ip_input.c revision 73399
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 73399 2001-03-04 01:39:19Z truckman $
35 */
36
37#define	_IP_VHL
38
39#include "opt_bootp.h"
40#include "opt_ipfw.h"
41#include "opt_ipdn.h"
42#include "opt_ipdivert.h"
43#include "opt_ipfilter.h"
44#include "opt_ipstealth.h"
45#include "opt_ipsec.h"
46#include "opt_pfil_hooks.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mbuf.h>
51#include <sys/malloc.h>
52#include <sys/domain.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/time.h>
56#include <sys/kernel.h>
57#include <sys/syslog.h>
58#include <sys/sysctl.h>
59
60#include <net/pfil.h>
61#include <net/if.h>
62#include <net/if_var.h>
63#include <net/if_dl.h>
64#include <net/route.h>
65#include <net/netisr.h>
66#include <net/intrq.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <machine/in_cksum.h>
76
77#include <netinet/ipprotosw.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82
83#ifdef IPSEC
84#include <netinet6/ipsec.h>
85#include <netkey/key.h>
86#endif
87
88#include "faith.h"
89#if defined(NFAITH) && NFAITH > 0
90#include <net/if_types.h>
91#endif
92
93#ifdef DUMMYNET
94#include <netinet/ip_dummynet.h>
95#endif
96
97int rsvp_on = 0;
98static int ip_rsvp_on;
99struct socket *ip_rsvpd;
100
101int	ipforwarding = 0;
102SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
103    &ipforwarding, 0, "Enable IP forwarding between interfaces");
104
105static int	ipsendredirects = 1; /* XXX */
106SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
107    &ipsendredirects, 0, "Enable sending IP redirects");
108
109int	ip_defttl = IPDEFTTL;
110SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
111    &ip_defttl, 0, "Maximum TTL on IP packets");
112
113static int	ip_dosourceroute = 0;
114SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
115    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
116
117static int	ip_acceptsourceroute = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
119    CTLFLAG_RW, &ip_acceptsourceroute, 0,
120    "Enable accepting source routed IP packets");
121
122static int	ip_keepfaith = 0;
123SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
124	&ip_keepfaith,	0,
125	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
126
127/*
128 * XXX - Setting ip_checkinterface mostly implements the receive side of
129 * the Strong ES model described in RFC 1122, but since the routing table
130 * and transmit implementation do not implement the Strong ES model, so
131 * setting this to 1 results in an odd hybrid.
132 */
133static int	ip_checkinterface = 1;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
135    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
136
137#ifdef DIAGNOSTIC
138static int	ipprintfs = 0;
139#endif
140
141extern	struct domain inetdomain;
142extern	struct ipprotosw inetsw[];
143u_char	ip_protox[IPPROTO_MAX];
144static int	ipqmaxlen = IFQ_MAXLEN;
145struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
146SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
147    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
148SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
149    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
150
151struct ipstat ipstat;
152SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
153    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
154
155/* Packet reassembly stuff */
156#define IPREASS_NHASH_LOG2      6
157#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
158#define IPREASS_HMASK           (IPREASS_NHASH - 1)
159#define IPREASS_HASH(x,y) \
160	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
161
162static struct ipq ipq[IPREASS_NHASH];
163static int    nipq = 0;         /* total # of reass queues */
164static int    maxnipq;
165const  int    ipintrq_present = 1;
166
167#ifdef IPCTL_DEFMTU
168SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
169    &ip_mtu, 0, "Default MTU");
170#endif
171
172#ifdef IPSTEALTH
173static int	ipstealth = 0;
174SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
175    &ipstealth, 0, "");
176#endif
177
178
179/* Firewall hooks */
180ip_fw_chk_t *ip_fw_chk_ptr;
181ip_fw_ctl_t *ip_fw_ctl_ptr;
182int fw_enable = 1 ;
183
184#ifdef DUMMYNET
185ip_dn_ctl_t *ip_dn_ctl_ptr;
186#endif
187
188
189/*
190 * We need to save the IP options in case a protocol wants to respond
191 * to an incoming packet over the same route if the packet got here
192 * using IP source routing.  This allows connection establishment and
193 * maintenance when the remote end is on a network that is not known
194 * to us.
195 */
196static int	ip_nhops = 0;
197static	struct ip_srcrt {
198	struct	in_addr dst;			/* final destination */
199	char	nop;				/* one NOP to align */
200	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
201	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
202} ip_srcrt;
203
204struct sockaddr_in *ip_fw_fwd_addr;
205
206static void	save_rte __P((u_char *, struct in_addr));
207static int	ip_dooptions __P((struct mbuf *));
208static void	ip_forward __P((struct mbuf *, int));
209static void	ip_freef __P((struct ipq *));
210#ifdef IPDIVERT
211static struct	mbuf *ip_reass __P((struct mbuf *,
212			struct ipq *, struct ipq *, u_int32_t *, u_int16_t *));
213#else
214static struct	mbuf *ip_reass __P((struct mbuf *, struct ipq *, struct ipq *));
215#endif
216static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
217static void	ipintr __P((void));
218
219/*
220 * IP initialization: fill in IP protocol switch table.
221 * All protocols not implemented in kernel go to raw IP protocol handler.
222 */
223void
224ip_init()
225{
226	register struct ipprotosw *pr;
227	register int i;
228
229	TAILQ_INIT(&in_ifaddrhead);
230	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
231	if (pr == 0)
232		panic("ip_init");
233	for (i = 0; i < IPPROTO_MAX; i++)
234		ip_protox[i] = pr - inetsw;
235	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
236	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
237		if (pr->pr_domain->dom_family == PF_INET &&
238		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
239			ip_protox[pr->pr_protocol] = pr - inetsw;
240
241	for (i = 0; i < IPREASS_NHASH; i++)
242	    ipq[i].next = ipq[i].prev = &ipq[i];
243
244	maxnipq = nmbclusters/4;
245
246	ip_id = time_second & 0xffff;
247	ipintrq.ifq_maxlen = ipqmaxlen;
248	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
249
250	register_netisr(NETISR_IP, ipintr);
251}
252
253static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
254static struct	route ipforward_rt;
255
256/*
257 * Ip input routine.  Checksum and byte swap header.  If fragmented
258 * try to reassemble.  Process options.  Pass to next level.
259 */
260void
261ip_input(struct mbuf *m)
262{
263	struct ip *ip;
264	struct ipq *fp;
265	struct in_ifaddr *ia = NULL;
266	int    i, hlen, checkif;
267	u_short sum;
268	u_int16_t divert_cookie;		/* firewall cookie */
269	struct in_addr pkt_dst;
270#ifdef IPDIVERT
271	u_int32_t divert_info = 0;		/* packet divert/tee info */
272#endif
273	struct ip_fw_chain *rule = NULL;
274#ifdef PFIL_HOOKS
275	struct packet_filter_hook *pfh;
276	struct mbuf *m0;
277	int rv;
278#endif /* PFIL_HOOKS */
279
280#ifdef IPDIVERT
281	/* Get and reset firewall cookie */
282	divert_cookie = ip_divert_cookie;
283	ip_divert_cookie = 0;
284#else
285	divert_cookie = 0;
286#endif
287
288#if defined(IPFIREWALL) && defined(DUMMYNET)
289        /*
290         * dummynet packet are prepended a vestigial mbuf with
291         * m_type = MT_DUMMYNET and m_data pointing to the matching
292         * rule.
293         */
294        if (m->m_type == MT_DUMMYNET) {
295            rule = (struct ip_fw_chain *)(m->m_data) ;
296            m = m->m_next ;
297            ip = mtod(m, struct ip *);
298            hlen = IP_VHL_HL(ip->ip_vhl) << 2;
299            goto iphack ;
300        } else
301            rule = NULL ;
302#endif
303
304#ifdef	DIAGNOSTIC
305	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
306		panic("ip_input no HDR");
307#endif
308	ipstat.ips_total++;
309
310	if (m->m_pkthdr.len < sizeof(struct ip))
311		goto tooshort;
312
313	if (m->m_len < sizeof (struct ip) &&
314	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
315		ipstat.ips_toosmall++;
316		return;
317	}
318	ip = mtod(m, struct ip *);
319
320	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
321		ipstat.ips_badvers++;
322		goto bad;
323	}
324
325	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
326	if (hlen < sizeof(struct ip)) {	/* minimum header length */
327		ipstat.ips_badhlen++;
328		goto bad;
329	}
330	if (hlen > m->m_len) {
331		if ((m = m_pullup(m, hlen)) == 0) {
332			ipstat.ips_badhlen++;
333			return;
334		}
335		ip = mtod(m, struct ip *);
336	}
337	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
338		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
339	} else {
340		if (hlen == sizeof(struct ip)) {
341			sum = in_cksum_hdr(ip);
342		} else {
343			sum = in_cksum(m, hlen);
344		}
345	}
346	if (sum) {
347		ipstat.ips_badsum++;
348		goto bad;
349	}
350
351	/*
352	 * Convert fields to host representation.
353	 */
354	NTOHS(ip->ip_len);
355	if (ip->ip_len < hlen) {
356		ipstat.ips_badlen++;
357		goto bad;
358	}
359	NTOHS(ip->ip_off);
360
361	/*
362	 * Check that the amount of data in the buffers
363	 * is as at least much as the IP header would have us expect.
364	 * Trim mbufs if longer than we expect.
365	 * Drop packet if shorter than we expect.
366	 */
367	if (m->m_pkthdr.len < ip->ip_len) {
368tooshort:
369		ipstat.ips_tooshort++;
370		goto bad;
371	}
372	if (m->m_pkthdr.len > ip->ip_len) {
373		if (m->m_len == m->m_pkthdr.len) {
374			m->m_len = ip->ip_len;
375			m->m_pkthdr.len = ip->ip_len;
376		} else
377			m_adj(m, ip->ip_len - m->m_pkthdr.len);
378	}
379	/*
380	 * IpHack's section.
381	 * Right now when no processing on packet has done
382	 * and it is still fresh out of network we do our black
383	 * deals with it.
384	 * - Firewall: deny/allow/divert
385	 * - Xlate: translate packet's addr/port (NAT).
386	 * - Pipe: pass pkt through dummynet.
387	 * - Wrap: fake packet's addr/port <unimpl.>
388	 * - Encapsulate: put it in another IP and send out. <unimp.>
389 	 */
390
391#if defined(IPFIREWALL) && defined(DUMMYNET)
392iphack:
393#endif
394
395#ifdef PFIL_HOOKS
396	/*
397	 * Run through list of hooks for input packets.  If there are any
398	 * filters which require that additional packets in the flow are
399	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
400	 * Note that filters must _never_ set this flag, as another filter
401	 * in the list may have previously cleared it.
402	 */
403	m0 = m;
404	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
405	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
406		if (pfh->pfil_func) {
407			rv = pfh->pfil_func(ip, hlen,
408					    m->m_pkthdr.rcvif, 0, &m0);
409			if (rv)
410				return;
411			m = m0;
412			if (m == NULL)
413				return;
414			ip = mtod(m, struct ip *);
415		}
416#endif /* PFIL_HOOKS */
417
418	if (fw_enable && ip_fw_chk_ptr) {
419#ifdef IPFIREWALL_FORWARD
420		/*
421		 * If we've been forwarded from the output side, then
422		 * skip the firewall a second time
423		 */
424		if (ip_fw_fwd_addr)
425			goto ours;
426#endif	/* IPFIREWALL_FORWARD */
427		/*
428		 * See the comment in ip_output for the return values
429		 * produced by the firewall.
430		 */
431		i = (*ip_fw_chk_ptr)(&ip,
432		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
433		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
434		    if (m)
435			m_freem(m);
436		    return ;
437		}
438		if (m == NULL) {	/* Packet discarded by firewall */
439		    static int __debug=10;
440		    if (__debug >0) {
441			printf("firewall returns NULL, please update!\n");
442			__debug-- ;
443		    }
444		    return;
445		}
446		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
447			goto pass;
448#ifdef DUMMYNET
449                if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
450                        /* Send packet to the appropriate pipe */
451                        dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
452				    0);
453			return;
454		}
455#endif
456#ifdef IPDIVERT
457		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
458			/* Divert or tee packet */
459			divert_info = i;
460			goto ours;
461		}
462#endif
463#ifdef IPFIREWALL_FORWARD
464		if (i == 0 && ip_fw_fwd_addr != NULL)
465			goto pass;
466#endif
467		/*
468		 * if we get here, the packet must be dropped
469		 */
470		m_freem(m);
471		return;
472	}
473pass:
474
475	/*
476	 * Process options and, if not destined for us,
477	 * ship it on.  ip_dooptions returns 1 when an
478	 * error was detected (causing an icmp message
479	 * to be sent and the original packet to be freed).
480	 */
481	ip_nhops = 0;		/* for source routed packets */
482	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
483#ifdef IPFIREWALL_FORWARD
484		ip_fw_fwd_addr = NULL;
485#endif
486		return;
487	}
488
489        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
490         * matter if it is destined to another node, or whether it is
491         * a multicast one, RSVP wants it! and prevents it from being forwarded
492         * anywhere else. Also checks if the rsvp daemon is running before
493	 * grabbing the packet.
494         */
495	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
496		goto ours;
497
498	/*
499	 * Check our list of addresses, to see if the packet is for us.
500	 * If we don't have any addresses, assume any unicast packet
501	 * we receive might be for us (and let the upper layers deal
502	 * with it).
503	 */
504	if (TAILQ_EMPTY(&in_ifaddrhead) &&
505	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
506		goto ours;
507
508	/*
509	 * Cache the destination address of the packet; this may be
510	 * changed by use of 'ipfw fwd'.
511	 */
512	pkt_dst = ip_fw_fwd_addr == NULL ?
513	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
514
515	/*
516	 * Don't accept packets with a loopback destination address
517	 * unless they arrived via the loopback interface.
518	 * XXX - should ip->ip_dst.s_addr be pkt_dst.s_addr?
519	 */
520	if ((ntohl(ip->ip_dst.s_addr) & IN_CLASSA_NET) ==
521	    (IN_LOOPBACKNET << IN_CLASSA_NSHIFT) &&
522	    (m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
523		m_freem(m);
524#ifdef IPFIREWALL_FORWARD
525		ip_fw_fwd_addr = NULL;
526#endif
527		return;
528	}
529
530	/*
531	 * Enable a consistency check between the destination address
532	 * and the arrival interface for a unicast packet (the RFC 1122
533	 * strong ES model) if IP forwarding is disabled and the packet
534	 * is not locally generated.
535	 */
536	checkif = ip_checkinterface && (ipforwarding == 0) &&
537	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0);
538
539	TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
540#define	satosin(sa)	((struct sockaddr_in *)(sa))
541
542#ifdef BOOTP_COMPAT
543		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
544			goto ours;
545#endif
546		/*
547		 * If the address matches, verify that the packet
548		 * arrived via the correct interface if checking is
549		 * enabled.
550		 */
551		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
552		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
553			goto ours;
554		/*
555		 * Only accept broadcast packets that arrive via the
556		 * matching interface.  Reception of forwarded directed
557		 * broadcasts would be handled via ip_forward() and
558		 * ether_output() with the loopback into the stack for
559		 * SIMPLEX interfaces handled by ether_output().
560		 */
561		if (ia->ia_ifp == m->m_pkthdr.rcvif &&
562		    ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
563			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
564			    pkt_dst.s_addr)
565				goto ours;
566			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
567				goto ours;
568		}
569	}
570	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
571		struct in_multi *inm;
572		if (ip_mrouter) {
573			/*
574			 * If we are acting as a multicast router, all
575			 * incoming multicast packets are passed to the
576			 * kernel-level multicast forwarding function.
577			 * The packet is returned (relatively) intact; if
578			 * ip_mforward() returns a non-zero value, the packet
579			 * must be discarded, else it may be accepted below.
580			 */
581			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
582				ipstat.ips_cantforward++;
583				m_freem(m);
584				return;
585			}
586
587			/*
588			 * The process-level routing demon needs to receive
589			 * all multicast IGMP packets, whether or not this
590			 * host belongs to their destination groups.
591			 */
592			if (ip->ip_p == IPPROTO_IGMP)
593				goto ours;
594			ipstat.ips_forward++;
595		}
596		/*
597		 * See if we belong to the destination multicast group on the
598		 * arrival interface.
599		 */
600		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
601		if (inm == NULL) {
602			ipstat.ips_notmember++;
603			m_freem(m);
604			return;
605		}
606		goto ours;
607	}
608	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
609		goto ours;
610	if (ip->ip_dst.s_addr == INADDR_ANY)
611		goto ours;
612
613#if defined(NFAITH) && 0 < NFAITH
614	/*
615	 * FAITH(Firewall Aided Internet Translator)
616	 */
617	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
618		if (ip_keepfaith) {
619			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
620				goto ours;
621		}
622		m_freem(m);
623		return;
624	}
625#endif
626	/*
627	 * Not for us; forward if possible and desirable.
628	 */
629	if (ipforwarding == 0) {
630		ipstat.ips_cantforward++;
631		m_freem(m);
632	} else
633		ip_forward(m, 0);
634#ifdef IPFIREWALL_FORWARD
635	ip_fw_fwd_addr = NULL;
636#endif
637	return;
638
639ours:
640	/* Count the packet in the ip address stats */
641	if (ia != NULL) {
642		ia->ia_ifa.if_ipackets++;
643		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
644	}
645
646	/*
647	 * If offset or IP_MF are set, must reassemble.
648	 * Otherwise, nothing need be done.
649	 * (We could look in the reassembly queue to see
650	 * if the packet was previously fragmented,
651	 * but it's not worth the time; just let them time out.)
652	 */
653	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
654
655		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
656		/*
657		 * Look for queue of fragments
658		 * of this datagram.
659		 */
660		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
661			if (ip->ip_id == fp->ipq_id &&
662			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
663			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
664			    ip->ip_p == fp->ipq_p)
665				goto found;
666
667		fp = 0;
668
669		/* check if there's a place for the new queue */
670		if (nipq > maxnipq) {
671		    /*
672		     * drop something from the tail of the current queue
673		     * before proceeding further
674		     */
675		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
676			for (i = 0; i < IPREASS_NHASH; i++) {
677			    if (ipq[i].prev != &ipq[i]) {
678				ip_freef(ipq[i].prev);
679				break;
680			    }
681			}
682		    } else
683			ip_freef(ipq[sum].prev);
684		}
685found:
686		/*
687		 * Adjust ip_len to not reflect header,
688		 * convert offset of this to bytes.
689		 */
690		ip->ip_len -= hlen;
691		if (ip->ip_off & IP_MF) {
692		        /*
693		         * Make sure that fragments have a data length
694			 * that's a non-zero multiple of 8 bytes.
695		         */
696			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
697				ipstat.ips_toosmall++; /* XXX */
698				goto bad;
699			}
700			m->m_flags |= M_FRAG;
701		}
702		ip->ip_off <<= 3;
703
704		/*
705		 * Attempt reassembly; if it succeeds, proceed.
706		 */
707		ipstat.ips_fragments++;
708		m->m_pkthdr.header = ip;
709#ifdef IPDIVERT
710		m = ip_reass(m,
711		    fp, &ipq[sum], &divert_info, &divert_cookie);
712#else
713		m = ip_reass(m, fp, &ipq[sum]);
714#endif
715		if (m == 0) {
716#ifdef IPFIREWALL_FORWARD
717			ip_fw_fwd_addr = NULL;
718#endif
719			return;
720		}
721		ipstat.ips_reassembled++;
722		ip = mtod(m, struct ip *);
723		/* Get the header length of the reassembled packet */
724		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
725#ifdef IPDIVERT
726		/* Restore original checksum before diverting packet */
727		if (divert_info != 0) {
728			ip->ip_len += hlen;
729			HTONS(ip->ip_len);
730			HTONS(ip->ip_off);
731			ip->ip_sum = 0;
732			if (hlen == sizeof(struct ip))
733				ip->ip_sum = in_cksum_hdr(ip);
734			else
735				ip->ip_sum = in_cksum(m, hlen);
736			NTOHS(ip->ip_off);
737			NTOHS(ip->ip_len);
738			ip->ip_len -= hlen;
739		}
740#endif
741	} else
742		ip->ip_len -= hlen;
743
744#ifdef IPDIVERT
745	/*
746	 * Divert or tee packet to the divert protocol if required.
747	 *
748	 * If divert_info is zero then cookie should be too, so we shouldn't
749	 * need to clear them here.  Assume divert_packet() does so also.
750	 */
751	if (divert_info != 0) {
752		struct mbuf *clone = NULL;
753
754		/* Clone packet if we're doing a 'tee' */
755		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
756			clone = m_dup(m, M_DONTWAIT);
757
758		/* Restore packet header fields to original values */
759		ip->ip_len += hlen;
760		HTONS(ip->ip_len);
761		HTONS(ip->ip_off);
762
763		/* Deliver packet to divert input routine */
764		ip_divert_cookie = divert_cookie;
765		divert_packet(m, 1, divert_info & 0xffff);
766		ipstat.ips_delivered++;
767
768		/* If 'tee', continue with original packet */
769		if (clone == NULL)
770			return;
771		m = clone;
772		ip = mtod(m, struct ip *);
773	}
774#endif
775
776	/*
777	 * Switch out to protocol's input routine.
778	 */
779	ipstat.ips_delivered++;
780    {
781	int off = hlen, nh = ip->ip_p;
782
783	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
784#ifdef	IPFIREWALL_FORWARD
785	ip_fw_fwd_addr = NULL;	/* tcp needed it */
786#endif
787	return;
788    }
789bad:
790#ifdef	IPFIREWALL_FORWARD
791	ip_fw_fwd_addr = NULL;
792#endif
793	m_freem(m);
794}
795
796/*
797 * IP software interrupt routine - to go away sometime soon
798 */
799static void
800ipintr(void)
801{
802	struct mbuf *m;
803
804	while (1) {
805		IF_DEQUEUE(&ipintrq, m);
806		if (m == 0)
807			return;
808		ip_input(m);
809	}
810}
811
812/*
813 * Take incoming datagram fragment and try to reassemble it into
814 * whole datagram.  If a chain for reassembly of this datagram already
815 * exists, then it is given as fp; otherwise have to make a chain.
816 *
817 * When IPDIVERT enabled, keep additional state with each packet that
818 * tells us if we need to divert or tee the packet we're building.
819 */
820
821static struct mbuf *
822#ifdef IPDIVERT
823ip_reass(m, fp, where, divinfo, divcookie)
824#else
825ip_reass(m, fp, where)
826#endif
827	register struct mbuf *m;
828	register struct ipq *fp;
829	struct   ipq    *where;
830#ifdef IPDIVERT
831	u_int32_t *divinfo;
832	u_int16_t *divcookie;
833#endif
834{
835	struct ip *ip = mtod(m, struct ip *);
836	register struct mbuf *p, *q, *nq;
837	struct mbuf *t;
838	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
839	int i, next;
840
841	/*
842	 * Presence of header sizes in mbufs
843	 * would confuse code below.
844	 */
845	m->m_data += hlen;
846	m->m_len -= hlen;
847
848	/*
849	 * If first fragment to arrive, create a reassembly queue.
850	 */
851	if (fp == 0) {
852		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
853			goto dropfrag;
854		fp = mtod(t, struct ipq *);
855		insque(fp, where);
856		nipq++;
857		fp->ipq_ttl = IPFRAGTTL;
858		fp->ipq_p = ip->ip_p;
859		fp->ipq_id = ip->ip_id;
860		fp->ipq_src = ip->ip_src;
861		fp->ipq_dst = ip->ip_dst;
862		fp->ipq_frags = m;
863		m->m_nextpkt = NULL;
864#ifdef IPDIVERT
865		fp->ipq_div_info = 0;
866		fp->ipq_div_cookie = 0;
867#endif
868		goto inserted;
869	}
870
871#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
872
873	/*
874	 * Find a segment which begins after this one does.
875	 */
876	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
877		if (GETIP(q)->ip_off > ip->ip_off)
878			break;
879
880	/*
881	 * If there is a preceding segment, it may provide some of
882	 * our data already.  If so, drop the data from the incoming
883	 * segment.  If it provides all of our data, drop us, otherwise
884	 * stick new segment in the proper place.
885	 *
886	 * If some of the data is dropped from the the preceding
887	 * segment, then it's checksum is invalidated.
888	 */
889	if (p) {
890		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
891		if (i > 0) {
892			if (i >= ip->ip_len)
893				goto dropfrag;
894			m_adj(m, i);
895			m->m_pkthdr.csum_flags = 0;
896			ip->ip_off += i;
897			ip->ip_len -= i;
898		}
899		m->m_nextpkt = p->m_nextpkt;
900		p->m_nextpkt = m;
901	} else {
902		m->m_nextpkt = fp->ipq_frags;
903		fp->ipq_frags = m;
904	}
905
906	/*
907	 * While we overlap succeeding segments trim them or,
908	 * if they are completely covered, dequeue them.
909	 */
910	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
911	     q = nq) {
912		i = (ip->ip_off + ip->ip_len) -
913		    GETIP(q)->ip_off;
914		if (i < GETIP(q)->ip_len) {
915			GETIP(q)->ip_len -= i;
916			GETIP(q)->ip_off += i;
917			m_adj(q, i);
918			q->m_pkthdr.csum_flags = 0;
919			break;
920		}
921		nq = q->m_nextpkt;
922		m->m_nextpkt = nq;
923		m_freem(q);
924	}
925
926inserted:
927
928#ifdef IPDIVERT
929	/*
930	 * Transfer firewall instructions to the fragment structure.
931	 * Any fragment diverting causes the whole packet to divert.
932	 */
933	fp->ipq_div_info = *divinfo;
934	fp->ipq_div_cookie = *divcookie;
935	*divinfo = 0;
936	*divcookie = 0;
937#endif
938
939	/*
940	 * Check for complete reassembly.
941	 */
942	next = 0;
943	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
944		if (GETIP(q)->ip_off != next)
945			return (0);
946		next += GETIP(q)->ip_len;
947	}
948	/* Make sure the last packet didn't have the IP_MF flag */
949	if (p->m_flags & M_FRAG)
950		return (0);
951
952	/*
953	 * Reassembly is complete.  Make sure the packet is a sane size.
954	 */
955	q = fp->ipq_frags;
956	ip = GETIP(q);
957	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
958		ipstat.ips_toolong++;
959		ip_freef(fp);
960		return (0);
961	}
962
963	/*
964	 * Concatenate fragments.
965	 */
966	m = q;
967	t = m->m_next;
968	m->m_next = 0;
969	m_cat(m, t);
970	nq = q->m_nextpkt;
971	q->m_nextpkt = 0;
972	for (q = nq; q != NULL; q = nq) {
973		nq = q->m_nextpkt;
974		q->m_nextpkt = NULL;
975		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
976		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
977		m_cat(m, q);
978	}
979
980#ifdef IPDIVERT
981	/*
982	 * Extract firewall instructions from the fragment structure.
983	 */
984	*divinfo = fp->ipq_div_info;
985	*divcookie = fp->ipq_div_cookie;
986#endif
987
988	/*
989	 * Create header for new ip packet by
990	 * modifying header of first packet;
991	 * dequeue and discard fragment reassembly header.
992	 * Make header visible.
993	 */
994	ip->ip_len = next;
995	ip->ip_src = fp->ipq_src;
996	ip->ip_dst = fp->ipq_dst;
997	remque(fp);
998	nipq--;
999	(void) m_free(dtom(fp));
1000	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1001	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1002	/* some debugging cruft by sklower, below, will go away soon */
1003	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1004		register int plen = 0;
1005		for (t = m; t; t = t->m_next)
1006			plen += t->m_len;
1007		m->m_pkthdr.len = plen;
1008	}
1009	return (m);
1010
1011dropfrag:
1012#ifdef IPDIVERT
1013	*divinfo = 0;
1014	*divcookie = 0;
1015#endif
1016	ipstat.ips_fragdropped++;
1017	m_freem(m);
1018	return (0);
1019
1020#undef GETIP
1021}
1022
1023/*
1024 * Free a fragment reassembly header and all
1025 * associated datagrams.
1026 */
1027static void
1028ip_freef(fp)
1029	struct ipq *fp;
1030{
1031	register struct mbuf *q;
1032
1033	while (fp->ipq_frags) {
1034		q = fp->ipq_frags;
1035		fp->ipq_frags = q->m_nextpkt;
1036		m_freem(q);
1037	}
1038	remque(fp);
1039	(void) m_free(dtom(fp));
1040	nipq--;
1041}
1042
1043/*
1044 * IP timer processing;
1045 * if a timer expires on a reassembly
1046 * queue, discard it.
1047 */
1048void
1049ip_slowtimo()
1050{
1051	register struct ipq *fp;
1052	int s = splnet();
1053	int i;
1054
1055	for (i = 0; i < IPREASS_NHASH; i++) {
1056		fp = ipq[i].next;
1057		if (fp == 0)
1058			continue;
1059		while (fp != &ipq[i]) {
1060			--fp->ipq_ttl;
1061			fp = fp->next;
1062			if (fp->prev->ipq_ttl == 0) {
1063				ipstat.ips_fragtimeout++;
1064				ip_freef(fp->prev);
1065			}
1066		}
1067	}
1068	ipflow_slowtimo();
1069	splx(s);
1070}
1071
1072/*
1073 * Drain off all datagram fragments.
1074 */
1075void
1076ip_drain()
1077{
1078	int     i;
1079
1080	for (i = 0; i < IPREASS_NHASH; i++) {
1081		while (ipq[i].next != &ipq[i]) {
1082			ipstat.ips_fragdropped++;
1083			ip_freef(ipq[i].next);
1084		}
1085	}
1086	in_rtqdrain();
1087}
1088
1089/*
1090 * Do option processing on a datagram,
1091 * possibly discarding it if bad options are encountered,
1092 * or forwarding it if source-routed.
1093 * Returns 1 if packet has been forwarded/freed,
1094 * 0 if the packet should be processed further.
1095 */
1096static int
1097ip_dooptions(m)
1098	struct mbuf *m;
1099{
1100	register struct ip *ip = mtod(m, struct ip *);
1101	register u_char *cp;
1102	register struct ip_timestamp *ipt;
1103	register struct in_ifaddr *ia;
1104	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1105	struct in_addr *sin, dst;
1106	n_time ntime;
1107
1108	dst = ip->ip_dst;
1109	cp = (u_char *)(ip + 1);
1110	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1111	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1112		opt = cp[IPOPT_OPTVAL];
1113		if (opt == IPOPT_EOL)
1114			break;
1115		if (opt == IPOPT_NOP)
1116			optlen = 1;
1117		else {
1118			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1119				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1120				goto bad;
1121			}
1122			optlen = cp[IPOPT_OLEN];
1123			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1124				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1125				goto bad;
1126			}
1127		}
1128		switch (opt) {
1129
1130		default:
1131			break;
1132
1133		/*
1134		 * Source routing with record.
1135		 * Find interface with current destination address.
1136		 * If none on this machine then drop if strictly routed,
1137		 * or do nothing if loosely routed.
1138		 * Record interface address and bring up next address
1139		 * component.  If strictly routed make sure next
1140		 * address is on directly accessible net.
1141		 */
1142		case IPOPT_LSRR:
1143		case IPOPT_SSRR:
1144			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1145				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1146				goto bad;
1147			}
1148			ipaddr.sin_addr = ip->ip_dst;
1149			ia = (struct in_ifaddr *)
1150				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1151			if (ia == 0) {
1152				if (opt == IPOPT_SSRR) {
1153					type = ICMP_UNREACH;
1154					code = ICMP_UNREACH_SRCFAIL;
1155					goto bad;
1156				}
1157				if (!ip_dosourceroute)
1158					goto nosourcerouting;
1159				/*
1160				 * Loose routing, and not at next destination
1161				 * yet; nothing to do except forward.
1162				 */
1163				break;
1164			}
1165			off--;			/* 0 origin */
1166			if (off > optlen - (int)sizeof(struct in_addr)) {
1167				/*
1168				 * End of source route.  Should be for us.
1169				 */
1170				if (!ip_acceptsourceroute)
1171					goto nosourcerouting;
1172				save_rte(cp, ip->ip_src);
1173				break;
1174			}
1175
1176			if (!ip_dosourceroute) {
1177				if (ipforwarding) {
1178					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1179					/*
1180					 * Acting as a router, so generate ICMP
1181					 */
1182nosourcerouting:
1183					strcpy(buf, inet_ntoa(ip->ip_dst));
1184					log(LOG_WARNING,
1185					    "attempted source route from %s to %s\n",
1186					    inet_ntoa(ip->ip_src), buf);
1187					type = ICMP_UNREACH;
1188					code = ICMP_UNREACH_SRCFAIL;
1189					goto bad;
1190				} else {
1191					/*
1192					 * Not acting as a router, so silently drop.
1193					 */
1194					ipstat.ips_cantforward++;
1195					m_freem(m);
1196					return (1);
1197				}
1198			}
1199
1200			/*
1201			 * locate outgoing interface
1202			 */
1203			(void)memcpy(&ipaddr.sin_addr, cp + off,
1204			    sizeof(ipaddr.sin_addr));
1205
1206			if (opt == IPOPT_SSRR) {
1207#define	INA	struct in_ifaddr *
1208#define	SA	struct sockaddr *
1209			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1210				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1211			} else
1212				ia = ip_rtaddr(ipaddr.sin_addr);
1213			if (ia == 0) {
1214				type = ICMP_UNREACH;
1215				code = ICMP_UNREACH_SRCFAIL;
1216				goto bad;
1217			}
1218			ip->ip_dst = ipaddr.sin_addr;
1219			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1220			    sizeof(struct in_addr));
1221			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1222			/*
1223			 * Let ip_intr's mcast routing check handle mcast pkts
1224			 */
1225			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1226			break;
1227
1228		case IPOPT_RR:
1229			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1230				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1231				goto bad;
1232			}
1233			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1234				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1235				goto bad;
1236			}
1237			/*
1238			 * If no space remains, ignore.
1239			 */
1240			off--;			/* 0 origin */
1241			if (off > optlen - (int)sizeof(struct in_addr))
1242				break;
1243			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1244			    sizeof(ipaddr.sin_addr));
1245			/*
1246			 * locate outgoing interface; if we're the destination,
1247			 * use the incoming interface (should be same).
1248			 */
1249			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1250			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1251				type = ICMP_UNREACH;
1252				code = ICMP_UNREACH_HOST;
1253				goto bad;
1254			}
1255			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1256			    sizeof(struct in_addr));
1257			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1258			break;
1259
1260		case IPOPT_TS:
1261			code = cp - (u_char *)ip;
1262			ipt = (struct ip_timestamp *)cp;
1263			if (ipt->ipt_len < 5)
1264				goto bad;
1265			if (ipt->ipt_ptr >
1266			    ipt->ipt_len - (int)sizeof(int32_t)) {
1267				if (++ipt->ipt_oflw == 0)
1268					goto bad;
1269				break;
1270			}
1271			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1272			switch (ipt->ipt_flg) {
1273
1274			case IPOPT_TS_TSONLY:
1275				break;
1276
1277			case IPOPT_TS_TSANDADDR:
1278				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1279				    sizeof(struct in_addr) > ipt->ipt_len)
1280					goto bad;
1281				ipaddr.sin_addr = dst;
1282				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1283							    m->m_pkthdr.rcvif);
1284				if (ia == 0)
1285					continue;
1286				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1287				    sizeof(struct in_addr));
1288				ipt->ipt_ptr += sizeof(struct in_addr);
1289				break;
1290
1291			case IPOPT_TS_PRESPEC:
1292				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1293				    sizeof(struct in_addr) > ipt->ipt_len)
1294					goto bad;
1295				(void)memcpy(&ipaddr.sin_addr, sin,
1296				    sizeof(struct in_addr));
1297				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1298					continue;
1299				ipt->ipt_ptr += sizeof(struct in_addr);
1300				break;
1301
1302			default:
1303				goto bad;
1304			}
1305			ntime = iptime();
1306			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1307			    sizeof(n_time));
1308			ipt->ipt_ptr += sizeof(n_time);
1309		}
1310	}
1311	if (forward && ipforwarding) {
1312		ip_forward(m, 1);
1313		return (1);
1314	}
1315	return (0);
1316bad:
1317	icmp_error(m, type, code, 0, 0);
1318	ipstat.ips_badoptions++;
1319	return (1);
1320}
1321
1322/*
1323 * Given address of next destination (final or next hop),
1324 * return internet address info of interface to be used to get there.
1325 */
1326static struct in_ifaddr *
1327ip_rtaddr(dst)
1328	 struct in_addr dst;
1329{
1330	register struct sockaddr_in *sin;
1331
1332	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1333
1334	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1335		if (ipforward_rt.ro_rt) {
1336			RTFREE(ipforward_rt.ro_rt);
1337			ipforward_rt.ro_rt = 0;
1338		}
1339		sin->sin_family = AF_INET;
1340		sin->sin_len = sizeof(*sin);
1341		sin->sin_addr = dst;
1342
1343		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1344	}
1345	if (ipforward_rt.ro_rt == 0)
1346		return ((struct in_ifaddr *)0);
1347	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1348}
1349
1350/*
1351 * Save incoming source route for use in replies,
1352 * to be picked up later by ip_srcroute if the receiver is interested.
1353 */
1354void
1355save_rte(option, dst)
1356	u_char *option;
1357	struct in_addr dst;
1358{
1359	unsigned olen;
1360
1361	olen = option[IPOPT_OLEN];
1362#ifdef DIAGNOSTIC
1363	if (ipprintfs)
1364		printf("save_rte: olen %d\n", olen);
1365#endif
1366	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1367		return;
1368	bcopy(option, ip_srcrt.srcopt, olen);
1369	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1370	ip_srcrt.dst = dst;
1371}
1372
1373/*
1374 * Retrieve incoming source route for use in replies,
1375 * in the same form used by setsockopt.
1376 * The first hop is placed before the options, will be removed later.
1377 */
1378struct mbuf *
1379ip_srcroute()
1380{
1381	register struct in_addr *p, *q;
1382	register struct mbuf *m;
1383
1384	if (ip_nhops == 0)
1385		return ((struct mbuf *)0);
1386	m = m_get(M_DONTWAIT, MT_HEADER);
1387	if (m == 0)
1388		return ((struct mbuf *)0);
1389
1390#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1391
1392	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1393	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1394	    OPTSIZ;
1395#ifdef DIAGNOSTIC
1396	if (ipprintfs)
1397		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1398#endif
1399
1400	/*
1401	 * First save first hop for return route
1402	 */
1403	p = &ip_srcrt.route[ip_nhops - 1];
1404	*(mtod(m, struct in_addr *)) = *p--;
1405#ifdef DIAGNOSTIC
1406	if (ipprintfs)
1407		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1408#endif
1409
1410	/*
1411	 * Copy option fields and padding (nop) to mbuf.
1412	 */
1413	ip_srcrt.nop = IPOPT_NOP;
1414	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1415	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1416	    &ip_srcrt.nop, OPTSIZ);
1417	q = (struct in_addr *)(mtod(m, caddr_t) +
1418	    sizeof(struct in_addr) + OPTSIZ);
1419#undef OPTSIZ
1420	/*
1421	 * Record return path as an IP source route,
1422	 * reversing the path (pointers are now aligned).
1423	 */
1424	while (p >= ip_srcrt.route) {
1425#ifdef DIAGNOSTIC
1426		if (ipprintfs)
1427			printf(" %lx", (u_long)ntohl(q->s_addr));
1428#endif
1429		*q++ = *p--;
1430	}
1431	/*
1432	 * Last hop goes to final destination.
1433	 */
1434	*q = ip_srcrt.dst;
1435#ifdef DIAGNOSTIC
1436	if (ipprintfs)
1437		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1438#endif
1439	return (m);
1440}
1441
1442/*
1443 * Strip out IP options, at higher
1444 * level protocol in the kernel.
1445 * Second argument is buffer to which options
1446 * will be moved, and return value is their length.
1447 * XXX should be deleted; last arg currently ignored.
1448 */
1449void
1450ip_stripoptions(m, mopt)
1451	register struct mbuf *m;
1452	struct mbuf *mopt;
1453{
1454	register int i;
1455	struct ip *ip = mtod(m, struct ip *);
1456	register caddr_t opts;
1457	int olen;
1458
1459	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1460	opts = (caddr_t)(ip + 1);
1461	i = m->m_len - (sizeof (struct ip) + olen);
1462	bcopy(opts + olen, opts, (unsigned)i);
1463	m->m_len -= olen;
1464	if (m->m_flags & M_PKTHDR)
1465		m->m_pkthdr.len -= olen;
1466	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1467}
1468
1469u_char inetctlerrmap[PRC_NCMDS] = {
1470	0,		0,		0,		0,
1471	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1472	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1473	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1474	0,		0,		0,		0,
1475	ENOPROTOOPT,	ENETRESET
1476};
1477
1478/*
1479 * Forward a packet.  If some error occurs return the sender
1480 * an icmp packet.  Note we can't always generate a meaningful
1481 * icmp message because icmp doesn't have a large enough repertoire
1482 * of codes and types.
1483 *
1484 * If not forwarding, just drop the packet.  This could be confusing
1485 * if ipforwarding was zero but some routing protocol was advancing
1486 * us as a gateway to somewhere.  However, we must let the routing
1487 * protocol deal with that.
1488 *
1489 * The srcrt parameter indicates whether the packet is being forwarded
1490 * via a source route.
1491 */
1492static void
1493ip_forward(m, srcrt)
1494	struct mbuf *m;
1495	int srcrt;
1496{
1497	register struct ip *ip = mtod(m, struct ip *);
1498	register struct sockaddr_in *sin;
1499	register struct rtentry *rt;
1500	int error, type = 0, code = 0;
1501	struct mbuf *mcopy;
1502	n_long dest;
1503	struct ifnet *destifp;
1504#ifdef IPSEC
1505	struct ifnet dummyifp;
1506#endif
1507
1508	dest = 0;
1509#ifdef DIAGNOSTIC
1510	if (ipprintfs)
1511		printf("forward: src %lx dst %lx ttl %x\n",
1512		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1513		    ip->ip_ttl);
1514#endif
1515
1516
1517	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1518		ipstat.ips_cantforward++;
1519		m_freem(m);
1520		return;
1521	}
1522#ifdef IPSTEALTH
1523	if (!ipstealth) {
1524#endif
1525		if (ip->ip_ttl <= IPTTLDEC) {
1526			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1527			    dest, 0);
1528			return;
1529		}
1530#ifdef IPSTEALTH
1531	}
1532#endif
1533
1534	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1535	if ((rt = ipforward_rt.ro_rt) == 0 ||
1536	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1537		if (ipforward_rt.ro_rt) {
1538			RTFREE(ipforward_rt.ro_rt);
1539			ipforward_rt.ro_rt = 0;
1540		}
1541		sin->sin_family = AF_INET;
1542		sin->sin_len = sizeof(*sin);
1543		sin->sin_addr = ip->ip_dst;
1544
1545		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1546		if (ipforward_rt.ro_rt == 0) {
1547			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1548			return;
1549		}
1550		rt = ipforward_rt.ro_rt;
1551	}
1552
1553	/*
1554	 * Save at most 64 bytes of the packet in case
1555	 * we need to generate an ICMP message to the src.
1556	 */
1557	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1558	if (mcopy && (mcopy->m_flags & M_EXT))
1559		m_copydata(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1560
1561#ifdef IPSTEALTH
1562	if (!ipstealth) {
1563#endif
1564		ip->ip_ttl -= IPTTLDEC;
1565#ifdef IPSTEALTH
1566	}
1567#endif
1568
1569	/*
1570	 * If forwarding packet using same interface that it came in on,
1571	 * perhaps should send a redirect to sender to shortcut a hop.
1572	 * Only send redirect if source is sending directly to us,
1573	 * and if packet was not source routed (or has any options).
1574	 * Also, don't send redirect if forwarding using a default route
1575	 * or a route modified by a redirect.
1576	 */
1577#define	satosin(sa)	((struct sockaddr_in *)(sa))
1578	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1579	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1580	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1581	    ipsendredirects && !srcrt) {
1582#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1583		u_long src = ntohl(ip->ip_src.s_addr);
1584
1585		if (RTA(rt) &&
1586		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1587		    if (rt->rt_flags & RTF_GATEWAY)
1588			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1589		    else
1590			dest = ip->ip_dst.s_addr;
1591		    /* Router requirements says to only send host redirects */
1592		    type = ICMP_REDIRECT;
1593		    code = ICMP_REDIRECT_HOST;
1594#ifdef DIAGNOSTIC
1595		    if (ipprintfs)
1596		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1597#endif
1598		}
1599	}
1600
1601	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1602			  IP_FORWARDING, 0);
1603	if (error)
1604		ipstat.ips_cantforward++;
1605	else {
1606		ipstat.ips_forward++;
1607		if (type)
1608			ipstat.ips_redirectsent++;
1609		else {
1610			if (mcopy) {
1611				ipflow_create(&ipforward_rt, mcopy);
1612				m_freem(mcopy);
1613			}
1614			return;
1615		}
1616	}
1617	if (mcopy == NULL)
1618		return;
1619	destifp = NULL;
1620
1621	switch (error) {
1622
1623	case 0:				/* forwarded, but need redirect */
1624		/* type, code set above */
1625		break;
1626
1627	case ENETUNREACH:		/* shouldn't happen, checked above */
1628	case EHOSTUNREACH:
1629	case ENETDOWN:
1630	case EHOSTDOWN:
1631	default:
1632		type = ICMP_UNREACH;
1633		code = ICMP_UNREACH_HOST;
1634		break;
1635
1636	case EMSGSIZE:
1637		type = ICMP_UNREACH;
1638		code = ICMP_UNREACH_NEEDFRAG;
1639#ifndef IPSEC
1640		if (ipforward_rt.ro_rt)
1641			destifp = ipforward_rt.ro_rt->rt_ifp;
1642#else
1643		/*
1644		 * If the packet is routed over IPsec tunnel, tell the
1645		 * originator the tunnel MTU.
1646		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1647		 * XXX quickhack!!!
1648		 */
1649		if (ipforward_rt.ro_rt) {
1650			struct secpolicy *sp = NULL;
1651			int ipsecerror;
1652			int ipsechdr;
1653			struct route *ro;
1654
1655			sp = ipsec4_getpolicybyaddr(mcopy,
1656						    IPSEC_DIR_OUTBOUND,
1657			                            IP_FORWARDING,
1658			                            &ipsecerror);
1659
1660			if (sp == NULL)
1661				destifp = ipforward_rt.ro_rt->rt_ifp;
1662			else {
1663				/* count IPsec header size */
1664				ipsechdr = ipsec4_hdrsiz(mcopy,
1665							 IPSEC_DIR_OUTBOUND,
1666							 NULL);
1667
1668				/*
1669				 * find the correct route for outer IPv4
1670				 * header, compute tunnel MTU.
1671				 *
1672				 * XXX BUG ALERT
1673				 * The "dummyifp" code relies upon the fact
1674				 * that icmp_error() touches only ifp->if_mtu.
1675				 */
1676				/*XXX*/
1677				destifp = NULL;
1678				if (sp->req != NULL
1679				 && sp->req->sav != NULL
1680				 && sp->req->sav->sah != NULL) {
1681					ro = &sp->req->sav->sah->sa_route;
1682					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1683						dummyifp.if_mtu =
1684						    ro->ro_rt->rt_ifp->if_mtu;
1685						dummyifp.if_mtu -= ipsechdr;
1686						destifp = &dummyifp;
1687					}
1688				}
1689
1690				key_freesp(sp);
1691			}
1692		}
1693#endif /*IPSEC*/
1694		ipstat.ips_cantfrag++;
1695		break;
1696
1697	case ENOBUFS:
1698		type = ICMP_SOURCEQUENCH;
1699		code = 0;
1700		break;
1701
1702	case EACCES:			/* ipfw denied packet */
1703		m_freem(mcopy);
1704		return;
1705	}
1706	if (mcopy->m_flags & M_EXT)
1707		m_copyback(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1708	icmp_error(mcopy, type, code, dest, destifp);
1709}
1710
1711void
1712ip_savecontrol(inp, mp, ip, m)
1713	register struct inpcb *inp;
1714	register struct mbuf **mp;
1715	register struct ip *ip;
1716	register struct mbuf *m;
1717{
1718	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1719		struct timeval tv;
1720
1721		microtime(&tv);
1722		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1723			SCM_TIMESTAMP, SOL_SOCKET);
1724		if (*mp)
1725			mp = &(*mp)->m_next;
1726	}
1727	if (inp->inp_flags & INP_RECVDSTADDR) {
1728		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1729		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1730		if (*mp)
1731			mp = &(*mp)->m_next;
1732	}
1733#ifdef notyet
1734	/* XXX
1735	 * Moving these out of udp_input() made them even more broken
1736	 * than they already were.
1737	 */
1738	/* options were tossed already */
1739	if (inp->inp_flags & INP_RECVOPTS) {
1740		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1741		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1742		if (*mp)
1743			mp = &(*mp)->m_next;
1744	}
1745	/* ip_srcroute doesn't do what we want here, need to fix */
1746	if (inp->inp_flags & INP_RECVRETOPTS) {
1747		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1748		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1749		if (*mp)
1750			mp = &(*mp)->m_next;
1751	}
1752#endif
1753	if (inp->inp_flags & INP_RECVIF) {
1754		struct ifnet *ifp;
1755		struct sdlbuf {
1756			struct sockaddr_dl sdl;
1757			u_char	pad[32];
1758		} sdlbuf;
1759		struct sockaddr_dl *sdp;
1760		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1761
1762		if (((ifp = m->m_pkthdr.rcvif))
1763		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1764			sdp = (struct sockaddr_dl *)(ifnet_addrs
1765					[ifp->if_index - 1]->ifa_addr);
1766			/*
1767			 * Change our mind and don't try copy.
1768			 */
1769			if ((sdp->sdl_family != AF_LINK)
1770			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1771				goto makedummy;
1772			}
1773			bcopy(sdp, sdl2, sdp->sdl_len);
1774		} else {
1775makedummy:
1776			sdl2->sdl_len
1777				= offsetof(struct sockaddr_dl, sdl_data[0]);
1778			sdl2->sdl_family = AF_LINK;
1779			sdl2->sdl_index = 0;
1780			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1781		}
1782		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1783			IP_RECVIF, IPPROTO_IP);
1784		if (*mp)
1785			mp = &(*mp)->m_next;
1786	}
1787}
1788
1789int
1790ip_rsvp_init(struct socket *so)
1791{
1792	if (so->so_type != SOCK_RAW ||
1793	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1794	  return EOPNOTSUPP;
1795
1796	if (ip_rsvpd != NULL)
1797	  return EADDRINUSE;
1798
1799	ip_rsvpd = so;
1800	/*
1801	 * This may seem silly, but we need to be sure we don't over-increment
1802	 * the RSVP counter, in case something slips up.
1803	 */
1804	if (!ip_rsvp_on) {
1805		ip_rsvp_on = 1;
1806		rsvp_on++;
1807	}
1808
1809	return 0;
1810}
1811
1812int
1813ip_rsvp_done(void)
1814{
1815	ip_rsvpd = NULL;
1816	/*
1817	 * This may seem silly, but we need to be sure we don't over-decrement
1818	 * the RSVP counter, in case something slips up.
1819	 */
1820	if (ip_rsvp_on) {
1821		ip_rsvp_on = 0;
1822		rsvp_on--;
1823	}
1824	return 0;
1825}
1826