ip_input.c revision 30948
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $Id: ip_input.c,v 1.69 1997/10/28 18:55:21 guido Exp $
35 *	$ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $
36 */
37
38#define	_IP_VHL
39
40#include "opt_ipfw.h"
41
42#include <stddef.h>
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/mbuf.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54
55#include <net/if.h>
56#include <net/if_var.h>
57#include <net/if_dl.h>
58#include <net/route.h>
59#include <net/netisr.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/in_pcb.h>
66#include <netinet/ip_var.h>
67#include <netinet/ip_icmp.h>
68#include <machine/in_cksum.h>
69
70#include <sys/socketvar.h>
71
72#ifdef IPFIREWALL
73#include <netinet/ip_fw.h>
74#endif
75
76int rsvp_on = 0;
77static int ip_rsvp_on;
78struct socket *ip_rsvpd;
79
80static int	ipforwarding = 0;
81SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
82	&ipforwarding, 0, "");
83
84static int	ipsendredirects = 1; /* XXX */
85SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
86	&ipsendredirects, 0, "");
87
88int	ip_defttl = IPDEFTTL;
89SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
90	&ip_defttl, 0, "");
91
92static int	ip_dosourceroute = 0;
93SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
94	&ip_dosourceroute, 0, "");
95#ifdef DIAGNOSTIC
96static int	ipprintfs = 0;
97#endif
98
99extern	struct domain inetdomain;
100extern	struct protosw inetsw[];
101u_char	ip_protox[IPPROTO_MAX];
102static int	ipqmaxlen = IFQ_MAXLEN;
103struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
104struct	ifqueue ipintrq;
105SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD,
106	&ipintrq.ifq_maxlen, 0, "");
107SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
108	&ipintrq.ifq_drops, 0, "");
109
110struct ipstat ipstat;
111SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
112	&ipstat, ipstat, "");
113
114/* Packet reassembly stuff */
115#define IPREASS_NHASH_LOG2      6
116#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
117#define IPREASS_HMASK           (IPREASS_NHASH - 1)
118#define IPREASS_HASH(x,y) \
119	((((x) & 0xF | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
120
121static struct ipq ipq[IPREASS_NHASH];
122static int    nipq = 0;         /* total # of reass queues */
123static int    maxnipq;
124
125#ifdef IPCTL_DEFMTU
126SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
127	&ip_mtu, 0, "");
128#endif
129
130#if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1
131#undef COMPAT_IPFW
132#define COMPAT_IPFW 1
133#else
134#undef COMPAT_IPFW
135#endif
136
137#ifdef COMPAT_IPFW
138/* Firewall hooks */
139ip_fw_chk_t *ip_fw_chk_ptr;
140ip_fw_ctl_t *ip_fw_ctl_ptr;
141
142/* IP Network Address Translation (NAT) hooks */
143ip_nat_t *ip_nat_ptr;
144ip_nat_ctl_t *ip_nat_ctl_ptr;
145#endif
146
147#if defined(IPFILTER_LKM) || defined(IPFILTER)
148int fr_check __P((struct ip *, int, struct ifnet *, int, struct mbuf **));
149int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)) = NULL;
150#endif
151
152
153/*
154 * We need to save the IP options in case a protocol wants to respond
155 * to an incoming packet over the same route if the packet got here
156 * using IP source routing.  This allows connection establishment and
157 * maintenance when the remote end is on a network that is not known
158 * to us.
159 */
160static int	ip_nhops = 0;
161static	struct ip_srcrt {
162	struct	in_addr dst;			/* final destination */
163	char	nop;				/* one NOP to align */
164	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
165	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
166} ip_srcrt;
167
168#ifdef IPDIVERT
169/*
170 * Shared variable between ip_input() and ip_reass() to communicate
171 * about which packets, once assembled from fragments, get diverted,
172 * and to which port.
173 */
174static u_short	frag_divert_port;
175#endif
176
177static void save_rte __P((u_char *, struct in_addr));
178static void	 ip_deq __P((struct ipasfrag *));
179static int	 ip_dooptions __P((struct mbuf *));
180static void	 ip_enq __P((struct ipasfrag *, struct ipasfrag *));
181static void	 ip_forward __P((struct mbuf *, int));
182static void	 ip_freef __P((struct ipq *));
183static struct ip *
184	 ip_reass __P((struct ipasfrag *, struct ipq *, struct ipq *));
185static struct in_ifaddr *
186	 ip_rtaddr __P((struct in_addr));
187static void	ipintr __P((void));
188/*
189 * IP initialization: fill in IP protocol switch table.
190 * All protocols not implemented in kernel go to raw IP protocol handler.
191 */
192void
193ip_init()
194{
195	register struct protosw *pr;
196	register int i;
197
198	TAILQ_INIT(&in_ifaddrhead);
199	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
200	if (pr == 0)
201		panic("ip_init");
202	for (i = 0; i < IPPROTO_MAX; i++)
203		ip_protox[i] = pr - inetsw;
204	for (pr = inetdomain.dom_protosw;
205	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
206		if (pr->pr_domain->dom_family == PF_INET &&
207		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
208			ip_protox[pr->pr_protocol] = pr - inetsw;
209
210	for (i = 0; i < IPREASS_NHASH; i++)
211	    ipq[i].next = ipq[i].prev = &ipq[i];
212
213	maxnipq = nmbclusters/4;
214
215	ip_id = time.tv_sec & 0xffff;
216	ipintrq.ifq_maxlen = ipqmaxlen;
217#ifdef IPFIREWALL
218	ip_fw_init();
219#endif
220#ifdef IPNAT
221        ip_nat_init();
222#endif
223
224}
225
226static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
227static struct	route ipforward_rt;
228
229/*
230 * Ip input routine.  Checksum and byte swap header.  If fragmented
231 * try to reassemble.  Process options.  Pass to next level.
232 */
233void
234ip_input(struct mbuf *m)
235{
236	struct ip *ip;
237	struct ipq *fp;
238	struct in_ifaddr *ia;
239	int    i, hlen;
240	u_short sum;
241
242#ifdef	DIAGNOSTIC
243	if ((m->m_flags & M_PKTHDR) == 0)
244		panic("ip_input no HDR");
245#endif
246	/*
247	 * If no IP addresses have been set yet but the interfaces
248	 * are receiving, can't do anything with incoming packets yet.
249	 * XXX This is broken! We should be able to receive broadcasts
250	 * and multicasts even without any local addresses configured.
251	 */
252	if (TAILQ_EMPTY(&in_ifaddrhead))
253		goto bad;
254	ipstat.ips_total++;
255
256	if (m->m_pkthdr.len < sizeof(struct ip))
257		goto tooshort;
258
259#ifdef	DIAGNOSTIC
260	if (m->m_len < sizeof(struct ip))
261		panic("ipintr mbuf too short");
262#endif
263
264	if (m->m_len < sizeof (struct ip) &&
265	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
266		ipstat.ips_toosmall++;
267		return;
268	}
269	ip = mtod(m, struct ip *);
270
271	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
272		ipstat.ips_badvers++;
273		goto bad;
274	}
275
276	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
277	if (hlen < sizeof(struct ip)) {	/* minimum header length */
278		ipstat.ips_badhlen++;
279		goto bad;
280	}
281	if (hlen > m->m_len) {
282		if ((m = m_pullup(m, hlen)) == 0) {
283			ipstat.ips_badhlen++;
284			return;
285		}
286		ip = mtod(m, struct ip *);
287	}
288	if (hlen == sizeof(struct ip)) {
289		sum = in_cksum_hdr(ip);
290	} else {
291		sum = in_cksum(m, hlen);
292	}
293	if (sum) {
294		ipstat.ips_badsum++;
295		goto bad;
296	}
297
298	/*
299	 * Convert fields to host representation.
300	 */
301	NTOHS(ip->ip_len);
302	if (ip->ip_len < hlen) {
303		ipstat.ips_badlen++;
304		goto bad;
305	}
306	NTOHS(ip->ip_id);
307	NTOHS(ip->ip_off);
308
309	/*
310	 * Check that the amount of data in the buffers
311	 * is as at least much as the IP header would have us expect.
312	 * Trim mbufs if longer than we expect.
313	 * Drop packet if shorter than we expect.
314	 */
315	if (m->m_pkthdr.len < ip->ip_len) {
316tooshort:
317		ipstat.ips_tooshort++;
318		goto bad;
319	}
320	if (m->m_pkthdr.len > ip->ip_len) {
321		if (m->m_len == m->m_pkthdr.len) {
322			m->m_len = ip->ip_len;
323			m->m_pkthdr.len = ip->ip_len;
324		} else
325			m_adj(m, ip->ip_len - m->m_pkthdr.len);
326	}
327	/*
328	 * IpHack's section.
329	 * Right now when no processing on packet has done
330	 * and it is still fresh out of network we do our black
331	 * deals with it.
332	 * - Firewall: deny/allow/divert
333	 * - Xlate: translate packet's addr/port (NAT).
334	 * - Wrap: fake packet's addr/port <unimpl.>
335	 * - Encapsulate: put it in another IP and send out. <unimp.>
336 	 */
337#if defined(IPFILTER) || defined(IPFILTER_LKM)
338	/*
339	 * Check if we want to allow this packet to be processed.
340	 * Consider it to be bad if not.
341	 */
342	if (fr_check) {
343		struct	mbuf	*m1 = m;
344
345		if ((*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1)
346			return;
347		ip = mtod(m = m1, struct ip *);
348	}
349#endif
350#ifdef COMPAT_IPFW
351	if (ip_fw_chk_ptr) {
352#ifdef IPDIVERT
353		u_short port;
354
355		port = (*ip_fw_chk_ptr)(&ip, hlen, NULL, ip_divert_ignore, &m);
356		ip_divert_ignore = 0;
357		if (port) {			/* Divert packet */
358			frag_divert_port = port;
359			goto ours;
360		}
361#else
362		/* If ipfw says divert, we have to just drop packet */
363		if ((*ip_fw_chk_ptr)(&ip, hlen, NULL, 0, &m)) {
364			m_freem(m);
365			m = NULL;
366		}
367#endif
368		if (!m)
369			return;
370	}
371
372        if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN))
373		return;
374#endif
375
376	/*
377	 * Process options and, if not destined for us,
378	 * ship it on.  ip_dooptions returns 1 when an
379	 * error was detected (causing an icmp message
380	 * to be sent and the original packet to be freed).
381	 */
382	ip_nhops = 0;		/* for source routed packets */
383	if (hlen > sizeof (struct ip) && ip_dooptions(m))
384		return;
385
386        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
387         * matter if it is destined to another node, or whether it is
388         * a multicast one, RSVP wants it! and prevents it from being forwarded
389         * anywhere else. Also checks if the rsvp daemon is running before
390	 * grabbing the packet.
391         */
392	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
393		goto ours;
394
395	/*
396	 * Check our list of addresses, to see if the packet is for us.
397	 */
398	for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) {
399#define	satosin(sa)	((struct sockaddr_in *)(sa))
400
401		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
402			goto ours;
403#ifdef BOOTP_COMPAT
404		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
405			goto ours;
406#endif
407		if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
408			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
409			    ip->ip_dst.s_addr)
410				goto ours;
411			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
412				goto ours;
413		}
414	}
415	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
416		struct in_multi *inm;
417		if (ip_mrouter) {
418			/*
419			 * If we are acting as a multicast router, all
420			 * incoming multicast packets are passed to the
421			 * kernel-level multicast forwarding function.
422			 * The packet is returned (relatively) intact; if
423			 * ip_mforward() returns a non-zero value, the packet
424			 * must be discarded, else it may be accepted below.
425			 *
426			 * (The IP ident field is put in the same byte order
427			 * as expected when ip_mforward() is called from
428			 * ip_output().)
429			 */
430			ip->ip_id = htons(ip->ip_id);
431			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
432				ipstat.ips_cantforward++;
433				m_freem(m);
434				return;
435			}
436			ip->ip_id = ntohs(ip->ip_id);
437
438			/*
439			 * The process-level routing demon needs to receive
440			 * all multicast IGMP packets, whether or not this
441			 * host belongs to their destination groups.
442			 */
443			if (ip->ip_p == IPPROTO_IGMP)
444				goto ours;
445			ipstat.ips_forward++;
446		}
447		/*
448		 * See if we belong to the destination multicast group on the
449		 * arrival interface.
450		 */
451		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
452		if (inm == NULL) {
453			ipstat.ips_notmember++;
454			m_freem(m);
455			return;
456		}
457		goto ours;
458	}
459	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
460		goto ours;
461	if (ip->ip_dst.s_addr == INADDR_ANY)
462		goto ours;
463
464	/*
465	 * Not for us; forward if possible and desirable.
466	 */
467	if (ipforwarding == 0) {
468		ipstat.ips_cantforward++;
469		m_freem(m);
470	} else
471		ip_forward(m, 0);
472	return;
473
474ours:
475
476	/*
477	 * If offset or IP_MF are set, must reassemble.
478	 * Otherwise, nothing need be done.
479	 * (We could look in the reassembly queue to see
480	 * if the packet was previously fragmented,
481	 * but it's not worth the time; just let them time out.)
482	 */
483	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
484		if (m->m_flags & M_EXT) {		/* XXX */
485			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
486				ipstat.ips_toosmall++;
487#ifdef IPDIVERT
488				frag_divert_port = 0;
489#endif
490				return;
491			}
492			ip = mtod(m, struct ip *);
493		}
494		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
495		/*
496		 * Look for queue of fragments
497		 * of this datagram.
498		 */
499		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
500			if (ip->ip_id == fp->ipq_id &&
501			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
502			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
503			    ip->ip_p == fp->ipq_p)
504				goto found;
505
506		fp = 0;
507
508		/* check if there's a place for the new queue */
509		if (nipq > maxnipq) {
510		    /*
511		     * drop something from the tail of the current queue
512		     * before proceeding further
513		     */
514		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
515			for (i = 0; i < IPREASS_NHASH; i++) {
516			    if (ipq[i].prev != &ipq[i]) {
517				ip_freef(ipq[i].prev);
518				break;
519			    }
520			}
521		    } else
522			ip_freef(ipq[sum].prev);
523		}
524found:
525		/*
526		 * Adjust ip_len to not reflect header,
527		 * set ip_mff if more fragments are expected,
528		 * convert offset of this to bytes.
529		 */
530		ip->ip_len -= hlen;
531		((struct ipasfrag *)ip)->ipf_mff &= ~1;
532		if (ip->ip_off & IP_MF)
533			((struct ipasfrag *)ip)->ipf_mff |= 1;
534		ip->ip_off <<= 3;
535
536		/*
537		 * If datagram marked as having more fragments
538		 * or if this is not the first fragment,
539		 * attempt reassembly; if it succeeds, proceed.
540		 */
541		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
542			ipstat.ips_fragments++;
543			ip = ip_reass((struct ipasfrag *)ip, fp, &ipq[sum]);
544			if (ip == 0)
545				return;
546			ipstat.ips_reassembled++;
547			m = dtom(ip);
548#ifdef IPDIVERT
549			if (frag_divert_port) {
550				ip->ip_len += hlen;
551				HTONS(ip->ip_len);
552				HTONS(ip->ip_off);
553				HTONS(ip->ip_id);
554				ip->ip_sum = 0;
555				ip->ip_sum = in_cksum_hdr(ip);
556				NTOHS(ip->ip_id);
557				NTOHS(ip->ip_off);
558				NTOHS(ip->ip_len);
559				ip->ip_len -= hlen;
560			}
561#endif
562		} else
563			if (fp)
564				ip_freef(fp);
565	} else
566		ip->ip_len -= hlen;
567
568#ifdef IPDIVERT
569	/*
570	 * Divert reassembled packets to the divert protocol if required
571	 */
572	if (frag_divert_port) {
573		ipstat.ips_delivered++;
574		ip_divert_port = frag_divert_port;
575		frag_divert_port = 0;
576		(*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, hlen);
577		return;
578	}
579#endif
580
581	/*
582	 * Switch out to protocol's input routine.
583	 */
584	ipstat.ips_delivered++;
585	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
586	return;
587bad:
588	m_freem(m);
589}
590
591/*
592 * IP software interrupt routine - to go away sometime soon
593 */
594static void
595ipintr(void)
596{
597	int s;
598	struct mbuf *m;
599
600	while(1) {
601		s = splimp();
602		IF_DEQUEUE(&ipintrq, m);
603		splx(s);
604		if (m == 0)
605			return;
606		ip_input(m);
607	}
608}
609
610NETISR_SET(NETISR_IP, ipintr);
611
612/*
613 * Take incoming datagram fragment and try to
614 * reassemble it into whole datagram.  If a chain for
615 * reassembly of this datagram already exists, then it
616 * is given as fp; otherwise have to make a chain.
617 */
618static struct ip *
619ip_reass(ip, fp, where)
620	register struct ipasfrag *ip;
621	register struct ipq *fp;
622	struct   ipq    *where;
623{
624	register struct mbuf *m = dtom(ip);
625	register struct ipasfrag *q;
626	struct mbuf *t;
627	int hlen = ip->ip_hl << 2;
628	int i, next;
629
630	/*
631	 * Presence of header sizes in mbufs
632	 * would confuse code below.
633	 */
634	m->m_data += hlen;
635	m->m_len -= hlen;
636
637	/*
638	 * If first fragment to arrive, create a reassembly queue.
639	 */
640	if (fp == 0) {
641		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
642			goto dropfrag;
643		fp = mtod(t, struct ipq *);
644		insque(fp, where);
645		nipq++;
646		fp->ipq_ttl = IPFRAGTTL;
647		fp->ipq_p = ip->ip_p;
648		fp->ipq_id = ip->ip_id;
649		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
650		fp->ipq_src = ((struct ip *)ip)->ip_src;
651		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
652#ifdef IPDIVERT
653		fp->ipq_divert = 0;
654#endif
655		q = (struct ipasfrag *)fp;
656		goto insert;
657	}
658
659	/*
660	 * Find a segment which begins after this one does.
661	 */
662	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
663		if (q->ip_off > ip->ip_off)
664			break;
665
666	/*
667	 * If there is a preceding segment, it may provide some of
668	 * our data already.  If so, drop the data from the incoming
669	 * segment.  If it provides all of our data, drop us.
670	 */
671	if (q->ipf_prev != (struct ipasfrag *)fp) {
672		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
673		if (i > 0) {
674			if (i >= ip->ip_len)
675				goto dropfrag;
676			m_adj(dtom(ip), i);
677			ip->ip_off += i;
678			ip->ip_len -= i;
679		}
680	}
681
682	/*
683	 * While we overlap succeeding segments trim them or,
684	 * if they are completely covered, dequeue them.
685	 */
686	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
687		struct mbuf *m0;
688
689		i = (ip->ip_off + ip->ip_len) - q->ip_off;
690		if (i < q->ip_len) {
691			q->ip_len -= i;
692			q->ip_off += i;
693			m_adj(dtom(q), i);
694			break;
695		}
696		m0 = dtom(q);
697		q = q->ipf_next;
698		ip_deq(q->ipf_prev);
699		m_freem(m0);
700	}
701
702insert:
703
704#ifdef IPDIVERT
705	/*
706	 * Any fragment diverting causes the whole packet to divert
707	 */
708	if (frag_divert_port != 0)
709		fp->ipq_divert = frag_divert_port;
710	frag_divert_port = 0;
711#endif
712
713	/*
714	 * Stick new segment in its place;
715	 * check for complete reassembly.
716	 */
717	ip_enq(ip, q->ipf_prev);
718	next = 0;
719	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
720		if (q->ip_off != next)
721			return (0);
722		next += q->ip_len;
723	}
724	if (q->ipf_prev->ipf_mff & 1)
725		return (0);
726
727	/*
728	 * Reassembly is complete.  Make sure the packet is a sane size.
729	 */
730	if (next + (IP_VHL_HL(((struct ip *)fp->ipq_next)->ip_vhl) << 2)
731							> IP_MAXPACKET) {
732		ipstat.ips_toolong++;
733		ip_freef(fp);
734		return (0);
735	}
736
737	/*
738	 * Concatenate fragments.
739	 */
740	q = fp->ipq_next;
741	m = dtom(q);
742	t = m->m_next;
743	m->m_next = 0;
744	m_cat(m, t);
745	q = q->ipf_next;
746	while (q != (struct ipasfrag *)fp) {
747		t = dtom(q);
748		q = q->ipf_next;
749		m_cat(m, t);
750	}
751
752#ifdef IPDIVERT
753	/*
754	 * Record divert port for packet, if any
755	 */
756	frag_divert_port = fp->ipq_divert;
757#endif
758
759	/*
760	 * Create header for new ip packet by
761	 * modifying header of first packet;
762	 * dequeue and discard fragment reassembly header.
763	 * Make header visible.
764	 */
765	ip = fp->ipq_next;
766	ip->ip_len = next;
767	ip->ipf_mff &= ~1;
768	((struct ip *)ip)->ip_src = fp->ipq_src;
769	((struct ip *)ip)->ip_dst = fp->ipq_dst;
770	remque(fp);
771	nipq--;
772	(void) m_free(dtom(fp));
773	m = dtom(ip);
774	m->m_len += (ip->ip_hl << 2);
775	m->m_data -= (ip->ip_hl << 2);
776	/* some debugging cruft by sklower, below, will go away soon */
777	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
778		register int plen = 0;
779		for (t = m; m; m = m->m_next)
780			plen += m->m_len;
781		t->m_pkthdr.len = plen;
782	}
783	return ((struct ip *)ip);
784
785dropfrag:
786	ipstat.ips_fragdropped++;
787	m_freem(m);
788	return (0);
789}
790
791/*
792 * Free a fragment reassembly header and all
793 * associated datagrams.
794 */
795static void
796ip_freef(fp)
797	struct ipq *fp;
798{
799	register struct ipasfrag *q, *p;
800
801	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
802		p = q->ipf_next;
803		ip_deq(q);
804		m_freem(dtom(q));
805	}
806	remque(fp);
807	(void) m_free(dtom(fp));
808	nipq--;
809}
810
811/*
812 * Put an ip fragment on a reassembly chain.
813 * Like insque, but pointers in middle of structure.
814 */
815static void
816ip_enq(p, prev)
817	register struct ipasfrag *p, *prev;
818{
819
820	p->ipf_prev = prev;
821	p->ipf_next = prev->ipf_next;
822	prev->ipf_next->ipf_prev = p;
823	prev->ipf_next = p;
824}
825
826/*
827 * To ip_enq as remque is to insque.
828 */
829static void
830ip_deq(p)
831	register struct ipasfrag *p;
832{
833
834	p->ipf_prev->ipf_next = p->ipf_next;
835	p->ipf_next->ipf_prev = p->ipf_prev;
836}
837
838/*
839 * IP timer processing;
840 * if a timer expires on a reassembly
841 * queue, discard it.
842 */
843void
844ip_slowtimo()
845{
846	register struct ipq *fp;
847	int s = splnet();
848	int i;
849
850	for (i = 0; i < IPREASS_NHASH; i++) {
851		fp = ipq[i].next;
852		if (fp == 0)
853			continue;
854		while (fp != &ipq[i]) {
855			--fp->ipq_ttl;
856			fp = fp->next;
857			if (fp->prev->ipq_ttl == 0) {
858				ipstat.ips_fragtimeout++;
859				ip_freef(fp->prev);
860			}
861		}
862	}
863	splx(s);
864}
865
866/*
867 * Drain off all datagram fragments.
868 */
869void
870ip_drain()
871{
872	int     i;
873
874	for (i = 0; i < IPREASS_NHASH; i++) {
875		while (ipq[i].next != &ipq[i]) {
876			ipstat.ips_fragdropped++;
877			ip_freef(ipq[i].next);
878		}
879	}
880	in_rtqdrain();
881}
882
883/*
884 * Do option processing on a datagram,
885 * possibly discarding it if bad options are encountered,
886 * or forwarding it if source-routed.
887 * Returns 1 if packet has been forwarded/freed,
888 * 0 if the packet should be processed further.
889 */
890static int
891ip_dooptions(m)
892	struct mbuf *m;
893{
894	register struct ip *ip = mtod(m, struct ip *);
895	register u_char *cp;
896	register struct ip_timestamp *ipt;
897	register struct in_ifaddr *ia;
898	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
899	struct in_addr *sin, dst;
900	n_time ntime;
901
902	dst = ip->ip_dst;
903	cp = (u_char *)(ip + 1);
904	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
905	for (; cnt > 0; cnt -= optlen, cp += optlen) {
906		opt = cp[IPOPT_OPTVAL];
907		if (opt == IPOPT_EOL)
908			break;
909		if (opt == IPOPT_NOP)
910			optlen = 1;
911		else {
912			optlen = cp[IPOPT_OLEN];
913			if (optlen <= 0 || optlen > cnt) {
914				code = &cp[IPOPT_OLEN] - (u_char *)ip;
915				goto bad;
916			}
917		}
918		switch (opt) {
919
920		default:
921			break;
922
923		/*
924		 * Source routing with record.
925		 * Find interface with current destination address.
926		 * If none on this machine then drop if strictly routed,
927		 * or do nothing if loosely routed.
928		 * Record interface address and bring up next address
929		 * component.  If strictly routed make sure next
930		 * address is on directly accessible net.
931		 */
932		case IPOPT_LSRR:
933		case IPOPT_SSRR:
934			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
935				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
936				goto bad;
937			}
938			ipaddr.sin_addr = ip->ip_dst;
939			ia = (struct in_ifaddr *)
940				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
941			if (ia == 0) {
942				if (opt == IPOPT_SSRR) {
943					type = ICMP_UNREACH;
944					code = ICMP_UNREACH_SRCFAIL;
945					goto bad;
946				}
947				if (!ip_dosourceroute)
948					goto nosourcerouting;
949				/*
950				 * Loose routing, and not at next destination
951				 * yet; nothing to do except forward.
952				 */
953				break;
954			}
955			off--;			/* 0 origin */
956			if (off > optlen - sizeof(struct in_addr)) {
957				/*
958				 * End of source route.  Should be for us.
959				 */
960				save_rte(cp, ip->ip_src);
961				break;
962			}
963
964			if (!ip_dosourceroute) {
965				char buf[4*sizeof "123"];
966
967nosourcerouting:
968				strcpy(buf, inet_ntoa(ip->ip_dst));
969				log(LOG_WARNING,
970				    "attempted source route from %s to %s\n",
971				    inet_ntoa(ip->ip_src), buf);
972				type = ICMP_UNREACH;
973				code = ICMP_UNREACH_SRCFAIL;
974				goto bad;
975			}
976
977			/*
978			 * locate outgoing interface
979			 */
980			(void)memcpy(&ipaddr.sin_addr, cp + off,
981			    sizeof(ipaddr.sin_addr));
982
983			if (opt == IPOPT_SSRR) {
984#define	INA	struct in_ifaddr *
985#define	SA	struct sockaddr *
986			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
987				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
988			} else
989				ia = ip_rtaddr(ipaddr.sin_addr);
990			if (ia == 0) {
991				type = ICMP_UNREACH;
992				code = ICMP_UNREACH_SRCFAIL;
993				goto bad;
994			}
995			ip->ip_dst = ipaddr.sin_addr;
996			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
997			    sizeof(struct in_addr));
998			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
999			/*
1000			 * Let ip_intr's mcast routing check handle mcast pkts
1001			 */
1002			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1003			break;
1004
1005		case IPOPT_RR:
1006			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1007				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1008				goto bad;
1009			}
1010			/*
1011			 * If no space remains, ignore.
1012			 */
1013			off--;			/* 0 origin */
1014			if (off > optlen - sizeof(struct in_addr))
1015				break;
1016			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1017			    sizeof(ipaddr.sin_addr));
1018			/*
1019			 * locate outgoing interface; if we're the destination,
1020			 * use the incoming interface (should be same).
1021			 */
1022			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1023			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1024				type = ICMP_UNREACH;
1025				code = ICMP_UNREACH_HOST;
1026				goto bad;
1027			}
1028			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1029			    sizeof(struct in_addr));
1030			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1031			break;
1032
1033		case IPOPT_TS:
1034			code = cp - (u_char *)ip;
1035			ipt = (struct ip_timestamp *)cp;
1036			if (ipt->ipt_len < 5)
1037				goto bad;
1038			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
1039				if (++ipt->ipt_oflw == 0)
1040					goto bad;
1041				break;
1042			}
1043			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1044			switch (ipt->ipt_flg) {
1045
1046			case IPOPT_TS_TSONLY:
1047				break;
1048
1049			case IPOPT_TS_TSANDADDR:
1050				if (ipt->ipt_ptr + sizeof(n_time) +
1051				    sizeof(struct in_addr) > ipt->ipt_len)
1052					goto bad;
1053				ipaddr.sin_addr = dst;
1054				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1055							    m->m_pkthdr.rcvif);
1056				if (ia == 0)
1057					continue;
1058				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1059				    sizeof(struct in_addr));
1060				ipt->ipt_ptr += sizeof(struct in_addr);
1061				break;
1062
1063			case IPOPT_TS_PRESPEC:
1064				if (ipt->ipt_ptr + sizeof(n_time) +
1065				    sizeof(struct in_addr) > ipt->ipt_len)
1066					goto bad;
1067				(void)memcpy(&ipaddr.sin_addr, sin,
1068				    sizeof(struct in_addr));
1069				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1070					continue;
1071				ipt->ipt_ptr += sizeof(struct in_addr);
1072				break;
1073
1074			default:
1075				goto bad;
1076			}
1077			ntime = iptime();
1078			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1079			    sizeof(n_time));
1080			ipt->ipt_ptr += sizeof(n_time);
1081		}
1082	}
1083	if (forward) {
1084		ip_forward(m, 1);
1085		return (1);
1086	}
1087	return (0);
1088bad:
1089	ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2;   /* XXX icmp_error adds in hdr length */
1090	icmp_error(m, type, code, 0, 0);
1091	ipstat.ips_badoptions++;
1092	return (1);
1093}
1094
1095/*
1096 * Given address of next destination (final or next hop),
1097 * return internet address info of interface to be used to get there.
1098 */
1099static struct in_ifaddr *
1100ip_rtaddr(dst)
1101	 struct in_addr dst;
1102{
1103	register struct sockaddr_in *sin;
1104
1105	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1106
1107	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1108		if (ipforward_rt.ro_rt) {
1109			RTFREE(ipforward_rt.ro_rt);
1110			ipforward_rt.ro_rt = 0;
1111		}
1112		sin->sin_family = AF_INET;
1113		sin->sin_len = sizeof(*sin);
1114		sin->sin_addr = dst;
1115
1116		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1117	}
1118	if (ipforward_rt.ro_rt == 0)
1119		return ((struct in_ifaddr *)0);
1120	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1121}
1122
1123/*
1124 * Save incoming source route for use in replies,
1125 * to be picked up later by ip_srcroute if the receiver is interested.
1126 */
1127void
1128save_rte(option, dst)
1129	u_char *option;
1130	struct in_addr dst;
1131{
1132	unsigned olen;
1133
1134	olen = option[IPOPT_OLEN];
1135#ifdef DIAGNOSTIC
1136	if (ipprintfs)
1137		printf("save_rte: olen %d\n", olen);
1138#endif
1139	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1140		return;
1141	bcopy(option, ip_srcrt.srcopt, olen);
1142	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1143	ip_srcrt.dst = dst;
1144}
1145
1146/*
1147 * Retrieve incoming source route for use in replies,
1148 * in the same form used by setsockopt.
1149 * The first hop is placed before the options, will be removed later.
1150 */
1151struct mbuf *
1152ip_srcroute()
1153{
1154	register struct in_addr *p, *q;
1155	register struct mbuf *m;
1156
1157	if (ip_nhops == 0)
1158		return ((struct mbuf *)0);
1159	m = m_get(M_DONTWAIT, MT_SOOPTS);
1160	if (m == 0)
1161		return ((struct mbuf *)0);
1162
1163#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1164
1165	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1166	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1167	    OPTSIZ;
1168#ifdef DIAGNOSTIC
1169	if (ipprintfs)
1170		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1171#endif
1172
1173	/*
1174	 * First save first hop for return route
1175	 */
1176	p = &ip_srcrt.route[ip_nhops - 1];
1177	*(mtod(m, struct in_addr *)) = *p--;
1178#ifdef DIAGNOSTIC
1179	if (ipprintfs)
1180		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
1181#endif
1182
1183	/*
1184	 * Copy option fields and padding (nop) to mbuf.
1185	 */
1186	ip_srcrt.nop = IPOPT_NOP;
1187	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1188	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1189	    &ip_srcrt.nop, OPTSIZ);
1190	q = (struct in_addr *)(mtod(m, caddr_t) +
1191	    sizeof(struct in_addr) + OPTSIZ);
1192#undef OPTSIZ
1193	/*
1194	 * Record return path as an IP source route,
1195	 * reversing the path (pointers are now aligned).
1196	 */
1197	while (p >= ip_srcrt.route) {
1198#ifdef DIAGNOSTIC
1199		if (ipprintfs)
1200			printf(" %lx", ntohl(q->s_addr));
1201#endif
1202		*q++ = *p--;
1203	}
1204	/*
1205	 * Last hop goes to final destination.
1206	 */
1207	*q = ip_srcrt.dst;
1208#ifdef DIAGNOSTIC
1209	if (ipprintfs)
1210		printf(" %lx\n", ntohl(q->s_addr));
1211#endif
1212	return (m);
1213}
1214
1215/*
1216 * Strip out IP options, at higher
1217 * level protocol in the kernel.
1218 * Second argument is buffer to which options
1219 * will be moved, and return value is their length.
1220 * XXX should be deleted; last arg currently ignored.
1221 */
1222void
1223ip_stripoptions(m, mopt)
1224	register struct mbuf *m;
1225	struct mbuf *mopt;
1226{
1227	register int i;
1228	struct ip *ip = mtod(m, struct ip *);
1229	register caddr_t opts;
1230	int olen;
1231
1232	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1233	opts = (caddr_t)(ip + 1);
1234	i = m->m_len - (sizeof (struct ip) + olen);
1235	bcopy(opts + olen, opts, (unsigned)i);
1236	m->m_len -= olen;
1237	if (m->m_flags & M_PKTHDR)
1238		m->m_pkthdr.len -= olen;
1239	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1240}
1241
1242u_char inetctlerrmap[PRC_NCMDS] = {
1243	0,		0,		0,		0,
1244	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1245	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1246	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1247	0,		0,		0,		0,
1248	ENOPROTOOPT
1249};
1250
1251/*
1252 * Forward a packet.  If some error occurs return the sender
1253 * an icmp packet.  Note we can't always generate a meaningful
1254 * icmp message because icmp doesn't have a large enough repertoire
1255 * of codes and types.
1256 *
1257 * If not forwarding, just drop the packet.  This could be confusing
1258 * if ipforwarding was zero but some routing protocol was advancing
1259 * us as a gateway to somewhere.  However, we must let the routing
1260 * protocol deal with that.
1261 *
1262 * The srcrt parameter indicates whether the packet is being forwarded
1263 * via a source route.
1264 */
1265static void
1266ip_forward(m, srcrt)
1267	struct mbuf *m;
1268	int srcrt;
1269{
1270	register struct ip *ip = mtod(m, struct ip *);
1271	register struct sockaddr_in *sin;
1272	register struct rtentry *rt;
1273	int error, type = 0, code = 0;
1274	struct mbuf *mcopy;
1275	n_long dest;
1276	struct ifnet *destifp;
1277
1278	dest = 0;
1279#ifdef DIAGNOSTIC
1280	if (ipprintfs)
1281		printf("forward: src %lx dst %lx ttl %x\n",
1282			ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1283#endif
1284
1285
1286	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1287		ipstat.ips_cantforward++;
1288		m_freem(m);
1289		return;
1290	}
1291	HTONS(ip->ip_id);
1292	if (ip->ip_ttl <= IPTTLDEC) {
1293		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1294		return;
1295	}
1296	ip->ip_ttl -= IPTTLDEC;
1297
1298	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1299	if ((rt = ipforward_rt.ro_rt) == 0 ||
1300	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1301		if (ipforward_rt.ro_rt) {
1302			RTFREE(ipforward_rt.ro_rt);
1303			ipforward_rt.ro_rt = 0;
1304		}
1305		sin->sin_family = AF_INET;
1306		sin->sin_len = sizeof(*sin);
1307		sin->sin_addr = ip->ip_dst;
1308
1309		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1310		if (ipforward_rt.ro_rt == 0) {
1311			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1312			return;
1313		}
1314		rt = ipforward_rt.ro_rt;
1315	}
1316
1317	/*
1318	 * Save at most 64 bytes of the packet in case
1319	 * we need to generate an ICMP message to the src.
1320	 */
1321	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1322
1323	/*
1324	 * If forwarding packet using same interface that it came in on,
1325	 * perhaps should send a redirect to sender to shortcut a hop.
1326	 * Only send redirect if source is sending directly to us,
1327	 * and if packet was not source routed (or has any options).
1328	 * Also, don't send redirect if forwarding using a default route
1329	 * or a route modified by a redirect.
1330	 */
1331#define	satosin(sa)	((struct sockaddr_in *)(sa))
1332	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1333	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1334	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1335	    ipsendredirects && !srcrt) {
1336#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1337		u_long src = ntohl(ip->ip_src.s_addr);
1338
1339		if (RTA(rt) &&
1340		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1341		    if (rt->rt_flags & RTF_GATEWAY)
1342			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1343		    else
1344			dest = ip->ip_dst.s_addr;
1345		    /* Router requirements says to only send host redirects */
1346		    type = ICMP_REDIRECT;
1347		    code = ICMP_REDIRECT_HOST;
1348#ifdef DIAGNOSTIC
1349		    if (ipprintfs)
1350		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1351#endif
1352		}
1353	}
1354
1355	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1356			  IP_FORWARDING, 0);
1357	if (error)
1358		ipstat.ips_cantforward++;
1359	else {
1360		ipstat.ips_forward++;
1361		if (type)
1362			ipstat.ips_redirectsent++;
1363		else {
1364			if (mcopy)
1365				m_freem(mcopy);
1366			return;
1367		}
1368	}
1369	if (mcopy == NULL)
1370		return;
1371	destifp = NULL;
1372
1373	switch (error) {
1374
1375	case 0:				/* forwarded, but need redirect */
1376		/* type, code set above */
1377		break;
1378
1379	case ENETUNREACH:		/* shouldn't happen, checked above */
1380	case EHOSTUNREACH:
1381	case ENETDOWN:
1382	case EHOSTDOWN:
1383	default:
1384		type = ICMP_UNREACH;
1385		code = ICMP_UNREACH_HOST;
1386		break;
1387
1388	case EMSGSIZE:
1389		type = ICMP_UNREACH;
1390		code = ICMP_UNREACH_NEEDFRAG;
1391		if (ipforward_rt.ro_rt)
1392			destifp = ipforward_rt.ro_rt->rt_ifp;
1393		ipstat.ips_cantfrag++;
1394		break;
1395
1396	case ENOBUFS:
1397		type = ICMP_SOURCEQUENCH;
1398		code = 0;
1399		break;
1400	}
1401	icmp_error(mcopy, type, code, dest, destifp);
1402}
1403
1404void
1405ip_savecontrol(inp, mp, ip, m)
1406	register struct inpcb *inp;
1407	register struct mbuf **mp;
1408	register struct ip *ip;
1409	register struct mbuf *m;
1410{
1411	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1412		struct timeval tv;
1413
1414		microtime(&tv);
1415		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1416			SCM_TIMESTAMP, SOL_SOCKET);
1417		if (*mp)
1418			mp = &(*mp)->m_next;
1419	}
1420	if (inp->inp_flags & INP_RECVDSTADDR) {
1421		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1422		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1423		if (*mp)
1424			mp = &(*mp)->m_next;
1425	}
1426#ifdef notyet
1427	/* XXX
1428	 * Moving these out of udp_input() made them even more broken
1429	 * than they already were.
1430	 */
1431	/* options were tossed already */
1432	if (inp->inp_flags & INP_RECVOPTS) {
1433		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1434		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1435		if (*mp)
1436			mp = &(*mp)->m_next;
1437	}
1438	/* ip_srcroute doesn't do what we want here, need to fix */
1439	if (inp->inp_flags & INP_RECVRETOPTS) {
1440		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1441		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1442		if (*mp)
1443			mp = &(*mp)->m_next;
1444	}
1445#endif
1446	if (inp->inp_flags & INP_RECVIF) {
1447		struct ifnet *ifp;
1448		struct sdlbuf {
1449			struct sockaddr_dl sdl;
1450			u_char	pad[32];
1451		} sdlbuf;
1452		struct sockaddr_dl *sdp;
1453		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1454
1455		if (((ifp = m->m_pkthdr.rcvif))
1456		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1457			sdp = (struct sockaddr_dl *)(ifnet_addrs
1458					[ifp->if_index - 1]->ifa_addr);
1459			/*
1460			 * Change our mind and don't try copy.
1461			 */
1462			if ((sdp->sdl_family != AF_LINK)
1463			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1464				goto makedummy;
1465			}
1466			bcopy(sdp, sdl2, sdp->sdl_len);
1467		} else {
1468makedummy:
1469			sdl2->sdl_len
1470				= offsetof(struct sockaddr_dl, sdl_data[0]);
1471			sdl2->sdl_family = AF_LINK;
1472			sdl2->sdl_index = 0;
1473			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1474		}
1475		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1476			IP_RECVIF, IPPROTO_IP);
1477		if (*mp)
1478			mp = &(*mp)->m_next;
1479	}
1480}
1481
1482int
1483ip_rsvp_init(struct socket *so)
1484{
1485	if (so->so_type != SOCK_RAW ||
1486	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1487	  return EOPNOTSUPP;
1488
1489	if (ip_rsvpd != NULL)
1490	  return EADDRINUSE;
1491
1492	ip_rsvpd = so;
1493	/*
1494	 * This may seem silly, but we need to be sure we don't over-increment
1495	 * the RSVP counter, in case something slips up.
1496	 */
1497	if (!ip_rsvp_on) {
1498		ip_rsvp_on = 1;
1499		rsvp_on++;
1500	}
1501
1502	return 0;
1503}
1504
1505int
1506ip_rsvp_done(void)
1507{
1508	ip_rsvpd = NULL;
1509	/*
1510	 * This may seem silly, but we need to be sure we don't over-decrement
1511	 * the RSVP counter, in case something slips up.
1512	 */
1513	if (ip_rsvp_on) {
1514		ip_rsvp_on = 0;
1515		rsvp_on--;
1516	}
1517	return 0;
1518}
1519