ip_input.c revision 256281
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/netinet/ip_input.c 255523 2013-09-13 18:45:10Z trociny $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_kdtrace.h"
40#include "opt_route.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/rwlock.h>
53#include <sys/sdt.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/vnet.h>
65#include <net/flowtable.h>
66
67#include <netinet/in.h>
68#include <netinet/in_kdtrace.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_fw.h>
75#include <netinet/ip_icmp.h>
76#include <netinet/ip_options.h>
77#include <machine/in_cksum.h>
78#include <netinet/ip_carp.h>
79#ifdef IPSEC
80#include <netinet/ip_ipsec.h>
81#endif /* IPSEC */
82
83#include <sys/socketvar.h>
84
85#include <security/mac/mac_framework.h>
86
87#ifdef CTASSERT
88CTASSERT(sizeof(struct ip) == 20);
89#endif
90
91struct	rwlock in_ifaddr_lock;
92RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
93
94VNET_DEFINE(int, rsvp_on);
95
96VNET_DEFINE(int, ipforwarding);
97SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98    &VNET_NAME(ipforwarding), 0,
99    "Enable IP forwarding between interfaces");
100
101static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
102#define	V_ipsendredirects	VNET(ipsendredirects)
103SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
104    &VNET_NAME(ipsendredirects), 0,
105    "Enable sending IP redirects");
106
107static VNET_DEFINE(int, ip_keepfaith);
108#define	V_ip_keepfaith		VNET(ip_keepfaith)
109SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
110    &VNET_NAME(ip_keepfaith), 0,
111    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
112
113static VNET_DEFINE(int, ip_sendsourcequench);
114#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
115SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
116    &VNET_NAME(ip_sendsourcequench), 0,
117    "Enable the transmission of source quench packets");
118
119VNET_DEFINE(int, ip_do_randomid);
120SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
121    &VNET_NAME(ip_do_randomid), 0,
122    "Assign random ip_id values");
123
124/*
125 * XXX - Setting ip_checkinterface mostly implements the receive side of
126 * the Strong ES model described in RFC 1122, but since the routing table
127 * and transmit implementation do not implement the Strong ES model,
128 * setting this to 1 results in an odd hybrid.
129 *
130 * XXX - ip_checkinterface currently must be disabled if you use ipnat
131 * to translate the destination address to another local interface.
132 *
133 * XXX - ip_checkinterface must be disabled if you add IP aliases
134 * to the loopback interface instead of the interface where the
135 * packets for those addresses are received.
136 */
137static VNET_DEFINE(int, ip_checkinterface);
138#define	V_ip_checkinterface	VNET(ip_checkinterface)
139SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
140    &VNET_NAME(ip_checkinterface), 0,
141    "Verify packet arrives on correct interface");
142
143VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
144
145static struct netisr_handler ip_nh = {
146	.nh_name = "ip",
147	.nh_handler = ip_input,
148	.nh_proto = NETISR_IP,
149	.nh_policy = NETISR_POLICY_FLOW,
150};
151
152extern	struct domain inetdomain;
153extern	struct protosw inetsw[];
154u_char	ip_protox[IPPROTO_MAX];
155VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
156VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
157VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
158
159static VNET_DEFINE(uma_zone_t, ipq_zone);
160static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
161static struct mtx ipqlock;
162
163#define	V_ipq_zone		VNET(ipq_zone)
164#define	V_ipq			VNET(ipq)
165
166#define	IPQ_LOCK()	mtx_lock(&ipqlock)
167#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
168#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
169#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
170
171static void	maxnipq_update(void);
172static void	ipq_zone_change(void *);
173static void	ip_drain_locked(void);
174
175static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
176static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
177#define	V_maxnipq		VNET(maxnipq)
178#define	V_nipq			VNET(nipq)
179SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
180    &VNET_NAME(nipq), 0,
181    "Current number of IPv4 fragment reassembly queue entries");
182
183static VNET_DEFINE(int, maxfragsperpacket);
184#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
185SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
186    &VNET_NAME(maxfragsperpacket), 0,
187    "Maximum number of IPv4 fragments allowed per packet");
188
189#ifdef IPCTL_DEFMTU
190SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
191    &ip_mtu, 0, "Default MTU");
192#endif
193
194#ifdef IPSTEALTH
195VNET_DEFINE(int, ipstealth);
196SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
197    &VNET_NAME(ipstealth), 0,
198    "IP stealth mode, no TTL decrementation on forwarding");
199#endif
200
201#ifdef FLOWTABLE
202static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
203VNET_DEFINE(struct flowtable *, ip_ft);
204#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
205
206SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
207    &VNET_NAME(ip_output_flowtable_size), 2048,
208    "number of entries in the per-cpu output flow caches");
209#endif
210
211static void	ip_freef(struct ipqhead *, struct ipq *);
212
213/*
214 * IP statistics are stored in the "array" of counter(9)s.
215 */
216VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
217VNET_PCPUSTAT_SYSINIT(ipstat);
218SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
219    "IP statistics (struct ipstat, netinet/ip_var.h)");
220
221#ifdef VIMAGE
222VNET_PCPUSTAT_SYSUNINIT(ipstat);
223#endif /* VIMAGE */
224
225/*
226 * Kernel module interface for updating ipstat.  The argument is an index
227 * into ipstat treated as an array.
228 */
229void
230kmod_ipstat_inc(int statnum)
231{
232
233	counter_u64_add(VNET(ipstat)[statnum], 1);
234}
235
236void
237kmod_ipstat_dec(int statnum)
238{
239
240	counter_u64_add(VNET(ipstat)[statnum], -1);
241}
242
243static int
244sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
245{
246	int error, qlimit;
247
248	netisr_getqlimit(&ip_nh, &qlimit);
249	error = sysctl_handle_int(oidp, &qlimit, 0, req);
250	if (error || !req->newptr)
251		return (error);
252	if (qlimit < 1)
253		return (EINVAL);
254	return (netisr_setqlimit(&ip_nh, qlimit));
255}
256SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
257    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
258    "Maximum size of the IP input queue");
259
260static int
261sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
262{
263	u_int64_t qdrops_long;
264	int error, qdrops;
265
266	netisr_getqdrops(&ip_nh, &qdrops_long);
267	qdrops = qdrops_long;
268	error = sysctl_handle_int(oidp, &qdrops, 0, req);
269	if (error || !req->newptr)
270		return (error);
271	if (qdrops != 0)
272		return (EINVAL);
273	netisr_clearqdrops(&ip_nh);
274	return (0);
275}
276
277SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
278    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
279    "Number of packets dropped from the IP input queue");
280
281/*
282 * IP initialization: fill in IP protocol switch table.
283 * All protocols not implemented in kernel go to raw IP protocol handler.
284 */
285void
286ip_init(void)
287{
288	struct protosw *pr;
289	int i;
290
291	V_ip_id = time_second & 0xffff;
292
293	TAILQ_INIT(&V_in_ifaddrhead);
294	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
295
296	/* Initialize IP reassembly queue. */
297	for (i = 0; i < IPREASS_NHASH; i++)
298		TAILQ_INIT(&V_ipq[i]);
299	V_maxnipq = nmbclusters / 32;
300	V_maxfragsperpacket = 16;
301	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
302	    NULL, UMA_ALIGN_PTR, 0);
303	maxnipq_update();
304
305	/* Initialize packet filter hooks. */
306	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
307	V_inet_pfil_hook.ph_af = AF_INET;
308	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
309		printf("%s: WARNING: unable to register pfil hook, "
310			"error %d\n", __func__, i);
311
312#ifdef FLOWTABLE
313	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
314		&V_ip_output_flowtable_size)) {
315		if (V_ip_output_flowtable_size < 256)
316			V_ip_output_flowtable_size = 256;
317		if (!powerof2(V_ip_output_flowtable_size)) {
318			printf("flowtable must be power of 2 size\n");
319			V_ip_output_flowtable_size = 2048;
320		}
321	} else {
322		/*
323		 * round up to the next power of 2
324		 */
325		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
326	}
327	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
328#endif
329
330	/* Skip initialization of globals for non-default instances. */
331	if (!IS_DEFAULT_VNET(curvnet))
332		return;
333
334	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
335	if (pr == NULL)
336		panic("ip_init: PF_INET not found");
337
338	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
339	for (i = 0; i < IPPROTO_MAX; i++)
340		ip_protox[i] = pr - inetsw;
341	/*
342	 * Cycle through IP protocols and put them into the appropriate place
343	 * in ip_protox[].
344	 */
345	for (pr = inetdomain.dom_protosw;
346	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
347		if (pr->pr_domain->dom_family == PF_INET &&
348		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
349			/* Be careful to only index valid IP protocols. */
350			if (pr->pr_protocol < IPPROTO_MAX)
351				ip_protox[pr->pr_protocol] = pr - inetsw;
352		}
353
354	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
355		NULL, EVENTHANDLER_PRI_ANY);
356
357	/* Initialize various other remaining things. */
358	IPQ_LOCK_INIT();
359	netisr_register(&ip_nh);
360}
361
362#ifdef VIMAGE
363void
364ip_destroy(void)
365{
366	int i;
367
368	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
369		printf("%s: WARNING: unable to unregister pfil hook, "
370		    "error %d\n", __func__, i);
371
372	/* Cleanup in_ifaddr hash table; should be empty. */
373	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
374
375	IPQ_LOCK();
376	ip_drain_locked();
377	IPQ_UNLOCK();
378
379	uma_zdestroy(V_ipq_zone);
380}
381#endif
382
383/*
384 * Ip input routine.  Checksum and byte swap header.  If fragmented
385 * try to reassemble.  Process options.  Pass to next level.
386 */
387void
388ip_input(struct mbuf *m)
389{
390	struct ip *ip = NULL;
391	struct in_ifaddr *ia = NULL;
392	struct ifaddr *ifa;
393	struct ifnet *ifp;
394	int    checkif, hlen = 0;
395	uint16_t sum, ip_len;
396	int dchg = 0;				/* dest changed after fw */
397	struct in_addr odst;			/* original dst address */
398
399	M_ASSERTPKTHDR(m);
400
401	if (m->m_flags & M_FASTFWD_OURS) {
402		m->m_flags &= ~M_FASTFWD_OURS;
403		/* Set up some basics that will be used later. */
404		ip = mtod(m, struct ip *);
405		hlen = ip->ip_hl << 2;
406		ip_len = ntohs(ip->ip_len);
407		goto ours;
408	}
409
410	IPSTAT_INC(ips_total);
411
412	if (m->m_pkthdr.len < sizeof(struct ip))
413		goto tooshort;
414
415	if (m->m_len < sizeof (struct ip) &&
416	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
417		IPSTAT_INC(ips_toosmall);
418		return;
419	}
420	ip = mtod(m, struct ip *);
421
422	if (ip->ip_v != IPVERSION) {
423		IPSTAT_INC(ips_badvers);
424		goto bad;
425	}
426
427	hlen = ip->ip_hl << 2;
428	if (hlen < sizeof(struct ip)) {	/* minimum header length */
429		IPSTAT_INC(ips_badhlen);
430		goto bad;
431	}
432	if (hlen > m->m_len) {
433		if ((m = m_pullup(m, hlen)) == NULL) {
434			IPSTAT_INC(ips_badhlen);
435			return;
436		}
437		ip = mtod(m, struct ip *);
438	}
439
440	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
441
442	/* 127/8 must not appear on wire - RFC1122 */
443	ifp = m->m_pkthdr.rcvif;
444	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
445	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
446		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
447			IPSTAT_INC(ips_badaddr);
448			goto bad;
449		}
450	}
451
452	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
453		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
454	} else {
455		if (hlen == sizeof(struct ip)) {
456			sum = in_cksum_hdr(ip);
457		} else {
458			sum = in_cksum(m, hlen);
459		}
460	}
461	if (sum) {
462		IPSTAT_INC(ips_badsum);
463		goto bad;
464	}
465
466#ifdef ALTQ
467	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
468		/* packet is dropped by traffic conditioner */
469		return;
470#endif
471
472	ip_len = ntohs(ip->ip_len);
473	if (ip_len < hlen) {
474		IPSTAT_INC(ips_badlen);
475		goto bad;
476	}
477
478	/*
479	 * Check that the amount of data in the buffers
480	 * is as at least much as the IP header would have us expect.
481	 * Trim mbufs if longer than we expect.
482	 * Drop packet if shorter than we expect.
483	 */
484	if (m->m_pkthdr.len < ip_len) {
485tooshort:
486		IPSTAT_INC(ips_tooshort);
487		goto bad;
488	}
489	if (m->m_pkthdr.len > ip_len) {
490		if (m->m_len == m->m_pkthdr.len) {
491			m->m_len = ip_len;
492			m->m_pkthdr.len = ip_len;
493		} else
494			m_adj(m, ip_len - m->m_pkthdr.len);
495	}
496#ifdef IPSEC
497	/*
498	 * Bypass packet filtering for packets previously handled by IPsec.
499	 */
500	if (ip_ipsec_filtertunnel(m))
501		goto passin;
502#endif /* IPSEC */
503
504	/*
505	 * Run through list of hooks for input packets.
506	 *
507	 * NB: Beware of the destination address changing (e.g.
508	 *     by NAT rewriting).  When this happens, tell
509	 *     ip_forward to do the right thing.
510	 */
511
512	/* Jump over all PFIL processing if hooks are not active. */
513	if (!PFIL_HOOKED(&V_inet_pfil_hook))
514		goto passin;
515
516	odst = ip->ip_dst;
517	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
518		return;
519	if (m == NULL)			/* consumed by filter */
520		return;
521
522	ip = mtod(m, struct ip *);
523	dchg = (odst.s_addr != ip->ip_dst.s_addr);
524	ifp = m->m_pkthdr.rcvif;
525
526	if (m->m_flags & M_FASTFWD_OURS) {
527		m->m_flags &= ~M_FASTFWD_OURS;
528		goto ours;
529	}
530	if (m->m_flags & M_IP_NEXTHOP) {
531		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
532		if (dchg != 0) {
533			/*
534			 * Directly ship the packet on.  This allows
535			 * forwarding packets originally destined to us
536			 * to some other directly connected host.
537			 */
538			ip_forward(m, 1);
539			return;
540		}
541	}
542passin:
543
544	/*
545	 * Process options and, if not destined for us,
546	 * ship it on.  ip_dooptions returns 1 when an
547	 * error was detected (causing an icmp message
548	 * to be sent and the original packet to be freed).
549	 */
550	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
551		return;
552
553        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
554         * matter if it is destined to another node, or whether it is
555         * a multicast one, RSVP wants it! and prevents it from being forwarded
556         * anywhere else. Also checks if the rsvp daemon is running before
557	 * grabbing the packet.
558         */
559	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
560		goto ours;
561
562	/*
563	 * Check our list of addresses, to see if the packet is for us.
564	 * If we don't have any addresses, assume any unicast packet
565	 * we receive might be for us (and let the upper layers deal
566	 * with it).
567	 */
568	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
569	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
570		goto ours;
571
572	/*
573	 * Enable a consistency check between the destination address
574	 * and the arrival interface for a unicast packet (the RFC 1122
575	 * strong ES model) if IP forwarding is disabled and the packet
576	 * is not locally generated and the packet is not subject to
577	 * 'ipfw fwd'.
578	 *
579	 * XXX - Checking also should be disabled if the destination
580	 * address is ipnat'ed to a different interface.
581	 *
582	 * XXX - Checking is incompatible with IP aliases added
583	 * to the loopback interface instead of the interface where
584	 * the packets are received.
585	 *
586	 * XXX - This is the case for carp vhost IPs as well so we
587	 * insert a workaround. If the packet got here, we already
588	 * checked with carp_iamatch() and carp_forus().
589	 */
590	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
591	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
592	    ifp->if_carp == NULL && (dchg == 0);
593
594	/*
595	 * Check for exact addresses in the hash bucket.
596	 */
597	/* IN_IFADDR_RLOCK(); */
598	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
599		/*
600		 * If the address matches, verify that the packet
601		 * arrived via the correct interface if checking is
602		 * enabled.
603		 */
604		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
605		    (!checkif || ia->ia_ifp == ifp)) {
606			ifa_ref(&ia->ia_ifa);
607			/* IN_IFADDR_RUNLOCK(); */
608			goto ours;
609		}
610	}
611	/* IN_IFADDR_RUNLOCK(); */
612
613	/*
614	 * Check for broadcast addresses.
615	 *
616	 * Only accept broadcast packets that arrive via the matching
617	 * interface.  Reception of forwarded directed broadcasts would
618	 * be handled via ip_forward() and ether_output() with the loopback
619	 * into the stack for SIMPLEX interfaces handled by ether_output().
620	 */
621	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
622		IF_ADDR_RLOCK(ifp);
623	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
624			if (ifa->ifa_addr->sa_family != AF_INET)
625				continue;
626			ia = ifatoia(ifa);
627			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
628			    ip->ip_dst.s_addr) {
629				ifa_ref(ifa);
630				IF_ADDR_RUNLOCK(ifp);
631				goto ours;
632			}
633#ifdef BOOTP_COMPAT
634			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
635				ifa_ref(ifa);
636				IF_ADDR_RUNLOCK(ifp);
637				goto ours;
638			}
639#endif
640		}
641		IF_ADDR_RUNLOCK(ifp);
642		ia = NULL;
643	}
644	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
645	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
646		IPSTAT_INC(ips_cantforward);
647		m_freem(m);
648		return;
649	}
650	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
651		if (V_ip_mrouter) {
652			/*
653			 * If we are acting as a multicast router, all
654			 * incoming multicast packets are passed to the
655			 * kernel-level multicast forwarding function.
656			 * The packet is returned (relatively) intact; if
657			 * ip_mforward() returns a non-zero value, the packet
658			 * must be discarded, else it may be accepted below.
659			 */
660			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
661				IPSTAT_INC(ips_cantforward);
662				m_freem(m);
663				return;
664			}
665
666			/*
667			 * The process-level routing daemon needs to receive
668			 * all multicast IGMP packets, whether or not this
669			 * host belongs to their destination groups.
670			 */
671			if (ip->ip_p == IPPROTO_IGMP)
672				goto ours;
673			IPSTAT_INC(ips_forward);
674		}
675		/*
676		 * Assume the packet is for us, to avoid prematurely taking
677		 * a lock on the in_multi hash. Protocols must perform
678		 * their own filtering and update statistics accordingly.
679		 */
680		goto ours;
681	}
682	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
683		goto ours;
684	if (ip->ip_dst.s_addr == INADDR_ANY)
685		goto ours;
686
687	/*
688	 * FAITH(Firewall Aided Internet Translator)
689	 */
690	if (ifp && ifp->if_type == IFT_FAITH) {
691		if (V_ip_keepfaith) {
692			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
693				goto ours;
694		}
695		m_freem(m);
696		return;
697	}
698
699	/*
700	 * Not for us; forward if possible and desirable.
701	 */
702	if (V_ipforwarding == 0) {
703		IPSTAT_INC(ips_cantforward);
704		m_freem(m);
705	} else {
706#ifdef IPSEC
707		if (ip_ipsec_fwd(m))
708			goto bad;
709#endif /* IPSEC */
710		ip_forward(m, dchg);
711	}
712	return;
713
714ours:
715#ifdef IPSTEALTH
716	/*
717	 * IPSTEALTH: Process non-routing options only
718	 * if the packet is destined for us.
719	 */
720	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
721		if (ia != NULL)
722			ifa_free(&ia->ia_ifa);
723		return;
724	}
725#endif /* IPSTEALTH */
726
727	/* Count the packet in the ip address stats */
728	if (ia != NULL) {
729		ia->ia_ifa.if_ipackets++;
730		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
731		ifa_free(&ia->ia_ifa);
732	}
733
734	/*
735	 * Attempt reassembly; if it succeeds, proceed.
736	 * ip_reass() will return a different mbuf.
737	 */
738	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
739		m = ip_reass(m);
740		if (m == NULL)
741			return;
742		ip = mtod(m, struct ip *);
743		/* Get the header length of the reassembled packet */
744		hlen = ip->ip_hl << 2;
745	}
746
747#ifdef IPSEC
748	/*
749	 * enforce IPsec policy checking if we are seeing last header.
750	 * note that we do not visit this with protocols with pcb layer
751	 * code - like udp/tcp/raw ip.
752	 */
753	if (ip_ipsec_input(m))
754		goto bad;
755#endif /* IPSEC */
756
757	/*
758	 * Switch out to protocol's input routine.
759	 */
760	IPSTAT_INC(ips_delivered);
761
762	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
763	return;
764bad:
765	m_freem(m);
766}
767
768/*
769 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
770 * max has slightly different semantics than the sysctl, for historical
771 * reasons.
772 */
773static void
774maxnipq_update(void)
775{
776
777	/*
778	 * -1 for unlimited allocation.
779	 */
780	if (V_maxnipq < 0)
781		uma_zone_set_max(V_ipq_zone, 0);
782	/*
783	 * Positive number for specific bound.
784	 */
785	if (V_maxnipq > 0)
786		uma_zone_set_max(V_ipq_zone, V_maxnipq);
787	/*
788	 * Zero specifies no further fragment queue allocation -- set the
789	 * bound very low, but rely on implementation elsewhere to actually
790	 * prevent allocation and reclaim current queues.
791	 */
792	if (V_maxnipq == 0)
793		uma_zone_set_max(V_ipq_zone, 1);
794}
795
796static void
797ipq_zone_change(void *tag)
798{
799
800	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
801		V_maxnipq = nmbclusters / 32;
802		maxnipq_update();
803	}
804}
805
806static int
807sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
808{
809	int error, i;
810
811	i = V_maxnipq;
812	error = sysctl_handle_int(oidp, &i, 0, req);
813	if (error || !req->newptr)
814		return (error);
815
816	/*
817	 * XXXRW: Might be a good idea to sanity check the argument and place
818	 * an extreme upper bound.
819	 */
820	if (i < -1)
821		return (EINVAL);
822	V_maxnipq = i;
823	maxnipq_update();
824	return (0);
825}
826
827SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
828    NULL, 0, sysctl_maxnipq, "I",
829    "Maximum number of IPv4 fragment reassembly queue entries");
830
831/*
832 * Take incoming datagram fragment and try to reassemble it into
833 * whole datagram.  If the argument is the first fragment or one
834 * in between the function will return NULL and store the mbuf
835 * in the fragment chain.  If the argument is the last fragment
836 * the packet will be reassembled and the pointer to the new
837 * mbuf returned for further processing.  Only m_tags attached
838 * to the first packet/fragment are preserved.
839 * The IP header is *NOT* adjusted out of iplen.
840 */
841struct mbuf *
842ip_reass(struct mbuf *m)
843{
844	struct ip *ip;
845	struct mbuf *p, *q, *nq, *t;
846	struct ipq *fp = NULL;
847	struct ipqhead *head;
848	int i, hlen, next;
849	u_int8_t ecn, ecn0;
850	u_short hash;
851
852	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
853	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
854		IPSTAT_INC(ips_fragments);
855		IPSTAT_INC(ips_fragdropped);
856		m_freem(m);
857		return (NULL);
858	}
859
860	ip = mtod(m, struct ip *);
861	hlen = ip->ip_hl << 2;
862
863	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
864	head = &V_ipq[hash];
865	IPQ_LOCK();
866
867	/*
868	 * Look for queue of fragments
869	 * of this datagram.
870	 */
871	TAILQ_FOREACH(fp, head, ipq_list)
872		if (ip->ip_id == fp->ipq_id &&
873		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
874		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
875#ifdef MAC
876		    mac_ipq_match(m, fp) &&
877#endif
878		    ip->ip_p == fp->ipq_p)
879			goto found;
880
881	fp = NULL;
882
883	/*
884	 * Attempt to trim the number of allocated fragment queues if it
885	 * exceeds the administrative limit.
886	 */
887	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
888		/*
889		 * drop something from the tail of the current queue
890		 * before proceeding further
891		 */
892		struct ipq *q = TAILQ_LAST(head, ipqhead);
893		if (q == NULL) {   /* gak */
894			for (i = 0; i < IPREASS_NHASH; i++) {
895				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
896				if (r) {
897					IPSTAT_ADD(ips_fragtimeout,
898					    r->ipq_nfrags);
899					ip_freef(&V_ipq[i], r);
900					break;
901				}
902			}
903		} else {
904			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
905			ip_freef(head, q);
906		}
907	}
908
909found:
910	/*
911	 * Adjust ip_len to not reflect header,
912	 * convert offset of this to bytes.
913	 */
914	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
915	if (ip->ip_off & htons(IP_MF)) {
916		/*
917		 * Make sure that fragments have a data length
918		 * that's a non-zero multiple of 8 bytes.
919		 */
920		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
921			IPSTAT_INC(ips_toosmall); /* XXX */
922			goto dropfrag;
923		}
924		m->m_flags |= M_IP_FRAG;
925	} else
926		m->m_flags &= ~M_IP_FRAG;
927	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
928
929	/*
930	 * Attempt reassembly; if it succeeds, proceed.
931	 * ip_reass() will return a different mbuf.
932	 */
933	IPSTAT_INC(ips_fragments);
934	m->m_pkthdr.PH_loc.ptr = ip;
935
936	/* Previous ip_reass() started here. */
937	/*
938	 * Presence of header sizes in mbufs
939	 * would confuse code below.
940	 */
941	m->m_data += hlen;
942	m->m_len -= hlen;
943
944	/*
945	 * If first fragment to arrive, create a reassembly queue.
946	 */
947	if (fp == NULL) {
948		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
949		if (fp == NULL)
950			goto dropfrag;
951#ifdef MAC
952		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
953			uma_zfree(V_ipq_zone, fp);
954			fp = NULL;
955			goto dropfrag;
956		}
957		mac_ipq_create(m, fp);
958#endif
959		TAILQ_INSERT_HEAD(head, fp, ipq_list);
960		V_nipq++;
961		fp->ipq_nfrags = 1;
962		fp->ipq_ttl = IPFRAGTTL;
963		fp->ipq_p = ip->ip_p;
964		fp->ipq_id = ip->ip_id;
965		fp->ipq_src = ip->ip_src;
966		fp->ipq_dst = ip->ip_dst;
967		fp->ipq_frags = m;
968		m->m_nextpkt = NULL;
969		goto done;
970	} else {
971		fp->ipq_nfrags++;
972#ifdef MAC
973		mac_ipq_update(m, fp);
974#endif
975	}
976
977#define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
978
979	/*
980	 * Handle ECN by comparing this segment with the first one;
981	 * if CE is set, do not lose CE.
982	 * drop if CE and not-ECT are mixed for the same packet.
983	 */
984	ecn = ip->ip_tos & IPTOS_ECN_MASK;
985	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
986	if (ecn == IPTOS_ECN_CE) {
987		if (ecn0 == IPTOS_ECN_NOTECT)
988			goto dropfrag;
989		if (ecn0 != IPTOS_ECN_CE)
990			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
991	}
992	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
993		goto dropfrag;
994
995	/*
996	 * Find a segment which begins after this one does.
997	 */
998	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
999		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
1000			break;
1001
1002	/*
1003	 * If there is a preceding segment, it may provide some of
1004	 * our data already.  If so, drop the data from the incoming
1005	 * segment.  If it provides all of our data, drop us, otherwise
1006	 * stick new segment in the proper place.
1007	 *
1008	 * If some of the data is dropped from the preceding
1009	 * segment, then it's checksum is invalidated.
1010	 */
1011	if (p) {
1012		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1013		    ntohs(ip->ip_off);
1014		if (i > 0) {
1015			if (i >= ntohs(ip->ip_len))
1016				goto dropfrag;
1017			m_adj(m, i);
1018			m->m_pkthdr.csum_flags = 0;
1019			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1020			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1021		}
1022		m->m_nextpkt = p->m_nextpkt;
1023		p->m_nextpkt = m;
1024	} else {
1025		m->m_nextpkt = fp->ipq_frags;
1026		fp->ipq_frags = m;
1027	}
1028
1029	/*
1030	 * While we overlap succeeding segments trim them or,
1031	 * if they are completely covered, dequeue them.
1032	 */
1033	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1034	    ntohs(GETIP(q)->ip_off); q = nq) {
1035		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1036		    ntohs(GETIP(q)->ip_off);
1037		if (i < ntohs(GETIP(q)->ip_len)) {
1038			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1039			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1040			m_adj(q, i);
1041			q->m_pkthdr.csum_flags = 0;
1042			break;
1043		}
1044		nq = q->m_nextpkt;
1045		m->m_nextpkt = nq;
1046		IPSTAT_INC(ips_fragdropped);
1047		fp->ipq_nfrags--;
1048		m_freem(q);
1049	}
1050
1051	/*
1052	 * Check for complete reassembly and perform frag per packet
1053	 * limiting.
1054	 *
1055	 * Frag limiting is performed here so that the nth frag has
1056	 * a chance to complete the packet before we drop the packet.
1057	 * As a result, n+1 frags are actually allowed per packet, but
1058	 * only n will ever be stored. (n = maxfragsperpacket.)
1059	 *
1060	 */
1061	next = 0;
1062	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1063		if (ntohs(GETIP(q)->ip_off) != next) {
1064			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1065				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1066				ip_freef(head, fp);
1067			}
1068			goto done;
1069		}
1070		next += ntohs(GETIP(q)->ip_len);
1071	}
1072	/* Make sure the last packet didn't have the IP_MF flag */
1073	if (p->m_flags & M_IP_FRAG) {
1074		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1075			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1076			ip_freef(head, fp);
1077		}
1078		goto done;
1079	}
1080
1081	/*
1082	 * Reassembly is complete.  Make sure the packet is a sane size.
1083	 */
1084	q = fp->ipq_frags;
1085	ip = GETIP(q);
1086	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1087		IPSTAT_INC(ips_toolong);
1088		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1089		ip_freef(head, fp);
1090		goto done;
1091	}
1092
1093	/*
1094	 * Concatenate fragments.
1095	 */
1096	m = q;
1097	t = m->m_next;
1098	m->m_next = NULL;
1099	m_cat(m, t);
1100	nq = q->m_nextpkt;
1101	q->m_nextpkt = NULL;
1102	for (q = nq; q != NULL; q = nq) {
1103		nq = q->m_nextpkt;
1104		q->m_nextpkt = NULL;
1105		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1106		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1107		m_cat(m, q);
1108	}
1109	/*
1110	 * In order to do checksumming faster we do 'end-around carry' here
1111	 * (and not in for{} loop), though it implies we are not going to
1112	 * reassemble more than 64k fragments.
1113	 */
1114	m->m_pkthdr.csum_data =
1115	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1116#ifdef MAC
1117	mac_ipq_reassemble(fp, m);
1118	mac_ipq_destroy(fp);
1119#endif
1120
1121	/*
1122	 * Create header for new ip packet by modifying header of first
1123	 * packet;  dequeue and discard fragment reassembly header.
1124	 * Make header visible.
1125	 */
1126	ip->ip_len = htons((ip->ip_hl << 2) + next);
1127	ip->ip_src = fp->ipq_src;
1128	ip->ip_dst = fp->ipq_dst;
1129	TAILQ_REMOVE(head, fp, ipq_list);
1130	V_nipq--;
1131	uma_zfree(V_ipq_zone, fp);
1132	m->m_len += (ip->ip_hl << 2);
1133	m->m_data -= (ip->ip_hl << 2);
1134	/* some debugging cruft by sklower, below, will go away soon */
1135	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1136		m_fixhdr(m);
1137	IPSTAT_INC(ips_reassembled);
1138	IPQ_UNLOCK();
1139	return (m);
1140
1141dropfrag:
1142	IPSTAT_INC(ips_fragdropped);
1143	if (fp != NULL)
1144		fp->ipq_nfrags--;
1145	m_freem(m);
1146done:
1147	IPQ_UNLOCK();
1148	return (NULL);
1149
1150#undef GETIP
1151}
1152
1153/*
1154 * Free a fragment reassembly header and all
1155 * associated datagrams.
1156 */
1157static void
1158ip_freef(struct ipqhead *fhp, struct ipq *fp)
1159{
1160	struct mbuf *q;
1161
1162	IPQ_LOCK_ASSERT();
1163
1164	while (fp->ipq_frags) {
1165		q = fp->ipq_frags;
1166		fp->ipq_frags = q->m_nextpkt;
1167		m_freem(q);
1168	}
1169	TAILQ_REMOVE(fhp, fp, ipq_list);
1170	uma_zfree(V_ipq_zone, fp);
1171	V_nipq--;
1172}
1173
1174/*
1175 * IP timer processing;
1176 * if a timer expires on a reassembly
1177 * queue, discard it.
1178 */
1179void
1180ip_slowtimo(void)
1181{
1182	VNET_ITERATOR_DECL(vnet_iter);
1183	struct ipq *fp;
1184	int i;
1185
1186	VNET_LIST_RLOCK_NOSLEEP();
1187	IPQ_LOCK();
1188	VNET_FOREACH(vnet_iter) {
1189		CURVNET_SET(vnet_iter);
1190		for (i = 0; i < IPREASS_NHASH; i++) {
1191			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1192				struct ipq *fpp;
1193
1194				fpp = fp;
1195				fp = TAILQ_NEXT(fp, ipq_list);
1196				if(--fpp->ipq_ttl == 0) {
1197					IPSTAT_ADD(ips_fragtimeout,
1198					    fpp->ipq_nfrags);
1199					ip_freef(&V_ipq[i], fpp);
1200				}
1201			}
1202		}
1203		/*
1204		 * If we are over the maximum number of fragments
1205		 * (due to the limit being lowered), drain off
1206		 * enough to get down to the new limit.
1207		 */
1208		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1209			for (i = 0; i < IPREASS_NHASH; i++) {
1210				while (V_nipq > V_maxnipq &&
1211				    !TAILQ_EMPTY(&V_ipq[i])) {
1212					IPSTAT_ADD(ips_fragdropped,
1213					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1214					ip_freef(&V_ipq[i],
1215					    TAILQ_FIRST(&V_ipq[i]));
1216				}
1217			}
1218		}
1219		CURVNET_RESTORE();
1220	}
1221	IPQ_UNLOCK();
1222	VNET_LIST_RUNLOCK_NOSLEEP();
1223}
1224
1225/*
1226 * Drain off all datagram fragments.
1227 */
1228static void
1229ip_drain_locked(void)
1230{
1231	int     i;
1232
1233	IPQ_LOCK_ASSERT();
1234
1235	for (i = 0; i < IPREASS_NHASH; i++) {
1236		while(!TAILQ_EMPTY(&V_ipq[i])) {
1237			IPSTAT_ADD(ips_fragdropped,
1238			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1239			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1240		}
1241	}
1242}
1243
1244void
1245ip_drain(void)
1246{
1247	VNET_ITERATOR_DECL(vnet_iter);
1248
1249	VNET_LIST_RLOCK_NOSLEEP();
1250	IPQ_LOCK();
1251	VNET_FOREACH(vnet_iter) {
1252		CURVNET_SET(vnet_iter);
1253		ip_drain_locked();
1254		CURVNET_RESTORE();
1255	}
1256	IPQ_UNLOCK();
1257	VNET_LIST_RUNLOCK_NOSLEEP();
1258	in_rtqdrain();
1259}
1260
1261/*
1262 * The protocol to be inserted into ip_protox[] must be already registered
1263 * in inetsw[], either statically or through pf_proto_register().
1264 */
1265int
1266ipproto_register(short ipproto)
1267{
1268	struct protosw *pr;
1269
1270	/* Sanity checks. */
1271	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1272		return (EPROTONOSUPPORT);
1273
1274	/*
1275	 * The protocol slot must not be occupied by another protocol
1276	 * already.  An index pointing to IPPROTO_RAW is unused.
1277	 */
1278	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1279	if (pr == NULL)
1280		return (EPFNOSUPPORT);
1281	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1282		return (EEXIST);
1283
1284	/* Find the protocol position in inetsw[] and set the index. */
1285	for (pr = inetdomain.dom_protosw;
1286	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1287		if (pr->pr_domain->dom_family == PF_INET &&
1288		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1289			ip_protox[pr->pr_protocol] = pr - inetsw;
1290			return (0);
1291		}
1292	}
1293	return (EPROTONOSUPPORT);
1294}
1295
1296int
1297ipproto_unregister(short ipproto)
1298{
1299	struct protosw *pr;
1300
1301	/* Sanity checks. */
1302	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1303		return (EPROTONOSUPPORT);
1304
1305	/* Check if the protocol was indeed registered. */
1306	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1307	if (pr == NULL)
1308		return (EPFNOSUPPORT);
1309	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1310		return (ENOENT);
1311
1312	/* Reset the protocol slot to IPPROTO_RAW. */
1313	ip_protox[ipproto] = pr - inetsw;
1314	return (0);
1315}
1316
1317/*
1318 * Given address of next destination (final or next hop), return (referenced)
1319 * internet address info of interface to be used to get there.
1320 */
1321struct in_ifaddr *
1322ip_rtaddr(struct in_addr dst, u_int fibnum)
1323{
1324	struct route sro;
1325	struct sockaddr_in *sin;
1326	struct in_ifaddr *ia;
1327
1328	bzero(&sro, sizeof(sro));
1329	sin = (struct sockaddr_in *)&sro.ro_dst;
1330	sin->sin_family = AF_INET;
1331	sin->sin_len = sizeof(*sin);
1332	sin->sin_addr = dst;
1333	in_rtalloc_ign(&sro, 0, fibnum);
1334
1335	if (sro.ro_rt == NULL)
1336		return (NULL);
1337
1338	ia = ifatoia(sro.ro_rt->rt_ifa);
1339	ifa_ref(&ia->ia_ifa);
1340	RTFREE(sro.ro_rt);
1341	return (ia);
1342}
1343
1344u_char inetctlerrmap[PRC_NCMDS] = {
1345	0,		0,		0,		0,
1346	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1347	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1348	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1349	0,		0,		EHOSTUNREACH,	0,
1350	ENOPROTOOPT,	ECONNREFUSED
1351};
1352
1353/*
1354 * Forward a packet.  If some error occurs return the sender
1355 * an icmp packet.  Note we can't always generate a meaningful
1356 * icmp message because icmp doesn't have a large enough repertoire
1357 * of codes and types.
1358 *
1359 * If not forwarding, just drop the packet.  This could be confusing
1360 * if ipforwarding was zero but some routing protocol was advancing
1361 * us as a gateway to somewhere.  However, we must let the routing
1362 * protocol deal with that.
1363 *
1364 * The srcrt parameter indicates whether the packet is being forwarded
1365 * via a source route.
1366 */
1367void
1368ip_forward(struct mbuf *m, int srcrt)
1369{
1370	struct ip *ip = mtod(m, struct ip *);
1371	struct in_ifaddr *ia;
1372	struct mbuf *mcopy;
1373	struct in_addr dest;
1374	struct route ro;
1375	int error, type = 0, code = 0, mtu = 0;
1376
1377	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1378		IPSTAT_INC(ips_cantforward);
1379		m_freem(m);
1380		return;
1381	}
1382#ifdef IPSTEALTH
1383	if (!V_ipstealth) {
1384#endif
1385		if (ip->ip_ttl <= IPTTLDEC) {
1386			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1387			    0, 0);
1388			return;
1389		}
1390#ifdef IPSTEALTH
1391	}
1392#endif
1393
1394	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1395#ifndef IPSEC
1396	/*
1397	 * 'ia' may be NULL if there is no route for this destination.
1398	 * In case of IPsec, Don't discard it just yet, but pass it to
1399	 * ip_output in case of outgoing IPsec policy.
1400	 */
1401	if (!srcrt && ia == NULL) {
1402		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1403		return;
1404	}
1405#endif
1406
1407	/*
1408	 * Save the IP header and at most 8 bytes of the payload,
1409	 * in case we need to generate an ICMP message to the src.
1410	 *
1411	 * XXX this can be optimized a lot by saving the data in a local
1412	 * buffer on the stack (72 bytes at most), and only allocating the
1413	 * mbuf if really necessary. The vast majority of the packets
1414	 * are forwarded without having to send an ICMP back (either
1415	 * because unnecessary, or because rate limited), so we are
1416	 * really we are wasting a lot of work here.
1417	 *
1418	 * We don't use m_copy() because it might return a reference
1419	 * to a shared cluster. Both this function and ip_output()
1420	 * assume exclusive access to the IP header in `m', so any
1421	 * data in a cluster may change before we reach icmp_error().
1422	 */
1423	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1424	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1425		/*
1426		 * It's probably ok if the pkthdr dup fails (because
1427		 * the deep copy of the tag chain failed), but for now
1428		 * be conservative and just discard the copy since
1429		 * code below may some day want the tags.
1430		 */
1431		m_free(mcopy);
1432		mcopy = NULL;
1433	}
1434	if (mcopy != NULL) {
1435		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1436		mcopy->m_pkthdr.len = mcopy->m_len;
1437		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1438	}
1439
1440#ifdef IPSTEALTH
1441	if (!V_ipstealth) {
1442#endif
1443		ip->ip_ttl -= IPTTLDEC;
1444#ifdef IPSTEALTH
1445	}
1446#endif
1447
1448	/*
1449	 * If forwarding packet using same interface that it came in on,
1450	 * perhaps should send a redirect to sender to shortcut a hop.
1451	 * Only send redirect if source is sending directly to us,
1452	 * and if packet was not source routed (or has any options).
1453	 * Also, don't send redirect if forwarding using a default route
1454	 * or a route modified by a redirect.
1455	 */
1456	dest.s_addr = 0;
1457	if (!srcrt && V_ipsendredirects &&
1458	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1459		struct sockaddr_in *sin;
1460		struct rtentry *rt;
1461
1462		bzero(&ro, sizeof(ro));
1463		sin = (struct sockaddr_in *)&ro.ro_dst;
1464		sin->sin_family = AF_INET;
1465		sin->sin_len = sizeof(*sin);
1466		sin->sin_addr = ip->ip_dst;
1467		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1468
1469		rt = ro.ro_rt;
1470
1471		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1472		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1473#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1474			u_long src = ntohl(ip->ip_src.s_addr);
1475
1476			if (RTA(rt) &&
1477			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1478				if (rt->rt_flags & RTF_GATEWAY)
1479					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1480				else
1481					dest.s_addr = ip->ip_dst.s_addr;
1482				/* Router requirements says to only send host redirects */
1483				type = ICMP_REDIRECT;
1484				code = ICMP_REDIRECT_HOST;
1485			}
1486		}
1487		if (rt)
1488			RTFREE(rt);
1489	}
1490
1491	/*
1492	 * Try to cache the route MTU from ip_output so we can consider it for
1493	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1494	 */
1495	bzero(&ro, sizeof(ro));
1496
1497	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1498
1499	if (error == EMSGSIZE && ro.ro_rt)
1500		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1501	RO_RTFREE(&ro);
1502
1503	if (error)
1504		IPSTAT_INC(ips_cantforward);
1505	else {
1506		IPSTAT_INC(ips_forward);
1507		if (type)
1508			IPSTAT_INC(ips_redirectsent);
1509		else {
1510			if (mcopy)
1511				m_freem(mcopy);
1512			if (ia != NULL)
1513				ifa_free(&ia->ia_ifa);
1514			return;
1515		}
1516	}
1517	if (mcopy == NULL) {
1518		if (ia != NULL)
1519			ifa_free(&ia->ia_ifa);
1520		return;
1521	}
1522
1523	switch (error) {
1524
1525	case 0:				/* forwarded, but need redirect */
1526		/* type, code set above */
1527		break;
1528
1529	case ENETUNREACH:
1530	case EHOSTUNREACH:
1531	case ENETDOWN:
1532	case EHOSTDOWN:
1533	default:
1534		type = ICMP_UNREACH;
1535		code = ICMP_UNREACH_HOST;
1536		break;
1537
1538	case EMSGSIZE:
1539		type = ICMP_UNREACH;
1540		code = ICMP_UNREACH_NEEDFRAG;
1541
1542#ifdef IPSEC
1543		/*
1544		 * If IPsec is configured for this path,
1545		 * override any possibly mtu value set by ip_output.
1546		 */
1547		mtu = ip_ipsec_mtu(mcopy, mtu);
1548#endif /* IPSEC */
1549		/*
1550		 * If the MTU was set before make sure we are below the
1551		 * interface MTU.
1552		 * If the MTU wasn't set before use the interface mtu or
1553		 * fall back to the next smaller mtu step compared to the
1554		 * current packet size.
1555		 */
1556		if (mtu != 0) {
1557			if (ia != NULL)
1558				mtu = min(mtu, ia->ia_ifp->if_mtu);
1559		} else {
1560			if (ia != NULL)
1561				mtu = ia->ia_ifp->if_mtu;
1562			else
1563				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1564		}
1565		IPSTAT_INC(ips_cantfrag);
1566		break;
1567
1568	case ENOBUFS:
1569		/*
1570		 * A router should not generate ICMP_SOURCEQUENCH as
1571		 * required in RFC1812 Requirements for IP Version 4 Routers.
1572		 * Source quench could be a big problem under DoS attacks,
1573		 * or if the underlying interface is rate-limited.
1574		 * Those who need source quench packets may re-enable them
1575		 * via the net.inet.ip.sendsourcequench sysctl.
1576		 */
1577		if (V_ip_sendsourcequench == 0) {
1578			m_freem(mcopy);
1579			if (ia != NULL)
1580				ifa_free(&ia->ia_ifa);
1581			return;
1582		} else {
1583			type = ICMP_SOURCEQUENCH;
1584			code = 0;
1585		}
1586		break;
1587
1588	case EACCES:			/* ipfw denied packet */
1589		m_freem(mcopy);
1590		if (ia != NULL)
1591			ifa_free(&ia->ia_ifa);
1592		return;
1593	}
1594	if (ia != NULL)
1595		ifa_free(&ia->ia_ifa);
1596	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1597}
1598
1599void
1600ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1601    struct mbuf *m)
1602{
1603
1604	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1605		struct bintime bt;
1606
1607		bintime(&bt);
1608		if (inp->inp_socket->so_options & SO_BINTIME) {
1609			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1610			    SCM_BINTIME, SOL_SOCKET);
1611			if (*mp)
1612				mp = &(*mp)->m_next;
1613		}
1614		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1615			struct timeval tv;
1616
1617			bintime2timeval(&bt, &tv);
1618			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1619			    SCM_TIMESTAMP, SOL_SOCKET);
1620			if (*mp)
1621				mp = &(*mp)->m_next;
1622		}
1623	}
1624	if (inp->inp_flags & INP_RECVDSTADDR) {
1625		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1626		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1627		if (*mp)
1628			mp = &(*mp)->m_next;
1629	}
1630	if (inp->inp_flags & INP_RECVTTL) {
1631		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1632		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1633		if (*mp)
1634			mp = &(*mp)->m_next;
1635	}
1636#ifdef notyet
1637	/* XXX
1638	 * Moving these out of udp_input() made them even more broken
1639	 * than they already were.
1640	 */
1641	/* options were tossed already */
1642	if (inp->inp_flags & INP_RECVOPTS) {
1643		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1644		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1645		if (*mp)
1646			mp = &(*mp)->m_next;
1647	}
1648	/* ip_srcroute doesn't do what we want here, need to fix */
1649	if (inp->inp_flags & INP_RECVRETOPTS) {
1650		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1651		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1652		if (*mp)
1653			mp = &(*mp)->m_next;
1654	}
1655#endif
1656	if (inp->inp_flags & INP_RECVIF) {
1657		struct ifnet *ifp;
1658		struct sdlbuf {
1659			struct sockaddr_dl sdl;
1660			u_char	pad[32];
1661		} sdlbuf;
1662		struct sockaddr_dl *sdp;
1663		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1664
1665		if ((ifp = m->m_pkthdr.rcvif) &&
1666		    ifp->if_index && ifp->if_index <= V_if_index) {
1667			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1668			/*
1669			 * Change our mind and don't try copy.
1670			 */
1671			if (sdp->sdl_family != AF_LINK ||
1672			    sdp->sdl_len > sizeof(sdlbuf)) {
1673				goto makedummy;
1674			}
1675			bcopy(sdp, sdl2, sdp->sdl_len);
1676		} else {
1677makedummy:
1678			sdl2->sdl_len =
1679			    offsetof(struct sockaddr_dl, sdl_data[0]);
1680			sdl2->sdl_family = AF_LINK;
1681			sdl2->sdl_index = 0;
1682			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1683		}
1684		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1685		    IP_RECVIF, IPPROTO_IP);
1686		if (*mp)
1687			mp = &(*mp)->m_next;
1688	}
1689	if (inp->inp_flags & INP_RECVTOS) {
1690		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1691		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1692		if (*mp)
1693			mp = &(*mp)->m_next;
1694	}
1695}
1696
1697/*
1698 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1699 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1700 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1701 * compiled.
1702 */
1703static VNET_DEFINE(int, ip_rsvp_on);
1704VNET_DEFINE(struct socket *, ip_rsvpd);
1705
1706#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1707
1708int
1709ip_rsvp_init(struct socket *so)
1710{
1711
1712	if (so->so_type != SOCK_RAW ||
1713	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1714		return EOPNOTSUPP;
1715
1716	if (V_ip_rsvpd != NULL)
1717		return EADDRINUSE;
1718
1719	V_ip_rsvpd = so;
1720	/*
1721	 * This may seem silly, but we need to be sure we don't over-increment
1722	 * the RSVP counter, in case something slips up.
1723	 */
1724	if (!V_ip_rsvp_on) {
1725		V_ip_rsvp_on = 1;
1726		V_rsvp_on++;
1727	}
1728
1729	return 0;
1730}
1731
1732int
1733ip_rsvp_done(void)
1734{
1735
1736	V_ip_rsvpd = NULL;
1737	/*
1738	 * This may seem silly, but we need to be sure we don't over-decrement
1739	 * the RSVP counter, in case something slips up.
1740	 */
1741	if (V_ip_rsvp_on) {
1742		V_ip_rsvp_on = 0;
1743		V_rsvp_on--;
1744	}
1745	return 0;
1746}
1747
1748void
1749rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1750{
1751
1752	if (rsvp_input_p) { /* call the real one if loaded */
1753		rsvp_input_p(m, off);
1754		return;
1755	}
1756
1757	/* Can still get packets with rsvp_on = 0 if there is a local member
1758	 * of the group to which the RSVP packet is addressed.  But in this
1759	 * case we want to throw the packet away.
1760	 */
1761
1762	if (!V_rsvp_on) {
1763		m_freem(m);
1764		return;
1765	}
1766
1767	if (V_ip_rsvpd != NULL) {
1768		rip_input(m, off);
1769		return;
1770	}
1771	/* Drop the packet */
1772	m_freem(m);
1773}
1774