ip_input.c revision 25723
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $Id: ip_input.c,v 1.61 1997/04/03 10:47:10 darrenr Exp $
35 *	$ANA: ip_input.c,v 1.5 1996/09/18 14:34:59 wollman Exp $
36 */
37
38#define	_IP_VHL
39
40#include "opt_ipfw.h"
41
42#include <stddef.h>
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/errno.h>
52#include <sys/time.h>
53#include <sys/kernel.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/if.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/in_var.h>
68#include <netinet/ip_var.h>
69#include <netinet/ip_icmp.h>
70#include <machine/in_cksum.h>
71
72#include <sys/socketvar.h>
73
74#ifdef IPFIREWALL
75#include <netinet/ip_fw.h>
76#endif
77
78int rsvp_on = 0;
79static int ip_rsvp_on;
80struct socket *ip_rsvpd;
81
82static int	ipforwarding = 0;
83SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
84	&ipforwarding, 0, "");
85
86static int	ipsendredirects = 1; /* XXX */
87SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
88	&ipsendredirects, 0, "");
89
90int	ip_defttl = IPDEFTTL;
91SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
92	&ip_defttl, 0, "");
93
94static int	ip_dosourceroute = 0;
95SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
96	&ip_dosourceroute, 0, "");
97#ifdef DIAGNOSTIC
98static int	ipprintfs = 0;
99#endif
100
101extern	struct domain inetdomain;
102extern	struct protosw inetsw[];
103u_char	ip_protox[IPPROTO_MAX];
104static int	ipqmaxlen = IFQ_MAXLEN;
105struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
106struct	ifqueue ipintrq;
107SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RD,
108	&ipintrq.ifq_maxlen, 0, "");
109SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
110	&ipintrq.ifq_drops, 0, "");
111
112struct ipstat ipstat;
113static struct ipq ipq;
114
115#ifdef IPCTL_DEFMTU
116SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
117	&ip_mtu, 0, "");
118#endif
119
120#if !defined(COMPAT_IPFW) || COMPAT_IPFW == 1
121#undef COMPAT_IPFW
122#define COMPAT_IPFW 1
123#else
124#undef COMPAT_IPFW
125#endif
126
127#ifdef COMPAT_IPFW
128/* Firewall hooks */
129ip_fw_chk_t *ip_fw_chk_ptr;
130ip_fw_ctl_t *ip_fw_ctl_ptr;
131
132/* IP Network Address Translation (NAT) hooks */
133ip_nat_t *ip_nat_ptr;
134ip_nat_ctl_t *ip_nat_ctl_ptr;
135#endif
136
137#if defined(IPFILTER_LKM) || defined(IPFILTER)
138int fr_check __P((struct ip *, int, struct ifnet *, int, struct mbuf **));
139int (*fr_checkp) __P((struct ip *, int, struct ifnet *, int, struct mbuf **)) = NULL;
140#endif
141
142
143/*
144 * We need to save the IP options in case a protocol wants to respond
145 * to an incoming packet over the same route if the packet got here
146 * using IP source routing.  This allows connection establishment and
147 * maintenance when the remote end is on a network that is not known
148 * to us.
149 */
150static int	ip_nhops = 0;
151static	struct ip_srcrt {
152	struct	in_addr dst;			/* final destination */
153	char	nop;				/* one NOP to align */
154	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
155	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
156} ip_srcrt;
157
158#ifdef IPDIVERT
159/*
160 * Shared variable between ip_input() and ip_reass() to communicate
161 * about which packets, once assembled from fragments, get diverted,
162 * and to which port.
163 */
164static u_short	frag_divert_port;
165#endif
166
167static void save_rte __P((u_char *, struct in_addr));
168static void	 ip_deq __P((struct ipasfrag *));
169static int	 ip_dooptions __P((struct mbuf *));
170static void	 ip_enq __P((struct ipasfrag *, struct ipasfrag *));
171static void	 ip_forward __P((struct mbuf *, int));
172static void	 ip_freef __P((struct ipq *));
173static struct ip *
174	 ip_reass __P((struct ipasfrag *, struct ipq *));
175static struct in_ifaddr *
176	 ip_rtaddr __P((struct in_addr));
177static void	ipintr __P((void));
178/*
179 * IP initialization: fill in IP protocol switch table.
180 * All protocols not implemented in kernel go to raw IP protocol handler.
181 */
182void
183ip_init()
184{
185	register struct protosw *pr;
186	register int i;
187
188	TAILQ_INIT(&in_ifaddrhead);
189	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
190	if (pr == 0)
191		panic("ip_init");
192	for (i = 0; i < IPPROTO_MAX; i++)
193		ip_protox[i] = pr - inetsw;
194	for (pr = inetdomain.dom_protosw;
195	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
196		if (pr->pr_domain->dom_family == PF_INET &&
197		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
198			ip_protox[pr->pr_protocol] = pr - inetsw;
199	ipq.next = ipq.prev = &ipq;
200	ip_id = time.tv_sec & 0xffff;
201	ipintrq.ifq_maxlen = ipqmaxlen;
202#ifdef IPFIREWALL
203	ip_fw_init();
204#endif
205#ifdef IPNAT
206        ip_nat_init();
207#endif
208
209}
210
211static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
212static struct	route ipforward_rt;
213
214/*
215 * Ip input routine.  Checksum and byte swap header.  If fragmented
216 * try to reassemble.  Process options.  Pass to next level.
217 */
218void
219ip_input(struct mbuf *m)
220{
221	struct ip *ip;
222	struct ipq *fp;
223	struct in_ifaddr *ia;
224	int hlen;
225	u_short sum;
226
227#ifdef	DIAGNOSTIC
228	if ((m->m_flags & M_PKTHDR) == 0)
229		panic("ip_input no HDR");
230#endif
231	/*
232	 * If no IP addresses have been set yet but the interfaces
233	 * are receiving, can't do anything with incoming packets yet.
234	 * XXX This is broken! We should be able to receive broadcasts
235	 * and multicasts even without any local addresses configured.
236	 */
237	if (TAILQ_EMPTY(&in_ifaddrhead))
238		goto bad;
239	ipstat.ips_total++;
240
241	if (m->m_pkthdr.len < sizeof(struct ip))
242		goto tooshort;
243
244#ifdef	DIAGNOSTIC
245	if (m->m_len < sizeof(struct ip))
246		panic("ipintr mbuf too short");
247#endif
248
249	if (m->m_len < sizeof (struct ip) &&
250	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
251		ipstat.ips_toosmall++;
252		return;
253	}
254	ip = mtod(m, struct ip *);
255
256	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
257		ipstat.ips_badvers++;
258		goto bad;
259	}
260
261	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
262	if (hlen < sizeof(struct ip)) {	/* minimum header length */
263		ipstat.ips_badhlen++;
264		goto bad;
265	}
266	if (hlen > m->m_len) {
267		if ((m = m_pullup(m, hlen)) == 0) {
268			ipstat.ips_badhlen++;
269			return;
270		}
271		ip = mtod(m, struct ip *);
272	}
273	if (hlen == sizeof(struct ip)) {
274		sum = in_cksum_hdr(ip);
275	} else {
276		sum = in_cksum(m, hlen);
277	}
278	if (sum) {
279		ipstat.ips_badsum++;
280		goto bad;
281	}
282
283	/*
284	 * Convert fields to host representation.
285	 */
286	NTOHS(ip->ip_len);
287	if (ip->ip_len < hlen) {
288		ipstat.ips_badlen++;
289		goto bad;
290	}
291	NTOHS(ip->ip_id);
292	NTOHS(ip->ip_off);
293
294	/*
295	 * Check that the amount of data in the buffers
296	 * is as at least much as the IP header would have us expect.
297	 * Trim mbufs if longer than we expect.
298	 * Drop packet if shorter than we expect.
299	 */
300	if (m->m_pkthdr.len < ip->ip_len) {
301tooshort:
302		ipstat.ips_tooshort++;
303		goto bad;
304	}
305	if (m->m_pkthdr.len > ip->ip_len) {
306		if (m->m_len == m->m_pkthdr.len) {
307			m->m_len = ip->ip_len;
308			m->m_pkthdr.len = ip->ip_len;
309		} else
310			m_adj(m, ip->ip_len - m->m_pkthdr.len);
311	}
312	/*
313	 * IpHack's section.
314	 * Right now when no processing on packet has done
315	 * and it is still fresh out of network we do our black
316	 * deals with it.
317	 * - Firewall: deny/allow/divert
318	 * - Xlate: translate packet's addr/port (NAT).
319	 * - Wrap: fake packet's addr/port <unimpl.>
320	 * - Encapsulate: put it in another IP and send out. <unimp.>
321 	 */
322#if defined(IPFILTER) || defined(IPFILTER_LKM)
323	/*
324	 * Check if we want to allow this packet to be processed.
325	 * Consider it to be bad if not.
326	 */
327	if (fr_check) {
328		struct	mbuf	*m1 = m;
329
330		if ((*fr_checkp)(ip, hlen, m->m_pkthdr.rcvif, 0, &m1) || !m1)
331			return;
332		ip = mtod(m = m1, struct ip *);
333	}
334#endif
335#ifdef COMPAT_IPFW
336	if (ip_fw_chk_ptr) {
337		int action;
338
339#ifdef IPDIVERT
340		action = (*ip_fw_chk_ptr)(&ip, hlen,
341				m->m_pkthdr.rcvif, ip_divert_ignore, &m);
342		ip_divert_ignore = 0;
343#else
344		action = (*ip_fw_chk_ptr)(&ip, hlen, m->m_pkthdr.rcvif, 0, &m);
345#endif
346		if (action == -1)
347			return;
348		if (action != 0) {
349#ifdef IPDIVERT
350			frag_divert_port = action;
351			goto ours;
352#else
353			goto bad;	/* ipfw said divert but we can't */
354#endif
355		}
356	}
357
358        if (ip_nat_ptr && !(*ip_nat_ptr)(&ip, &m, m->m_pkthdr.rcvif, IP_NAT_IN))
359		return;
360#endif
361
362	/*
363	 * Process options and, if not destined for us,
364	 * ship it on.  ip_dooptions returns 1 when an
365	 * error was detected (causing an icmp message
366	 * to be sent and the original packet to be freed).
367	 */
368	ip_nhops = 0;		/* for source routed packets */
369	if (hlen > sizeof (struct ip) && ip_dooptions(m))
370		return;
371
372        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
373         * matter if it is destined to another node, or whether it is
374         * a multicast one, RSVP wants it! and prevents it from being forwarded
375         * anywhere else. Also checks if the rsvp daemon is running before
376	 * grabbing the packet.
377         */
378	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
379		goto ours;
380
381	/*
382	 * Check our list of addresses, to see if the packet is for us.
383	 */
384	for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) {
385#define	satosin(sa)	((struct sockaddr_in *)(sa))
386
387		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
388			goto ours;
389#ifdef BOOTP_COMPAT
390		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
391			goto ours;
392#endif
393		if (ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
394			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
395			    ip->ip_dst.s_addr)
396				goto ours;
397			if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
398				goto ours;
399		}
400	}
401	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
402		struct in_multi *inm;
403		if (ip_mrouter) {
404			/*
405			 * If we are acting as a multicast router, all
406			 * incoming multicast packets are passed to the
407			 * kernel-level multicast forwarding function.
408			 * The packet is returned (relatively) intact; if
409			 * ip_mforward() returns a non-zero value, the packet
410			 * must be discarded, else it may be accepted below.
411			 *
412			 * (The IP ident field is put in the same byte order
413			 * as expected when ip_mforward() is called from
414			 * ip_output().)
415			 */
416			ip->ip_id = htons(ip->ip_id);
417			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
418				ipstat.ips_cantforward++;
419				m_freem(m);
420				return;
421			}
422			ip->ip_id = ntohs(ip->ip_id);
423
424			/*
425			 * The process-level routing demon needs to receive
426			 * all multicast IGMP packets, whether or not this
427			 * host belongs to their destination groups.
428			 */
429			if (ip->ip_p == IPPROTO_IGMP)
430				goto ours;
431			ipstat.ips_forward++;
432		}
433		/*
434		 * See if we belong to the destination multicast group on the
435		 * arrival interface.
436		 */
437		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
438		if (inm == NULL) {
439			ipstat.ips_notmember++;
440			m_freem(m);
441			return;
442		}
443		goto ours;
444	}
445	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
446		goto ours;
447	if (ip->ip_dst.s_addr == INADDR_ANY)
448		goto ours;
449
450	/*
451	 * Not for us; forward if possible and desirable.
452	 */
453	if (ipforwarding == 0) {
454		ipstat.ips_cantforward++;
455		m_freem(m);
456	} else
457		ip_forward(m, 0);
458	return;
459
460ours:
461
462	/*
463	 * If offset or IP_MF are set, must reassemble.
464	 * Otherwise, nothing need be done.
465	 * (We could look in the reassembly queue to see
466	 * if the packet was previously fragmented,
467	 * but it's not worth the time; just let them time out.)
468	 */
469	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
470		if (m->m_flags & M_EXT) {		/* XXX */
471			if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
472				ipstat.ips_toosmall++;
473#ifdef IPDIVERT
474				frag_divert_port = 0;
475#endif
476				return;
477			}
478			ip = mtod(m, struct ip *);
479		}
480		/*
481		 * Look for queue of fragments
482		 * of this datagram.
483		 */
484		for (fp = ipq.next; fp != &ipq; fp = fp->next)
485			if (ip->ip_id == fp->ipq_id &&
486			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
487			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
488			    ip->ip_p == fp->ipq_p)
489				goto found;
490		fp = 0;
491found:
492
493		/*
494		 * Adjust ip_len to not reflect header,
495		 * set ip_mff if more fragments are expected,
496		 * convert offset of this to bytes.
497		 */
498		ip->ip_len -= hlen;
499		((struct ipasfrag *)ip)->ipf_mff &= ~1;
500		if (ip->ip_off & IP_MF)
501			((struct ipasfrag *)ip)->ipf_mff |= 1;
502		ip->ip_off <<= 3;
503
504		/*
505		 * If datagram marked as having more fragments
506		 * or if this is not the first fragment,
507		 * attempt reassembly; if it succeeds, proceed.
508		 */
509		if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
510			ipstat.ips_fragments++;
511			ip = ip_reass((struct ipasfrag *)ip, fp);
512			if (ip == 0)
513				return;
514			ipstat.ips_reassembled++;
515			m = dtom(ip);
516		} else
517			if (fp)
518				ip_freef(fp);
519	} else
520		ip->ip_len -= hlen;
521
522#ifdef IPDIVERT
523	/*
524	 * Divert packets here to the divert protocol if required
525	 */
526	if (frag_divert_port) {
527		ip_divert_port = frag_divert_port;
528		frag_divert_port = 0;
529		(*inetsw[ip_protox[IPPROTO_DIVERT]].pr_input)(m, hlen);
530		return;
531	}
532#endif
533
534	/*
535	 * Switch out to protocol's input routine.
536	 */
537	ipstat.ips_delivered++;
538	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
539	return;
540bad:
541	m_freem(m);
542}
543
544/*
545 * IP software interrupt routine - to go away sometime soon
546 */
547static void
548ipintr(void)
549{
550	int s;
551	struct mbuf *m;
552
553	while(1) {
554		s = splimp();
555		IF_DEQUEUE(&ipintrq, m);
556		splx(s);
557		if (m == 0)
558			return;
559		ip_input(m);
560	}
561}
562
563NETISR_SET(NETISR_IP, ipintr);
564
565/*
566 * Take incoming datagram fragment and try to
567 * reassemble it into whole datagram.  If a chain for
568 * reassembly of this datagram already exists, then it
569 * is given as fp; otherwise have to make a chain.
570 */
571static struct ip *
572ip_reass(ip, fp)
573	register struct ipasfrag *ip;
574	register struct ipq *fp;
575{
576	register struct mbuf *m = dtom(ip);
577	register struct ipasfrag *q;
578	struct mbuf *t;
579	int hlen = ip->ip_hl << 2;
580	int i, next;
581
582	/*
583	 * Presence of header sizes in mbufs
584	 * would confuse code below.
585	 */
586	m->m_data += hlen;
587	m->m_len -= hlen;
588
589	/*
590	 * If first fragment to arrive, create a reassembly queue.
591	 */
592	if (fp == 0) {
593		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
594			goto dropfrag;
595		fp = mtod(t, struct ipq *);
596		insque(fp, &ipq);
597		fp->ipq_ttl = IPFRAGTTL;
598		fp->ipq_p = ip->ip_p;
599		fp->ipq_id = ip->ip_id;
600		fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
601		fp->ipq_src = ((struct ip *)ip)->ip_src;
602		fp->ipq_dst = ((struct ip *)ip)->ip_dst;
603#ifdef IPDIVERT
604		fp->ipq_divert = 0;
605#endif
606		q = (struct ipasfrag *)fp;
607		goto insert;
608	}
609
610	/*
611	 * Find a segment which begins after this one does.
612	 */
613	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
614		if (q->ip_off > ip->ip_off)
615			break;
616
617	/*
618	 * If there is a preceding segment, it may provide some of
619	 * our data already.  If so, drop the data from the incoming
620	 * segment.  If it provides all of our data, drop us.
621	 */
622	if (q->ipf_prev != (struct ipasfrag *)fp) {
623		i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
624		if (i > 0) {
625			if (i >= ip->ip_len)
626				goto dropfrag;
627			m_adj(dtom(ip), i);
628			ip->ip_off += i;
629			ip->ip_len -= i;
630		}
631	}
632
633	/*
634	 * While we overlap succeeding segments trim them or,
635	 * if they are completely covered, dequeue them.
636	 */
637	while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
638		struct mbuf *m0;
639
640		i = (ip->ip_off + ip->ip_len) - q->ip_off;
641		if (i < q->ip_len) {
642			q->ip_len -= i;
643			q->ip_off += i;
644			m_adj(dtom(q), i);
645			break;
646		}
647		m0 = dtom(q);
648		q = q->ipf_next;
649		ip_deq(q->ipf_prev);
650		m_freem(m0);
651	}
652
653insert:
654
655#ifdef IPDIVERT
656	/*
657	 * Any fragment diverting causes the whole packet to divert
658	 */
659	if (frag_divert_port != 0)
660		fp->ipq_divert = frag_divert_port;
661	frag_divert_port = 0;
662#endif
663
664	/*
665	 * Stick new segment in its place;
666	 * check for complete reassembly.
667	 */
668	ip_enq(ip, q->ipf_prev);
669	next = 0;
670	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
671		if (q->ip_off != next)
672			return (0);
673		next += q->ip_len;
674	}
675	if (q->ipf_prev->ipf_mff & 1)
676		return (0);
677
678	/*
679	 * Reassembly is complete.  Make sure the packet is a sane size.
680	 */
681	if (next + (IP_VHL_HL(((struct ip *)fp->ipq_next)->ip_vhl) << 2)
682							> IP_MAXPACKET) {
683		ipstat.ips_toolong++;
684		ip_freef(fp);
685		return (0);
686	}
687
688	/*
689	 * Concatenate fragments.
690	 */
691	q = fp->ipq_next;
692	m = dtom(q);
693	t = m->m_next;
694	m->m_next = 0;
695	m_cat(m, t);
696	q = q->ipf_next;
697	while (q != (struct ipasfrag *)fp) {
698		t = dtom(q);
699		q = q->ipf_next;
700		m_cat(m, t);
701	}
702
703#ifdef IPDIVERT
704	/*
705	 * Record divert port for packet, if any
706	 */
707	frag_divert_port = fp->ipq_divert;
708#endif
709
710	/*
711	 * Create header for new ip packet by
712	 * modifying header of first packet;
713	 * dequeue and discard fragment reassembly header.
714	 * Make header visible.
715	 */
716	ip = fp->ipq_next;
717	ip->ip_len = next;
718	ip->ipf_mff &= ~1;
719	((struct ip *)ip)->ip_src = fp->ipq_src;
720	((struct ip *)ip)->ip_dst = fp->ipq_dst;
721	remque(fp);
722	(void) m_free(dtom(fp));
723	m = dtom(ip);
724	m->m_len += (ip->ip_hl << 2);
725	m->m_data -= (ip->ip_hl << 2);
726	/* some debugging cruft by sklower, below, will go away soon */
727	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
728		register int plen = 0;
729		for (t = m; m; m = m->m_next)
730			plen += m->m_len;
731		t->m_pkthdr.len = plen;
732	}
733	return ((struct ip *)ip);
734
735dropfrag:
736	ipstat.ips_fragdropped++;
737	m_freem(m);
738	return (0);
739}
740
741/*
742 * Free a fragment reassembly header and all
743 * associated datagrams.
744 */
745static void
746ip_freef(fp)
747	struct ipq *fp;
748{
749	register struct ipasfrag *q, *p;
750
751	for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
752		p = q->ipf_next;
753		ip_deq(q);
754		m_freem(dtom(q));
755	}
756	remque(fp);
757	(void) m_free(dtom(fp));
758}
759
760/*
761 * Put an ip fragment on a reassembly chain.
762 * Like insque, but pointers in middle of structure.
763 */
764static void
765ip_enq(p, prev)
766	register struct ipasfrag *p, *prev;
767{
768
769	p->ipf_prev = prev;
770	p->ipf_next = prev->ipf_next;
771	prev->ipf_next->ipf_prev = p;
772	prev->ipf_next = p;
773}
774
775/*
776 * To ip_enq as remque is to insque.
777 */
778static void
779ip_deq(p)
780	register struct ipasfrag *p;
781{
782
783	p->ipf_prev->ipf_next = p->ipf_next;
784	p->ipf_next->ipf_prev = p->ipf_prev;
785}
786
787/*
788 * IP timer processing;
789 * if a timer expires on a reassembly
790 * queue, discard it.
791 */
792void
793ip_slowtimo()
794{
795	register struct ipq *fp;
796	int s = splnet();
797
798	fp = ipq.next;
799	if (fp == 0) {
800		splx(s);
801		return;
802	}
803	while (fp != &ipq) {
804		--fp->ipq_ttl;
805		fp = fp->next;
806		if (fp->prev->ipq_ttl == 0) {
807			ipstat.ips_fragtimeout++;
808			ip_freef(fp->prev);
809		}
810	}
811	splx(s);
812}
813
814/*
815 * Drain off all datagram fragments.
816 */
817void
818ip_drain()
819{
820	while (ipq.next != &ipq) {
821		ipstat.ips_fragdropped++;
822		ip_freef(ipq.next);
823	}
824
825	in_rtqdrain();
826}
827
828/*
829 * Do option processing on a datagram,
830 * possibly discarding it if bad options are encountered,
831 * or forwarding it if source-routed.
832 * Returns 1 if packet has been forwarded/freed,
833 * 0 if the packet should be processed further.
834 */
835static int
836ip_dooptions(m)
837	struct mbuf *m;
838{
839	register struct ip *ip = mtod(m, struct ip *);
840	register u_char *cp;
841	register struct ip_timestamp *ipt;
842	register struct in_ifaddr *ia;
843	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
844	struct in_addr *sin, dst;
845	n_time ntime;
846
847	dst = ip->ip_dst;
848	cp = (u_char *)(ip + 1);
849	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
850	for (; cnt > 0; cnt -= optlen, cp += optlen) {
851		opt = cp[IPOPT_OPTVAL];
852		if (opt == IPOPT_EOL)
853			break;
854		if (opt == IPOPT_NOP)
855			optlen = 1;
856		else {
857			optlen = cp[IPOPT_OLEN];
858			if (optlen <= 0 || optlen > cnt) {
859				code = &cp[IPOPT_OLEN] - (u_char *)ip;
860				goto bad;
861			}
862		}
863		switch (opt) {
864
865		default:
866			break;
867
868		/*
869		 * Source routing with record.
870		 * Find interface with current destination address.
871		 * If none on this machine then drop if strictly routed,
872		 * or do nothing if loosely routed.
873		 * Record interface address and bring up next address
874		 * component.  If strictly routed make sure next
875		 * address is on directly accessible net.
876		 */
877		case IPOPT_LSRR:
878		case IPOPT_SSRR:
879			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
880				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
881				goto bad;
882			}
883			ipaddr.sin_addr = ip->ip_dst;
884			ia = (struct in_ifaddr *)
885				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
886			if (ia == 0) {
887				if (opt == IPOPT_SSRR) {
888					type = ICMP_UNREACH;
889					code = ICMP_UNREACH_SRCFAIL;
890					goto bad;
891				}
892				/*
893				 * Loose routing, and not at next destination
894				 * yet; nothing to do except forward.
895				 */
896				break;
897			}
898			off--;			/* 0 origin */
899			if (off > optlen - sizeof(struct in_addr)) {
900				/*
901				 * End of source route.  Should be for us.
902				 */
903				save_rte(cp, ip->ip_src);
904				break;
905			}
906
907			if (!ip_dosourceroute) {
908				char buf[4*sizeof "123"];
909				strcpy(buf, inet_ntoa(ip->ip_dst));
910
911				log(LOG_WARNING,
912				    "attempted source route from %s to %s\n",
913				    inet_ntoa(ip->ip_src), buf);
914				type = ICMP_UNREACH;
915				code = ICMP_UNREACH_SRCFAIL;
916				goto bad;
917			}
918
919			/*
920			 * locate outgoing interface
921			 */
922			(void)memcpy(&ipaddr.sin_addr, cp + off,
923			    sizeof(ipaddr.sin_addr));
924
925			if (opt == IPOPT_SSRR) {
926#define	INA	struct in_ifaddr *
927#define	SA	struct sockaddr *
928			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
929				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
930			} else
931				ia = ip_rtaddr(ipaddr.sin_addr);
932			if (ia == 0) {
933				type = ICMP_UNREACH;
934				code = ICMP_UNREACH_SRCFAIL;
935				goto bad;
936			}
937			ip->ip_dst = ipaddr.sin_addr;
938			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
939			    sizeof(struct in_addr));
940			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
941			/*
942			 * Let ip_intr's mcast routing check handle mcast pkts
943			 */
944			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
945			break;
946
947		case IPOPT_RR:
948			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
949				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
950				goto bad;
951			}
952			/*
953			 * If no space remains, ignore.
954			 */
955			off--;			/* 0 origin */
956			if (off > optlen - sizeof(struct in_addr))
957				break;
958			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
959			    sizeof(ipaddr.sin_addr));
960			/*
961			 * locate outgoing interface; if we're the destination,
962			 * use the incoming interface (should be same).
963			 */
964			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
965			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
966				type = ICMP_UNREACH;
967				code = ICMP_UNREACH_HOST;
968				goto bad;
969			}
970			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
971			    sizeof(struct in_addr));
972			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
973			break;
974
975		case IPOPT_TS:
976			code = cp - (u_char *)ip;
977			ipt = (struct ip_timestamp *)cp;
978			if (ipt->ipt_len < 5)
979				goto bad;
980			if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
981				if (++ipt->ipt_oflw == 0)
982					goto bad;
983				break;
984			}
985			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
986			switch (ipt->ipt_flg) {
987
988			case IPOPT_TS_TSONLY:
989				break;
990
991			case IPOPT_TS_TSANDADDR:
992				if (ipt->ipt_ptr + sizeof(n_time) +
993				    sizeof(struct in_addr) > ipt->ipt_len)
994					goto bad;
995				ipaddr.sin_addr = dst;
996				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
997							    m->m_pkthdr.rcvif);
998				if (ia == 0)
999					continue;
1000				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1001				    sizeof(struct in_addr));
1002				ipt->ipt_ptr += sizeof(struct in_addr);
1003				break;
1004
1005			case IPOPT_TS_PRESPEC:
1006				if (ipt->ipt_ptr + sizeof(n_time) +
1007				    sizeof(struct in_addr) > ipt->ipt_len)
1008					goto bad;
1009				(void)memcpy(&ipaddr.sin_addr, sin,
1010				    sizeof(struct in_addr));
1011				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1012					continue;
1013				ipt->ipt_ptr += sizeof(struct in_addr);
1014				break;
1015
1016			default:
1017				goto bad;
1018			}
1019			ntime = iptime();
1020			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1021			    sizeof(n_time));
1022			ipt->ipt_ptr += sizeof(n_time);
1023		}
1024	}
1025	if (forward) {
1026		ip_forward(m, 1);
1027		return (1);
1028	}
1029	return (0);
1030bad:
1031	ip->ip_len -= IP_VHL_HL(ip->ip_vhl) << 2;   /* XXX icmp_error adds in hdr length */
1032	icmp_error(m, type, code, 0, 0);
1033	ipstat.ips_badoptions++;
1034	return (1);
1035}
1036
1037/*
1038 * Given address of next destination (final or next hop),
1039 * return internet address info of interface to be used to get there.
1040 */
1041static struct in_ifaddr *
1042ip_rtaddr(dst)
1043	 struct in_addr dst;
1044{
1045	register struct sockaddr_in *sin;
1046
1047	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1048
1049	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1050		if (ipforward_rt.ro_rt) {
1051			RTFREE(ipforward_rt.ro_rt);
1052			ipforward_rt.ro_rt = 0;
1053		}
1054		sin->sin_family = AF_INET;
1055		sin->sin_len = sizeof(*sin);
1056		sin->sin_addr = dst;
1057
1058		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1059	}
1060	if (ipforward_rt.ro_rt == 0)
1061		return ((struct in_ifaddr *)0);
1062	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1063}
1064
1065/*
1066 * Save incoming source route for use in replies,
1067 * to be picked up later by ip_srcroute if the receiver is interested.
1068 */
1069void
1070save_rte(option, dst)
1071	u_char *option;
1072	struct in_addr dst;
1073{
1074	unsigned olen;
1075
1076	olen = option[IPOPT_OLEN];
1077#ifdef DIAGNOSTIC
1078	if (ipprintfs)
1079		printf("save_rte: olen %d\n", olen);
1080#endif
1081	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1082		return;
1083	bcopy(option, ip_srcrt.srcopt, olen);
1084	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1085	ip_srcrt.dst = dst;
1086}
1087
1088/*
1089 * Retrieve incoming source route for use in replies,
1090 * in the same form used by setsockopt.
1091 * The first hop is placed before the options, will be removed later.
1092 */
1093struct mbuf *
1094ip_srcroute()
1095{
1096	register struct in_addr *p, *q;
1097	register struct mbuf *m;
1098
1099	if (ip_nhops == 0)
1100		return ((struct mbuf *)0);
1101	m = m_get(M_DONTWAIT, MT_SOOPTS);
1102	if (m == 0)
1103		return ((struct mbuf *)0);
1104
1105#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1106
1107	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1108	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1109	    OPTSIZ;
1110#ifdef DIAGNOSTIC
1111	if (ipprintfs)
1112		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1113#endif
1114
1115	/*
1116	 * First save first hop for return route
1117	 */
1118	p = &ip_srcrt.route[ip_nhops - 1];
1119	*(mtod(m, struct in_addr *)) = *p--;
1120#ifdef DIAGNOSTIC
1121	if (ipprintfs)
1122		printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
1123#endif
1124
1125	/*
1126	 * Copy option fields and padding (nop) to mbuf.
1127	 */
1128	ip_srcrt.nop = IPOPT_NOP;
1129	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1130	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1131	    &ip_srcrt.nop, OPTSIZ);
1132	q = (struct in_addr *)(mtod(m, caddr_t) +
1133	    sizeof(struct in_addr) + OPTSIZ);
1134#undef OPTSIZ
1135	/*
1136	 * Record return path as an IP source route,
1137	 * reversing the path (pointers are now aligned).
1138	 */
1139	while (p >= ip_srcrt.route) {
1140#ifdef DIAGNOSTIC
1141		if (ipprintfs)
1142			printf(" %lx", ntohl(q->s_addr));
1143#endif
1144		*q++ = *p--;
1145	}
1146	/*
1147	 * Last hop goes to final destination.
1148	 */
1149	*q = ip_srcrt.dst;
1150#ifdef DIAGNOSTIC
1151	if (ipprintfs)
1152		printf(" %lx\n", ntohl(q->s_addr));
1153#endif
1154	return (m);
1155}
1156
1157/*
1158 * Strip out IP options, at higher
1159 * level protocol in the kernel.
1160 * Second argument is buffer to which options
1161 * will be moved, and return value is their length.
1162 * XXX should be deleted; last arg currently ignored.
1163 */
1164void
1165ip_stripoptions(m, mopt)
1166	register struct mbuf *m;
1167	struct mbuf *mopt;
1168{
1169	register int i;
1170	struct ip *ip = mtod(m, struct ip *);
1171	register caddr_t opts;
1172	int olen;
1173
1174	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1175	opts = (caddr_t)(ip + 1);
1176	i = m->m_len - (sizeof (struct ip) + olen);
1177	bcopy(opts + olen, opts, (unsigned)i);
1178	m->m_len -= olen;
1179	if (m->m_flags & M_PKTHDR)
1180		m->m_pkthdr.len -= olen;
1181	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1182}
1183
1184u_char inetctlerrmap[PRC_NCMDS] = {
1185	0,		0,		0,		0,
1186	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1187	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1188	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1189	0,		0,		0,		0,
1190	ENOPROTOOPT
1191};
1192
1193/*
1194 * Forward a packet.  If some error occurs return the sender
1195 * an icmp packet.  Note we can't always generate a meaningful
1196 * icmp message because icmp doesn't have a large enough repertoire
1197 * of codes and types.
1198 *
1199 * If not forwarding, just drop the packet.  This could be confusing
1200 * if ipforwarding was zero but some routing protocol was advancing
1201 * us as a gateway to somewhere.  However, we must let the routing
1202 * protocol deal with that.
1203 *
1204 * The srcrt parameter indicates whether the packet is being forwarded
1205 * via a source route.
1206 */
1207static void
1208ip_forward(m, srcrt)
1209	struct mbuf *m;
1210	int srcrt;
1211{
1212	register struct ip *ip = mtod(m, struct ip *);
1213	register struct sockaddr_in *sin;
1214	register struct rtentry *rt;
1215	int error, type = 0, code = 0;
1216	struct mbuf *mcopy;
1217	n_long dest;
1218	struct ifnet *destifp;
1219
1220	dest = 0;
1221#ifdef DIAGNOSTIC
1222	if (ipprintfs)
1223		printf("forward: src %lx dst %lx ttl %x\n",
1224			ip->ip_src.s_addr, ip->ip_dst.s_addr, ip->ip_ttl);
1225#endif
1226
1227
1228	if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1229		ipstat.ips_cantforward++;
1230		m_freem(m);
1231		return;
1232	}
1233	HTONS(ip->ip_id);
1234	if (ip->ip_ttl <= IPTTLDEC) {
1235		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1236		return;
1237	}
1238	ip->ip_ttl -= IPTTLDEC;
1239
1240	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1241	if ((rt = ipforward_rt.ro_rt) == 0 ||
1242	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1243		if (ipforward_rt.ro_rt) {
1244			RTFREE(ipforward_rt.ro_rt);
1245			ipforward_rt.ro_rt = 0;
1246		}
1247		sin->sin_family = AF_INET;
1248		sin->sin_len = sizeof(*sin);
1249		sin->sin_addr = ip->ip_dst;
1250
1251		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1252		if (ipforward_rt.ro_rt == 0) {
1253			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1254			return;
1255		}
1256		rt = ipforward_rt.ro_rt;
1257	}
1258
1259	/*
1260	 * Save at most 64 bytes of the packet in case
1261	 * we need to generate an ICMP message to the src.
1262	 */
1263	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1264
1265	/*
1266	 * If forwarding packet using same interface that it came in on,
1267	 * perhaps should send a redirect to sender to shortcut a hop.
1268	 * Only send redirect if source is sending directly to us,
1269	 * and if packet was not source routed (or has any options).
1270	 * Also, don't send redirect if forwarding using a default route
1271	 * or a route modified by a redirect.
1272	 */
1273#define	satosin(sa)	((struct sockaddr_in *)(sa))
1274	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1275	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1276	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1277	    ipsendredirects && !srcrt) {
1278#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1279		u_long src = ntohl(ip->ip_src.s_addr);
1280
1281		if (RTA(rt) &&
1282		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1283		    if (rt->rt_flags & RTF_GATEWAY)
1284			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1285		    else
1286			dest = ip->ip_dst.s_addr;
1287		    /* Router requirements says to only send host redirects */
1288		    type = ICMP_REDIRECT;
1289		    code = ICMP_REDIRECT_HOST;
1290#ifdef DIAGNOSTIC
1291		    if (ipprintfs)
1292		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1293#endif
1294		}
1295	}
1296
1297	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1298			  IP_FORWARDING, 0);
1299	if (error)
1300		ipstat.ips_cantforward++;
1301	else {
1302		ipstat.ips_forward++;
1303		if (type)
1304			ipstat.ips_redirectsent++;
1305		else {
1306			if (mcopy)
1307				m_freem(mcopy);
1308			return;
1309		}
1310	}
1311	if (mcopy == NULL)
1312		return;
1313	destifp = NULL;
1314
1315	switch (error) {
1316
1317	case 0:				/* forwarded, but need redirect */
1318		/* type, code set above */
1319		break;
1320
1321	case ENETUNREACH:		/* shouldn't happen, checked above */
1322	case EHOSTUNREACH:
1323	case ENETDOWN:
1324	case EHOSTDOWN:
1325	default:
1326		type = ICMP_UNREACH;
1327		code = ICMP_UNREACH_HOST;
1328		break;
1329
1330	case EMSGSIZE:
1331		type = ICMP_UNREACH;
1332		code = ICMP_UNREACH_NEEDFRAG;
1333		if (ipforward_rt.ro_rt)
1334			destifp = ipforward_rt.ro_rt->rt_ifp;
1335		ipstat.ips_cantfrag++;
1336		break;
1337
1338	case ENOBUFS:
1339		type = ICMP_SOURCEQUENCH;
1340		code = 0;
1341		break;
1342	}
1343	icmp_error(mcopy, type, code, dest, destifp);
1344}
1345
1346void
1347ip_savecontrol(inp, mp, ip, m)
1348	register struct inpcb *inp;
1349	register struct mbuf **mp;
1350	register struct ip *ip;
1351	register struct mbuf *m;
1352{
1353	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1354		struct timeval tv;
1355
1356		microtime(&tv);
1357		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1358			SCM_TIMESTAMP, SOL_SOCKET);
1359		if (*mp)
1360			mp = &(*mp)->m_next;
1361	}
1362	if (inp->inp_flags & INP_RECVDSTADDR) {
1363		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1364		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1365		if (*mp)
1366			mp = &(*mp)->m_next;
1367	}
1368#ifdef notyet
1369	/* XXX
1370	 * Moving these out of udp_input() made them even more broken
1371	 * than they already were.
1372	 */
1373	/* options were tossed already */
1374	if (inp->inp_flags & INP_RECVOPTS) {
1375		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1376		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1377		if (*mp)
1378			mp = &(*mp)->m_next;
1379	}
1380	/* ip_srcroute doesn't do what we want here, need to fix */
1381	if (inp->inp_flags & INP_RECVRETOPTS) {
1382		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1383		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1384		if (*mp)
1385			mp = &(*mp)->m_next;
1386	}
1387#endif
1388	if (inp->inp_flags & INP_RECVIF) {
1389		struct sockaddr_dl sdl;
1390
1391		sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1392		sdl.sdl_family = AF_LINK;
1393		sdl.sdl_index = m->m_pkthdr.rcvif ?
1394			m->m_pkthdr.rcvif->if_index : 0;
1395		sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1396		*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1397			IP_RECVIF, IPPROTO_IP);
1398		if (*mp)
1399			mp = &(*mp)->m_next;
1400	}
1401}
1402
1403int
1404ip_rsvp_init(struct socket *so)
1405{
1406	if (so->so_type != SOCK_RAW ||
1407	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1408	  return EOPNOTSUPP;
1409
1410	if (ip_rsvpd != NULL)
1411	  return EADDRINUSE;
1412
1413	ip_rsvpd = so;
1414	/*
1415	 * This may seem silly, but we need to be sure we don't over-increment
1416	 * the RSVP counter, in case something slips up.
1417	 */
1418	if (!ip_rsvp_on) {
1419		ip_rsvp_on = 1;
1420		rsvp_on++;
1421	}
1422
1423	return 0;
1424}
1425
1426int
1427ip_rsvp_done(void)
1428{
1429	ip_rsvpd = NULL;
1430	/*
1431	 * This may seem silly, but we need to be sure we don't over-decrement
1432	 * the RSVP counter, in case something slips up.
1433	 */
1434	if (ip_rsvp_on) {
1435		ip_rsvp_on = 0;
1436		rsvp_on--;
1437	}
1438	return 0;
1439}
1440