nfs_bio.c revision 120730
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 120730 2003-10-04 08:51:50Z jeff $");
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bio.h>
45#include <sys/buf.h>
46#include <sys/kernel.h>
47#include <sys/mount.h>
48#include <sys/proc.h>
49#include <sys/resourcevar.h>
50#include <sys/signalvar.h>
51#include <sys/vmmeter.h>
52#include <sys/vnode.h>
53
54#include <vm/vm.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_page.h>
57#include <vm/vm_object.h>
58#include <vm/vm_pager.h>
59#include <vm/vnode_pager.h>
60
61#include <nfs/rpcv2.h>
62#include <nfs/nfsproto.h>
63#include <nfsclient/nfs.h>
64#include <nfsclient/nfsmount.h>
65#include <nfsclient/nfsnode.h>
66
67/*
68 * Just call nfs_writebp() with the force argument set to 1.
69 *
70 * NOTE: B_DONE may or may not be set in a_bp on call.
71 */
72static int
73nfs_bwrite(struct buf *bp)
74{
75
76	return (nfs_writebp(bp, 1, curthread));
77}
78
79struct buf_ops buf_ops_nfs = {
80	"buf_ops_nfs",
81	nfs_bwrite
82};
83
84static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
85		    struct thread *td);
86
87/*
88 * Vnode op for VM getpages.
89 */
90int
91nfs_getpages(struct vop_getpages_args *ap)
92{
93	int i, error, nextoff, size, toff, count, npages;
94	struct uio uio;
95	struct iovec iov;
96	vm_offset_t kva;
97	struct buf *bp;
98	struct vnode *vp;
99	struct thread *td;
100	struct ucred *cred;
101	struct nfsmount *nmp;
102	vm_object_t object;
103	vm_page_t *pages;
104
105	GIANT_REQUIRED;
106
107	vp = ap->a_vp;
108	td = curthread;				/* XXX */
109	cred = curthread->td_ucred;		/* XXX */
110	nmp = VFSTONFS(vp->v_mount);
111	pages = ap->a_m;
112	count = ap->a_count;
113
114	if ((object = vp->v_object) == NULL) {
115		printf("nfs_getpages: called with non-merged cache vnode??\n");
116		return VM_PAGER_ERROR;
117	}
118
119	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
120	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
121		(void)nfs_fsinfo(nmp, vp, cred, td);
122	}
123
124	npages = btoc(count);
125
126	/*
127	 * If the requested page is partially valid, just return it and
128	 * allow the pager to zero-out the blanks.  Partially valid pages
129	 * can only occur at the file EOF.
130	 */
131
132	{
133		vm_page_t m = pages[ap->a_reqpage];
134
135		VM_OBJECT_LOCK(object);
136		vm_page_lock_queues();
137		if (m->valid != 0) {
138			/* handled by vm_fault now	  */
139			/* vm_page_zero_invalid(m, TRUE); */
140			for (i = 0; i < npages; ++i) {
141				if (i != ap->a_reqpage)
142					vm_page_free(pages[i]);
143			}
144			vm_page_unlock_queues();
145			VM_OBJECT_UNLOCK(object);
146			return(0);
147		}
148		vm_page_unlock_queues();
149		VM_OBJECT_UNLOCK(object);
150	}
151
152	/*
153	 * We use only the kva address for the buffer, but this is extremely
154	 * convienient and fast.
155	 */
156	bp = getpbuf(&nfs_pbuf_freecnt);
157
158	kva = (vm_offset_t) bp->b_data;
159	pmap_qenter(kva, pages, npages);
160	cnt.v_vnodein++;
161	cnt.v_vnodepgsin += npages;
162
163	iov.iov_base = (caddr_t) kva;
164	iov.iov_len = count;
165	uio.uio_iov = &iov;
166	uio.uio_iovcnt = 1;
167	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
168	uio.uio_resid = count;
169	uio.uio_segflg = UIO_SYSSPACE;
170	uio.uio_rw = UIO_READ;
171	uio.uio_td = td;
172
173	error = nfs_readrpc(vp, &uio, cred);
174	pmap_qremove(kva, npages);
175
176	relpbuf(bp, &nfs_pbuf_freecnt);
177
178	if (error && (uio.uio_resid == count)) {
179		printf("nfs_getpages: error %d\n", error);
180		VM_OBJECT_LOCK(object);
181		vm_page_lock_queues();
182		for (i = 0; i < npages; ++i) {
183			if (i != ap->a_reqpage)
184				vm_page_free(pages[i]);
185		}
186		vm_page_unlock_queues();
187		VM_OBJECT_UNLOCK(object);
188		return VM_PAGER_ERROR;
189	}
190
191	/*
192	 * Calculate the number of bytes read and validate only that number
193	 * of bytes.  Note that due to pending writes, size may be 0.  This
194	 * does not mean that the remaining data is invalid!
195	 */
196
197	size = count - uio.uio_resid;
198	VM_OBJECT_LOCK(object);
199	vm_page_lock_queues();
200	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
201		vm_page_t m;
202		nextoff = toff + PAGE_SIZE;
203		m = pages[i];
204
205		m->flags &= ~PG_ZERO;
206
207		if (nextoff <= size) {
208			/*
209			 * Read operation filled an entire page
210			 */
211			m->valid = VM_PAGE_BITS_ALL;
212			vm_page_undirty(m);
213		} else if (size > toff) {
214			/*
215			 * Read operation filled a partial page.
216			 */
217			m->valid = 0;
218			vm_page_set_validclean(m, 0, size - toff);
219			/* handled by vm_fault now	  */
220			/* vm_page_zero_invalid(m, TRUE); */
221		} else {
222			/*
223			 * Read operation was short.  If no error occured
224			 * we may have hit a zero-fill section.   We simply
225			 * leave valid set to 0.
226			 */
227			;
228		}
229		if (i != ap->a_reqpage) {
230			/*
231			 * Whether or not to leave the page activated is up in
232			 * the air, but we should put the page on a page queue
233			 * somewhere (it already is in the object).  Result:
234			 * It appears that emperical results show that
235			 * deactivating pages is best.
236			 */
237
238			/*
239			 * Just in case someone was asking for this page we
240			 * now tell them that it is ok to use.
241			 */
242			if (!error) {
243				if (m->flags & PG_WANTED)
244					vm_page_activate(m);
245				else
246					vm_page_deactivate(m);
247				vm_page_wakeup(m);
248			} else {
249				vm_page_free(m);
250			}
251		}
252	}
253	vm_page_unlock_queues();
254	VM_OBJECT_UNLOCK(object);
255	return 0;
256}
257
258/*
259 * Vnode op for VM putpages.
260 */
261int
262nfs_putpages(struct vop_putpages_args *ap)
263{
264	struct uio uio;
265	struct iovec iov;
266	vm_offset_t kva;
267	struct buf *bp;
268	int iomode, must_commit, i, error, npages, count;
269	off_t offset;
270	int *rtvals;
271	struct vnode *vp;
272	struct thread *td;
273	struct ucred *cred;
274	struct nfsmount *nmp;
275	struct nfsnode *np;
276	vm_page_t *pages;
277
278	GIANT_REQUIRED;
279
280	vp = ap->a_vp;
281	np = VTONFS(vp);
282	td = curthread;				/* XXX */
283	cred = curthread->td_ucred;		/* XXX */
284	nmp = VFSTONFS(vp->v_mount);
285	pages = ap->a_m;
286	count = ap->a_count;
287	rtvals = ap->a_rtvals;
288	npages = btoc(count);
289	offset = IDX_TO_OFF(pages[0]->pindex);
290
291	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
292	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
293		(void)nfs_fsinfo(nmp, vp, cred, td);
294	}
295
296	for (i = 0; i < npages; i++)
297		rtvals[i] = VM_PAGER_AGAIN;
298
299	/*
300	 * When putting pages, do not extend file past EOF.
301	 */
302
303	if (offset + count > np->n_size) {
304		count = np->n_size - offset;
305		if (count < 0)
306			count = 0;
307	}
308
309	/*
310	 * We use only the kva address for the buffer, but this is extremely
311	 * convienient and fast.
312	 */
313	bp = getpbuf(&nfs_pbuf_freecnt);
314
315	kva = (vm_offset_t) bp->b_data;
316	pmap_qenter(kva, pages, npages);
317	cnt.v_vnodeout++;
318	cnt.v_vnodepgsout += count;
319
320	iov.iov_base = (caddr_t) kva;
321	iov.iov_len = count;
322	uio.uio_iov = &iov;
323	uio.uio_iovcnt = 1;
324	uio.uio_offset = offset;
325	uio.uio_resid = count;
326	uio.uio_segflg = UIO_SYSSPACE;
327	uio.uio_rw = UIO_WRITE;
328	uio.uio_td = td;
329
330	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
331	    iomode = NFSV3WRITE_UNSTABLE;
332	else
333	    iomode = NFSV3WRITE_FILESYNC;
334
335	error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
336
337	pmap_qremove(kva, npages);
338	relpbuf(bp, &nfs_pbuf_freecnt);
339
340	if (!error) {
341		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
342		for (i = 0; i < nwritten; i++) {
343			rtvals[i] = VM_PAGER_OK;
344			vm_page_undirty(pages[i]);
345		}
346		if (must_commit) {
347			nfs_clearcommit(vp->v_mount);
348		}
349	}
350	return rtvals[0];
351}
352
353/*
354 * Vnode op for read using bio
355 */
356int
357nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
358{
359	struct nfsnode *np = VTONFS(vp);
360	int biosize, i;
361	struct buf *bp = 0, *rabp;
362	struct vattr vattr;
363	struct thread *td;
364	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
365	daddr_t lbn, rabn;
366	int bcount;
367	int seqcount;
368	int nra, error = 0, n = 0, on = 0;
369
370#ifdef DIAGNOSTIC
371	if (uio->uio_rw != UIO_READ)
372		panic("nfs_read mode");
373#endif
374	if (uio->uio_resid == 0)
375		return (0);
376	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
377		return (EINVAL);
378	td = uio->uio_td;
379
380	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
381	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
382		(void)nfs_fsinfo(nmp, vp, cred, td);
383	if (vp->v_type != VDIR &&
384	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
385		return (EFBIG);
386	biosize = vp->v_mount->mnt_stat.f_iosize;
387	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
388	/*
389	 * For nfs, cache consistency can only be maintained approximately.
390	 * Although RFC1094 does not specify the criteria, the following is
391	 * believed to be compatible with the reference port.
392	 * For nfs:
393	 * If the file's modify time on the server has changed since the
394	 * last read rpc or you have written to the file,
395	 * you may have lost data cache consistency with the
396	 * server, so flush all of the file's data out of the cache.
397	 * Then force a getattr rpc to ensure that you have up to date
398	 * attributes.
399	 * NB: This implies that cache data can be read when up to
400	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
401	 * attributes this could be forced by setting n_attrstamp to 0 before
402	 * the VOP_GETATTR() call.
403	 */
404	if (np->n_flag & NMODIFIED) {
405		if (vp->v_type != VREG) {
406			if (vp->v_type != VDIR)
407				panic("nfs: bioread, not dir");
408			nfs_invaldir(vp);
409			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
410			if (error)
411				return (error);
412		}
413		np->n_attrstamp = 0;
414		error = VOP_GETATTR(vp, &vattr, cred, td);
415		if (error)
416			return (error);
417		np->n_mtime = vattr.va_mtime.tv_sec;
418	} else {
419		error = VOP_GETATTR(vp, &vattr, cred, td);
420		if (error)
421			return (error);
422		if (np->n_mtime != vattr.va_mtime.tv_sec) {
423			if (vp->v_type == VDIR)
424				nfs_invaldir(vp);
425			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
426			if (error)
427				return (error);
428			np->n_mtime = vattr.va_mtime.tv_sec;
429		}
430	}
431	do {
432	    switch (vp->v_type) {
433	    case VREG:
434		nfsstats.biocache_reads++;
435		lbn = uio->uio_offset / biosize;
436		on = uio->uio_offset & (biosize - 1);
437
438		/*
439		 * Start the read ahead(s), as required.
440		 */
441		if (nmp->nm_readahead > 0) {
442		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
443			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
444			rabn = lbn + 1 + nra;
445			if (incore(vp, rabn) == NULL) {
446			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
447			    if (!rabp)
448				return (EINTR);
449			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
450				rabp->b_flags |= B_ASYNC;
451				rabp->b_iocmd = BIO_READ;
452				vfs_busy_pages(rabp, 0);
453				if (nfs_asyncio(rabp, cred, td)) {
454				    rabp->b_flags |= B_INVAL;
455				    rabp->b_ioflags |= BIO_ERROR;
456				    vfs_unbusy_pages(rabp);
457				    brelse(rabp);
458				    break;
459				}
460			    } else {
461				brelse(rabp);
462			    }
463			}
464		    }
465		}
466
467		/*
468		 * Obtain the buffer cache block.  Figure out the buffer size
469		 * when we are at EOF.  If we are modifying the size of the
470		 * buffer based on an EOF condition we need to hold
471		 * nfs_rslock() through obtaining the buffer to prevent
472		 * a potential writer-appender from messing with n_size.
473		 * Otherwise we may accidently truncate the buffer and
474		 * lose dirty data.
475		 *
476		 * Note that bcount is *not* DEV_BSIZE aligned.
477		 */
478
479again:
480		bcount = biosize;
481		if ((off_t)lbn * biosize >= np->n_size) {
482			bcount = 0;
483		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
484			bcount = np->n_size - (off_t)lbn * biosize;
485		}
486		if (bcount != biosize) {
487			switch(nfs_rslock(np, td)) {
488			case ENOLCK:
489				goto again;
490				/* not reached */
491			case EINTR:
492			case ERESTART:
493				return(EINTR);
494				/* not reached */
495			default:
496				break;
497			}
498		}
499
500		bp = nfs_getcacheblk(vp, lbn, bcount, td);
501
502		if (bcount != biosize)
503			nfs_rsunlock(np, td);
504		if (!bp)
505			return (EINTR);
506
507		/*
508		 * If B_CACHE is not set, we must issue the read.  If this
509		 * fails, we return an error.
510		 */
511
512		if ((bp->b_flags & B_CACHE) == 0) {
513		    bp->b_iocmd = BIO_READ;
514		    vfs_busy_pages(bp, 0);
515		    error = nfs_doio(bp, cred, td);
516		    if (error) {
517			brelse(bp);
518			return (error);
519		    }
520		}
521
522		/*
523		 * on is the offset into the current bp.  Figure out how many
524		 * bytes we can copy out of the bp.  Note that bcount is
525		 * NOT DEV_BSIZE aligned.
526		 *
527		 * Then figure out how many bytes we can copy into the uio.
528		 */
529
530		n = 0;
531		if (on < bcount)
532			n = min((unsigned)(bcount - on), uio->uio_resid);
533		break;
534	    case VLNK:
535		nfsstats.biocache_readlinks++;
536		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
537		if (!bp)
538			return (EINTR);
539		if ((bp->b_flags & B_CACHE) == 0) {
540		    bp->b_iocmd = BIO_READ;
541		    vfs_busy_pages(bp, 0);
542		    error = nfs_doio(bp, cred, td);
543		    if (error) {
544			bp->b_ioflags |= BIO_ERROR;
545			brelse(bp);
546			return (error);
547		    }
548		}
549		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
550		on = 0;
551		break;
552	    case VDIR:
553		nfsstats.biocache_readdirs++;
554		if (np->n_direofoffset
555		    && uio->uio_offset >= np->n_direofoffset) {
556		    return (0);
557		}
558		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
559		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
560		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
561		if (!bp)
562		    return (EINTR);
563		if ((bp->b_flags & B_CACHE) == 0) {
564		    bp->b_iocmd = BIO_READ;
565		    vfs_busy_pages(bp, 0);
566		    error = nfs_doio(bp, cred, td);
567		    if (error) {
568			    brelse(bp);
569		    }
570		    while (error == NFSERR_BAD_COOKIE) {
571			printf("got bad cookie vp %p bp %p\n", vp, bp);
572			nfs_invaldir(vp);
573			error = nfs_vinvalbuf(vp, 0, cred, td, 1);
574			/*
575			 * Yuck! The directory has been modified on the
576			 * server. The only way to get the block is by
577			 * reading from the beginning to get all the
578			 * offset cookies.
579			 *
580			 * Leave the last bp intact unless there is an error.
581			 * Loop back up to the while if the error is another
582			 * NFSERR_BAD_COOKIE (double yuch!).
583			 */
584			for (i = 0; i <= lbn && !error; i++) {
585			    if (np->n_direofoffset
586				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
587				    return (0);
588			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
589			    if (!bp)
590				return (EINTR);
591			    if ((bp->b_flags & B_CACHE) == 0) {
592				    bp->b_iocmd = BIO_READ;
593				    vfs_busy_pages(bp, 0);
594				    error = nfs_doio(bp, cred, td);
595				    /*
596				     * no error + B_INVAL == directory EOF,
597				     * use the block.
598				     */
599				    if (error == 0 && (bp->b_flags & B_INVAL))
600					    break;
601			    }
602			    /*
603			     * An error will throw away the block and the
604			     * for loop will break out.  If no error and this
605			     * is not the block we want, we throw away the
606			     * block and go for the next one via the for loop.
607			     */
608			    if (error || i < lbn)
609				    brelse(bp);
610			}
611		    }
612		    /*
613		     * The above while is repeated if we hit another cookie
614		     * error.  If we hit an error and it wasn't a cookie error,
615		     * we give up.
616		     */
617		    if (error)
618			    return (error);
619		}
620
621		/*
622		 * If not eof and read aheads are enabled, start one.
623		 * (You need the current block first, so that you have the
624		 *  directory offset cookie of the next block.)
625		 */
626		if (nmp->nm_readahead > 0 &&
627		    (bp->b_flags & B_INVAL) == 0 &&
628		    (np->n_direofoffset == 0 ||
629		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
630		    incore(vp, lbn + 1) == NULL) {
631			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
632			if (rabp) {
633			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
634				rabp->b_flags |= B_ASYNC;
635				rabp->b_iocmd = BIO_READ;
636				vfs_busy_pages(rabp, 0);
637				if (nfs_asyncio(rabp, cred, td)) {
638				    rabp->b_flags |= B_INVAL;
639				    rabp->b_ioflags |= BIO_ERROR;
640				    vfs_unbusy_pages(rabp);
641				    brelse(rabp);
642				}
643			    } else {
644				brelse(rabp);
645			    }
646			}
647		}
648		/*
649		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
650		 * chopped for the EOF condition, we cannot tell how large
651		 * NFS directories are going to be until we hit EOF.  So
652		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
653		 * it just so happens that b_resid will effectively chop it
654		 * to EOF.  *BUT* this information is lost if the buffer goes
655		 * away and is reconstituted into a B_CACHE state ( due to
656		 * being VMIO ) later.  So we keep track of the directory eof
657		 * in np->n_direofoffset and chop it off as an extra step
658		 * right here.
659		 */
660		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
661		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
662			n = np->n_direofoffset - uio->uio_offset;
663		break;
664	    default:
665		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
666		break;
667	    };
668
669	    if (n > 0) {
670		    error = uiomove(bp->b_data + on, (int)n, uio);
671	    }
672	    switch (vp->v_type) {
673	    case VREG:
674		break;
675	    case VLNK:
676		n = 0;
677		break;
678	    case VDIR:
679		break;
680	    default:
681		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
682	    }
683	    brelse(bp);
684	} while (error == 0 && uio->uio_resid > 0 && n > 0);
685	return (error);
686}
687
688/*
689 * Vnode op for write using bio
690 */
691int
692nfs_write(struct vop_write_args *ap)
693{
694	int biosize;
695	struct uio *uio = ap->a_uio;
696	struct thread *td = uio->uio_td;
697	struct vnode *vp = ap->a_vp;
698	struct nfsnode *np = VTONFS(vp);
699	struct ucred *cred = ap->a_cred;
700	int ioflag = ap->a_ioflag;
701	struct buf *bp;
702	struct vattr vattr;
703	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
704	daddr_t lbn;
705	int bcount;
706	int n, on, error = 0;
707	int haverslock = 0;
708	struct proc *p = td?td->td_proc:NULL;
709
710	GIANT_REQUIRED;
711
712#ifdef DIAGNOSTIC
713	if (uio->uio_rw != UIO_WRITE)
714		panic("nfs_write mode");
715	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
716		panic("nfs_write proc");
717#endif
718	if (vp->v_type != VREG)
719		return (EIO);
720	if (np->n_flag & NWRITEERR) {
721		np->n_flag &= ~NWRITEERR;
722		return (np->n_error);
723	}
724	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
725	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
726		(void)nfs_fsinfo(nmp, vp, cred, td);
727
728	/*
729	 * Synchronously flush pending buffers if we are in synchronous
730	 * mode or if we are appending.
731	 */
732	if (ioflag & (IO_APPEND | IO_SYNC)) {
733		if (np->n_flag & NMODIFIED) {
734			np->n_attrstamp = 0;
735			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
736			if (error)
737				return (error);
738		}
739	}
740
741	/*
742	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
743	 * get the append lock.
744	 */
745restart:
746	if (ioflag & IO_APPEND) {
747		np->n_attrstamp = 0;
748		error = VOP_GETATTR(vp, &vattr, cred, td);
749		if (error)
750			return (error);
751		uio->uio_offset = np->n_size;
752	}
753
754	if (uio->uio_offset < 0)
755		return (EINVAL);
756	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
757		return (EFBIG);
758	if (uio->uio_resid == 0)
759		return (0);
760
761	/*
762	 * We need to obtain the rslock if we intend to modify np->n_size
763	 * in order to guarentee the append point with multiple contending
764	 * writers, to guarentee that no other appenders modify n_size
765	 * while we are trying to obtain a truncated buffer (i.e. to avoid
766	 * accidently truncating data written by another appender due to
767	 * the race), and to ensure that the buffer is populated prior to
768	 * our extending of the file.  We hold rslock through the entire
769	 * operation.
770	 *
771	 * Note that we do not synchronize the case where someone truncates
772	 * the file while we are appending to it because attempting to lock
773	 * this case may deadlock other parts of the system unexpectedly.
774	 */
775	if ((ioflag & IO_APPEND) ||
776	    uio->uio_offset + uio->uio_resid > np->n_size) {
777		switch(nfs_rslock(np, td)) {
778		case ENOLCK:
779			goto restart;
780			/* not reached */
781		case EINTR:
782		case ERESTART:
783			return(EINTR);
784			/* not reached */
785		default:
786			break;
787		}
788		haverslock = 1;
789	}
790
791	/*
792	 * Maybe this should be above the vnode op call, but so long as
793	 * file servers have no limits, i don't think it matters
794	 */
795	if (p && uio->uio_offset + uio->uio_resid >
796	      p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
797		PROC_LOCK(p);
798		psignal(p, SIGXFSZ);
799		PROC_UNLOCK(p);
800		if (haverslock)
801			nfs_rsunlock(np, td);
802		return (EFBIG);
803	}
804
805	biosize = vp->v_mount->mnt_stat.f_iosize;
806
807	do {
808		nfsstats.biocache_writes++;
809		lbn = uio->uio_offset / biosize;
810		on = uio->uio_offset & (biosize-1);
811		n = min((unsigned)(biosize - on), uio->uio_resid);
812again:
813		/*
814		 * Handle direct append and file extension cases, calculate
815		 * unaligned buffer size.
816		 */
817
818		if (uio->uio_offset == np->n_size && n) {
819			/*
820			 * Get the buffer (in its pre-append state to maintain
821			 * B_CACHE if it was previously set).  Resize the
822			 * nfsnode after we have locked the buffer to prevent
823			 * readers from reading garbage.
824			 */
825			bcount = on;
826			bp = nfs_getcacheblk(vp, lbn, bcount, td);
827
828			if (bp != NULL) {
829				long save;
830
831				np->n_size = uio->uio_offset + n;
832				np->n_flag |= NMODIFIED;
833				vnode_pager_setsize(vp, np->n_size);
834
835				save = bp->b_flags & B_CACHE;
836				bcount += n;
837				allocbuf(bp, bcount);
838				bp->b_flags |= save;
839				bp->b_magic = B_MAGIC_NFS;
840				bp->b_op = &buf_ops_nfs;
841			}
842		} else {
843			/*
844			 * Obtain the locked cache block first, and then
845			 * adjust the file's size as appropriate.
846			 */
847			bcount = on + n;
848			if ((off_t)lbn * biosize + bcount < np->n_size) {
849				if ((off_t)(lbn + 1) * biosize < np->n_size)
850					bcount = biosize;
851				else
852					bcount = np->n_size - (off_t)lbn * biosize;
853			}
854			bp = nfs_getcacheblk(vp, lbn, bcount, td);
855			if (uio->uio_offset + n > np->n_size) {
856				np->n_size = uio->uio_offset + n;
857				np->n_flag |= NMODIFIED;
858				vnode_pager_setsize(vp, np->n_size);
859			}
860		}
861
862		if (!bp) {
863			error = EINTR;
864			break;
865		}
866
867		/*
868		 * Issue a READ if B_CACHE is not set.  In special-append
869		 * mode, B_CACHE is based on the buffer prior to the write
870		 * op and is typically set, avoiding the read.  If a read
871		 * is required in special append mode, the server will
872		 * probably send us a short-read since we extended the file
873		 * on our end, resulting in b_resid == 0 and, thusly,
874		 * B_CACHE getting set.
875		 *
876		 * We can also avoid issuing the read if the write covers
877		 * the entire buffer.  We have to make sure the buffer state
878		 * is reasonable in this case since we will not be initiating
879		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
880		 * more information.
881		 *
882		 * B_CACHE may also be set due to the buffer being cached
883		 * normally.
884		 */
885
886		if (on == 0 && n == bcount) {
887			bp->b_flags |= B_CACHE;
888			bp->b_flags &= ~B_INVAL;
889			bp->b_ioflags &= ~BIO_ERROR;
890		}
891
892		if ((bp->b_flags & B_CACHE) == 0) {
893			bp->b_iocmd = BIO_READ;
894			vfs_busy_pages(bp, 0);
895			error = nfs_doio(bp, cred, td);
896			if (error) {
897				brelse(bp);
898				break;
899			}
900		}
901		if (!bp) {
902			error = EINTR;
903			break;
904		}
905		if (bp->b_wcred == NOCRED)
906			bp->b_wcred = crhold(cred);
907		np->n_flag |= NMODIFIED;
908
909		/*
910		 * If dirtyend exceeds file size, chop it down.  This should
911		 * not normally occur but there is an append race where it
912		 * might occur XXX, so we log it.
913		 *
914		 * If the chopping creates a reverse-indexed or degenerate
915		 * situation with dirtyoff/end, we 0 both of them.
916		 */
917
918		if (bp->b_dirtyend > bcount) {
919			printf("NFS append race @%lx:%d\n",
920			    (long)bp->b_blkno * DEV_BSIZE,
921			    bp->b_dirtyend - bcount);
922			bp->b_dirtyend = bcount;
923		}
924
925		if (bp->b_dirtyoff >= bp->b_dirtyend)
926			bp->b_dirtyoff = bp->b_dirtyend = 0;
927
928		/*
929		 * If the new write will leave a contiguous dirty
930		 * area, just update the b_dirtyoff and b_dirtyend,
931		 * otherwise force a write rpc of the old dirty area.
932		 *
933		 * While it is possible to merge discontiguous writes due to
934		 * our having a B_CACHE buffer ( and thus valid read data
935		 * for the hole), we don't because it could lead to
936		 * significant cache coherency problems with multiple clients,
937		 * especially if locking is implemented later on.
938		 *
939		 * as an optimization we could theoretically maintain
940		 * a linked list of discontinuous areas, but we would still
941		 * have to commit them separately so there isn't much
942		 * advantage to it except perhaps a bit of asynchronization.
943		 */
944
945		if (bp->b_dirtyend > 0 &&
946		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
947			if (BUF_WRITE(bp) == EINTR) {
948				error = EINTR;
949				break;
950			}
951			goto again;
952		}
953
954		error = uiomove((char *)bp->b_data + on, n, uio);
955
956		/*
957		 * Since this block is being modified, it must be written
958		 * again and not just committed.  Since write clustering does
959		 * not work for the stage 1 data write, only the stage 2
960		 * commit rpc, we have to clear B_CLUSTEROK as well.
961		 */
962		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
963
964		if (error) {
965			bp->b_ioflags |= BIO_ERROR;
966			brelse(bp);
967			break;
968		}
969
970		/*
971		 * Only update dirtyoff/dirtyend if not a degenerate
972		 * condition.
973		 */
974		if (n) {
975			if (bp->b_dirtyend > 0) {
976				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
977				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
978			} else {
979				bp->b_dirtyoff = on;
980				bp->b_dirtyend = on + n;
981			}
982			vfs_bio_set_validclean(bp, on, n);
983		}
984
985		/*
986		 * If IO_SYNC do bwrite().
987		 *
988		 * IO_INVAL appears to be unused.  The idea appears to be
989		 * to turn off caching in this case.  Very odd.  XXX
990		 */
991		if ((ioflag & IO_SYNC)) {
992			if (ioflag & IO_INVAL)
993				bp->b_flags |= B_NOCACHE;
994			error = BUF_WRITE(bp);
995			if (error)
996				break;
997		} else if ((n + on) == biosize) {
998			bp->b_flags |= B_ASYNC;
999			(void)nfs_writebp(bp, 0, 0);
1000		} else {
1001			bdwrite(bp);
1002		}
1003	} while (uio->uio_resid > 0 && n > 0);
1004
1005	if (haverslock)
1006		nfs_rsunlock(np, td);
1007
1008	return (error);
1009}
1010
1011/*
1012 * Get an nfs cache block.
1013 *
1014 * Allocate a new one if the block isn't currently in the cache
1015 * and return the block marked busy. If the calling process is
1016 * interrupted by a signal for an interruptible mount point, return
1017 * NULL.
1018 *
1019 * The caller must carefully deal with the possible B_INVAL state of
1020 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1021 * indirectly), so synchronous reads can be issued without worrying about
1022 * the B_INVAL state.  We have to be a little more careful when dealing
1023 * with writes (see comments in nfs_write()) when extending a file past
1024 * its EOF.
1025 */
1026static struct buf *
1027nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1028{
1029	struct buf *bp;
1030	struct mount *mp;
1031	struct nfsmount *nmp;
1032
1033	mp = vp->v_mount;
1034	nmp = VFSTONFS(mp);
1035
1036	if (nmp->nm_flag & NFSMNT_INT) {
1037		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1038		while (bp == NULL) {
1039			if (nfs_sigintr(nmp, NULL, td))
1040				return (NULL);
1041			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1042		}
1043	} else {
1044		bp = getblk(vp, bn, size, 0, 0, 0);
1045	}
1046
1047	if (vp->v_type == VREG) {
1048		int biosize;
1049
1050		biosize = mp->mnt_stat.f_iosize;
1051		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1052	}
1053	return (bp);
1054}
1055
1056/*
1057 * Flush and invalidate all dirty buffers. If another process is already
1058 * doing the flush, just wait for completion.
1059 */
1060int
1061nfs_vinvalbuf(struct vnode *vp, int flags, struct ucred *cred,
1062    struct thread *td, int intrflg)
1063{
1064	struct nfsnode *np = VTONFS(vp);
1065	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1066	int error = 0, slpflag, slptimeo;
1067
1068	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1069
1070	/*
1071	 * XXX This check stops us from needlessly doing a vinvalbuf when
1072	 * being called through vclean().  It is not clear that this is
1073	 * unsafe.
1074	 */
1075	if (vp->v_iflag & VI_XLOCK)
1076		return (0);
1077
1078	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1079		intrflg = 0;
1080	if (intrflg) {
1081		slpflag = PCATCH;
1082		slptimeo = 2 * hz;
1083	} else {
1084		slpflag = 0;
1085		slptimeo = 0;
1086	}
1087	/*
1088	 * First wait for any other process doing a flush to complete.
1089	 */
1090	while (np->n_flag & NFLUSHINPROG) {
1091		np->n_flag |= NFLUSHWANT;
1092		error = tsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
1093			slptimeo);
1094		if (error && intrflg &&
1095		    nfs_sigintr(nmp, NULL, td))
1096			return (EINTR);
1097	}
1098
1099	/*
1100	 * Now, flush as required.
1101	 */
1102	np->n_flag |= NFLUSHINPROG;
1103	error = vinvalbuf(vp, flags, cred, td, slpflag, 0);
1104	while (error) {
1105		if (intrflg &&
1106		    nfs_sigintr(nmp, NULL, td)) {
1107			np->n_flag &= ~NFLUSHINPROG;
1108			if (np->n_flag & NFLUSHWANT) {
1109				np->n_flag &= ~NFLUSHWANT;
1110				wakeup(&np->n_flag);
1111			}
1112			return (EINTR);
1113		}
1114		error = vinvalbuf(vp, flags, cred, td, 0, slptimeo);
1115	}
1116	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1117	if (np->n_flag & NFLUSHWANT) {
1118		np->n_flag &= ~NFLUSHWANT;
1119		wakeup(&np->n_flag);
1120	}
1121	return (0);
1122}
1123
1124/*
1125 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1126 * This is mainly to avoid queueing async I/O requests when the nfsiods
1127 * are all hung on a dead server.
1128 *
1129 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1130 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1131 */
1132int
1133nfs_asyncio(struct buf *bp, struct ucred *cred, struct thread *td)
1134{
1135	struct nfsmount *nmp;
1136	int iod;
1137	int gotiod;
1138	int slpflag = 0;
1139	int slptimeo = 0;
1140	int error;
1141
1142	nmp = VFSTONFS(bp->b_vp->v_mount);
1143
1144	/*
1145	 * Commits are usually short and sweet so lets save some cpu and
1146	 * leave the async daemons for more important rpc's (such as reads
1147	 * and writes).
1148	 */
1149	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1150	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1151		return(EIO);
1152	}
1153
1154again:
1155	if (nmp->nm_flag & NFSMNT_INT)
1156		slpflag = PCATCH;
1157	gotiod = FALSE;
1158
1159	/*
1160	 * Find a free iod to process this request.
1161	 */
1162	for (iod = 0; iod < nfs_numasync; iod++)
1163		if (nfs_iodwant[iod]) {
1164			gotiod = TRUE;
1165			break;
1166		}
1167
1168	/*
1169	 * Try to create one if none are free.
1170	 */
1171	if (!gotiod) {
1172		iod = nfs_nfsiodnew();
1173		if (iod != -1)
1174			gotiod = TRUE;
1175	}
1176
1177	if (gotiod) {
1178		/*
1179		 * Found one, so wake it up and tell it which
1180		 * mount to process.
1181		 */
1182		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1183		    iod, nmp));
1184		nfs_iodwant[iod] = NULL;
1185		nfs_iodmount[iod] = nmp;
1186		nmp->nm_bufqiods++;
1187		wakeup(&nfs_iodwant[iod]);
1188	}
1189
1190	/*
1191	 * If none are free, we may already have an iod working on this mount
1192	 * point.  If so, it will process our request.
1193	 */
1194	if (!gotiod) {
1195		if (nmp->nm_bufqiods > 0) {
1196			NFS_DPF(ASYNCIO,
1197				("nfs_asyncio: %d iods are already processing mount %p\n",
1198				 nmp->nm_bufqiods, nmp));
1199			gotiod = TRUE;
1200		}
1201	}
1202
1203	/*
1204	 * If we have an iod which can process the request, then queue
1205	 * the buffer.
1206	 */
1207	if (gotiod) {
1208		/*
1209		 * Ensure that the queue never grows too large.  We still want
1210		 * to asynchronize so we block rather then return EIO.
1211		 */
1212		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1213			NFS_DPF(ASYNCIO,
1214				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1215			nmp->nm_bufqwant = TRUE;
1216			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1217				       "nfsaio", slptimeo);
1218			if (error) {
1219				if (nfs_sigintr(nmp, NULL, td))
1220					return (EINTR);
1221				if (slpflag == PCATCH) {
1222					slpflag = 0;
1223					slptimeo = 2 * hz;
1224				}
1225			}
1226			/*
1227			 * We might have lost our iod while sleeping,
1228			 * so check and loop if nescessary.
1229			 */
1230			if (nmp->nm_bufqiods == 0) {
1231				NFS_DPF(ASYNCIO,
1232					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1233				goto again;
1234			}
1235		}
1236
1237		if (bp->b_iocmd == BIO_READ) {
1238			if (bp->b_rcred == NOCRED && cred != NOCRED)
1239				bp->b_rcred = crhold(cred);
1240		} else {
1241			bp->b_flags |= B_WRITEINPROG;
1242			if (bp->b_wcred == NOCRED && cred != NOCRED)
1243				bp->b_wcred = crhold(cred);
1244		}
1245
1246		BUF_KERNPROC(bp);
1247		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1248		nmp->nm_bufqlen++;
1249		return (0);
1250	}
1251
1252	/*
1253	 * All the iods are busy on other mounts, so return EIO to
1254	 * force the caller to process the i/o synchronously.
1255	 */
1256	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1257	return (EIO);
1258}
1259
1260/*
1261 * Do an I/O operation to/from a cache block. This may be called
1262 * synchronously or from an nfsiod.
1263 */
1264int
1265nfs_doio(struct buf *bp, struct ucred *cr, struct thread *td)
1266{
1267	struct uio *uiop;
1268	struct vnode *vp;
1269	struct nfsnode *np;
1270	struct nfsmount *nmp;
1271	int error = 0, iomode, must_commit = 0;
1272	struct uio uio;
1273	struct iovec io;
1274	struct proc *p = td ? td->td_proc : NULL;
1275
1276	vp = bp->b_vp;
1277	np = VTONFS(vp);
1278	nmp = VFSTONFS(vp->v_mount);
1279	uiop = &uio;
1280	uiop->uio_iov = &io;
1281	uiop->uio_iovcnt = 1;
1282	uiop->uio_segflg = UIO_SYSSPACE;
1283	uiop->uio_td = td;
1284
1285	/*
1286	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1287	 * do this here so we do not have to do it in all the code that
1288	 * calls us.
1289	 */
1290	bp->b_flags &= ~B_INVAL;
1291	bp->b_ioflags &= ~BIO_ERROR;
1292
1293	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1294
1295	/*
1296	 * Historically, paging was done with physio, but no more.
1297	 */
1298	if (bp->b_flags & B_PHYS) {
1299	    /*
1300	     * ...though reading /dev/drum still gets us here.
1301	     */
1302	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1303	    /* mapping was done by vmapbuf() */
1304	    io.iov_base = bp->b_data;
1305	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1306	    if (bp->b_iocmd == BIO_READ) {
1307		uiop->uio_rw = UIO_READ;
1308		nfsstats.read_physios++;
1309		error = nfs_readrpc(vp, uiop, cr);
1310	    } else {
1311		int com;
1312
1313		iomode = NFSV3WRITE_DATASYNC;
1314		uiop->uio_rw = UIO_WRITE;
1315		nfsstats.write_physios++;
1316		error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
1317	    }
1318	    if (error) {
1319		bp->b_ioflags |= BIO_ERROR;
1320		bp->b_error = error;
1321	    }
1322	} else if (bp->b_iocmd == BIO_READ) {
1323	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1324	    io.iov_base = bp->b_data;
1325	    uiop->uio_rw = UIO_READ;
1326
1327	    switch (vp->v_type) {
1328	    case VREG:
1329		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1330		nfsstats.read_bios++;
1331		error = nfs_readrpc(vp, uiop, cr);
1332
1333		if (!error) {
1334		    if (uiop->uio_resid) {
1335			/*
1336			 * If we had a short read with no error, we must have
1337			 * hit a file hole.  We should zero-fill the remainder.
1338			 * This can also occur if the server hits the file EOF.
1339			 *
1340			 * Holes used to be able to occur due to pending
1341			 * writes, but that is not possible any longer.
1342			 */
1343			int nread = bp->b_bcount - uiop->uio_resid;
1344			int left  = uiop->uio_resid;
1345
1346			if (left > 0)
1347				bzero((char *)bp->b_data + nread, left);
1348			uiop->uio_resid = 0;
1349		    }
1350		}
1351		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1352		if (p && (vp->v_vflag & VV_TEXT) &&
1353			(np->n_mtime != np->n_vattr.va_mtime.tv_sec)) {
1354			uprintf("Process killed due to text file modification\n");
1355			PROC_LOCK(p);
1356			psignal(p, SIGKILL);
1357			_PHOLD(p);
1358			PROC_UNLOCK(p);
1359		}
1360		break;
1361	    case VLNK:
1362		uiop->uio_offset = (off_t)0;
1363		nfsstats.readlink_bios++;
1364		error = nfs_readlinkrpc(vp, uiop, cr);
1365		break;
1366	    case VDIR:
1367		nfsstats.readdir_bios++;
1368		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1369		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1370			error = nfs_readdirplusrpc(vp, uiop, cr);
1371			if (error == NFSERR_NOTSUPP)
1372				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1373		}
1374		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1375			error = nfs_readdirrpc(vp, uiop, cr);
1376		/*
1377		 * end-of-directory sets B_INVAL but does not generate an
1378		 * error.
1379		 */
1380		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1381			bp->b_flags |= B_INVAL;
1382		break;
1383	    default:
1384		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1385		break;
1386	    };
1387	    if (error) {
1388		bp->b_ioflags |= BIO_ERROR;
1389		bp->b_error = error;
1390	    }
1391	} else {
1392	    /*
1393	     * If we only need to commit, try to commit
1394	     */
1395	    if (bp->b_flags & B_NEEDCOMMIT) {
1396		    int retv;
1397		    off_t off;
1398
1399		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1400		    bp->b_flags |= B_WRITEINPROG;
1401		    retv = nfs_commit(
1402				bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1403				bp->b_wcred, td);
1404		    bp->b_flags &= ~B_WRITEINPROG;
1405		    if (retv == 0) {
1406			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1407			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1408			    bp->b_resid = 0;
1409			    bufdone(bp);
1410			    return (0);
1411		    }
1412		    if (retv == NFSERR_STALEWRITEVERF) {
1413			    nfs_clearcommit(bp->b_vp->v_mount);
1414		    }
1415	    }
1416
1417	    /*
1418	     * Setup for actual write
1419	     */
1420
1421	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1422		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1423
1424	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1425		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1426		    - bp->b_dirtyoff;
1427		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1428		    + bp->b_dirtyoff;
1429		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1430		uiop->uio_rw = UIO_WRITE;
1431		nfsstats.write_bios++;
1432
1433		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1434		    iomode = NFSV3WRITE_UNSTABLE;
1435		else
1436		    iomode = NFSV3WRITE_FILESYNC;
1437
1438		bp->b_flags |= B_WRITEINPROG;
1439		error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
1440
1441		/*
1442		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1443		 * to cluster the buffers needing commit.  This will allow
1444		 * the system to submit a single commit rpc for the whole
1445		 * cluster.  We can do this even if the buffer is not 100%
1446		 * dirty (relative to the NFS blocksize), so we optimize the
1447		 * append-to-file-case.
1448		 *
1449		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1450		 * cleared because write clustering only works for commit
1451		 * rpc's, not for the data portion of the write).
1452		 */
1453
1454		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1455		    bp->b_flags |= B_NEEDCOMMIT;
1456		    if (bp->b_dirtyoff == 0
1457			&& bp->b_dirtyend == bp->b_bcount)
1458			bp->b_flags |= B_CLUSTEROK;
1459		} else {
1460		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1461		}
1462		bp->b_flags &= ~B_WRITEINPROG;
1463
1464		/*
1465		 * For an interrupted write, the buffer is still valid
1466		 * and the write hasn't been pushed to the server yet,
1467		 * so we can't set BIO_ERROR and report the interruption
1468		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1469		 * is not relevant, so the rpc attempt is essentially
1470		 * a noop.  For the case of a V3 write rpc not being
1471		 * committed to stable storage, the block is still
1472		 * dirty and requires either a commit rpc or another
1473		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1474		 * the block is reused. This is indicated by setting
1475		 * the B_DELWRI and B_NEEDCOMMIT flags.
1476		 *
1477		 * If the buffer is marked B_PAGING, it does not reside on
1478		 * the vp's paging queues so we cannot call bdirty().  The
1479		 * bp in this case is not an NFS cache block so we should
1480		 * be safe. XXX
1481		 */
1482    		if (error == EINTR
1483		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1484			int s;
1485
1486			s = splbio();
1487			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1488			if ((bp->b_flags & B_PAGING) == 0) {
1489			    bdirty(bp);
1490			    bp->b_flags &= ~B_DONE;
1491			}
1492			if (error && (bp->b_flags & B_ASYNC) == 0)
1493			    bp->b_flags |= B_EINTR;
1494			splx(s);
1495	    	} else {
1496		    if (error) {
1497			bp->b_ioflags |= BIO_ERROR;
1498			bp->b_error = np->n_error = error;
1499			np->n_flag |= NWRITEERR;
1500		    }
1501		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1502		}
1503	    } else {
1504		bp->b_resid = 0;
1505		bufdone(bp);
1506		return (0);
1507	    }
1508	}
1509	bp->b_resid = uiop->uio_resid;
1510	if (must_commit)
1511	    nfs_clearcommit(vp->v_mount);
1512	bufdone(bp);
1513	return (error);
1514}
1515
1516/*
1517 * Used to aid in handling ftruncate() operations on the NFS client side.
1518 * Truncation creates a number of special problems for NFS.  We have to
1519 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1520 * we have to properly handle VM pages or (potentially dirty) buffers
1521 * that straddle the truncation point.
1522 */
1523
1524int
1525nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1526{
1527	struct nfsnode *np = VTONFS(vp);
1528	u_quad_t tsize = np->n_size;
1529	int biosize = vp->v_mount->mnt_stat.f_iosize;
1530	int error = 0;
1531
1532	np->n_size = nsize;
1533
1534	if (np->n_size < tsize) {
1535		struct buf *bp;
1536		daddr_t lbn;
1537		int bufsize;
1538
1539		/*
1540		 * vtruncbuf() doesn't get the buffer overlapping the
1541		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1542		 * buffer that now needs to be truncated.
1543		 */
1544		error = vtruncbuf(vp, cred, td, nsize, biosize);
1545		lbn = nsize / biosize;
1546		bufsize = nsize & (biosize - 1);
1547		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1548		if (bp->b_dirtyoff > bp->b_bcount)
1549			bp->b_dirtyoff = bp->b_bcount;
1550		if (bp->b_dirtyend > bp->b_bcount)
1551			bp->b_dirtyend = bp->b_bcount;
1552		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1553		brelse(bp);
1554	} else {
1555		vnode_pager_setsize(vp, nsize);
1556	}
1557	return(error);
1558}
1559
1560