |= B_ASYNC;
652				rabp->b_iocmd = BIO_READ;
653				vfs_busy_pages(rabp, 0);
654				if (nfs_asyncio(rabp, cred, td)) {
655				    rabp->b_flags |= B_INVAL;
656				    rabp->b_ioflags |= BIO_ERROR;
657				    vfs_unbusy_pages(rabp);
658				    brelse(rabp);
659				}
660			    } else {
661				brelse(rabp);
662			    }
663			}
664		}
665		/*
666		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
667		 * chopped for the EOF condition, we cannot tell how large
668		 * NFS directories are going to be until we hit EOF.  So
669		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
670		 * it just so happens that b_resid will effectively chop it
671		 * to EOF.  *BUT* this information is lost if the buffer goes
672		 * away and is reconstituted into a B_CACHE state ( due to
673		 * being VMIO ) later.  So we keep track of the directory eof
674		 * in np->n_direofoffset and chop it off as an extra step
675		 * right here.
676		 */
677		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
678		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
679			n = np->n_direofoffset - uio->uio_offset;
680		break;
681	    default:
682		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
683		break;
684	    };
685
686	    if (n > 0) {
687		    error = uiomove(bp->b_data + on, (int)n, uio);
688	    }
689	    switch (vp->v_type) {
690	    case VREG:
691		break;
692	    case VLNK:
693		n = 0;
694		break;
695	    case VDIR:
696		break;
697	    default:
698		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
699	    }
700	    brelse(bp);
701	} while (error == 0 && uio->uio_resid > 0 && n > 0);
702	return (error);
703}
704
705/*
706 * Vnode op for write using bio
707 */
708int
709nfs_write(struct vop_write_args *ap)
710{
711	int biosize;
712	struct uio *uio = ap->a_uio;
713	struct thread *td = uio->uio_td;
714	struct vnode *vp = ap->a_vp;
715	struct nfsnode *np = VTONFS(vp);
716	struct ucred *cred = ap->a_cred;
717	int ioflag = ap->a_ioflag;
718	struct buf *bp;
719	struct vattr vattr;
720	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
721	daddr_t lbn;
722	int bcount;
723	int n, on, error = 0;
724	int haverslock = 0;
725	struct proc *p = td?td->td_proc:NULL;
726
727	GIANT_REQUIRED;
728
729#ifdef DIAGNOSTIC
730	if (uio->uio_rw != UIO_WRITE)
731		panic("nfs_write mode");
732	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
733		panic("nfs_write proc");
734#endif
735	if (vp->v_type != VREG)
736		return (EIO);
737	if (np->n_flag & NWRITEERR) {
738		np->n_flag &= ~NWRITEERR;
739		return (np->n_error);
740	}
741	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
742	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
743		(void)nfs_fsinfo(nmp, vp, cred, td);
744
745	/*
746	 * Synchronously flush pending buffers if we are in synchronous
747	 * mode or if we are appending.
748	 */
749	if (ioflag & (IO_APPEND | IO_SYNC)) {
750		if (np->n_flag & NMODIFIED) {
751			np->n_attrstamp = 0;
752			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
753			if (error)
754				return (error);
755		}
756	}
757
758	/*
759	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
760	 * get the append lock.
761	 */
762restart:
763	if (ioflag & IO_APPEND) {
764		np->n_attrstamp = 0;
765		error = VOP_GETATTR(vp, &vattr, cred, td);
766		if (error)
767			return (error);
768		uio->uio_offset = np->n_size;
769	}
770
771	if (uio->uio_offset < 0)
772		return (EINVAL);
773	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
774		return (EFBIG);
775	if (uio->uio_resid == 0)
776		return (0);
777
778	/*
779	 * We need to obtain the rslock if we intend to modify np->n_size
780	 * in order to guarentee the append point with multiple contending
781	 * writers, to guarentee that no other appenders modify n_size
782	 * while we are trying to obtain a truncated buffer (i.e. to avoid
783	 * accidently truncating data written by another appender due to
784	 * the race), and to ensure that the buffer is populated prior to
785	 * our extending of the file.  We hold rslock through the entire
786	 * operation.
787	 *
788	 * Note that we do not synchronize the case where someone truncates
789	 * the file while we are appending to it because attempting to lock
790	 * this case may deadlock other parts of the system unexpectedly.
791	 */
792	if ((ioflag & IO_APPEND) ||
793	    uio->uio_offset + uio->uio_resid > np->n_size) {
794		switch(nfs_rslock(np, td)) {
795		case ENOLCK:
796			goto restart;
797			/* not reached */
798		case EINTR:
799		case ERESTART:
800			return(EINTR);
801			/* not reached */
802		default:
803			break;
804		}
805		haverslock = 1;
806	}
807
808	/*
809	 * Maybe this should be above the vnode op call, but so long as
810	 * file servers have no limits, i don't think it matters
811	 */
812	if (p && uio->uio_offset + uio->uio_resid >
813	      p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
814		PROC_LOCK(p);
815		psignal(p, SIGXFSZ);
816		PROC_UNLOCK(p);
817		if (haverslock)
818			nfs_rsunlock(np, td);
819		return (EFBIG);
820	}
821
822	biosize = vp->v_mount->mnt_stat.f_iosize;
823
824	do {
825		nfsstats.biocache_writes++;
826		lbn = uio->uio_offset / biosize;
827		on = uio->uio_offset & (biosize-1);
828		n = min((unsigned)(biosize - on), uio->uio_resid);
829again:
830		/*
831		 * Handle direct append and file extension cases, calculate
832		 * unaligned buffer size.
833		 */
834
835		if (uio->uio_offset == np->n_size && n) {
836			/*
837			 * Get the buffer (in its pre-append state to maintain
838			 * B_CACHE if it was previously set).  Resize the
839			 * nfsnode after we have locked the buffer to prevent
840			 * readers from reading garbage.
841			 */
842			bcount = on;
843			bp = nfs_getcacheblk(vp, lbn, bcount, td);
844
845			if (bp != NULL) {
846				long save;
847
848				np->n_size = uio->uio_offset + n;
849				np->n_flag |= NMODIFIED;
850				vnode_pager_setsize(vp, np->n_size);
851
852				save = bp->b_flags & B_CACHE;
853				bcount += n;
854				allocbuf(bp, bcount);
855				bp->b_flags |= save;
856				bp->b_magic = B_MAGIC_NFS;
857				if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
858					bp->b_op = &buf_ops_nfs4;
859				else
860					bp->b_op = &buf_ops_nfs;
861			}
862		} else {
863			/*
864			 * Obtain the locked cache block first, and then
865			 * adjust the file's size as appropriate.
866			 */
867			bcount = on + n;
868			if ((off_t)lbn * biosize + bcount < np->n_size) {
869				if ((off_t)(lbn + 1) * biosize < np->n_size)
870					bcount = biosize;
871				else
872					bcount = np->n_size - (off_t)lbn * biosize;
873			}
874			bp = nfs_getcacheblk(vp, lbn, bcount, td);
875			if (uio->uio_offset + n > np->n_size) {
876				np->n_size = uio->uio_offset + n;
877				np->n_flag |= NMODIFIED;
878				vnode_pager_setsize(vp, np->n_size);
879			}
880		}
881
882		if (!bp) {
883			error = EINTR;
884			break;
885		}
886
887		/*
888		 * Issue a READ if B_CACHE is not set.  In special-append
889		 * mode, B_CACHE is based on the buffer prior to the write
890		 * op and is typically set, avoiding the read.  If a read
891		 * is required in special append mode, the server will
892		 * probably send us a short-read since we extended the file
893		 * on our end, resulting in b_resid == 0 and, thusly,
894		 * B_CACHE getting set.
895		 *
896		 * We can also avoid issuing the read if the write covers
897		 * the entire buffer.  We have to make sure the buffer state
898		 * is reasonable in this case since we will not be initiating
899		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
900		 * more information.
901		 *
902		 * B_CACHE may also be set due to the buffer being cached
903		 * normally.
904		 */
905
906		if (on == 0 && n == bcount) {
907			bp->b_flags |= B_CACHE;
908			bp->b_flags &= ~B_INVAL;
909			bp->b_ioflags &= ~BIO_ERROR;
910		}
911
912		if ((bp->b_flags & B_CACHE) == 0) {
913			bp->b_iocmd = BIO_READ;
914			vfs_busy_pages(bp, 0);
915			error = nfs_doio(bp, cred, td);
916			if (error) {
917				brelse(bp);
918				break;
919			}
920		}
921		if (!bp) {
922			error = EINTR;
923			break;
924		}
925		if (bp->b_wcred == NOCRED)
926			bp->b_wcred = crhold(cred);
927		np->n_flag |= NMODIFIED;
928
929		/*
930		 * If dirtyend exceeds file size, chop it down.  This should
931		 * not normally occur but there is an append race where it
932		 * might occur XXX, so we log it.
933		 *
934		 * If the chopping creates a reverse-indexed or degenerate
935		 * situation with dirtyoff/end, we 0 both of them.
936		 */
937
938		if (bp->b_dirtyend > bcount) {
939			printf("NFS append race @%lx:%d\n",
940			    (long)bp->b_blkno * DEV_BSIZE,
941			    bp->b_dirtyend - bcount);
942			bp->b_dirtyend = bcount;
943		}
944
945		if (bp->b_dirtyoff >= bp->b_dirtyend)
946			bp->b_dirtyoff = bp->b_dirtyend = 0;
947
948		/*
949		 * If the new write will leave a contiguous dirty
950		 * area, just update the b_dirtyoff and b_dirtyend,
951		 * otherwise force a write rpc of the old dirty area.
952		 *
953		 * While it is possible to merge discontiguous writes due to
954		 * our having a B_CACHE buffer ( and thus valid read data
955		 * for the hole), we don't because it could lead to
956		 * significant cache coherency problems with multiple clients,
957		 * especially if locking is implemented later on.
958		 *
959		 * as an optimization we could theoretically maintain
960		 * a linked list of discontinuous areas, but we would still
961		 * have to commit them separately so there isn't much
962		 * advantage to it except perhaps a bit of asynchronization.
963		 */
964
965		if (bp->b_dirtyend > 0 &&
966		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
967			if (BUF_WRITE(bp) == EINTR) {
968				error = EINTR;
969				break;
970			}
971			goto again;
972		}
973
974		error = uiomove((char *)bp->b_data + on, n, uio);
975
976		/*
977		 * Since this block is being modified, it must be written
978		 * again and not just committed.  Since write clustering does
979		 * not work for the stage 1 data write, only the stage 2
980		 * commit rpc, we have to clear B_CLUSTEROK as well.
981		 */
982		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
983
984		if (error) {
985			bp->b_ioflags |= BIO_ERROR;
986			brelse(bp);
987			break;
988		}
989
990		/*
991		 * Only update dirtyoff/dirtyend if not a degenerate
992		 * condition.
993		 */
994		if (n) {
995			if (bp->b_dirtyend > 0) {
996				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
997				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
998			} else {
999				bp->b_dirtyoff = on;
1000				bp->b_dirtyend = on + n;
1001			}
1002			vfs_bio_set_validclean(bp, on, n);
1003		}
1004
1005		/*
1006		 * If IO_SYNC do bwrite().
1007		 *
1008		 * IO_INVAL appears to be unused.  The idea appears to be
1009		 * to turn off caching in this case.  Very odd.  XXX
1010		 */
1011		if ((ioflag & IO_SYNC)) {
1012			if (ioflag & IO_INVAL)
1013				bp->b_flags |= B_NOCACHE;
1014			error = BUF_WRITE(bp);
1015			if (error)
1016				break;
1017		} else if ((n + on) == biosize) {
1018			bp->b_flags |= B_ASYNC;
1019			(void) (nmp->nm_rpcops->nr_writebp)(bp, 0, 0);
1020		} else {
1021			bdwrite(bp);
1022		}
1023	} while (uio->uio_resid > 0 && n > 0);
1024
1025	if (haverslock)
1026		nfs_rsunlock(np, td);
1027
1028	return (error);
1029}
1030
1031/*
1032 * Get an nfs cache block.
1033 *
1034 * Allocate a new one if the block isn't currently in the cache
1035 * and return the block marked busy. If the calling process is
1036 * interrupted by a signal for an interruptible mount point, return
1037 * NULL.
1038 *
1039 * The caller must carefully deal with the possible B_INVAL state of
1040 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1041 * indirectly), so synchronous reads can be issued without worrying about
1042 * the B_INVAL state.  We have to be a little more careful when dealing
1043 * with writes (see comments in nfs_write()) when extending a file past
1044 * its EOF.
1045 */
1046static struct buf *
1047nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1048{
1049	struct buf *bp;
1050	struct mount *mp;
1051	struct nfsmount *nmp;
1052
1053	mp = vp->v_mount;
1054	nmp = VFSTONFS(mp);
1055
1056	if (nmp->nm_flag & NFSMNT_INT) {
1057		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1058		while (bp == NULL) {
1059			if (nfs_sigintr(nmp, NULL, td))
1060				return (NULL);
1061			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1062		}
1063	} else {
1064		bp = getblk(vp, bn, size, 0, 0, 0);
1065	}
1066
1067	if (vp->v_type == VREG) {
1068		int biosize;
1069
1070		biosize = mp->mnt_stat.f_iosize;
1071		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1072	}
1073	return (bp);
1074}
1075
1076/*
1077 * Flush and invalidate all dirty buffers. If another process is already
1078 * doing the flush, just wait for completion.
1079 */
1080int
1081nfs_vinvalbuf(struct vnode *vp, int flags, struct ucred *cred,
1082    struct thread *td, int intrflg)
1083{
1084	struct nfsnode *np = VTONFS(vp);
1085	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1086	int error = 0, slpflag, slptimeo;
1087
1088	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1089
1090	/*
1091	 * XXX This check stops us from needlessly doing a vinvalbuf when
1092	 * being called through vclean().  It is not clear that this is
1093	 * unsafe.
1094	 */
1095	if (vp->v_iflag & VI_XLOCK)
1096		return (0);
1097
1098	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1099		intrflg = 0;
1100	if (intrflg) {
1101		slpflag = PCATCH;
1102		slptimeo = 2 * hz;
1103	} else {
1104		slpflag = 0;
1105		slptimeo = 0;
1106	}
1107	/*
1108	 * First wait for any other process doing a flush to complete.
1109	 */
1110	while (np->n_flag & NFLUSHINPROG) {
1111		np->n_flag |= NFLUSHWANT;
1112		error = tsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
1113			slptimeo);
1114		if (error && intrflg &&
1115		    nfs_sigintr(nmp, NULL, td))
1116			return (EINTR);
1117	}
1118
1119	/*
1120	 * Now, flush as required.
1121	 */
1122	np->n_flag |= NFLUSHINPROG;
1123	error = vinvalbuf(vp, flags, cred, td, slpflag, 0);
1124	while (error) {
1125		if (intrflg &&
1126		    nfs_sigintr(nmp, NULL, td)) {
1127			np->n_flag &= ~NFLUSHINPROG;
1128			if (np->n_flag & NFLUSHWANT) {
1129				np->n_flag &= ~NFLUSHWANT;
1130				wakeup(&np->n_flag);
1131			}
1132			return (EINTR);
1133		}
1134		error = vinvalbuf(vp, flags, cred, td, 0, slptimeo);
1135	}
1136	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1137	if (np->n_flag & NFLUSHWANT) {
1138		np->n_flag &= ~NFLUSHWANT;
1139		wakeup(&np->n_flag);
1140	}
1141	return (0);
1142}
1143
1144/*
1145 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1146 * This is mainly to avoid queueing async I/O requests when the nfsiods
1147 * are all hung on a dead server.
1148 *
1149 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1150 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1151 */
1152int
1153nfs_asyncio(struct buf *bp, struct ucred *cred, struct thread *td)
1154{
1155	struct nfsmount *nmp;
1156	int iod;
1157	int gotiod;
1158	int slpflag = 0;
1159	int slptimeo = 0;
1160	int error;
1161
1162	nmp = VFSTONFS(bp->b_vp->v_mount);
1163
1164	/*
1165	 * Commits are usually short and sweet so lets save some cpu and
1166	 * leave the async daemons for more important rpc's (such as reads
1167	 * and writes).
1168	 */
1169	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1170	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1171		return(EIO);
1172	}
1173
1174again:
1175	if (nmp->nm_flag & NFSMNT_INT)
1176		slpflag = PCATCH;
1177	gotiod = FALSE;
1178
1179	/*
1180	 * Find a free iod to process this request.
1181	 */
1182	for (iod = 0; iod < nfs_numasync; iod++)
1183		if (nfs_iodwant[iod]) {
1184			gotiod = TRUE;
1185			break;
1186		}
1187
1188	/*
1189	 * Try to create one if none are free.
1190	 */
1191	if (!gotiod) {
1192		iod = nfs_nfsiodnew();
1193		if (iod != -1)
1194			gotiod = TRUE;
1195	}
1196
1197	if (gotiod) {
1198		/*
1199		 * Found one, so wake it up and tell it which
1200		 * mount to process.
1201		 */
1202		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1203		    iod, nmp));
1204		nfs_iodwant[iod] = NULL;
1205		nfs_iodmount[iod] = nmp;
1206		nmp->nm_bufqiods++;
1207		wakeup(&nfs_iodwant[iod]);
1208	}
1209
1210	/*
1211	 * If none are free, we may already have an iod working on this mount
1212	 * point.  If so, it will process our request.
1213	 */
1214	if (!gotiod) {
1215		if (nmp->nm_bufqiods > 0) {
1216			NFS_DPF(ASYNCIO,
1217				("nfs_asyncio: %d iods are already processing mount %p\n",
1218				 nmp->nm_bufqiods, nmp));
1219			gotiod = TRUE;
1220		}
1221	}
1222
1223	/*
1224	 * If we have an iod which can process the request, then queue
1225	 * the buffer.
1226	 */
1227	if (gotiod) {
1228		/*
1229		 * Ensure that the queue never grows too large.  We still want
1230		 * to asynchronize so we block rather then return EIO.
1231		 */
1232		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1233			NFS_DPF(ASYNCIO,
1234				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1235			nmp->nm_bufqwant = TRUE;
1236			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1237				       "nfsaio", slptimeo);
1238			if (error) {
1239				if (nfs_sigintr(nmp, NULL, td))
1240					return (EINTR);
1241				if (slpflag == PCATCH) {
1242					slpflag = 0;
1243					slptimeo = 2 * hz;
1244				}
1245			}
1246			/*
1247			 * We might have lost our iod while sleeping,
1248			 * so check and loop if nescessary.
1249			 */
1250			if (nmp->nm_bufqiods == 0) {
1251				NFS_DPF(ASYNCIO,
1252					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1253				goto again;
1254			}
1255		}
1256
1257		if (bp->b_iocmd == BIO_READ) {
1258			if (bp->b_rcred == NOCRED && cred != NOCRED)
1259				bp->b_rcred = crhold(cred);
1260		} else {
1261			bp->b_flags |= B_WRITEINPROG;
1262			if (bp->b_wcred == NOCRED && cred != NOCRED)
1263				bp->b_wcred = crhold(cred);
1264		}
1265
1266		BUF_KERNPROC(bp);
1267		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1268		nmp->nm_bufqlen++;
1269		return (0);
1270	}
1271
1272	/*
1273	 * All the iods are busy on other mounts, so return EIO to
1274	 * force the caller to process the i/o synchronously.
1275	 */
1276	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1277	return (EIO);
1278}
1279
1280/*
1281 * Do an I/O operation to/from a cache block. This may be called
1282 * synchronously or from an nfsiod.
1283 */
1284int
1285nfs_doio(struct buf *bp, struct ucred *cr, struct thread *td)
1286{
1287	struct uio *uiop;
1288	struct vnode *vp;
1289	struct nfsnode *np;
1290	struct nfsmount *nmp;
1291	int error = 0, iomode, must_commit = 0;
1292	struct uio uio;
1293	struct iovec io;
1294	struct proc *p = td ? td->td_proc : NULL;
1295
1296	vp = bp->b_vp;
1297	np = VTONFS(vp);
1298	nmp = VFSTONFS(vp->v_mount);
1299	uiop = &uio;
1300	uiop->uio_iov = &io;
1301	uiop->uio_iovcnt = 1;
1302	uiop->uio_segflg = UIO_SYSSPACE;
1303	uiop->uio_td = td;
1304
1305	/*
1306	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1307	 * do this here so we do not have to do it in all the code that
1308	 * calls us.
1309	 */
1310	bp->b_flags &= ~B_INVAL;
1311	bp->b_ioflags &= ~BIO_ERROR;
1312
1313	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1314
1315	if (bp->b_iocmd == BIO_READ) {
1316	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1317	    io.iov_base = bp->b_data;
1318	    uiop->uio_rw = UIO_READ;
1319
1320	    switch (vp->v_type) {
1321	    case VREG:
1322		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1323		nfsstats.read_bios++;
1324		error = (nmp->nm_rpcops->nr_readrpc)(vp, uiop, cr);
1325
1326		if (!error) {
1327		    if (uiop->uio_resid) {
1328			/*
1329			 * If we had a short read with no error, we must have
1330			 * hit a file hole.  We should zero-fill the remainder.
1331			 * This can also occur if the server hits the file EOF.
1332			 *
1333			 * Holes used to be able to occur due to pending
1334			 * writes, but that is not possible any longer.
1335			 */
1336			int nread = bp->b_bcount - uiop->uio_resid;
1337			int left  = uiop->uio_resid;
1338
1339			if (left > 0)
1340				bzero((char *)bp->b_data + nread, left);
1341			uiop->uio_resid = 0;
1342		    }
1343		}
1344		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1345		if (p && (vp->v_vflag & VV_TEXT) &&
1346			(np->n_mtime != np->n_vattr.va_mtime.tv_sec)) {
1347			uprintf("Process killed due to text file modification\n");
1348			PROC_LOCK(p);
1349			psignal(p, SIGKILL);
1350			_PHOLD(p);
1351			PROC_UNLOCK(p);
1352		}
1353		break;
1354	    case VLNK:
1355		uiop->uio_offset = (off_t)0;
1356		nfsstats.readlink_bios++;
1357		error = (nmp->nm_rpcops->nr_readlinkrpc)(vp, uiop, cr);
1358		break;
1359	    case VDIR:
1360		nfsstats.readdir_bios++;
1361		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1362		if ((nmp->nm_flag & NFSMNT_NFSV4) != 0)
1363			error = nfs4_readdirrpc(vp, uiop, cr);
1364		else {
1365			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1366				error = nfs_readdirplusrpc(vp, uiop, cr);
1367				if (error == NFSERR_NOTSUPP)
1368					nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1369			}
1370			if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1371				error = nfs_readdirrpc(vp, uiop, cr);
1372		}
1373		/*
1374		 * end-of-directory sets B_INVAL but does not generate an
1375		 * error.
1376		 */
1377		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1378			bp->b_flags |= B_INVAL;
1379		break;
1380	    default:
1381		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1382		break;
1383	    };
1384	    if (error) {
1385		bp->b_ioflags |= BIO_ERROR;
1386		bp->b_error = error;
1387	    }
1388	} else {
1389	    /*
1390	     * If we only need to commit, try to commit
1391	     */
1392	    if (bp->b_flags & B_NEEDCOMMIT) {
1393		    int retv;
1394		    off_t off;
1395
1396		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1397		    bp->b_flags |= B_WRITEINPROG;
1398		    retv = (nmp->nm_rpcops->nr_commit)(
1399				bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1400				bp->b_wcred, td);
1401		    bp->b_flags &= ~B_WRITEINPROG;
1402		    if (retv == 0) {
1403			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1404			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1405			    bp->b_resid = 0;
1406			    bufdone(bp);
1407			    return (0);
1408		    }
1409		    if (retv == NFSERR_STALEWRITEVERF) {
1410			    nfs_clearcommit(bp->b_vp->v_mount);
1411		    }
1412	    }
1413
1414	    /*
1415	     * Setup for actual write
1416	     */
1417
1418	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1419		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1420
1421	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1422		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1423		    - bp->b_dirtyoff;
1424		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1425		    + bp->b_dirtyoff;
1426		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1427		uiop->uio_rw = UIO_WRITE;
1428		nfsstats.write_bios++;
1429
1430		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1431		    iomode = NFSV3WRITE_UNSTABLE;
1432		else
1433		    iomode = NFSV3WRITE_FILESYNC;
1434
1435		bp->b_flags |= B_WRITEINPROG;
1436		error = (nmp->nm_rpcops->nr_writerpc)(vp, uiop, cr, &iomode, &must_commit);
1437
1438		/*
1439		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1440		 * to cluster the buffers needing commit.  This will allow
1441		 * the system to submit a single commit rpc for the whole
1442		 * cluster.  We can do this even if the buffer is not 100%
1443		 * dirty (relative to the NFS blocksize), so we optimize the
1444		 * append-to-file-case.
1445		 *
1446		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1447		 * cleared because write clustering only works for commit
1448		 * rpc's, not for the data portion of the write).
1449		 */
1450
1451		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1452		    bp->b_flags |= B_NEEDCOMMIT;
1453		    if (bp->b_dirtyoff == 0
1454			&& bp->b_dirtyend == bp->b_bcount)
1455			bp->b_flags |= B_CLUSTEROK;
1456		} else {
1457		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1458		}
1459		bp->b_flags &= ~B_WRITEINPROG;
1460
1461		/*
1462		 * For an interrupted write, the buffer is still valid
1463		 * and the write hasn't been pushed to the server yet,
1464		 * so we can't set BIO_ERROR and report the interruption
1465		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1466		 * is not relevant, so the rpc attempt is essentially
1467		 * a noop.  For the case of a V3 write rpc not being
1468		 * committed to stable storage, the block is still
1469		 * dirty and requires either a commit rpc or another
1470		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1471		 * the block is reused. This is indicated by setting
1472		 * the B_DELWRI and B_NEEDCOMMIT flags.
1473		 *
1474		 * If the buffer is marked B_PAGING, it does not reside on
1475		 * the vp's paging queues so we cannot call bdirty().  The
1476		 * bp in this case is not an NFS cache block so we should
1477		 * be safe. XXX
1478		 */
1479    		if (error == EINTR
1480		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1481			int s;
1482
1483			s = splbio();
1484			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1485			if ((bp->b_flags & B_PAGING) == 0) {
1486			    bdirty(bp);
1487			    bp->b_flags &= ~B_DONE;
1488			}
1489			if (error && (bp->b_flags & B_ASYNC) == 0)
1490			    bp->b_flags |= B_EINTR;
1491			splx(s);
1492	    	} else {
1493		    if (error) {
1494			bp->b_ioflags |= BIO_ERROR;
1495			bp->b_error = np->n_error = error;
1496			np->n_flag |= NWRITEERR;
1497		    }
1498		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1499		}
1500	    } else {
1501		bp->b_resid = 0;
1502		bufdone(bp);
1503		return (0);
1504	    }
1505	}
1506	bp->b_resid = uiop->uio_resid;
1507	if (must_commit)
1508	    nfs_clearcommit(vp->v_mount);
1509	bufdone(bp);
1510	return (error);
1511}
1512
1513/*
1514 * Used to aid in handling ftruncate() operations on the NFS client side.
1515 * Truncation creates a number of special problems for NFS.  We have to
1516 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1517 * we have to properly handle VM pages or (potentially dirty) buffers
1518 * that straddle the truncation point.
1519 */
1520
1521int
1522nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1523{
1524	struct nfsnode *np = VTONFS(vp);
1525	u_quad_t tsize = np->n_size;
1526	int biosize = vp->v_mount->mnt_stat.f_iosize;
1527	int error = 0;
1528
1529	np->n_size = nsize;
1530
1531	if (np->n_size < tsize) {
1532		struct buf *bp;
1533		daddr_t lbn;
1534		int bufsize;
1535
1536		/*
1537		 * vtruncbuf() doesn't get the buffer overlapping the
1538		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1539		 * buffer that now needs to be truncated.
1540		 */
1541		error = vtruncbuf(vp, cred, td, nsize, biosize);
1542		lbn = nsize / biosize;
1543		bufsize = nsize & (biosize - 1);
1544		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1545		if (bp->b_dirtyoff > bp->b_bcount)
1546			bp->b_dirtyoff = bp->b_bcount;
1547		if (bp->b_dirtyend > bp->b_bcount)
1548			bp->b_dirtyend = bp->b_bcount;
1549		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1550		brelse(bp);
1551	} else {
1552		vnode_pager_setsize(vp, nsize);
1553	}
1554	return(error);
1555}
1556
1557