nfs_bio.c revision 115456
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_bio.c 115456 2003-05-31 16:42:45Z phk $");
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/bio.h>
45#include <sys/buf.h>
46#include <sys/kernel.h>
47#include <sys/mount.h>
48#include <sys/proc.h>
49#include <sys/resourcevar.h>
50#include <sys/signalvar.h>
51#include <sys/vmmeter.h>
52#include <sys/vnode.h>
53
54#include <vm/vm.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_page.h>
57#include <vm/vm_object.h>
58#include <vm/vm_pager.h>
59#include <vm/vnode_pager.h>
60
61#include <nfs/rpcv2.h>
62#include <nfs/nfsproto.h>
63#include <nfsclient/nfs.h>
64#include <nfsclient/nfsmount.h>
65#include <nfsclient/nfsnode.h>
66
67/*
68 * Just call nfs_writebp() with the force argument set to 1.
69 *
70 * NOTE: B_DONE may or may not be set in a_bp on call.
71 */
72static int
73nfs_bwrite(struct buf *bp)
74{
75
76	return (nfs_writebp(bp, 1, curthread));
77}
78
79struct buf_ops buf_ops_nfs = {
80	"buf_ops_nfs",
81	nfs_bwrite
82};
83
84static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
85		    struct thread *td);
86
87/*
88 * Vnode op for VM getpages.
89 */
90int
91nfs_getpages(struct vop_getpages_args *ap)
92{
93	int i, error, nextoff, size, toff, count, npages;
94	struct uio uio;
95	struct iovec iov;
96	vm_offset_t kva;
97	struct buf *bp;
98	struct vnode *vp;
99	struct thread *td;
100	struct ucred *cred;
101	struct nfsmount *nmp;
102	vm_page_t *pages;
103
104	GIANT_REQUIRED;
105
106	vp = ap->a_vp;
107	td = curthread;				/* XXX */
108	cred = curthread->td_ucred;		/* XXX */
109	nmp = VFSTONFS(vp->v_mount);
110	pages = ap->a_m;
111	count = ap->a_count;
112
113	if (vp->v_object == NULL) {
114		printf("nfs_getpages: called with non-merged cache vnode??\n");
115		return VM_PAGER_ERROR;
116	}
117
118	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
119	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
120		(void)nfs_fsinfo(nmp, vp, cred, td);
121	}
122
123	npages = btoc(count);
124
125	/*
126	 * If the requested page is partially valid, just return it and
127	 * allow the pager to zero-out the blanks.  Partially valid pages
128	 * can only occur at the file EOF.
129	 */
130
131	{
132		vm_page_t m = pages[ap->a_reqpage];
133
134		vm_page_lock_queues();
135		if (m->valid != 0) {
136			/* handled by vm_fault now	  */
137			/* vm_page_zero_invalid(m, TRUE); */
138			for (i = 0; i < npages; ++i) {
139				if (i != ap->a_reqpage)
140					vm_page_free(pages[i]);
141			}
142			vm_page_unlock_queues();
143			return(0);
144		}
145		vm_page_unlock_queues();
146	}
147
148	/*
149	 * We use only the kva address for the buffer, but this is extremely
150	 * convienient and fast.
151	 */
152	bp = getpbuf(&nfs_pbuf_freecnt);
153
154	kva = (vm_offset_t) bp->b_data;
155	pmap_qenter(kva, pages, npages);
156	cnt.v_vnodein++;
157	cnt.v_vnodepgsin += npages;
158
159	iov.iov_base = (caddr_t) kva;
160	iov.iov_len = count;
161	uio.uio_iov = &iov;
162	uio.uio_iovcnt = 1;
163	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
164	uio.uio_resid = count;
165	uio.uio_segflg = UIO_SYSSPACE;
166	uio.uio_rw = UIO_READ;
167	uio.uio_td = td;
168
169	error = nfs_readrpc(vp, &uio, cred);
170	pmap_qremove(kva, npages);
171
172	relpbuf(bp, &nfs_pbuf_freecnt);
173
174	if (error && (uio.uio_resid == count)) {
175		printf("nfs_getpages: error %d\n", error);
176		vm_page_lock_queues();
177		for (i = 0; i < npages; ++i) {
178			if (i != ap->a_reqpage)
179				vm_page_free(pages[i]);
180		}
181		vm_page_unlock_queues();
182		return VM_PAGER_ERROR;
183	}
184
185	/*
186	 * Calculate the number of bytes read and validate only that number
187	 * of bytes.  Note that due to pending writes, size may be 0.  This
188	 * does not mean that the remaining data is invalid!
189	 */
190
191	size = count - uio.uio_resid;
192	vm_page_lock_queues();
193	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
194		vm_page_t m;
195		nextoff = toff + PAGE_SIZE;
196		m = pages[i];
197
198		m->flags &= ~PG_ZERO;
199
200		if (nextoff <= size) {
201			/*
202			 * Read operation filled an entire page
203			 */
204			m->valid = VM_PAGE_BITS_ALL;
205			vm_page_undirty(m);
206		} else if (size > toff) {
207			/*
208			 * Read operation filled a partial page.
209			 */
210			m->valid = 0;
211			vm_page_set_validclean(m, 0, size - toff);
212			/* handled by vm_fault now	  */
213			/* vm_page_zero_invalid(m, TRUE); */
214		} else {
215			/*
216			 * Read operation was short.  If no error occured
217			 * we may have hit a zero-fill section.   We simply
218			 * leave valid set to 0.
219			 */
220			;
221		}
222		if (i != ap->a_reqpage) {
223			/*
224			 * Whether or not to leave the page activated is up in
225			 * the air, but we should put the page on a page queue
226			 * somewhere (it already is in the object).  Result:
227			 * It appears that emperical results show that
228			 * deactivating pages is best.
229			 */
230
231			/*
232			 * Just in case someone was asking for this page we
233			 * now tell them that it is ok to use.
234			 */
235			if (!error) {
236				if (m->flags & PG_WANTED)
237					vm_page_activate(m);
238				else
239					vm_page_deactivate(m);
240				vm_page_wakeup(m);
241			} else {
242				vm_page_free(m);
243			}
244		}
245	}
246	vm_page_unlock_queues();
247	return 0;
248}
249
250/*
251 * Vnode op for VM putpages.
252 */
253int
254nfs_putpages(struct vop_putpages_args *ap)
255{
256	struct uio uio;
257	struct iovec iov;
258	vm_offset_t kva;
259	struct buf *bp;
260	int iomode, must_commit, i, error, npages, count;
261	off_t offset;
262	int *rtvals;
263	struct vnode *vp;
264	struct thread *td;
265	struct ucred *cred;
266	struct nfsmount *nmp;
267	struct nfsnode *np;
268	vm_page_t *pages;
269
270	GIANT_REQUIRED;
271
272	vp = ap->a_vp;
273	np = VTONFS(vp);
274	td = curthread;				/* XXX */
275	cred = curthread->td_ucred;		/* XXX */
276	nmp = VFSTONFS(vp->v_mount);
277	pages = ap->a_m;
278	count = ap->a_count;
279	rtvals = ap->a_rtvals;
280	npages = btoc(count);
281	offset = IDX_TO_OFF(pages[0]->pindex);
282
283	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
284	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
285		(void)nfs_fsinfo(nmp, vp, cred, td);
286	}
287
288	for (i = 0; i < npages; i++)
289		rtvals[i] = VM_PAGER_AGAIN;
290
291	/*
292	 * When putting pages, do not extend file past EOF.
293	 */
294
295	if (offset + count > np->n_size) {
296		count = np->n_size - offset;
297		if (count < 0)
298			count = 0;
299	}
300
301	/*
302	 * We use only the kva address for the buffer, but this is extremely
303	 * convienient and fast.
304	 */
305	bp = getpbuf(&nfs_pbuf_freecnt);
306
307	kva = (vm_offset_t) bp->b_data;
308	pmap_qenter(kva, pages, npages);
309	cnt.v_vnodeout++;
310	cnt.v_vnodepgsout += count;
311
312	iov.iov_base = (caddr_t) kva;
313	iov.iov_len = count;
314	uio.uio_iov = &iov;
315	uio.uio_iovcnt = 1;
316	uio.uio_offset = offset;
317	uio.uio_resid = count;
318	uio.uio_segflg = UIO_SYSSPACE;
319	uio.uio_rw = UIO_WRITE;
320	uio.uio_td = td;
321
322	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
323	    iomode = NFSV3WRITE_UNSTABLE;
324	else
325	    iomode = NFSV3WRITE_FILESYNC;
326
327	error = nfs_writerpc(vp, &uio, cred, &iomode, &must_commit);
328
329	pmap_qremove(kva, npages);
330	relpbuf(bp, &nfs_pbuf_freecnt);
331
332	if (!error) {
333		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
334		for (i = 0; i < nwritten; i++) {
335			rtvals[i] = VM_PAGER_OK;
336			vm_page_undirty(pages[i]);
337		}
338		if (must_commit) {
339			nfs_clearcommit(vp->v_mount);
340		}
341	}
342	return rtvals[0];
343}
344
345/*
346 * Vnode op for read using bio
347 */
348int
349nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
350{
351	struct nfsnode *np = VTONFS(vp);
352	int biosize, i;
353	struct buf *bp = 0, *rabp;
354	struct vattr vattr;
355	struct thread *td;
356	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
357	daddr_t lbn, rabn;
358	int bcount;
359	int seqcount;
360	int nra, error = 0, n = 0, on = 0;
361
362#ifdef DIAGNOSTIC
363	if (uio->uio_rw != UIO_READ)
364		panic("nfs_read mode");
365#endif
366	if (uio->uio_resid == 0)
367		return (0);
368	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
369		return (EINVAL);
370	td = uio->uio_td;
371
372	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
373	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
374		(void)nfs_fsinfo(nmp, vp, cred, td);
375	if (vp->v_type != VDIR &&
376	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
377		return (EFBIG);
378	biosize = vp->v_mount->mnt_stat.f_iosize;
379	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
380	/*
381	 * For nfs, cache consistency can only be maintained approximately.
382	 * Although RFC1094 does not specify the criteria, the following is
383	 * believed to be compatible with the reference port.
384	 * For nfs:
385	 * If the file's modify time on the server has changed since the
386	 * last read rpc or you have written to the file,
387	 * you may have lost data cache consistency with the
388	 * server, so flush all of the file's data out of the cache.
389	 * Then force a getattr rpc to ensure that you have up to date
390	 * attributes.
391	 * NB: This implies that cache data can be read when up to
392	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
393	 * attributes this could be forced by setting n_attrstamp to 0 before
394	 * the VOP_GETATTR() call.
395	 */
396	if (np->n_flag & NMODIFIED) {
397		if (vp->v_type != VREG) {
398			if (vp->v_type != VDIR)
399				panic("nfs: bioread, not dir");
400			nfs_invaldir(vp);
401			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
402			if (error)
403				return (error);
404		}
405		np->n_attrstamp = 0;
406		error = VOP_GETATTR(vp, &vattr, cred, td);
407		if (error)
408			return (error);
409		np->n_mtime = vattr.va_mtime.tv_sec;
410	} else {
411		error = VOP_GETATTR(vp, &vattr, cred, td);
412		if (error)
413			return (error);
414		if (np->n_mtime != vattr.va_mtime.tv_sec) {
415			if (vp->v_type == VDIR)
416				nfs_invaldir(vp);
417			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
418			if (error)
419				return (error);
420			np->n_mtime = vattr.va_mtime.tv_sec;
421		}
422	}
423	do {
424	    switch (vp->v_type) {
425	    case VREG:
426		nfsstats.biocache_reads++;
427		lbn = uio->uio_offset / biosize;
428		on = uio->uio_offset & (biosize - 1);
429
430		/*
431		 * Start the read ahead(s), as required.
432		 */
433		if (nmp->nm_readahead > 0) {
434		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
435			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
436			rabn = lbn + 1 + nra;
437			if (incore(vp, rabn) == NULL) {
438			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
439			    if (!rabp)
440				return (EINTR);
441			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
442				rabp->b_flags |= B_ASYNC;
443				rabp->b_iocmd = BIO_READ;
444				vfs_busy_pages(rabp, 0);
445				if (nfs_asyncio(rabp, cred, td)) {
446				    rabp->b_flags |= B_INVAL;
447				    rabp->b_ioflags |= BIO_ERROR;
448				    vfs_unbusy_pages(rabp);
449				    brelse(rabp);
450				    break;
451				}
452			    } else {
453				brelse(rabp);
454			    }
455			}
456		    }
457		}
458
459		/*
460		 * Obtain the buffer cache block.  Figure out the buffer size
461		 * when we are at EOF.  If we are modifying the size of the
462		 * buffer based on an EOF condition we need to hold
463		 * nfs_rslock() through obtaining the buffer to prevent
464		 * a potential writer-appender from messing with n_size.
465		 * Otherwise we may accidently truncate the buffer and
466		 * lose dirty data.
467		 *
468		 * Note that bcount is *not* DEV_BSIZE aligned.
469		 */
470
471again:
472		bcount = biosize;
473		if ((off_t)lbn * biosize >= np->n_size) {
474			bcount = 0;
475		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
476			bcount = np->n_size - (off_t)lbn * biosize;
477		}
478		if (bcount != biosize) {
479			switch(nfs_rslock(np, td)) {
480			case ENOLCK:
481				goto again;
482				/* not reached */
483			case EINTR:
484			case ERESTART:
485				return(EINTR);
486				/* not reached */
487			default:
488				break;
489			}
490		}
491
492		bp = nfs_getcacheblk(vp, lbn, bcount, td);
493
494		if (bcount != biosize)
495			nfs_rsunlock(np, td);
496		if (!bp)
497			return (EINTR);
498
499		/*
500		 * If B_CACHE is not set, we must issue the read.  If this
501		 * fails, we return an error.
502		 */
503
504		if ((bp->b_flags & B_CACHE) == 0) {
505		    bp->b_iocmd = BIO_READ;
506		    vfs_busy_pages(bp, 0);
507		    error = nfs_doio(bp, cred, td);
508		    if (error) {
509			brelse(bp);
510			return (error);
511		    }
512		}
513
514		/*
515		 * on is the offset into the current bp.  Figure out how many
516		 * bytes we can copy out of the bp.  Note that bcount is
517		 * NOT DEV_BSIZE aligned.
518		 *
519		 * Then figure out how many bytes we can copy into the uio.
520		 */
521
522		n = 0;
523		if (on < bcount)
524			n = min((unsigned)(bcount - on), uio->uio_resid);
525		break;
526	    case VLNK:
527		nfsstats.biocache_readlinks++;
528		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
529		if (!bp)
530			return (EINTR);
531		if ((bp->b_flags & B_CACHE) == 0) {
532		    bp->b_iocmd = BIO_READ;
533		    vfs_busy_pages(bp, 0);
534		    error = nfs_doio(bp, cred, td);
535		    if (error) {
536			bp->b_ioflags |= BIO_ERROR;
537			brelse(bp);
538			return (error);
539		    }
540		}
541		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
542		on = 0;
543		break;
544	    case VDIR:
545		nfsstats.biocache_readdirs++;
546		if (np->n_direofoffset
547		    && uio->uio_offset >= np->n_direofoffset) {
548		    return (0);
549		}
550		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
551		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
552		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
553		if (!bp)
554		    return (EINTR);
555		if ((bp->b_flags & B_CACHE) == 0) {
556		    bp->b_iocmd = BIO_READ;
557		    vfs_busy_pages(bp, 0);
558		    error = nfs_doio(bp, cred, td);
559		    if (error) {
560			    brelse(bp);
561		    }
562		    while (error == NFSERR_BAD_COOKIE) {
563			printf("got bad cookie vp %p bp %p\n", vp, bp);
564			nfs_invaldir(vp);
565			error = nfs_vinvalbuf(vp, 0, cred, td, 1);
566			/*
567			 * Yuck! The directory has been modified on the
568			 * server. The only way to get the block is by
569			 * reading from the beginning to get all the
570			 * offset cookies.
571			 *
572			 * Leave the last bp intact unless there is an error.
573			 * Loop back up to the while if the error is another
574			 * NFSERR_BAD_COOKIE (double yuch!).
575			 */
576			for (i = 0; i <= lbn && !error; i++) {
577			    if (np->n_direofoffset
578				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
579				    return (0);
580			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
581			    if (!bp)
582				return (EINTR);
583			    if ((bp->b_flags & B_CACHE) == 0) {
584				    bp->b_iocmd = BIO_READ;
585				    vfs_busy_pages(bp, 0);
586				    error = nfs_doio(bp, cred, td);
587				    /*
588				     * no error + B_INVAL == directory EOF,
589				     * use the block.
590				     */
591				    if (error == 0 && (bp->b_flags & B_INVAL))
592					    break;
593			    }
594			    /*
595			     * An error will throw away the block and the
596			     * for loop will break out.  If no error and this
597			     * is not the block we want, we throw away the
598			     * block and go for the next one via the for loop.
599			     */
600			    if (error || i < lbn)
601				    brelse(bp);
602			}
603		    }
604		    /*
605		     * The above while is repeated if we hit another cookie
606		     * error.  If we hit an error and it wasn't a cookie error,
607		     * we give up.
608		     */
609		    if (error)
610			    return (error);
611		}
612
613		/*
614		 * If not eof and read aheads are enabled, start one.
615		 * (You need the current block first, so that you have the
616		 *  directory offset cookie of the next block.)
617		 */
618		if (nmp->nm_readahead > 0 &&
619		    (bp->b_flags & B_INVAL) == 0 &&
620		    (np->n_direofoffset == 0 ||
621		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
622		    incore(vp, lbn + 1) == NULL) {
623			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
624			if (rabp) {
625			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
626				rabp->b_flags |= B_ASYNC;
627				rabp->b_iocmd = BIO_READ;
628				vfs_busy_pages(rabp, 0);
629				if (nfs_asyncio(rabp, cred, td)) {
630				    rabp->b_flags |= B_INVAL;
631				    rabp->b_ioflags |= BIO_ERROR;
632				    vfs_unbusy_pages(rabp);
633				    brelse(rabp);
634				}
635			    } else {
636				brelse(rabp);
637			    }
638			}
639		}
640		/*
641		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
642		 * chopped for the EOF condition, we cannot tell how large
643		 * NFS directories are going to be until we hit EOF.  So
644		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
645		 * it just so happens that b_resid will effectively chop it
646		 * to EOF.  *BUT* this information is lost if the buffer goes
647		 * away and is reconstituted into a B_CACHE state ( due to
648		 * being VMIO ) later.  So we keep track of the directory eof
649		 * in np->n_direofoffset and chop it off as an extra step
650		 * right here.
651		 */
652		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
653		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
654			n = np->n_direofoffset - uio->uio_offset;
655		break;
656	    default:
657		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
658		break;
659	    };
660
661	    if (n > 0) {
662		    error = uiomove(bp->b_data + on, (int)n, uio);
663	    }
664	    switch (vp->v_type) {
665	    case VREG:
666		break;
667	    case VLNK:
668		n = 0;
669		break;
670	    case VDIR:
671		break;
672	    default:
673		printf(" nfs_bioread: type %x unexpected\n", vp->v_type);
674	    }
675	    brelse(bp);
676	} while (error == 0 && uio->uio_resid > 0 && n > 0);
677	return (error);
678}
679
680/*
681 * Vnode op for write using bio
682 */
683int
684nfs_write(struct vop_write_args *ap)
685{
686	int biosize;
687	struct uio *uio = ap->a_uio;
688	struct thread *td = uio->uio_td;
689	struct vnode *vp = ap->a_vp;
690	struct nfsnode *np = VTONFS(vp);
691	struct ucred *cred = ap->a_cred;
692	int ioflag = ap->a_ioflag;
693	struct buf *bp;
694	struct vattr vattr;
695	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
696	daddr_t lbn;
697	int bcount;
698	int n, on, error = 0;
699	int haverslock = 0;
700	struct proc *p = td?td->td_proc:NULL;
701
702	GIANT_REQUIRED;
703
704#ifdef DIAGNOSTIC
705	if (uio->uio_rw != UIO_WRITE)
706		panic("nfs_write mode");
707	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
708		panic("nfs_write proc");
709#endif
710	if (vp->v_type != VREG)
711		return (EIO);
712	if (np->n_flag & NWRITEERR) {
713		np->n_flag &= ~NWRITEERR;
714		return (np->n_error);
715	}
716	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
717	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
718		(void)nfs_fsinfo(nmp, vp, cred, td);
719
720	/*
721	 * Synchronously flush pending buffers if we are in synchronous
722	 * mode or if we are appending.
723	 */
724	if (ioflag & (IO_APPEND | IO_SYNC)) {
725		if (np->n_flag & NMODIFIED) {
726			np->n_attrstamp = 0;
727			error = nfs_vinvalbuf(vp, V_SAVE, cred, td, 1);
728			if (error)
729				return (error);
730		}
731	}
732
733	/*
734	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
735	 * get the append lock.
736	 */
737restart:
738	if (ioflag & IO_APPEND) {
739		np->n_attrstamp = 0;
740		error = VOP_GETATTR(vp, &vattr, cred, td);
741		if (error)
742			return (error);
743		uio->uio_offset = np->n_size;
744	}
745
746	if (uio->uio_offset < 0)
747		return (EINVAL);
748	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
749		return (EFBIG);
750	if (uio->uio_resid == 0)
751		return (0);
752
753	/*
754	 * We need to obtain the rslock if we intend to modify np->n_size
755	 * in order to guarentee the append point with multiple contending
756	 * writers, to guarentee that no other appenders modify n_size
757	 * while we are trying to obtain a truncated buffer (i.e. to avoid
758	 * accidently truncating data written by another appender due to
759	 * the race), and to ensure that the buffer is populated prior to
760	 * our extending of the file.  We hold rslock through the entire
761	 * operation.
762	 *
763	 * Note that we do not synchronize the case where someone truncates
764	 * the file while we are appending to it because attempting to lock
765	 * this case may deadlock other parts of the system unexpectedly.
766	 */
767	if ((ioflag & IO_APPEND) ||
768	    uio->uio_offset + uio->uio_resid > np->n_size) {
769		switch(nfs_rslock(np, td)) {
770		case ENOLCK:
771			goto restart;
772			/* not reached */
773		case EINTR:
774		case ERESTART:
775			return(EINTR);
776			/* not reached */
777		default:
778			break;
779		}
780		haverslock = 1;
781	}
782
783	/*
784	 * Maybe this should be above the vnode op call, but so long as
785	 * file servers have no limits, i don't think it matters
786	 */
787	if (p && uio->uio_offset + uio->uio_resid >
788	      p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
789		PROC_LOCK(p);
790		psignal(p, SIGXFSZ);
791		PROC_UNLOCK(p);
792		if (haverslock)
793			nfs_rsunlock(np, td);
794		return (EFBIG);
795	}
796
797	biosize = vp->v_mount->mnt_stat.f_iosize;
798
799	do {
800		nfsstats.biocache_writes++;
801		lbn = uio->uio_offset / biosize;
802		on = uio->uio_offset & (biosize-1);
803		n = min((unsigned)(biosize - on), uio->uio_resid);
804again:
805		/*
806		 * Handle direct append and file extension cases, calculate
807		 * unaligned buffer size.
808		 */
809
810		if (uio->uio_offset == np->n_size && n) {
811			/*
812			 * Get the buffer (in its pre-append state to maintain
813			 * B_CACHE if it was previously set).  Resize the
814			 * nfsnode after we have locked the buffer to prevent
815			 * readers from reading garbage.
816			 */
817			bcount = on;
818			bp = nfs_getcacheblk(vp, lbn, bcount, td);
819
820			if (bp != NULL) {
821				long save;
822
823				np->n_size = uio->uio_offset + n;
824				np->n_flag |= NMODIFIED;
825				vnode_pager_setsize(vp, np->n_size);
826
827				save = bp->b_flags & B_CACHE;
828				bcount += n;
829				allocbuf(bp, bcount);
830				bp->b_flags |= save;
831				bp->b_magic = B_MAGIC_NFS;
832				bp->b_op = &buf_ops_nfs;
833			}
834		} else {
835			/*
836			 * Obtain the locked cache block first, and then
837			 * adjust the file's size as appropriate.
838			 */
839			bcount = on + n;
840			if ((off_t)lbn * biosize + bcount < np->n_size) {
841				if ((off_t)(lbn + 1) * biosize < np->n_size)
842					bcount = biosize;
843				else
844					bcount = np->n_size - (off_t)lbn * biosize;
845			}
846			bp = nfs_getcacheblk(vp, lbn, bcount, td);
847			if (uio->uio_offset + n > np->n_size) {
848				np->n_size = uio->uio_offset + n;
849				np->n_flag |= NMODIFIED;
850				vnode_pager_setsize(vp, np->n_size);
851			}
852		}
853
854		if (!bp) {
855			error = EINTR;
856			break;
857		}
858
859		/*
860		 * Issue a READ if B_CACHE is not set.  In special-append
861		 * mode, B_CACHE is based on the buffer prior to the write
862		 * op and is typically set, avoiding the read.  If a read
863		 * is required in special append mode, the server will
864		 * probably send us a short-read since we extended the file
865		 * on our end, resulting in b_resid == 0 and, thusly,
866		 * B_CACHE getting set.
867		 *
868		 * We can also avoid issuing the read if the write covers
869		 * the entire buffer.  We have to make sure the buffer state
870		 * is reasonable in this case since we will not be initiating
871		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
872		 * more information.
873		 *
874		 * B_CACHE may also be set due to the buffer being cached
875		 * normally.
876		 */
877
878		if (on == 0 && n == bcount) {
879			bp->b_flags |= B_CACHE;
880			bp->b_flags &= ~B_INVAL;
881			bp->b_ioflags &= ~BIO_ERROR;
882		}
883
884		if ((bp->b_flags & B_CACHE) == 0) {
885			bp->b_iocmd = BIO_READ;
886			vfs_busy_pages(bp, 0);
887			error = nfs_doio(bp, cred, td);
888			if (error) {
889				brelse(bp);
890				break;
891			}
892		}
893		if (!bp) {
894			error = EINTR;
895			break;
896		}
897		if (bp->b_wcred == NOCRED)
898			bp->b_wcred = crhold(cred);
899		np->n_flag |= NMODIFIED;
900
901		/*
902		 * If dirtyend exceeds file size, chop it down.  This should
903		 * not normally occur but there is an append race where it
904		 * might occur XXX, so we log it.
905		 *
906		 * If the chopping creates a reverse-indexed or degenerate
907		 * situation with dirtyoff/end, we 0 both of them.
908		 */
909
910		if (bp->b_dirtyend > bcount) {
911			printf("NFS append race @%lx:%d\n",
912			    (long)bp->b_blkno * DEV_BSIZE,
913			    bp->b_dirtyend - bcount);
914			bp->b_dirtyend = bcount;
915		}
916
917		if (bp->b_dirtyoff >= bp->b_dirtyend)
918			bp->b_dirtyoff = bp->b_dirtyend = 0;
919
920		/*
921		 * If the new write will leave a contiguous dirty
922		 * area, just update the b_dirtyoff and b_dirtyend,
923		 * otherwise force a write rpc of the old dirty area.
924		 *
925		 * While it is possible to merge discontiguous writes due to
926		 * our having a B_CACHE buffer ( and thus valid read data
927		 * for the hole), we don't because it could lead to
928		 * significant cache coherency problems with multiple clients,
929		 * especially if locking is implemented later on.
930		 *
931		 * as an optimization we could theoretically maintain
932		 * a linked list of discontinuous areas, but we would still
933		 * have to commit them separately so there isn't much
934		 * advantage to it except perhaps a bit of asynchronization.
935		 */
936
937		if (bp->b_dirtyend > 0 &&
938		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
939			if (BUF_WRITE(bp) == EINTR) {
940				error = EINTR;
941				break;
942			}
943			goto again;
944		}
945
946		error = uiomove((char *)bp->b_data + on, n, uio);
947
948		/*
949		 * Since this block is being modified, it must be written
950		 * again and not just committed.  Since write clustering does
951		 * not work for the stage 1 data write, only the stage 2
952		 * commit rpc, we have to clear B_CLUSTEROK as well.
953		 */
954		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
955
956		if (error) {
957			bp->b_ioflags |= BIO_ERROR;
958			brelse(bp);
959			break;
960		}
961
962		/*
963		 * Only update dirtyoff/dirtyend if not a degenerate
964		 * condition.
965		 */
966		if (n) {
967			if (bp->b_dirtyend > 0) {
968				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
969				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
970			} else {
971				bp->b_dirtyoff = on;
972				bp->b_dirtyend = on + n;
973			}
974			vfs_bio_set_validclean(bp, on, n);
975		}
976
977		/*
978		 * If IO_SYNC do bwrite().
979		 *
980		 * IO_INVAL appears to be unused.  The idea appears to be
981		 * to turn off caching in this case.  Very odd.  XXX
982		 */
983		if ((ioflag & IO_SYNC)) {
984			if (ioflag & IO_INVAL)
985				bp->b_flags |= B_NOCACHE;
986			error = BUF_WRITE(bp);
987			if (error)
988				break;
989		} else if ((n + on) == biosize) {
990			bp->b_flags |= B_ASYNC;
991			(void)nfs_writebp(bp, 0, 0);
992		} else {
993			bdwrite(bp);
994		}
995	} while (uio->uio_resid > 0 && n > 0);
996
997	if (haverslock)
998		nfs_rsunlock(np, td);
999
1000	return (error);
1001}
1002
1003/*
1004 * Get an nfs cache block.
1005 *
1006 * Allocate a new one if the block isn't currently in the cache
1007 * and return the block marked busy. If the calling process is
1008 * interrupted by a signal for an interruptible mount point, return
1009 * NULL.
1010 *
1011 * The caller must carefully deal with the possible B_INVAL state of
1012 * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1013 * indirectly), so synchronous reads can be issued without worrying about
1014 * the B_INVAL state.  We have to be a little more careful when dealing
1015 * with writes (see comments in nfs_write()) when extending a file past
1016 * its EOF.
1017 */
1018static struct buf *
1019nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1020{
1021	struct buf *bp;
1022	struct mount *mp;
1023	struct nfsmount *nmp;
1024
1025	mp = vp->v_mount;
1026	nmp = VFSTONFS(mp);
1027
1028	if (nmp->nm_flag & NFSMNT_INT) {
1029		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1030		while (bp == NULL) {
1031			if (nfs_sigintr(nmp, NULL, td))
1032				return (NULL);
1033			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1034		}
1035	} else {
1036		bp = getblk(vp, bn, size, 0, 0, 0);
1037	}
1038
1039	if (vp->v_type == VREG) {
1040		int biosize;
1041
1042		biosize = mp->mnt_stat.f_iosize;
1043		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1044	}
1045	return (bp);
1046}
1047
1048/*
1049 * Flush and invalidate all dirty buffers. If another process is already
1050 * doing the flush, just wait for completion.
1051 */
1052int
1053nfs_vinvalbuf(struct vnode *vp, int flags, struct ucred *cred,
1054    struct thread *td, int intrflg)
1055{
1056	struct nfsnode *np = VTONFS(vp);
1057	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1058	int error = 0, slpflag, slptimeo;
1059
1060	ASSERT_VOP_LOCKED(vp, "nfs_vinvalbuf");
1061
1062	VI_LOCK(vp);
1063	if (vp->v_iflag & VI_XLOCK) {
1064		/* XXX Should we wait here? */
1065		VI_UNLOCK(vp);
1066		return (0);
1067	}
1068	VI_UNLOCK(vp);
1069
1070	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1071		intrflg = 0;
1072	if (intrflg) {
1073		slpflag = PCATCH;
1074		slptimeo = 2 * hz;
1075	} else {
1076		slpflag = 0;
1077		slptimeo = 0;
1078	}
1079	/*
1080	 * First wait for any other process doing a flush to complete.
1081	 */
1082	while (np->n_flag & NFLUSHINPROG) {
1083		np->n_flag |= NFLUSHWANT;
1084		error = tsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
1085			slptimeo);
1086		if (error && intrflg &&
1087		    nfs_sigintr(nmp, NULL, td))
1088			return (EINTR);
1089	}
1090
1091	/*
1092	 * Now, flush as required.
1093	 */
1094	np->n_flag |= NFLUSHINPROG;
1095	error = vinvalbuf(vp, flags, cred, td, slpflag, 0);
1096	while (error) {
1097		if (intrflg &&
1098		    nfs_sigintr(nmp, NULL, td)) {
1099			np->n_flag &= ~NFLUSHINPROG;
1100			if (np->n_flag & NFLUSHWANT) {
1101				np->n_flag &= ~NFLUSHWANT;
1102				wakeup(&np->n_flag);
1103			}
1104			return (EINTR);
1105		}
1106		error = vinvalbuf(vp, flags, cred, td, 0, slptimeo);
1107	}
1108	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1109	if (np->n_flag & NFLUSHWANT) {
1110		np->n_flag &= ~NFLUSHWANT;
1111		wakeup(&np->n_flag);
1112	}
1113	return (0);
1114}
1115
1116/*
1117 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1118 * This is mainly to avoid queueing async I/O requests when the nfsiods
1119 * are all hung on a dead server.
1120 *
1121 * Note: nfs_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1122 * is eventually dequeued by the async daemon, nfs_doio() *will*.
1123 */
1124int
1125nfs_asyncio(struct buf *bp, struct ucred *cred, struct thread *td)
1126{
1127	struct nfsmount *nmp;
1128	int iod;
1129	int gotiod;
1130	int slpflag = 0;
1131	int slptimeo = 0;
1132	int error;
1133
1134	nmp = VFSTONFS(bp->b_vp->v_mount);
1135
1136	/*
1137	 * Commits are usually short and sweet so lets save some cpu and
1138	 * leave the async daemons for more important rpc's (such as reads
1139	 * and writes).
1140	 */
1141	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1142	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1143		return(EIO);
1144	}
1145
1146again:
1147	if (nmp->nm_flag & NFSMNT_INT)
1148		slpflag = PCATCH;
1149	gotiod = FALSE;
1150
1151	/*
1152	 * Find a free iod to process this request.
1153	 */
1154	for (iod = 0; iod < nfs_numasync; iod++)
1155		if (nfs_iodwant[iod]) {
1156			gotiod = TRUE;
1157			break;
1158		}
1159
1160	/*
1161	 * Try to create one if none are free.
1162	 */
1163	if (!gotiod) {
1164		iod = nfs_nfsiodnew();
1165		if (iod != -1)
1166			gotiod = TRUE;
1167	}
1168
1169	if (gotiod) {
1170		/*
1171		 * Found one, so wake it up and tell it which
1172		 * mount to process.
1173		 */
1174		NFS_DPF(ASYNCIO, ("nfs_asyncio: waking iod %d for mount %p\n",
1175		    iod, nmp));
1176		nfs_iodwant[iod] = NULL;
1177		nfs_iodmount[iod] = nmp;
1178		nmp->nm_bufqiods++;
1179		wakeup(&nfs_iodwant[iod]);
1180	}
1181
1182	/*
1183	 * If none are free, we may already have an iod working on this mount
1184	 * point.  If so, it will process our request.
1185	 */
1186	if (!gotiod) {
1187		if (nmp->nm_bufqiods > 0) {
1188			NFS_DPF(ASYNCIO,
1189				("nfs_asyncio: %d iods are already processing mount %p\n",
1190				 nmp->nm_bufqiods, nmp));
1191			gotiod = TRUE;
1192		}
1193	}
1194
1195	/*
1196	 * If we have an iod which can process the request, then queue
1197	 * the buffer.
1198	 */
1199	if (gotiod) {
1200		/*
1201		 * Ensure that the queue never grows too large.  We still want
1202		 * to asynchronize so we block rather then return EIO.
1203		 */
1204		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1205			NFS_DPF(ASYNCIO,
1206				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1207			nmp->nm_bufqwant = TRUE;
1208			error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
1209				       "nfsaio", slptimeo);
1210			if (error) {
1211				if (nfs_sigintr(nmp, NULL, td))
1212					return (EINTR);
1213				if (slpflag == PCATCH) {
1214					slpflag = 0;
1215					slptimeo = 2 * hz;
1216				}
1217			}
1218			/*
1219			 * We might have lost our iod while sleeping,
1220			 * so check and loop if nescessary.
1221			 */
1222			if (nmp->nm_bufqiods == 0) {
1223				NFS_DPF(ASYNCIO,
1224					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1225				goto again;
1226			}
1227		}
1228
1229		if (bp->b_iocmd == BIO_READ) {
1230			if (bp->b_rcred == NOCRED && cred != NOCRED)
1231				bp->b_rcred = crhold(cred);
1232		} else {
1233			bp->b_flags |= B_WRITEINPROG;
1234			if (bp->b_wcred == NOCRED && cred != NOCRED)
1235				bp->b_wcred = crhold(cred);
1236		}
1237
1238		BUF_KERNPROC(bp);
1239		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1240		nmp->nm_bufqlen++;
1241		return (0);
1242	}
1243
1244	/*
1245	 * All the iods are busy on other mounts, so return EIO to
1246	 * force the caller to process the i/o synchronously.
1247	 */
1248	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1249	return (EIO);
1250}
1251
1252/*
1253 * Do an I/O operation to/from a cache block. This may be called
1254 * synchronously or from an nfsiod.
1255 */
1256int
1257nfs_doio(struct buf *bp, struct ucred *cr, struct thread *td)
1258{
1259	struct uio *uiop;
1260	struct vnode *vp;
1261	struct nfsnode *np;
1262	struct nfsmount *nmp;
1263	int error = 0, iomode, must_commit = 0;
1264	struct uio uio;
1265	struct iovec io;
1266	struct proc *p = td ? td->td_proc : NULL;
1267
1268	vp = bp->b_vp;
1269	np = VTONFS(vp);
1270	nmp = VFSTONFS(vp->v_mount);
1271	uiop = &uio;
1272	uiop->uio_iov = &io;
1273	uiop->uio_iovcnt = 1;
1274	uiop->uio_segflg = UIO_SYSSPACE;
1275	uiop->uio_td = td;
1276
1277	/*
1278	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1279	 * do this here so we do not have to do it in all the code that
1280	 * calls us.
1281	 */
1282	bp->b_flags &= ~B_INVAL;
1283	bp->b_ioflags &= ~BIO_ERROR;
1284
1285	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1286
1287	/*
1288	 * Historically, paging was done with physio, but no more.
1289	 */
1290	if (bp->b_flags & B_PHYS) {
1291	    /*
1292	     * ...though reading /dev/drum still gets us here.
1293	     */
1294	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1295	    /* mapping was done by vmapbuf() */
1296	    io.iov_base = bp->b_data;
1297	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1298	    if (bp->b_iocmd == BIO_READ) {
1299		uiop->uio_rw = UIO_READ;
1300		nfsstats.read_physios++;
1301		error = nfs_readrpc(vp, uiop, cr);
1302	    } else {
1303		int com;
1304
1305		iomode = NFSV3WRITE_DATASYNC;
1306		uiop->uio_rw = UIO_WRITE;
1307		nfsstats.write_physios++;
1308		error = nfs_writerpc(vp, uiop, cr, &iomode, &com);
1309	    }
1310	    if (error) {
1311		bp->b_ioflags |= BIO_ERROR;
1312		bp->b_error = error;
1313	    }
1314	} else if (bp->b_iocmd == BIO_READ) {
1315	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1316	    io.iov_base = bp->b_data;
1317	    uiop->uio_rw = UIO_READ;
1318
1319	    switch (vp->v_type) {
1320	    case VREG:
1321		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1322		nfsstats.read_bios++;
1323		error = nfs_readrpc(vp, uiop, cr);
1324
1325		if (!error) {
1326		    if (uiop->uio_resid) {
1327			/*
1328			 * If we had a short read with no error, we must have
1329			 * hit a file hole.  We should zero-fill the remainder.
1330			 * This can also occur if the server hits the file EOF.
1331			 *
1332			 * Holes used to be able to occur due to pending
1333			 * writes, but that is not possible any longer.
1334			 */
1335			int nread = bp->b_bcount - uiop->uio_resid;
1336			int left  = uiop->uio_resid;
1337
1338			if (left > 0)
1339				bzero((char *)bp->b_data + nread, left);
1340			uiop->uio_resid = 0;
1341		    }
1342		}
1343		/* ASSERT_VOP_LOCKED(vp, "nfs_doio"); */
1344		if (p && (vp->v_vflag & VV_TEXT) &&
1345			(np->n_mtime != np->n_vattr.va_mtime.tv_sec)) {
1346			uprintf("Process killed due to text file modification\n");
1347			PROC_LOCK(p);
1348			psignal(p, SIGKILL);
1349			_PHOLD(p);
1350			PROC_UNLOCK(p);
1351		}
1352		break;
1353	    case VLNK:
1354		uiop->uio_offset = (off_t)0;
1355		nfsstats.readlink_bios++;
1356		error = nfs_readlinkrpc(vp, uiop, cr);
1357		break;
1358	    case VDIR:
1359		nfsstats.readdir_bios++;
1360		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1361		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1362			error = nfs_readdirplusrpc(vp, uiop, cr);
1363			if (error == NFSERR_NOTSUPP)
1364				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1365		}
1366		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1367			error = nfs_readdirrpc(vp, uiop, cr);
1368		/*
1369		 * end-of-directory sets B_INVAL but does not generate an
1370		 * error.
1371		 */
1372		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1373			bp->b_flags |= B_INVAL;
1374		break;
1375	    default:
1376		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
1377		break;
1378	    };
1379	    if (error) {
1380		bp->b_ioflags |= BIO_ERROR;
1381		bp->b_error = error;
1382	    }
1383	} else {
1384	    /*
1385	     * If we only need to commit, try to commit
1386	     */
1387	    if (bp->b_flags & B_NEEDCOMMIT) {
1388		    int retv;
1389		    off_t off;
1390
1391		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1392		    bp->b_flags |= B_WRITEINPROG;
1393		    retv = nfs_commit(
1394				bp->b_vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1395				bp->b_wcred, td);
1396		    bp->b_flags &= ~B_WRITEINPROG;
1397		    if (retv == 0) {
1398			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1399			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1400			    bp->b_resid = 0;
1401			    bufdone(bp);
1402			    return (0);
1403		    }
1404		    if (retv == NFSERR_STALEWRITEVERF) {
1405			    nfs_clearcommit(bp->b_vp->v_mount);
1406		    }
1407	    }
1408
1409	    /*
1410	     * Setup for actual write
1411	     */
1412
1413	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1414		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1415
1416	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1417		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1418		    - bp->b_dirtyoff;
1419		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1420		    + bp->b_dirtyoff;
1421		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1422		uiop->uio_rw = UIO_WRITE;
1423		nfsstats.write_bios++;
1424
1425		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1426		    iomode = NFSV3WRITE_UNSTABLE;
1427		else
1428		    iomode = NFSV3WRITE_FILESYNC;
1429
1430		bp->b_flags |= B_WRITEINPROG;
1431		error = nfs_writerpc(vp, uiop, cr, &iomode, &must_commit);
1432
1433		/*
1434		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1435		 * to cluster the buffers needing commit.  This will allow
1436		 * the system to submit a single commit rpc for the whole
1437		 * cluster.  We can do this even if the buffer is not 100%
1438		 * dirty (relative to the NFS blocksize), so we optimize the
1439		 * append-to-file-case.
1440		 *
1441		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1442		 * cleared because write clustering only works for commit
1443		 * rpc's, not for the data portion of the write).
1444		 */
1445
1446		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1447		    bp->b_flags |= B_NEEDCOMMIT;
1448		    if (bp->b_dirtyoff == 0
1449			&& bp->b_dirtyend == bp->b_bcount)
1450			bp->b_flags |= B_CLUSTEROK;
1451		} else {
1452		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1453		}
1454		bp->b_flags &= ~B_WRITEINPROG;
1455
1456		/*
1457		 * For an interrupted write, the buffer is still valid
1458		 * and the write hasn't been pushed to the server yet,
1459		 * so we can't set BIO_ERROR and report the interruption
1460		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1461		 * is not relevant, so the rpc attempt is essentially
1462		 * a noop.  For the case of a V3 write rpc not being
1463		 * committed to stable storage, the block is still
1464		 * dirty and requires either a commit rpc or another
1465		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1466		 * the block is reused. This is indicated by setting
1467		 * the B_DELWRI and B_NEEDCOMMIT flags.
1468		 *
1469		 * If the buffer is marked B_PAGING, it does not reside on
1470		 * the vp's paging queues so we cannot call bdirty().  The
1471		 * bp in this case is not an NFS cache block so we should
1472		 * be safe. XXX
1473		 */
1474    		if (error == EINTR
1475		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1476			int s;
1477
1478			s = splbio();
1479			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1480			if ((bp->b_flags & B_PAGING) == 0) {
1481			    bdirty(bp);
1482			    bp->b_flags &= ~B_DONE;
1483			}
1484			if (error && (bp->b_flags & B_ASYNC) == 0)
1485			    bp->b_flags |= B_EINTR;
1486			splx(s);
1487	    	} else {
1488		    if (error) {
1489			bp->b_ioflags |= BIO_ERROR;
1490			bp->b_error = np->n_error = error;
1491			np->n_flag |= NWRITEERR;
1492		    }
1493		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1494		}
1495	    } else {
1496		bp->b_resid = 0;
1497		bufdone(bp);
1498		return (0);
1499	    }
1500	}
1501	bp->b_resid = uiop->uio_resid;
1502	if (must_commit)
1503	    nfs_clearcommit(vp->v_mount);
1504	bufdone(bp);
1505	return (error);
1506}
1507
1508/*
1509 * Used to aid in handling ftruncate() operations on the NFS client side.
1510 * Truncation creates a number of special problems for NFS.  We have to
1511 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1512 * we have to properly handle VM pages or (potentially dirty) buffers
1513 * that straddle the truncation point.
1514 */
1515
1516int
1517nfs_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1518{
1519	struct nfsnode *np = VTONFS(vp);
1520	u_quad_t tsize = np->n_size;
1521	int biosize = vp->v_mount->mnt_stat.f_iosize;
1522	int error = 0;
1523
1524	np->n_size = nsize;
1525
1526	if (np->n_size < tsize) {
1527		struct buf *bp;
1528		daddr_t lbn;
1529		int bufsize;
1530
1531		/*
1532		 * vtruncbuf() doesn't get the buffer overlapping the
1533		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1534		 * buffer that now needs to be truncated.
1535		 */
1536		error = vtruncbuf(vp, cred, td, nsize, biosize);
1537		lbn = nsize / biosize;
1538		bufsize = nsize & (biosize - 1);
1539		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1540		if (bp->b_dirtyoff > bp->b_bcount)
1541			bp->b_dirtyoff = bp->b_bcount;
1542		if (bp->b_dirtyend > bp->b_bcount)
1543			bp->b_dirtyend = bp->b_bcount;
1544		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1545		brelse(bp);
1546	} else {
1547		vnode_pager_setsize(vp, nsize);
1548	}
1549	return(error);
1550}
1551
1552