ip_input.c revision 73357
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 73357 2001-03-02 20:54:03Z jlemon $
35 */
36
37#define	_IP_VHL
38
39#include "opt_bootp.h"
40#include "opt_ipfw.h"
41#include "opt_ipdn.h"
42#include "opt_ipdivert.h"
43#include "opt_ipfilter.h"
44#include "opt_ipstealth.h"
45#include "opt_ipsec.h"
46#include "opt_pfil_hooks.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mbuf.h>
51#include <sys/malloc.h>
52#include <sys/domain.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/time.h>
56#include <sys/kernel.h>
57#include <sys/syslog.h>
58#include <sys/sysctl.h>
59
60#include <net/pfil.h>
61#include <net/if.h>
62#include <net/if_var.h>
63#include <net/if_dl.h>
64#include <net/route.h>
65#include <net/netisr.h>
66#include <net/intrq.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <machine/in_cksum.h>
76
77#include <netinet/ipprotosw.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82
83#ifdef IPSEC
84#include <netinet6/ipsec.h>
85#include <netkey/key.h>
86#endif
87
88#include "faith.h"
89#if defined(NFAITH) && NFAITH > 0
90#include <net/if_types.h>
91#endif
92
93#ifdef DUMMYNET
94#include <netinet/ip_dummynet.h>
95#endif
96
97int rsvp_on = 0;
98static int ip_rsvp_on;
99struct socket *ip_rsvpd;
100
101int	ipforwarding = 0;
102SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
103    &ipforwarding, 0, "Enable IP forwarding between interfaces");
104
105static int	ipsendredirects = 1; /* XXX */
106SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
107    &ipsendredirects, 0, "Enable sending IP redirects");
108
109int	ip_defttl = IPDEFTTL;
110SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
111    &ip_defttl, 0, "Maximum TTL on IP packets");
112
113static int	ip_dosourceroute = 0;
114SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
115    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
116
117static int	ip_acceptsourceroute = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
119    CTLFLAG_RW, &ip_acceptsourceroute, 0,
120    "Enable accepting source routed IP packets");
121
122static int	ip_keepfaith = 0;
123SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
124	&ip_keepfaith,	0,
125	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
126
127static int	ip_checkinterface = 1;
128SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
129    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
130
131#ifdef DIAGNOSTIC
132static int	ipprintfs = 0;
133#endif
134
135extern	struct domain inetdomain;
136extern	struct ipprotosw inetsw[];
137u_char	ip_protox[IPPROTO_MAX];
138static int	ipqmaxlen = IFQ_MAXLEN;
139struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
140SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
141    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
142SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
143    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
144
145struct ipstat ipstat;
146SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
147    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
148
149/* Packet reassembly stuff */
150#define IPREASS_NHASH_LOG2      6
151#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
152#define IPREASS_HMASK           (IPREASS_NHASH - 1)
153#define IPREASS_HASH(x,y) \
154	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
155
156static struct ipq ipq[IPREASS_NHASH];
157static int    nipq = 0;         /* total # of reass queues */
158static int    maxnipq;
159const  int    ipintrq_present = 1;
160
161#ifdef IPCTL_DEFMTU
162SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
163    &ip_mtu, 0, "Default MTU");
164#endif
165
166#ifdef IPSTEALTH
167static int	ipstealth = 0;
168SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
169    &ipstealth, 0, "");
170#endif
171
172
173/* Firewall hooks */
174ip_fw_chk_t *ip_fw_chk_ptr;
175ip_fw_ctl_t *ip_fw_ctl_ptr;
176int fw_enable = 1 ;
177
178#ifdef DUMMYNET
179ip_dn_ctl_t *ip_dn_ctl_ptr;
180#endif
181
182
183/*
184 * We need to save the IP options in case a protocol wants to respond
185 * to an incoming packet over the same route if the packet got here
186 * using IP source routing.  This allows connection establishment and
187 * maintenance when the remote end is on a network that is not known
188 * to us.
189 */
190static int	ip_nhops = 0;
191static	struct ip_srcrt {
192	struct	in_addr dst;			/* final destination */
193	char	nop;				/* one NOP to align */
194	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
195	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
196} ip_srcrt;
197
198struct sockaddr_in *ip_fw_fwd_addr;
199
200static void	save_rte __P((u_char *, struct in_addr));
201static int	ip_dooptions __P((struct mbuf *));
202static void	ip_forward __P((struct mbuf *, int));
203static void	ip_freef __P((struct ipq *));
204#ifdef IPDIVERT
205static struct	mbuf *ip_reass __P((struct mbuf *,
206			struct ipq *, struct ipq *, u_int32_t *, u_int16_t *));
207#else
208static struct	mbuf *ip_reass __P((struct mbuf *, struct ipq *, struct ipq *));
209#endif
210static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
211static void	ipintr __P((void));
212
213/*
214 * IP initialization: fill in IP protocol switch table.
215 * All protocols not implemented in kernel go to raw IP protocol handler.
216 */
217void
218ip_init()
219{
220	register struct ipprotosw *pr;
221	register int i;
222
223	TAILQ_INIT(&in_ifaddrhead);
224	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
225	if (pr == 0)
226		panic("ip_init");
227	for (i = 0; i < IPPROTO_MAX; i++)
228		ip_protox[i] = pr - inetsw;
229	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
230	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
231		if (pr->pr_domain->dom_family == PF_INET &&
232		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
233			ip_protox[pr->pr_protocol] = pr - inetsw;
234
235	for (i = 0; i < IPREASS_NHASH; i++)
236	    ipq[i].next = ipq[i].prev = &ipq[i];
237
238	maxnipq = nmbclusters/4;
239
240	ip_id = time_second & 0xffff;
241	ipintrq.ifq_maxlen = ipqmaxlen;
242	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
243
244	register_netisr(NETISR_IP, ipintr);
245}
246
247static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
248static struct	route ipforward_rt;
249
250/*
251 * Ip input routine.  Checksum and byte swap header.  If fragmented
252 * try to reassemble.  Process options.  Pass to next level.
253 */
254void
255ip_input(struct mbuf *m)
256{
257	struct ip *ip;
258	struct ipq *fp;
259	struct in_ifaddr *ia = NULL;
260	int    i, hlen;
261	u_short sum;
262	u_int16_t divert_cookie;		/* firewall cookie */
263	struct in_addr pkt_dst;
264#ifdef IPDIVERT
265	u_int32_t divert_info = 0;		/* packet divert/tee info */
266#endif
267	struct ip_fw_chain *rule = NULL;
268#ifdef PFIL_HOOKS
269	struct packet_filter_hook *pfh;
270	struct mbuf *m0;
271	int rv;
272#endif /* PFIL_HOOKS */
273
274#ifdef IPDIVERT
275	/* Get and reset firewall cookie */
276	divert_cookie = ip_divert_cookie;
277	ip_divert_cookie = 0;
278#else
279	divert_cookie = 0;
280#endif
281
282#if defined(IPFIREWALL) && defined(DUMMYNET)
283        /*
284         * dummynet packet are prepended a vestigial mbuf with
285         * m_type = MT_DUMMYNET and m_data pointing to the matching
286         * rule.
287         */
288        if (m->m_type == MT_DUMMYNET) {
289            rule = (struct ip_fw_chain *)(m->m_data) ;
290            m = m->m_next ;
291            ip = mtod(m, struct ip *);
292            hlen = IP_VHL_HL(ip->ip_vhl) << 2;
293            goto iphack ;
294        } else
295            rule = NULL ;
296#endif
297
298#ifdef	DIAGNOSTIC
299	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
300		panic("ip_input no HDR");
301#endif
302	ipstat.ips_total++;
303
304	if (m->m_pkthdr.len < sizeof(struct ip))
305		goto tooshort;
306
307	if (m->m_len < sizeof (struct ip) &&
308	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
309		ipstat.ips_toosmall++;
310		return;
311	}
312	ip = mtod(m, struct ip *);
313
314	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
315		ipstat.ips_badvers++;
316		goto bad;
317	}
318
319	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
320	if (hlen < sizeof(struct ip)) {	/* minimum header length */
321		ipstat.ips_badhlen++;
322		goto bad;
323	}
324	if (hlen > m->m_len) {
325		if ((m = m_pullup(m, hlen)) == 0) {
326			ipstat.ips_badhlen++;
327			return;
328		}
329		ip = mtod(m, struct ip *);
330	}
331	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
332		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
333	} else {
334		if (hlen == sizeof(struct ip)) {
335			sum = in_cksum_hdr(ip);
336		} else {
337			sum = in_cksum(m, hlen);
338		}
339	}
340	if (sum) {
341		ipstat.ips_badsum++;
342		goto bad;
343	}
344
345	/*
346	 * Convert fields to host representation.
347	 */
348	NTOHS(ip->ip_len);
349	if (ip->ip_len < hlen) {
350		ipstat.ips_badlen++;
351		goto bad;
352	}
353	NTOHS(ip->ip_off);
354
355	/*
356	 * Check that the amount of data in the buffers
357	 * is as at least much as the IP header would have us expect.
358	 * Trim mbufs if longer than we expect.
359	 * Drop packet if shorter than we expect.
360	 */
361	if (m->m_pkthdr.len < ip->ip_len) {
362tooshort:
363		ipstat.ips_tooshort++;
364		goto bad;
365	}
366	if (m->m_pkthdr.len > ip->ip_len) {
367		if (m->m_len == m->m_pkthdr.len) {
368			m->m_len = ip->ip_len;
369			m->m_pkthdr.len = ip->ip_len;
370		} else
371			m_adj(m, ip->ip_len - m->m_pkthdr.len);
372	}
373	/*
374	 * IpHack's section.
375	 * Right now when no processing on packet has done
376	 * and it is still fresh out of network we do our black
377	 * deals with it.
378	 * - Firewall: deny/allow/divert
379	 * - Xlate: translate packet's addr/port (NAT).
380	 * - Pipe: pass pkt through dummynet.
381	 * - Wrap: fake packet's addr/port <unimpl.>
382	 * - Encapsulate: put it in another IP and send out. <unimp.>
383 	 */
384
385#if defined(IPFIREWALL) && defined(DUMMYNET)
386iphack:
387#endif
388
389#ifdef PFIL_HOOKS
390	/*
391	 * Run through list of hooks for input packets.  If there are any
392	 * filters which require that additional packets in the flow are
393	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
394	 * Note that filters must _never_ set this flag, as another filter
395	 * in the list may have previously cleared it.
396	 */
397	m0 = m;
398	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
399	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
400		if (pfh->pfil_func) {
401			rv = pfh->pfil_func(ip, hlen,
402					    m->m_pkthdr.rcvif, 0, &m0);
403			if (rv)
404				return;
405			m = m0;
406			if (m == NULL)
407				return;
408			ip = mtod(m, struct ip *);
409		}
410#endif /* PFIL_HOOKS */
411
412	if (fw_enable && ip_fw_chk_ptr) {
413#ifdef IPFIREWALL_FORWARD
414		/*
415		 * If we've been forwarded from the output side, then
416		 * skip the firewall a second time
417		 */
418		if (ip_fw_fwd_addr)
419			goto ours;
420#endif	/* IPFIREWALL_FORWARD */
421		/*
422		 * See the comment in ip_output for the return values
423		 * produced by the firewall.
424		 */
425		i = (*ip_fw_chk_ptr)(&ip,
426		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
427		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
428		    if (m)
429			m_freem(m);
430		    return ;
431		}
432		if (m == NULL) {	/* Packet discarded by firewall */
433		    static int __debug=10;
434		    if (__debug >0) {
435			printf("firewall returns NULL, please update!\n");
436			__debug-- ;
437		    }
438		    return;
439		}
440		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
441			goto pass;
442#ifdef DUMMYNET
443                if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
444                        /* Send packet to the appropriate pipe */
445                        dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
446				    0);
447			return;
448		}
449#endif
450#ifdef IPDIVERT
451		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
452			/* Divert or tee packet */
453			divert_info = i;
454			goto ours;
455		}
456#endif
457#ifdef IPFIREWALL_FORWARD
458		if (i == 0 && ip_fw_fwd_addr != NULL)
459			goto pass;
460#endif
461		/*
462		 * if we get here, the packet must be dropped
463		 */
464		m_freem(m);
465		return;
466	}
467pass:
468
469	/*
470	 * Process options and, if not destined for us,
471	 * ship it on.  ip_dooptions returns 1 when an
472	 * error was detected (causing an icmp message
473	 * to be sent and the original packet to be freed).
474	 */
475	ip_nhops = 0;		/* for source routed packets */
476	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
477#ifdef IPFIREWALL_FORWARD
478		ip_fw_fwd_addr = NULL;
479#endif
480		return;
481	}
482
483        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
484         * matter if it is destined to another node, or whether it is
485         * a multicast one, RSVP wants it! and prevents it from being forwarded
486         * anywhere else. Also checks if the rsvp daemon is running before
487	 * grabbing the packet.
488         */
489	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
490		goto ours;
491
492	/*
493	 * Check our list of addresses, to see if the packet is for us.
494	 * If we don't have any addresses, assume any unicast packet
495	 * we receive might be for us (and let the upper layers deal
496	 * with it).
497	 */
498	if (TAILQ_EMPTY(&in_ifaddrhead) &&
499	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
500		goto ours;
501
502	/*
503	 * Cache the destination address of the packet; this may be
504	 * changed by use of 'ipfw fwd'.
505	 */
506	pkt_dst = ip_fw_fwd_addr == NULL ?
507	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
508
509	TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
510#define	satosin(sa)	((struct sockaddr_in *)(sa))
511
512#ifdef BOOTP_COMPAT
513		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
514			goto ours;
515#endif
516		/*
517		 * check that the packet is either arriving from the
518		 * correct interface or is locally generated.
519		 */
520		if (ia->ia_ifp != m->m_pkthdr.rcvif && ip_checkinterface &&
521		     (m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0)
522			continue;
523
524		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr)
525			goto ours;
526
527		if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
528			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
529			    pkt_dst.s_addr)
530				goto ours;
531			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
532				goto ours;
533		}
534	}
535	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
536		struct in_multi *inm;
537		if (ip_mrouter) {
538			/*
539			 * If we are acting as a multicast router, all
540			 * incoming multicast packets are passed to the
541			 * kernel-level multicast forwarding function.
542			 * The packet is returned (relatively) intact; if
543			 * ip_mforward() returns a non-zero value, the packet
544			 * must be discarded, else it may be accepted below.
545			 */
546			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
547				ipstat.ips_cantforward++;
548				m_freem(m);
549				return;
550			}
551
552			/*
553			 * The process-level routing demon needs to receive
554			 * all multicast IGMP packets, whether or not this
555			 * host belongs to their destination groups.
556			 */
557			if (ip->ip_p == IPPROTO_IGMP)
558				goto ours;
559			ipstat.ips_forward++;
560		}
561		/*
562		 * See if we belong to the destination multicast group on the
563		 * arrival interface.
564		 */
565		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
566		if (inm == NULL) {
567			ipstat.ips_notmember++;
568			m_freem(m);
569			return;
570		}
571		goto ours;
572	}
573	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
574		goto ours;
575	if (ip->ip_dst.s_addr == INADDR_ANY)
576		goto ours;
577
578#if defined(NFAITH) && 0 < NFAITH
579	/*
580	 * FAITH(Firewall Aided Internet Translator)
581	 */
582	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
583		if (ip_keepfaith) {
584			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
585				goto ours;
586		}
587		m_freem(m);
588		return;
589	}
590#endif
591	/*
592	 * Not for us; forward if possible and desirable.
593	 */
594	if (ipforwarding == 0) {
595		ipstat.ips_cantforward++;
596		m_freem(m);
597	} else
598		ip_forward(m, 0);
599#ifdef IPFIREWALL_FORWARD
600	ip_fw_fwd_addr = NULL;
601#endif
602	return;
603
604ours:
605	/* Count the packet in the ip address stats */
606	if (ia != NULL) {
607		ia->ia_ifa.if_ipackets++;
608		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
609	}
610
611	/*
612	 * If offset or IP_MF are set, must reassemble.
613	 * Otherwise, nothing need be done.
614	 * (We could look in the reassembly queue to see
615	 * if the packet was previously fragmented,
616	 * but it's not worth the time; just let them time out.)
617	 */
618	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
619
620		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
621		/*
622		 * Look for queue of fragments
623		 * of this datagram.
624		 */
625		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
626			if (ip->ip_id == fp->ipq_id &&
627			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
628			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
629			    ip->ip_p == fp->ipq_p)
630				goto found;
631
632		fp = 0;
633
634		/* check if there's a place for the new queue */
635		if (nipq > maxnipq) {
636		    /*
637		     * drop something from the tail of the current queue
638		     * before proceeding further
639		     */
640		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
641			for (i = 0; i < IPREASS_NHASH; i++) {
642			    if (ipq[i].prev != &ipq[i]) {
643				ip_freef(ipq[i].prev);
644				break;
645			    }
646			}
647		    } else
648			ip_freef(ipq[sum].prev);
649		}
650found:
651		/*
652		 * Adjust ip_len to not reflect header,
653		 * convert offset of this to bytes.
654		 */
655		ip->ip_len -= hlen;
656		if (ip->ip_off & IP_MF) {
657		        /*
658		         * Make sure that fragments have a data length
659			 * that's a non-zero multiple of 8 bytes.
660		         */
661			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
662				ipstat.ips_toosmall++; /* XXX */
663				goto bad;
664			}
665			m->m_flags |= M_FRAG;
666		}
667		ip->ip_off <<= 3;
668
669		/*
670		 * Attempt reassembly; if it succeeds, proceed.
671		 */
672		ipstat.ips_fragments++;
673		m->m_pkthdr.header = ip;
674#ifdef IPDIVERT
675		m = ip_reass(m,
676		    fp, &ipq[sum], &divert_info, &divert_cookie);
677#else
678		m = ip_reass(m, fp, &ipq[sum]);
679#endif
680		if (m == 0) {
681#ifdef IPFIREWALL_FORWARD
682			ip_fw_fwd_addr = NULL;
683#endif
684			return;
685		}
686		ipstat.ips_reassembled++;
687		ip = mtod(m, struct ip *);
688		/* Get the header length of the reassembled packet */
689		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
690#ifdef IPDIVERT
691		/* Restore original checksum before diverting packet */
692		if (divert_info != 0) {
693			ip->ip_len += hlen;
694			HTONS(ip->ip_len);
695			HTONS(ip->ip_off);
696			ip->ip_sum = 0;
697			if (hlen == sizeof(struct ip))
698				ip->ip_sum = in_cksum_hdr(ip);
699			else
700				ip->ip_sum = in_cksum(m, hlen);
701			NTOHS(ip->ip_off);
702			NTOHS(ip->ip_len);
703			ip->ip_len -= hlen;
704		}
705#endif
706	} else
707		ip->ip_len -= hlen;
708
709#ifdef IPDIVERT
710	/*
711	 * Divert or tee packet to the divert protocol if required.
712	 *
713	 * If divert_info is zero then cookie should be too, so we shouldn't
714	 * need to clear them here.  Assume divert_packet() does so also.
715	 */
716	if (divert_info != 0) {
717		struct mbuf *clone = NULL;
718
719		/* Clone packet if we're doing a 'tee' */
720		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
721			clone = m_dup(m, M_DONTWAIT);
722
723		/* Restore packet header fields to original values */
724		ip->ip_len += hlen;
725		HTONS(ip->ip_len);
726		HTONS(ip->ip_off);
727
728		/* Deliver packet to divert input routine */
729		ip_divert_cookie = divert_cookie;
730		divert_packet(m, 1, divert_info & 0xffff);
731		ipstat.ips_delivered++;
732
733		/* If 'tee', continue with original packet */
734		if (clone == NULL)
735			return;
736		m = clone;
737		ip = mtod(m, struct ip *);
738	}
739#endif
740
741	/*
742	 * Switch out to protocol's input routine.
743	 */
744	ipstat.ips_delivered++;
745    {
746	int off = hlen, nh = ip->ip_p;
747
748	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
749#ifdef	IPFIREWALL_FORWARD
750	ip_fw_fwd_addr = NULL;	/* tcp needed it */
751#endif
752	return;
753    }
754bad:
755#ifdef	IPFIREWALL_FORWARD
756	ip_fw_fwd_addr = NULL;
757#endif
758	m_freem(m);
759}
760
761/*
762 * IP software interrupt routine - to go away sometime soon
763 */
764static void
765ipintr(void)
766{
767	struct mbuf *m;
768
769	while (1) {
770		IF_DEQUEUE(&ipintrq, m);
771		if (m == 0)
772			return;
773		ip_input(m);
774	}
775}
776
777/*
778 * Take incoming datagram fragment and try to reassemble it into
779 * whole datagram.  If a chain for reassembly of this datagram already
780 * exists, then it is given as fp; otherwise have to make a chain.
781 *
782 * When IPDIVERT enabled, keep additional state with each packet that
783 * tells us if we need to divert or tee the packet we're building.
784 */
785
786static struct mbuf *
787#ifdef IPDIVERT
788ip_reass(m, fp, where, divinfo, divcookie)
789#else
790ip_reass(m, fp, where)
791#endif
792	register struct mbuf *m;
793	register struct ipq *fp;
794	struct   ipq    *where;
795#ifdef IPDIVERT
796	u_int32_t *divinfo;
797	u_int16_t *divcookie;
798#endif
799{
800	struct ip *ip = mtod(m, struct ip *);
801	register struct mbuf *p, *q, *nq;
802	struct mbuf *t;
803	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
804	int i, next;
805
806	/*
807	 * Presence of header sizes in mbufs
808	 * would confuse code below.
809	 */
810	m->m_data += hlen;
811	m->m_len -= hlen;
812
813	/*
814	 * If first fragment to arrive, create a reassembly queue.
815	 */
816	if (fp == 0) {
817		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
818			goto dropfrag;
819		fp = mtod(t, struct ipq *);
820		insque(fp, where);
821		nipq++;
822		fp->ipq_ttl = IPFRAGTTL;
823		fp->ipq_p = ip->ip_p;
824		fp->ipq_id = ip->ip_id;
825		fp->ipq_src = ip->ip_src;
826		fp->ipq_dst = ip->ip_dst;
827		fp->ipq_frags = m;
828		m->m_nextpkt = NULL;
829#ifdef IPDIVERT
830		fp->ipq_div_info = 0;
831		fp->ipq_div_cookie = 0;
832#endif
833		goto inserted;
834	}
835
836#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
837
838	/*
839	 * Find a segment which begins after this one does.
840	 */
841	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
842		if (GETIP(q)->ip_off > ip->ip_off)
843			break;
844
845	/*
846	 * If there is a preceding segment, it may provide some of
847	 * our data already.  If so, drop the data from the incoming
848	 * segment.  If it provides all of our data, drop us, otherwise
849	 * stick new segment in the proper place.
850	 *
851	 * If some of the data is dropped from the the preceding
852	 * segment, then it's checksum is invalidated.
853	 */
854	if (p) {
855		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
856		if (i > 0) {
857			if (i >= ip->ip_len)
858				goto dropfrag;
859			m_adj(m, i);
860			m->m_pkthdr.csum_flags = 0;
861			ip->ip_off += i;
862			ip->ip_len -= i;
863		}
864		m->m_nextpkt = p->m_nextpkt;
865		p->m_nextpkt = m;
866	} else {
867		m->m_nextpkt = fp->ipq_frags;
868		fp->ipq_frags = m;
869	}
870
871	/*
872	 * While we overlap succeeding segments trim them or,
873	 * if they are completely covered, dequeue them.
874	 */
875	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
876	     q = nq) {
877		i = (ip->ip_off + ip->ip_len) -
878		    GETIP(q)->ip_off;
879		if (i < GETIP(q)->ip_len) {
880			GETIP(q)->ip_len -= i;
881			GETIP(q)->ip_off += i;
882			m_adj(q, i);
883			q->m_pkthdr.csum_flags = 0;
884			break;
885		}
886		nq = q->m_nextpkt;
887		m->m_nextpkt = nq;
888		m_freem(q);
889	}
890
891inserted:
892
893#ifdef IPDIVERT
894	/*
895	 * Transfer firewall instructions to the fragment structure.
896	 * Any fragment diverting causes the whole packet to divert.
897	 */
898	fp->ipq_div_info = *divinfo;
899	fp->ipq_div_cookie = *divcookie;
900	*divinfo = 0;
901	*divcookie = 0;
902#endif
903
904	/*
905	 * Check for complete reassembly.
906	 */
907	next = 0;
908	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
909		if (GETIP(q)->ip_off != next)
910			return (0);
911		next += GETIP(q)->ip_len;
912	}
913	/* Make sure the last packet didn't have the IP_MF flag */
914	if (p->m_flags & M_FRAG)
915		return (0);
916
917	/*
918	 * Reassembly is complete.  Make sure the packet is a sane size.
919	 */
920	q = fp->ipq_frags;
921	ip = GETIP(q);
922	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
923		ipstat.ips_toolong++;
924		ip_freef(fp);
925		return (0);
926	}
927
928	/*
929	 * Concatenate fragments.
930	 */
931	m = q;
932	t = m->m_next;
933	m->m_next = 0;
934	m_cat(m, t);
935	nq = q->m_nextpkt;
936	q->m_nextpkt = 0;
937	for (q = nq; q != NULL; q = nq) {
938		nq = q->m_nextpkt;
939		q->m_nextpkt = NULL;
940		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
941		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
942		m_cat(m, q);
943	}
944
945#ifdef IPDIVERT
946	/*
947	 * Extract firewall instructions from the fragment structure.
948	 */
949	*divinfo = fp->ipq_div_info;
950	*divcookie = fp->ipq_div_cookie;
951#endif
952
953	/*
954	 * Create header for new ip packet by
955	 * modifying header of first packet;
956	 * dequeue and discard fragment reassembly header.
957	 * Make header visible.
958	 */
959	ip->ip_len = next;
960	ip->ip_src = fp->ipq_src;
961	ip->ip_dst = fp->ipq_dst;
962	remque(fp);
963	nipq--;
964	(void) m_free(dtom(fp));
965	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
966	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
967	/* some debugging cruft by sklower, below, will go away soon */
968	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
969		register int plen = 0;
970		for (t = m; t; t = t->m_next)
971			plen += t->m_len;
972		m->m_pkthdr.len = plen;
973	}
974	return (m);
975
976dropfrag:
977#ifdef IPDIVERT
978	*divinfo = 0;
979	*divcookie = 0;
980#endif
981	ipstat.ips_fragdropped++;
982	m_freem(m);
983	return (0);
984
985#undef GETIP
986}
987
988/*
989 * Free a fragment reassembly header and all
990 * associated datagrams.
991 */
992static void
993ip_freef(fp)
994	struct ipq *fp;
995{
996	register struct mbuf *q;
997
998	while (fp->ipq_frags) {
999		q = fp->ipq_frags;
1000		fp->ipq_frags = q->m_nextpkt;
1001		m_freem(q);
1002	}
1003	remque(fp);
1004	(void) m_free(dtom(fp));
1005	nipq--;
1006}
1007
1008/*
1009 * IP timer processing;
1010 * if a timer expires on a reassembly
1011 * queue, discard it.
1012 */
1013void
1014ip_slowtimo()
1015{
1016	register struct ipq *fp;
1017	int s = splnet();
1018	int i;
1019
1020	for (i = 0; i < IPREASS_NHASH; i++) {
1021		fp = ipq[i].next;
1022		if (fp == 0)
1023			continue;
1024		while (fp != &ipq[i]) {
1025			--fp->ipq_ttl;
1026			fp = fp->next;
1027			if (fp->prev->ipq_ttl == 0) {
1028				ipstat.ips_fragtimeout++;
1029				ip_freef(fp->prev);
1030			}
1031		}
1032	}
1033	ipflow_slowtimo();
1034	splx(s);
1035}
1036
1037/*
1038 * Drain off all datagram fragments.
1039 */
1040void
1041ip_drain()
1042{
1043	int     i;
1044
1045	for (i = 0; i < IPREASS_NHASH; i++) {
1046		while (ipq[i].next != &ipq[i]) {
1047			ipstat.ips_fragdropped++;
1048			ip_freef(ipq[i].next);
1049		}
1050	}
1051	in_rtqdrain();
1052}
1053
1054/*
1055 * Do option processing on a datagram,
1056 * possibly discarding it if bad options are encountered,
1057 * or forwarding it if source-routed.
1058 * Returns 1 if packet has been forwarded/freed,
1059 * 0 if the packet should be processed further.
1060 */
1061static int
1062ip_dooptions(m)
1063	struct mbuf *m;
1064{
1065	register struct ip *ip = mtod(m, struct ip *);
1066	register u_char *cp;
1067	register struct ip_timestamp *ipt;
1068	register struct in_ifaddr *ia;
1069	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1070	struct in_addr *sin, dst;
1071	n_time ntime;
1072
1073	dst = ip->ip_dst;
1074	cp = (u_char *)(ip + 1);
1075	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1076	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1077		opt = cp[IPOPT_OPTVAL];
1078		if (opt == IPOPT_EOL)
1079			break;
1080		if (opt == IPOPT_NOP)
1081			optlen = 1;
1082		else {
1083			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1084				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1085				goto bad;
1086			}
1087			optlen = cp[IPOPT_OLEN];
1088			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1089				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1090				goto bad;
1091			}
1092		}
1093		switch (opt) {
1094
1095		default:
1096			break;
1097
1098		/*
1099		 * Source routing with record.
1100		 * Find interface with current destination address.
1101		 * If none on this machine then drop if strictly routed,
1102		 * or do nothing if loosely routed.
1103		 * Record interface address and bring up next address
1104		 * component.  If strictly routed make sure next
1105		 * address is on directly accessible net.
1106		 */
1107		case IPOPT_LSRR:
1108		case IPOPT_SSRR:
1109			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1110				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1111				goto bad;
1112			}
1113			ipaddr.sin_addr = ip->ip_dst;
1114			ia = (struct in_ifaddr *)
1115				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1116			if (ia == 0) {
1117				if (opt == IPOPT_SSRR) {
1118					type = ICMP_UNREACH;
1119					code = ICMP_UNREACH_SRCFAIL;
1120					goto bad;
1121				}
1122				if (!ip_dosourceroute)
1123					goto nosourcerouting;
1124				/*
1125				 * Loose routing, and not at next destination
1126				 * yet; nothing to do except forward.
1127				 */
1128				break;
1129			}
1130			off--;			/* 0 origin */
1131			if (off > optlen - (int)sizeof(struct in_addr)) {
1132				/*
1133				 * End of source route.  Should be for us.
1134				 */
1135				if (!ip_acceptsourceroute)
1136					goto nosourcerouting;
1137				save_rte(cp, ip->ip_src);
1138				break;
1139			}
1140
1141			if (!ip_dosourceroute) {
1142				if (ipforwarding) {
1143					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1144					/*
1145					 * Acting as a router, so generate ICMP
1146					 */
1147nosourcerouting:
1148					strcpy(buf, inet_ntoa(ip->ip_dst));
1149					log(LOG_WARNING,
1150					    "attempted source route from %s to %s\n",
1151					    inet_ntoa(ip->ip_src), buf);
1152					type = ICMP_UNREACH;
1153					code = ICMP_UNREACH_SRCFAIL;
1154					goto bad;
1155				} else {
1156					/*
1157					 * Not acting as a router, so silently drop.
1158					 */
1159					ipstat.ips_cantforward++;
1160					m_freem(m);
1161					return (1);
1162				}
1163			}
1164
1165			/*
1166			 * locate outgoing interface
1167			 */
1168			(void)memcpy(&ipaddr.sin_addr, cp + off,
1169			    sizeof(ipaddr.sin_addr));
1170
1171			if (opt == IPOPT_SSRR) {
1172#define	INA	struct in_ifaddr *
1173#define	SA	struct sockaddr *
1174			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1175				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1176			} else
1177				ia = ip_rtaddr(ipaddr.sin_addr);
1178			if (ia == 0) {
1179				type = ICMP_UNREACH;
1180				code = ICMP_UNREACH_SRCFAIL;
1181				goto bad;
1182			}
1183			ip->ip_dst = ipaddr.sin_addr;
1184			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1185			    sizeof(struct in_addr));
1186			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1187			/*
1188			 * Let ip_intr's mcast routing check handle mcast pkts
1189			 */
1190			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1191			break;
1192
1193		case IPOPT_RR:
1194			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1195				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1196				goto bad;
1197			}
1198			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1199				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1200				goto bad;
1201			}
1202			/*
1203			 * If no space remains, ignore.
1204			 */
1205			off--;			/* 0 origin */
1206			if (off > optlen - (int)sizeof(struct in_addr))
1207				break;
1208			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1209			    sizeof(ipaddr.sin_addr));
1210			/*
1211			 * locate outgoing interface; if we're the destination,
1212			 * use the incoming interface (should be same).
1213			 */
1214			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1215			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1216				type = ICMP_UNREACH;
1217				code = ICMP_UNREACH_HOST;
1218				goto bad;
1219			}
1220			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1221			    sizeof(struct in_addr));
1222			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1223			break;
1224
1225		case IPOPT_TS:
1226			code = cp - (u_char *)ip;
1227			ipt = (struct ip_timestamp *)cp;
1228			if (ipt->ipt_len < 5)
1229				goto bad;
1230			if (ipt->ipt_ptr >
1231			    ipt->ipt_len - (int)sizeof(int32_t)) {
1232				if (++ipt->ipt_oflw == 0)
1233					goto bad;
1234				break;
1235			}
1236			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1237			switch (ipt->ipt_flg) {
1238
1239			case IPOPT_TS_TSONLY:
1240				break;
1241
1242			case IPOPT_TS_TSANDADDR:
1243				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1244				    sizeof(struct in_addr) > ipt->ipt_len)
1245					goto bad;
1246				ipaddr.sin_addr = dst;
1247				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1248							    m->m_pkthdr.rcvif);
1249				if (ia == 0)
1250					continue;
1251				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1252				    sizeof(struct in_addr));
1253				ipt->ipt_ptr += sizeof(struct in_addr);
1254				break;
1255
1256			case IPOPT_TS_PRESPEC:
1257				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1258				    sizeof(struct in_addr) > ipt->ipt_len)
1259					goto bad;
1260				(void)memcpy(&ipaddr.sin_addr, sin,
1261				    sizeof(struct in_addr));
1262				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1263					continue;
1264				ipt->ipt_ptr += sizeof(struct in_addr);
1265				break;
1266
1267			default:
1268				goto bad;
1269			}
1270			ntime = iptime();
1271			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1272			    sizeof(n_time));
1273			ipt->ipt_ptr += sizeof(n_time);
1274		}
1275	}
1276	if (forward && ipforwarding) {
1277		ip_forward(m, 1);
1278		return (1);
1279	}
1280	return (0);
1281bad:
1282	icmp_error(m, type, code, 0, 0);
1283	ipstat.ips_badoptions++;
1284	return (1);
1285}
1286
1287/*
1288 * Given address of next destination (final or next hop),
1289 * return internet address info of interface to be used to get there.
1290 */
1291static struct in_ifaddr *
1292ip_rtaddr(dst)
1293	 struct in_addr dst;
1294{
1295	register struct sockaddr_in *sin;
1296
1297	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1298
1299	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1300		if (ipforward_rt.ro_rt) {
1301			RTFREE(ipforward_rt.ro_rt);
1302			ipforward_rt.ro_rt = 0;
1303		}
1304		sin->sin_family = AF_INET;
1305		sin->sin_len = sizeof(*sin);
1306		sin->sin_addr = dst;
1307
1308		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1309	}
1310	if (ipforward_rt.ro_rt == 0)
1311		return ((struct in_ifaddr *)0);
1312	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1313}
1314
1315/*
1316 * Save incoming source route for use in replies,
1317 * to be picked up later by ip_srcroute if the receiver is interested.
1318 */
1319void
1320save_rte(option, dst)
1321	u_char *option;
1322	struct in_addr dst;
1323{
1324	unsigned olen;
1325
1326	olen = option[IPOPT_OLEN];
1327#ifdef DIAGNOSTIC
1328	if (ipprintfs)
1329		printf("save_rte: olen %d\n", olen);
1330#endif
1331	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1332		return;
1333	bcopy(option, ip_srcrt.srcopt, olen);
1334	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1335	ip_srcrt.dst = dst;
1336}
1337
1338/*
1339 * Retrieve incoming source route for use in replies,
1340 * in the same form used by setsockopt.
1341 * The first hop is placed before the options, will be removed later.
1342 */
1343struct mbuf *
1344ip_srcroute()
1345{
1346	register struct in_addr *p, *q;
1347	register struct mbuf *m;
1348
1349	if (ip_nhops == 0)
1350		return ((struct mbuf *)0);
1351	m = m_get(M_DONTWAIT, MT_HEADER);
1352	if (m == 0)
1353		return ((struct mbuf *)0);
1354
1355#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1356
1357	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1358	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1359	    OPTSIZ;
1360#ifdef DIAGNOSTIC
1361	if (ipprintfs)
1362		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1363#endif
1364
1365	/*
1366	 * First save first hop for return route
1367	 */
1368	p = &ip_srcrt.route[ip_nhops - 1];
1369	*(mtod(m, struct in_addr *)) = *p--;
1370#ifdef DIAGNOSTIC
1371	if (ipprintfs)
1372		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1373#endif
1374
1375	/*
1376	 * Copy option fields and padding (nop) to mbuf.
1377	 */
1378	ip_srcrt.nop = IPOPT_NOP;
1379	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1380	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1381	    &ip_srcrt.nop, OPTSIZ);
1382	q = (struct in_addr *)(mtod(m, caddr_t) +
1383	    sizeof(struct in_addr) + OPTSIZ);
1384#undef OPTSIZ
1385	/*
1386	 * Record return path as an IP source route,
1387	 * reversing the path (pointers are now aligned).
1388	 */
1389	while (p >= ip_srcrt.route) {
1390#ifdef DIAGNOSTIC
1391		if (ipprintfs)
1392			printf(" %lx", (u_long)ntohl(q->s_addr));
1393#endif
1394		*q++ = *p--;
1395	}
1396	/*
1397	 * Last hop goes to final destination.
1398	 */
1399	*q = ip_srcrt.dst;
1400#ifdef DIAGNOSTIC
1401	if (ipprintfs)
1402		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1403#endif
1404	return (m);
1405}
1406
1407/*
1408 * Strip out IP options, at higher
1409 * level protocol in the kernel.
1410 * Second argument is buffer to which options
1411 * will be moved, and return value is their length.
1412 * XXX should be deleted; last arg currently ignored.
1413 */
1414void
1415ip_stripoptions(m, mopt)
1416	register struct mbuf *m;
1417	struct mbuf *mopt;
1418{
1419	register int i;
1420	struct ip *ip = mtod(m, struct ip *);
1421	register caddr_t opts;
1422	int olen;
1423
1424	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1425	opts = (caddr_t)(ip + 1);
1426	i = m->m_len - (sizeof (struct ip) + olen);
1427	bcopy(opts + olen, opts, (unsigned)i);
1428	m->m_len -= olen;
1429	if (m->m_flags & M_PKTHDR)
1430		m->m_pkthdr.len -= olen;
1431	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1432}
1433
1434u_char inetctlerrmap[PRC_NCMDS] = {
1435	0,		0,		0,		0,
1436	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1437	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1438	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1439	0,		0,		0,		0,
1440	ENOPROTOOPT,	ENETRESET
1441};
1442
1443/*
1444 * Forward a packet.  If some error occurs return the sender
1445 * an icmp packet.  Note we can't always generate a meaningful
1446 * icmp message because icmp doesn't have a large enough repertoire
1447 * of codes and types.
1448 *
1449 * If not forwarding, just drop the packet.  This could be confusing
1450 * if ipforwarding was zero but some routing protocol was advancing
1451 * us as a gateway to somewhere.  However, we must let the routing
1452 * protocol deal with that.
1453 *
1454 * The srcrt parameter indicates whether the packet is being forwarded
1455 * via a source route.
1456 */
1457static void
1458ip_forward(m, srcrt)
1459	struct mbuf *m;
1460	int srcrt;
1461{
1462	register struct ip *ip = mtod(m, struct ip *);
1463	register struct sockaddr_in *sin;
1464	register struct rtentry *rt;
1465	int error, type = 0, code = 0;
1466	struct mbuf *mcopy;
1467	n_long dest;
1468	struct ifnet *destifp;
1469#ifdef IPSEC
1470	struct ifnet dummyifp;
1471#endif
1472
1473	dest = 0;
1474#ifdef DIAGNOSTIC
1475	if (ipprintfs)
1476		printf("forward: src %lx dst %lx ttl %x\n",
1477		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1478		    ip->ip_ttl);
1479#endif
1480
1481
1482	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1483		ipstat.ips_cantforward++;
1484		m_freem(m);
1485		return;
1486	}
1487#ifdef IPSTEALTH
1488	if (!ipstealth) {
1489#endif
1490		if (ip->ip_ttl <= IPTTLDEC) {
1491			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1492			    dest, 0);
1493			return;
1494		}
1495#ifdef IPSTEALTH
1496	}
1497#endif
1498
1499	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1500	if ((rt = ipforward_rt.ro_rt) == 0 ||
1501	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1502		if (ipforward_rt.ro_rt) {
1503			RTFREE(ipforward_rt.ro_rt);
1504			ipforward_rt.ro_rt = 0;
1505		}
1506		sin->sin_family = AF_INET;
1507		sin->sin_len = sizeof(*sin);
1508		sin->sin_addr = ip->ip_dst;
1509
1510		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1511		if (ipforward_rt.ro_rt == 0) {
1512			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1513			return;
1514		}
1515		rt = ipforward_rt.ro_rt;
1516	}
1517
1518	/*
1519	 * Save at most 64 bytes of the packet in case
1520	 * we need to generate an ICMP message to the src.
1521	 */
1522	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1523	if (mcopy && (mcopy->m_flags & M_EXT))
1524		m_copydata(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1525
1526#ifdef IPSTEALTH
1527	if (!ipstealth) {
1528#endif
1529		ip->ip_ttl -= IPTTLDEC;
1530#ifdef IPSTEALTH
1531	}
1532#endif
1533
1534	/*
1535	 * If forwarding packet using same interface that it came in on,
1536	 * perhaps should send a redirect to sender to shortcut a hop.
1537	 * Only send redirect if source is sending directly to us,
1538	 * and if packet was not source routed (or has any options).
1539	 * Also, don't send redirect if forwarding using a default route
1540	 * or a route modified by a redirect.
1541	 */
1542#define	satosin(sa)	((struct sockaddr_in *)(sa))
1543	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1544	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1545	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1546	    ipsendredirects && !srcrt) {
1547#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1548		u_long src = ntohl(ip->ip_src.s_addr);
1549
1550		if (RTA(rt) &&
1551		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1552		    if (rt->rt_flags & RTF_GATEWAY)
1553			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1554		    else
1555			dest = ip->ip_dst.s_addr;
1556		    /* Router requirements says to only send host redirects */
1557		    type = ICMP_REDIRECT;
1558		    code = ICMP_REDIRECT_HOST;
1559#ifdef DIAGNOSTIC
1560		    if (ipprintfs)
1561		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1562#endif
1563		}
1564	}
1565
1566	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1567			  IP_FORWARDING, 0);
1568	if (error)
1569		ipstat.ips_cantforward++;
1570	else {
1571		ipstat.ips_forward++;
1572		if (type)
1573			ipstat.ips_redirectsent++;
1574		else {
1575			if (mcopy) {
1576				ipflow_create(&ipforward_rt, mcopy);
1577				m_freem(mcopy);
1578			}
1579			return;
1580		}
1581	}
1582	if (mcopy == NULL)
1583		return;
1584	destifp = NULL;
1585
1586	switch (error) {
1587
1588	case 0:				/* forwarded, but need redirect */
1589		/* type, code set above */
1590		break;
1591
1592	case ENETUNREACH:		/* shouldn't happen, checked above */
1593	case EHOSTUNREACH:
1594	case ENETDOWN:
1595	case EHOSTDOWN:
1596	default:
1597		type = ICMP_UNREACH;
1598		code = ICMP_UNREACH_HOST;
1599		break;
1600
1601	case EMSGSIZE:
1602		type = ICMP_UNREACH;
1603		code = ICMP_UNREACH_NEEDFRAG;
1604#ifndef IPSEC
1605		if (ipforward_rt.ro_rt)
1606			destifp = ipforward_rt.ro_rt->rt_ifp;
1607#else
1608		/*
1609		 * If the packet is routed over IPsec tunnel, tell the
1610		 * originator the tunnel MTU.
1611		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1612		 * XXX quickhack!!!
1613		 */
1614		if (ipforward_rt.ro_rt) {
1615			struct secpolicy *sp = NULL;
1616			int ipsecerror;
1617			int ipsechdr;
1618			struct route *ro;
1619
1620			sp = ipsec4_getpolicybyaddr(mcopy,
1621						    IPSEC_DIR_OUTBOUND,
1622			                            IP_FORWARDING,
1623			                            &ipsecerror);
1624
1625			if (sp == NULL)
1626				destifp = ipforward_rt.ro_rt->rt_ifp;
1627			else {
1628				/* count IPsec header size */
1629				ipsechdr = ipsec4_hdrsiz(mcopy,
1630							 IPSEC_DIR_OUTBOUND,
1631							 NULL);
1632
1633				/*
1634				 * find the correct route for outer IPv4
1635				 * header, compute tunnel MTU.
1636				 *
1637				 * XXX BUG ALERT
1638				 * The "dummyifp" code relies upon the fact
1639				 * that icmp_error() touches only ifp->if_mtu.
1640				 */
1641				/*XXX*/
1642				destifp = NULL;
1643				if (sp->req != NULL
1644				 && sp->req->sav != NULL
1645				 && sp->req->sav->sah != NULL) {
1646					ro = &sp->req->sav->sah->sa_route;
1647					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1648						dummyifp.if_mtu =
1649						    ro->ro_rt->rt_ifp->if_mtu;
1650						dummyifp.if_mtu -= ipsechdr;
1651						destifp = &dummyifp;
1652					}
1653				}
1654
1655				key_freesp(sp);
1656			}
1657		}
1658#endif /*IPSEC*/
1659		ipstat.ips_cantfrag++;
1660		break;
1661
1662	case ENOBUFS:
1663		type = ICMP_SOURCEQUENCH;
1664		code = 0;
1665		break;
1666
1667	case EACCES:			/* ipfw denied packet */
1668		m_freem(mcopy);
1669		return;
1670	}
1671	if (mcopy->m_flags & M_EXT)
1672		m_copyback(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1673	icmp_error(mcopy, type, code, dest, destifp);
1674}
1675
1676void
1677ip_savecontrol(inp, mp, ip, m)
1678	register struct inpcb *inp;
1679	register struct mbuf **mp;
1680	register struct ip *ip;
1681	register struct mbuf *m;
1682{
1683	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1684		struct timeval tv;
1685
1686		microtime(&tv);
1687		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1688			SCM_TIMESTAMP, SOL_SOCKET);
1689		if (*mp)
1690			mp = &(*mp)->m_next;
1691	}
1692	if (inp->inp_flags & INP_RECVDSTADDR) {
1693		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1694		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1695		if (*mp)
1696			mp = &(*mp)->m_next;
1697	}
1698#ifdef notyet
1699	/* XXX
1700	 * Moving these out of udp_input() made them even more broken
1701	 * than they already were.
1702	 */
1703	/* options were tossed already */
1704	if (inp->inp_flags & INP_RECVOPTS) {
1705		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1706		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1707		if (*mp)
1708			mp = &(*mp)->m_next;
1709	}
1710	/* ip_srcroute doesn't do what we want here, need to fix */
1711	if (inp->inp_flags & INP_RECVRETOPTS) {
1712		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1713		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1714		if (*mp)
1715			mp = &(*mp)->m_next;
1716	}
1717#endif
1718	if (inp->inp_flags & INP_RECVIF) {
1719		struct ifnet *ifp;
1720		struct sdlbuf {
1721			struct sockaddr_dl sdl;
1722			u_char	pad[32];
1723		} sdlbuf;
1724		struct sockaddr_dl *sdp;
1725		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1726
1727		if (((ifp = m->m_pkthdr.rcvif))
1728		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1729			sdp = (struct sockaddr_dl *)(ifnet_addrs
1730					[ifp->if_index - 1]->ifa_addr);
1731			/*
1732			 * Change our mind and don't try copy.
1733			 */
1734			if ((sdp->sdl_family != AF_LINK)
1735			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1736				goto makedummy;
1737			}
1738			bcopy(sdp, sdl2, sdp->sdl_len);
1739		} else {
1740makedummy:
1741			sdl2->sdl_len
1742				= offsetof(struct sockaddr_dl, sdl_data[0]);
1743			sdl2->sdl_family = AF_LINK;
1744			sdl2->sdl_index = 0;
1745			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1746		}
1747		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1748			IP_RECVIF, IPPROTO_IP);
1749		if (*mp)
1750			mp = &(*mp)->m_next;
1751	}
1752}
1753
1754int
1755ip_rsvp_init(struct socket *so)
1756{
1757	if (so->so_type != SOCK_RAW ||
1758	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1759	  return EOPNOTSUPP;
1760
1761	if (ip_rsvpd != NULL)
1762	  return EADDRINUSE;
1763
1764	ip_rsvpd = so;
1765	/*
1766	 * This may seem silly, but we need to be sure we don't over-increment
1767	 * the RSVP counter, in case something slips up.
1768	 */
1769	if (!ip_rsvp_on) {
1770		ip_rsvp_on = 1;
1771		rsvp_on++;
1772	}
1773
1774	return 0;
1775}
1776
1777int
1778ip_rsvp_done(void)
1779{
1780	ip_rsvpd = NULL;
1781	/*
1782	 * This may seem silly, but we need to be sure we don't over-decrement
1783	 * the RSVP counter, in case something slips up.
1784	 */
1785	if (ip_rsvp_on) {
1786		ip_rsvp_on = 0;
1787		rsvp_on--;
1788	}
1789	return 0;
1790}
1791