ip_input.c revision 253083
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 253083 2013-07-09 09:43:03Z ae $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/rwlock.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54
55#include <net/pfil.h>
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_var.h>
59#include <net/if_dl.h>
60#include <net/route.h>
61#include <net/netisr.h>
62#include <net/vnet.h>
63#include <net/flowtable.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_fw.h>
72#include <netinet/ip_icmp.h>
73#include <netinet/ip_options.h>
74#include <machine/in_cksum.h>
75#include <netinet/ip_carp.h>
76#ifdef IPSEC
77#include <netinet/ip_ipsec.h>
78#endif /* IPSEC */
79
80#include <sys/socketvar.h>
81
82#include <security/mac/mac_framework.h>
83
84#ifdef CTASSERT
85CTASSERT(sizeof(struct ip) == 20);
86#endif
87
88struct	rwlock in_ifaddr_lock;
89RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
90
91VNET_DEFINE(int, rsvp_on);
92
93VNET_DEFINE(int, ipforwarding);
94SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95    &VNET_NAME(ipforwarding), 0,
96    "Enable IP forwarding between interfaces");
97
98static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
99#define	V_ipsendredirects	VNET(ipsendredirects)
100SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101    &VNET_NAME(ipsendredirects), 0,
102    "Enable sending IP redirects");
103
104static VNET_DEFINE(int, ip_keepfaith);
105#define	V_ip_keepfaith		VNET(ip_keepfaith)
106SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
107    &VNET_NAME(ip_keepfaith), 0,
108    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
109
110static VNET_DEFINE(int, ip_sendsourcequench);
111#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
112SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
113    &VNET_NAME(ip_sendsourcequench), 0,
114    "Enable the transmission of source quench packets");
115
116VNET_DEFINE(int, ip_do_randomid);
117SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
118    &VNET_NAME(ip_do_randomid), 0,
119    "Assign random ip_id values");
120
121/*
122 * XXX - Setting ip_checkinterface mostly implements the receive side of
123 * the Strong ES model described in RFC 1122, but since the routing table
124 * and transmit implementation do not implement the Strong ES model,
125 * setting this to 1 results in an odd hybrid.
126 *
127 * XXX - ip_checkinterface currently must be disabled if you use ipnat
128 * to translate the destination address to another local interface.
129 *
130 * XXX - ip_checkinterface must be disabled if you add IP aliases
131 * to the loopback interface instead of the interface where the
132 * packets for those addresses are received.
133 */
134static VNET_DEFINE(int, ip_checkinterface);
135#define	V_ip_checkinterface	VNET(ip_checkinterface)
136SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
137    &VNET_NAME(ip_checkinterface), 0,
138    "Verify packet arrives on correct interface");
139
140VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
141
142static struct netisr_handler ip_nh = {
143	.nh_name = "ip",
144	.nh_handler = ip_input,
145	.nh_proto = NETISR_IP,
146	.nh_policy = NETISR_POLICY_FLOW,
147};
148
149extern	struct domain inetdomain;
150extern	struct protosw inetsw[];
151u_char	ip_protox[IPPROTO_MAX];
152VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
153VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
154VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
155
156static VNET_DEFINE(uma_zone_t, ipq_zone);
157static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
158static struct mtx ipqlock;
159
160#define	V_ipq_zone		VNET(ipq_zone)
161#define	V_ipq			VNET(ipq)
162
163#define	IPQ_LOCK()	mtx_lock(&ipqlock)
164#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
165#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
166#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
167
168static void	maxnipq_update(void);
169static void	ipq_zone_change(void *);
170static void	ip_drain_locked(void);
171
172static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
173static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
174#define	V_maxnipq		VNET(maxnipq)
175#define	V_nipq			VNET(nipq)
176SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
177    &VNET_NAME(nipq), 0,
178    "Current number of IPv4 fragment reassembly queue entries");
179
180static VNET_DEFINE(int, maxfragsperpacket);
181#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
182SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
183    &VNET_NAME(maxfragsperpacket), 0,
184    "Maximum number of IPv4 fragments allowed per packet");
185
186#ifdef IPCTL_DEFMTU
187SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188    &ip_mtu, 0, "Default MTU");
189#endif
190
191#ifdef IPSTEALTH
192VNET_DEFINE(int, ipstealth);
193SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194    &VNET_NAME(ipstealth), 0,
195    "IP stealth mode, no TTL decrementation on forwarding");
196#endif
197
198#ifdef FLOWTABLE
199static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
200VNET_DEFINE(struct flowtable *, ip_ft);
201#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
202
203SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
204    &VNET_NAME(ip_output_flowtable_size), 2048,
205    "number of entries in the per-cpu output flow caches");
206#endif
207
208static void	ip_freef(struct ipqhead *, struct ipq *);
209
210/*
211 * IP statistics are stored in the "array" of counter(9)s.
212 */
213VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
214VNET_PCPUSTAT_SYSINIT(ipstat);
215SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
216    "IP statistics (struct ipstat, netinet/ip_var.h)");
217
218#ifdef VIMAGE
219VNET_PCPUSTAT_SYSUNINIT(ipstat);
220#endif /* VIMAGE */
221
222/*
223 * Kernel module interface for updating ipstat.  The argument is an index
224 * into ipstat treated as an array.
225 */
226void
227kmod_ipstat_inc(int statnum)
228{
229
230	counter_u64_add(VNET(ipstat)[statnum], 1);
231}
232
233void
234kmod_ipstat_dec(int statnum)
235{
236
237	counter_u64_add(VNET(ipstat)[statnum], -1);
238}
239
240static int
241sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
242{
243	int error, qlimit;
244
245	netisr_getqlimit(&ip_nh, &qlimit);
246	error = sysctl_handle_int(oidp, &qlimit, 0, req);
247	if (error || !req->newptr)
248		return (error);
249	if (qlimit < 1)
250		return (EINVAL);
251	return (netisr_setqlimit(&ip_nh, qlimit));
252}
253SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
254    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
255    "Maximum size of the IP input queue");
256
257static int
258sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
259{
260	u_int64_t qdrops_long;
261	int error, qdrops;
262
263	netisr_getqdrops(&ip_nh, &qdrops_long);
264	qdrops = qdrops_long;
265	error = sysctl_handle_int(oidp, &qdrops, 0, req);
266	if (error || !req->newptr)
267		return (error);
268	if (qdrops != 0)
269		return (EINVAL);
270	netisr_clearqdrops(&ip_nh);
271	return (0);
272}
273
274SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
275    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
276    "Number of packets dropped from the IP input queue");
277
278/*
279 * IP initialization: fill in IP protocol switch table.
280 * All protocols not implemented in kernel go to raw IP protocol handler.
281 */
282void
283ip_init(void)
284{
285	struct protosw *pr;
286	int i;
287
288	V_ip_id = time_second & 0xffff;
289
290	TAILQ_INIT(&V_in_ifaddrhead);
291	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
292
293	/* Initialize IP reassembly queue. */
294	for (i = 0; i < IPREASS_NHASH; i++)
295		TAILQ_INIT(&V_ipq[i]);
296	V_maxnipq = nmbclusters / 32;
297	V_maxfragsperpacket = 16;
298	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
299	    NULL, UMA_ALIGN_PTR, 0);
300	maxnipq_update();
301
302	/* Initialize packet filter hooks. */
303	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
304	V_inet_pfil_hook.ph_af = AF_INET;
305	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
306		printf("%s: WARNING: unable to register pfil hook, "
307			"error %d\n", __func__, i);
308
309#ifdef FLOWTABLE
310	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
311		&V_ip_output_flowtable_size)) {
312		if (V_ip_output_flowtable_size < 256)
313			V_ip_output_flowtable_size = 256;
314		if (!powerof2(V_ip_output_flowtable_size)) {
315			printf("flowtable must be power of 2 size\n");
316			V_ip_output_flowtable_size = 2048;
317		}
318	} else {
319		/*
320		 * round up to the next power of 2
321		 */
322		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
323	}
324	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
325#endif
326
327	/* Skip initialization of globals for non-default instances. */
328	if (!IS_DEFAULT_VNET(curvnet))
329		return;
330
331	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
332	if (pr == NULL)
333		panic("ip_init: PF_INET not found");
334
335	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
336	for (i = 0; i < IPPROTO_MAX; i++)
337		ip_protox[i] = pr - inetsw;
338	/*
339	 * Cycle through IP protocols and put them into the appropriate place
340	 * in ip_protox[].
341	 */
342	for (pr = inetdomain.dom_protosw;
343	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
344		if (pr->pr_domain->dom_family == PF_INET &&
345		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
346			/* Be careful to only index valid IP protocols. */
347			if (pr->pr_protocol < IPPROTO_MAX)
348				ip_protox[pr->pr_protocol] = pr - inetsw;
349		}
350
351	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
352		NULL, EVENTHANDLER_PRI_ANY);
353
354	/* Initialize various other remaining things. */
355	IPQ_LOCK_INIT();
356	netisr_register(&ip_nh);
357}
358
359#ifdef VIMAGE
360void
361ip_destroy(void)
362{
363
364	/* Cleanup in_ifaddr hash table; should be empty. */
365	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
366
367	IPQ_LOCK();
368	ip_drain_locked();
369	IPQ_UNLOCK();
370
371	uma_zdestroy(V_ipq_zone);
372}
373#endif
374
375/*
376 * Ip input routine.  Checksum and byte swap header.  If fragmented
377 * try to reassemble.  Process options.  Pass to next level.
378 */
379void
380ip_input(struct mbuf *m)
381{
382	struct ip *ip = NULL;
383	struct in_ifaddr *ia = NULL;
384	struct ifaddr *ifa;
385	struct ifnet *ifp;
386	int    checkif, hlen = 0;
387	uint16_t sum, ip_len;
388	int dchg = 0;				/* dest changed after fw */
389	struct in_addr odst;			/* original dst address */
390
391	M_ASSERTPKTHDR(m);
392
393	if (m->m_flags & M_FASTFWD_OURS) {
394		m->m_flags &= ~M_FASTFWD_OURS;
395		/* Set up some basics that will be used later. */
396		ip = mtod(m, struct ip *);
397		hlen = ip->ip_hl << 2;
398		ip_len = ntohs(ip->ip_len);
399		goto ours;
400	}
401
402	IPSTAT_INC(ips_total);
403
404	if (m->m_pkthdr.len < sizeof(struct ip))
405		goto tooshort;
406
407	if (m->m_len < sizeof (struct ip) &&
408	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
409		IPSTAT_INC(ips_toosmall);
410		return;
411	}
412	ip = mtod(m, struct ip *);
413
414	if (ip->ip_v != IPVERSION) {
415		IPSTAT_INC(ips_badvers);
416		goto bad;
417	}
418
419	hlen = ip->ip_hl << 2;
420	if (hlen < sizeof(struct ip)) {	/* minimum header length */
421		IPSTAT_INC(ips_badhlen);
422		goto bad;
423	}
424	if (hlen > m->m_len) {
425		if ((m = m_pullup(m, hlen)) == NULL) {
426			IPSTAT_INC(ips_badhlen);
427			return;
428		}
429		ip = mtod(m, struct ip *);
430	}
431
432	/* 127/8 must not appear on wire - RFC1122 */
433	ifp = m->m_pkthdr.rcvif;
434	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
435	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
436		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
437			IPSTAT_INC(ips_badaddr);
438			goto bad;
439		}
440	}
441
442	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
443		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
444	} else {
445		if (hlen == sizeof(struct ip)) {
446			sum = in_cksum_hdr(ip);
447		} else {
448			sum = in_cksum(m, hlen);
449		}
450	}
451	if (sum) {
452		IPSTAT_INC(ips_badsum);
453		goto bad;
454	}
455
456#ifdef ALTQ
457	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
458		/* packet is dropped by traffic conditioner */
459		return;
460#endif
461
462	ip_len = ntohs(ip->ip_len);
463	if (ip_len < hlen) {
464		IPSTAT_INC(ips_badlen);
465		goto bad;
466	}
467
468	/*
469	 * Check that the amount of data in the buffers
470	 * is as at least much as the IP header would have us expect.
471	 * Trim mbufs if longer than we expect.
472	 * Drop packet if shorter than we expect.
473	 */
474	if (m->m_pkthdr.len < ip_len) {
475tooshort:
476		IPSTAT_INC(ips_tooshort);
477		goto bad;
478	}
479	if (m->m_pkthdr.len > ip_len) {
480		if (m->m_len == m->m_pkthdr.len) {
481			m->m_len = ip_len;
482			m->m_pkthdr.len = ip_len;
483		} else
484			m_adj(m, ip_len - m->m_pkthdr.len);
485	}
486#ifdef IPSEC
487	/*
488	 * Bypass packet filtering for packets previously handled by IPsec.
489	 */
490	if (ip_ipsec_filtertunnel(m))
491		goto passin;
492#endif /* IPSEC */
493
494	/*
495	 * Run through list of hooks for input packets.
496	 *
497	 * NB: Beware of the destination address changing (e.g.
498	 *     by NAT rewriting).  When this happens, tell
499	 *     ip_forward to do the right thing.
500	 */
501
502	/* Jump over all PFIL processing if hooks are not active. */
503	if (!PFIL_HOOKED(&V_inet_pfil_hook))
504		goto passin;
505
506	odst = ip->ip_dst;
507	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
508		return;
509	if (m == NULL)			/* consumed by filter */
510		return;
511
512	ip = mtod(m, struct ip *);
513	dchg = (odst.s_addr != ip->ip_dst.s_addr);
514	ifp = m->m_pkthdr.rcvif;
515
516	if (m->m_flags & M_FASTFWD_OURS) {
517		m->m_flags &= ~M_FASTFWD_OURS;
518		goto ours;
519	}
520	if (m->m_flags & M_IP_NEXTHOP) {
521		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
522		if (dchg != 0) {
523			/*
524			 * Directly ship the packet on.  This allows
525			 * forwarding packets originally destined to us
526			 * to some other directly connected host.
527			 */
528			ip_forward(m, 1);
529			return;
530		}
531	}
532passin:
533
534	/*
535	 * Process options and, if not destined for us,
536	 * ship it on.  ip_dooptions returns 1 when an
537	 * error was detected (causing an icmp message
538	 * to be sent and the original packet to be freed).
539	 */
540	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
541		return;
542
543        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
544         * matter if it is destined to another node, or whether it is
545         * a multicast one, RSVP wants it! and prevents it from being forwarded
546         * anywhere else. Also checks if the rsvp daemon is running before
547	 * grabbing the packet.
548         */
549	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
550		goto ours;
551
552	/*
553	 * Check our list of addresses, to see if the packet is for us.
554	 * If we don't have any addresses, assume any unicast packet
555	 * we receive might be for us (and let the upper layers deal
556	 * with it).
557	 */
558	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
559	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
560		goto ours;
561
562	/*
563	 * Enable a consistency check between the destination address
564	 * and the arrival interface for a unicast packet (the RFC 1122
565	 * strong ES model) if IP forwarding is disabled and the packet
566	 * is not locally generated and the packet is not subject to
567	 * 'ipfw fwd'.
568	 *
569	 * XXX - Checking also should be disabled if the destination
570	 * address is ipnat'ed to a different interface.
571	 *
572	 * XXX - Checking is incompatible with IP aliases added
573	 * to the loopback interface instead of the interface where
574	 * the packets are received.
575	 *
576	 * XXX - This is the case for carp vhost IPs as well so we
577	 * insert a workaround. If the packet got here, we already
578	 * checked with carp_iamatch() and carp_forus().
579	 */
580	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
581	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
582	    ifp->if_carp == NULL && (dchg == 0);
583
584	/*
585	 * Check for exact addresses in the hash bucket.
586	 */
587	/* IN_IFADDR_RLOCK(); */
588	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
589		/*
590		 * If the address matches, verify that the packet
591		 * arrived via the correct interface if checking is
592		 * enabled.
593		 */
594		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
595		    (!checkif || ia->ia_ifp == ifp)) {
596			ifa_ref(&ia->ia_ifa);
597			/* IN_IFADDR_RUNLOCK(); */
598			goto ours;
599		}
600	}
601	/* IN_IFADDR_RUNLOCK(); */
602
603	/*
604	 * Check for broadcast addresses.
605	 *
606	 * Only accept broadcast packets that arrive via the matching
607	 * interface.  Reception of forwarded directed broadcasts would
608	 * be handled via ip_forward() and ether_output() with the loopback
609	 * into the stack for SIMPLEX interfaces handled by ether_output().
610	 */
611	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
612		IF_ADDR_RLOCK(ifp);
613	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
614			if (ifa->ifa_addr->sa_family != AF_INET)
615				continue;
616			ia = ifatoia(ifa);
617			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
618			    ip->ip_dst.s_addr) {
619				ifa_ref(ifa);
620				IF_ADDR_RUNLOCK(ifp);
621				goto ours;
622			}
623#ifdef BOOTP_COMPAT
624			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
625				ifa_ref(ifa);
626				IF_ADDR_RUNLOCK(ifp);
627				goto ours;
628			}
629#endif
630		}
631		IF_ADDR_RUNLOCK(ifp);
632		ia = NULL;
633	}
634	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
635	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
636		IPSTAT_INC(ips_cantforward);
637		m_freem(m);
638		return;
639	}
640	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
641		if (V_ip_mrouter) {
642			/*
643			 * If we are acting as a multicast router, all
644			 * incoming multicast packets are passed to the
645			 * kernel-level multicast forwarding function.
646			 * The packet is returned (relatively) intact; if
647			 * ip_mforward() returns a non-zero value, the packet
648			 * must be discarded, else it may be accepted below.
649			 */
650			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
651				IPSTAT_INC(ips_cantforward);
652				m_freem(m);
653				return;
654			}
655
656			/*
657			 * The process-level routing daemon needs to receive
658			 * all multicast IGMP packets, whether or not this
659			 * host belongs to their destination groups.
660			 */
661			if (ip->ip_p == IPPROTO_IGMP)
662				goto ours;
663			IPSTAT_INC(ips_forward);
664		}
665		/*
666		 * Assume the packet is for us, to avoid prematurely taking
667		 * a lock on the in_multi hash. Protocols must perform
668		 * their own filtering and update statistics accordingly.
669		 */
670		goto ours;
671	}
672	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
673		goto ours;
674	if (ip->ip_dst.s_addr == INADDR_ANY)
675		goto ours;
676
677	/*
678	 * FAITH(Firewall Aided Internet Translator)
679	 */
680	if (ifp && ifp->if_type == IFT_FAITH) {
681		if (V_ip_keepfaith) {
682			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
683				goto ours;
684		}
685		m_freem(m);
686		return;
687	}
688
689	/*
690	 * Not for us; forward if possible and desirable.
691	 */
692	if (V_ipforwarding == 0) {
693		IPSTAT_INC(ips_cantforward);
694		m_freem(m);
695	} else {
696#ifdef IPSEC
697		if (ip_ipsec_fwd(m))
698			goto bad;
699#endif /* IPSEC */
700		ip_forward(m, dchg);
701	}
702	return;
703
704ours:
705#ifdef IPSTEALTH
706	/*
707	 * IPSTEALTH: Process non-routing options only
708	 * if the packet is destined for us.
709	 */
710	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
711		if (ia != NULL)
712			ifa_free(&ia->ia_ifa);
713		return;
714	}
715#endif /* IPSTEALTH */
716
717	/* Count the packet in the ip address stats */
718	if (ia != NULL) {
719		ia->ia_ifa.if_ipackets++;
720		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
721		ifa_free(&ia->ia_ifa);
722	}
723
724	/*
725	 * Attempt reassembly; if it succeeds, proceed.
726	 * ip_reass() will return a different mbuf.
727	 */
728	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
729		m = ip_reass(m);
730		if (m == NULL)
731			return;
732		ip = mtod(m, struct ip *);
733		/* Get the header length of the reassembled packet */
734		hlen = ip->ip_hl << 2;
735	}
736
737#ifdef IPSEC
738	/*
739	 * enforce IPsec policy checking if we are seeing last header.
740	 * note that we do not visit this with protocols with pcb layer
741	 * code - like udp/tcp/raw ip.
742	 */
743	if (ip_ipsec_input(m))
744		goto bad;
745#endif /* IPSEC */
746
747	/*
748	 * Switch out to protocol's input routine.
749	 */
750	IPSTAT_INC(ips_delivered);
751
752	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
753	return;
754bad:
755	m_freem(m);
756}
757
758/*
759 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
760 * max has slightly different semantics than the sysctl, for historical
761 * reasons.
762 */
763static void
764maxnipq_update(void)
765{
766
767	/*
768	 * -1 for unlimited allocation.
769	 */
770	if (V_maxnipq < 0)
771		uma_zone_set_max(V_ipq_zone, 0);
772	/*
773	 * Positive number for specific bound.
774	 */
775	if (V_maxnipq > 0)
776		uma_zone_set_max(V_ipq_zone, V_maxnipq);
777	/*
778	 * Zero specifies no further fragment queue allocation -- set the
779	 * bound very low, but rely on implementation elsewhere to actually
780	 * prevent allocation and reclaim current queues.
781	 */
782	if (V_maxnipq == 0)
783		uma_zone_set_max(V_ipq_zone, 1);
784}
785
786static void
787ipq_zone_change(void *tag)
788{
789
790	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
791		V_maxnipq = nmbclusters / 32;
792		maxnipq_update();
793	}
794}
795
796static int
797sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
798{
799	int error, i;
800
801	i = V_maxnipq;
802	error = sysctl_handle_int(oidp, &i, 0, req);
803	if (error || !req->newptr)
804		return (error);
805
806	/*
807	 * XXXRW: Might be a good idea to sanity check the argument and place
808	 * an extreme upper bound.
809	 */
810	if (i < -1)
811		return (EINVAL);
812	V_maxnipq = i;
813	maxnipq_update();
814	return (0);
815}
816
817SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
818    NULL, 0, sysctl_maxnipq, "I",
819    "Maximum number of IPv4 fragment reassembly queue entries");
820
821/*
822 * Take incoming datagram fragment and try to reassemble it into
823 * whole datagram.  If the argument is the first fragment or one
824 * in between the function will return NULL and store the mbuf
825 * in the fragment chain.  If the argument is the last fragment
826 * the packet will be reassembled and the pointer to the new
827 * mbuf returned for further processing.  Only m_tags attached
828 * to the first packet/fragment are preserved.
829 * The IP header is *NOT* adjusted out of iplen.
830 */
831struct mbuf *
832ip_reass(struct mbuf *m)
833{
834	struct ip *ip;
835	struct mbuf *p, *q, *nq, *t;
836	struct ipq *fp = NULL;
837	struct ipqhead *head;
838	int i, hlen, next;
839	u_int8_t ecn, ecn0;
840	u_short hash;
841
842	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
843	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
844		IPSTAT_INC(ips_fragments);
845		IPSTAT_INC(ips_fragdropped);
846		m_freem(m);
847		return (NULL);
848	}
849
850	ip = mtod(m, struct ip *);
851	hlen = ip->ip_hl << 2;
852
853	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
854	head = &V_ipq[hash];
855	IPQ_LOCK();
856
857	/*
858	 * Look for queue of fragments
859	 * of this datagram.
860	 */
861	TAILQ_FOREACH(fp, head, ipq_list)
862		if (ip->ip_id == fp->ipq_id &&
863		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
864		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
865#ifdef MAC
866		    mac_ipq_match(m, fp) &&
867#endif
868		    ip->ip_p == fp->ipq_p)
869			goto found;
870
871	fp = NULL;
872
873	/*
874	 * Attempt to trim the number of allocated fragment queues if it
875	 * exceeds the administrative limit.
876	 */
877	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
878		/*
879		 * drop something from the tail of the current queue
880		 * before proceeding further
881		 */
882		struct ipq *q = TAILQ_LAST(head, ipqhead);
883		if (q == NULL) {   /* gak */
884			for (i = 0; i < IPREASS_NHASH; i++) {
885				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
886				if (r) {
887					IPSTAT_ADD(ips_fragtimeout,
888					    r->ipq_nfrags);
889					ip_freef(&V_ipq[i], r);
890					break;
891				}
892			}
893		} else {
894			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
895			ip_freef(head, q);
896		}
897	}
898
899found:
900	/*
901	 * Adjust ip_len to not reflect header,
902	 * convert offset of this to bytes.
903	 */
904	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
905	if (ip->ip_off & htons(IP_MF)) {
906		/*
907		 * Make sure that fragments have a data length
908		 * that's a non-zero multiple of 8 bytes.
909		 */
910		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
911			IPSTAT_INC(ips_toosmall); /* XXX */
912			goto dropfrag;
913		}
914		m->m_flags |= M_FRAG;
915	} else
916		m->m_flags &= ~M_FRAG;
917	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
918
919	/*
920	 * Attempt reassembly; if it succeeds, proceed.
921	 * ip_reass() will return a different mbuf.
922	 */
923	IPSTAT_INC(ips_fragments);
924	m->m_pkthdr.header = ip;
925
926	/* Previous ip_reass() started here. */
927	/*
928	 * Presence of header sizes in mbufs
929	 * would confuse code below.
930	 */
931	m->m_data += hlen;
932	m->m_len -= hlen;
933
934	/*
935	 * If first fragment to arrive, create a reassembly queue.
936	 */
937	if (fp == NULL) {
938		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
939		if (fp == NULL)
940			goto dropfrag;
941#ifdef MAC
942		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
943			uma_zfree(V_ipq_zone, fp);
944			fp = NULL;
945			goto dropfrag;
946		}
947		mac_ipq_create(m, fp);
948#endif
949		TAILQ_INSERT_HEAD(head, fp, ipq_list);
950		V_nipq++;
951		fp->ipq_nfrags = 1;
952		fp->ipq_ttl = IPFRAGTTL;
953		fp->ipq_p = ip->ip_p;
954		fp->ipq_id = ip->ip_id;
955		fp->ipq_src = ip->ip_src;
956		fp->ipq_dst = ip->ip_dst;
957		fp->ipq_frags = m;
958		m->m_nextpkt = NULL;
959		goto done;
960	} else {
961		fp->ipq_nfrags++;
962#ifdef MAC
963		mac_ipq_update(m, fp);
964#endif
965	}
966
967#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
968
969	/*
970	 * Handle ECN by comparing this segment with the first one;
971	 * if CE is set, do not lose CE.
972	 * drop if CE and not-ECT are mixed for the same packet.
973	 */
974	ecn = ip->ip_tos & IPTOS_ECN_MASK;
975	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
976	if (ecn == IPTOS_ECN_CE) {
977		if (ecn0 == IPTOS_ECN_NOTECT)
978			goto dropfrag;
979		if (ecn0 != IPTOS_ECN_CE)
980			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
981	}
982	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
983		goto dropfrag;
984
985	/*
986	 * Find a segment which begins after this one does.
987	 */
988	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
989		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
990			break;
991
992	/*
993	 * If there is a preceding segment, it may provide some of
994	 * our data already.  If so, drop the data from the incoming
995	 * segment.  If it provides all of our data, drop us, otherwise
996	 * stick new segment in the proper place.
997	 *
998	 * If some of the data is dropped from the preceding
999	 * segment, then it's checksum is invalidated.
1000	 */
1001	if (p) {
1002		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
1003		    ntohs(ip->ip_off);
1004		if (i > 0) {
1005			if (i >= ntohs(ip->ip_len))
1006				goto dropfrag;
1007			m_adj(m, i);
1008			m->m_pkthdr.csum_flags = 0;
1009			ip->ip_off = htons(ntohs(ip->ip_off) + i);
1010			ip->ip_len = htons(ntohs(ip->ip_len) - i);
1011		}
1012		m->m_nextpkt = p->m_nextpkt;
1013		p->m_nextpkt = m;
1014	} else {
1015		m->m_nextpkt = fp->ipq_frags;
1016		fp->ipq_frags = m;
1017	}
1018
1019	/*
1020	 * While we overlap succeeding segments trim them or,
1021	 * if they are completely covered, dequeue them.
1022	 */
1023	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1024	    ntohs(GETIP(q)->ip_off); q = nq) {
1025		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1026		    ntohs(GETIP(q)->ip_off);
1027		if (i < ntohs(GETIP(q)->ip_len)) {
1028			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1029			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1030			m_adj(q, i);
1031			q->m_pkthdr.csum_flags = 0;
1032			break;
1033		}
1034		nq = q->m_nextpkt;
1035		m->m_nextpkt = nq;
1036		IPSTAT_INC(ips_fragdropped);
1037		fp->ipq_nfrags--;
1038		m_freem(q);
1039	}
1040
1041	/*
1042	 * Check for complete reassembly and perform frag per packet
1043	 * limiting.
1044	 *
1045	 * Frag limiting is performed here so that the nth frag has
1046	 * a chance to complete the packet before we drop the packet.
1047	 * As a result, n+1 frags are actually allowed per packet, but
1048	 * only n will ever be stored. (n = maxfragsperpacket.)
1049	 *
1050	 */
1051	next = 0;
1052	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1053		if (ntohs(GETIP(q)->ip_off) != next) {
1054			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1055				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1056				ip_freef(head, fp);
1057			}
1058			goto done;
1059		}
1060		next += ntohs(GETIP(q)->ip_len);
1061	}
1062	/* Make sure the last packet didn't have the IP_MF flag */
1063	if (p->m_flags & M_FRAG) {
1064		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1065			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1066			ip_freef(head, fp);
1067		}
1068		goto done;
1069	}
1070
1071	/*
1072	 * Reassembly is complete.  Make sure the packet is a sane size.
1073	 */
1074	q = fp->ipq_frags;
1075	ip = GETIP(q);
1076	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1077		IPSTAT_INC(ips_toolong);
1078		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1079		ip_freef(head, fp);
1080		goto done;
1081	}
1082
1083	/*
1084	 * Concatenate fragments.
1085	 */
1086	m = q;
1087	t = m->m_next;
1088	m->m_next = NULL;
1089	m_cat(m, t);
1090	nq = q->m_nextpkt;
1091	q->m_nextpkt = NULL;
1092	for (q = nq; q != NULL; q = nq) {
1093		nq = q->m_nextpkt;
1094		q->m_nextpkt = NULL;
1095		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1096		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1097		m_cat(m, q);
1098	}
1099	/*
1100	 * In order to do checksumming faster we do 'end-around carry' here
1101	 * (and not in for{} loop), though it implies we are not going to
1102	 * reassemble more than 64k fragments.
1103	 */
1104	m->m_pkthdr.csum_data =
1105	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1106#ifdef MAC
1107	mac_ipq_reassemble(fp, m);
1108	mac_ipq_destroy(fp);
1109#endif
1110
1111	/*
1112	 * Create header for new ip packet by modifying header of first
1113	 * packet;  dequeue and discard fragment reassembly header.
1114	 * Make header visible.
1115	 */
1116	ip->ip_len = htons((ip->ip_hl << 2) + next);
1117	ip->ip_src = fp->ipq_src;
1118	ip->ip_dst = fp->ipq_dst;
1119	TAILQ_REMOVE(head, fp, ipq_list);
1120	V_nipq--;
1121	uma_zfree(V_ipq_zone, fp);
1122	m->m_len += (ip->ip_hl << 2);
1123	m->m_data -= (ip->ip_hl << 2);
1124	/* some debugging cruft by sklower, below, will go away soon */
1125	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1126		m_fixhdr(m);
1127	IPSTAT_INC(ips_reassembled);
1128	IPQ_UNLOCK();
1129	return (m);
1130
1131dropfrag:
1132	IPSTAT_INC(ips_fragdropped);
1133	if (fp != NULL)
1134		fp->ipq_nfrags--;
1135	m_freem(m);
1136done:
1137	IPQ_UNLOCK();
1138	return (NULL);
1139
1140#undef GETIP
1141}
1142
1143/*
1144 * Free a fragment reassembly header and all
1145 * associated datagrams.
1146 */
1147static void
1148ip_freef(struct ipqhead *fhp, struct ipq *fp)
1149{
1150	struct mbuf *q;
1151
1152	IPQ_LOCK_ASSERT();
1153
1154	while (fp->ipq_frags) {
1155		q = fp->ipq_frags;
1156		fp->ipq_frags = q->m_nextpkt;
1157		m_freem(q);
1158	}
1159	TAILQ_REMOVE(fhp, fp, ipq_list);
1160	uma_zfree(V_ipq_zone, fp);
1161	V_nipq--;
1162}
1163
1164/*
1165 * IP timer processing;
1166 * if a timer expires on a reassembly
1167 * queue, discard it.
1168 */
1169void
1170ip_slowtimo(void)
1171{
1172	VNET_ITERATOR_DECL(vnet_iter);
1173	struct ipq *fp;
1174	int i;
1175
1176	VNET_LIST_RLOCK_NOSLEEP();
1177	IPQ_LOCK();
1178	VNET_FOREACH(vnet_iter) {
1179		CURVNET_SET(vnet_iter);
1180		for (i = 0; i < IPREASS_NHASH; i++) {
1181			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1182				struct ipq *fpp;
1183
1184				fpp = fp;
1185				fp = TAILQ_NEXT(fp, ipq_list);
1186				if(--fpp->ipq_ttl == 0) {
1187					IPSTAT_ADD(ips_fragtimeout,
1188					    fpp->ipq_nfrags);
1189					ip_freef(&V_ipq[i], fpp);
1190				}
1191			}
1192		}
1193		/*
1194		 * If we are over the maximum number of fragments
1195		 * (due to the limit being lowered), drain off
1196		 * enough to get down to the new limit.
1197		 */
1198		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1199			for (i = 0; i < IPREASS_NHASH; i++) {
1200				while (V_nipq > V_maxnipq &&
1201				    !TAILQ_EMPTY(&V_ipq[i])) {
1202					IPSTAT_ADD(ips_fragdropped,
1203					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1204					ip_freef(&V_ipq[i],
1205					    TAILQ_FIRST(&V_ipq[i]));
1206				}
1207			}
1208		}
1209		CURVNET_RESTORE();
1210	}
1211	IPQ_UNLOCK();
1212	VNET_LIST_RUNLOCK_NOSLEEP();
1213}
1214
1215/*
1216 * Drain off all datagram fragments.
1217 */
1218static void
1219ip_drain_locked(void)
1220{
1221	int     i;
1222
1223	IPQ_LOCK_ASSERT();
1224
1225	for (i = 0; i < IPREASS_NHASH; i++) {
1226		while(!TAILQ_EMPTY(&V_ipq[i])) {
1227			IPSTAT_ADD(ips_fragdropped,
1228			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1229			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1230		}
1231	}
1232}
1233
1234void
1235ip_drain(void)
1236{
1237	VNET_ITERATOR_DECL(vnet_iter);
1238
1239	VNET_LIST_RLOCK_NOSLEEP();
1240	IPQ_LOCK();
1241	VNET_FOREACH(vnet_iter) {
1242		CURVNET_SET(vnet_iter);
1243		ip_drain_locked();
1244		CURVNET_RESTORE();
1245	}
1246	IPQ_UNLOCK();
1247	VNET_LIST_RUNLOCK_NOSLEEP();
1248	in_rtqdrain();
1249}
1250
1251/*
1252 * The protocol to be inserted into ip_protox[] must be already registered
1253 * in inetsw[], either statically or through pf_proto_register().
1254 */
1255int
1256ipproto_register(short ipproto)
1257{
1258	struct protosw *pr;
1259
1260	/* Sanity checks. */
1261	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1262		return (EPROTONOSUPPORT);
1263
1264	/*
1265	 * The protocol slot must not be occupied by another protocol
1266	 * already.  An index pointing to IPPROTO_RAW is unused.
1267	 */
1268	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1269	if (pr == NULL)
1270		return (EPFNOSUPPORT);
1271	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1272		return (EEXIST);
1273
1274	/* Find the protocol position in inetsw[] and set the index. */
1275	for (pr = inetdomain.dom_protosw;
1276	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1277		if (pr->pr_domain->dom_family == PF_INET &&
1278		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1279			ip_protox[pr->pr_protocol] = pr - inetsw;
1280			return (0);
1281		}
1282	}
1283	return (EPROTONOSUPPORT);
1284}
1285
1286int
1287ipproto_unregister(short ipproto)
1288{
1289	struct protosw *pr;
1290
1291	/* Sanity checks. */
1292	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1293		return (EPROTONOSUPPORT);
1294
1295	/* Check if the protocol was indeed registered. */
1296	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1297	if (pr == NULL)
1298		return (EPFNOSUPPORT);
1299	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1300		return (ENOENT);
1301
1302	/* Reset the protocol slot to IPPROTO_RAW. */
1303	ip_protox[ipproto] = pr - inetsw;
1304	return (0);
1305}
1306
1307/*
1308 * Given address of next destination (final or next hop), return (referenced)
1309 * internet address info of interface to be used to get there.
1310 */
1311struct in_ifaddr *
1312ip_rtaddr(struct in_addr dst, u_int fibnum)
1313{
1314	struct route sro;
1315	struct sockaddr_in *sin;
1316	struct in_ifaddr *ia;
1317
1318	bzero(&sro, sizeof(sro));
1319	sin = (struct sockaddr_in *)&sro.ro_dst;
1320	sin->sin_family = AF_INET;
1321	sin->sin_len = sizeof(*sin);
1322	sin->sin_addr = dst;
1323	in_rtalloc_ign(&sro, 0, fibnum);
1324
1325	if (sro.ro_rt == NULL)
1326		return (NULL);
1327
1328	ia = ifatoia(sro.ro_rt->rt_ifa);
1329	ifa_ref(&ia->ia_ifa);
1330	RTFREE(sro.ro_rt);
1331	return (ia);
1332}
1333
1334u_char inetctlerrmap[PRC_NCMDS] = {
1335	0,		0,		0,		0,
1336	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1337	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1338	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1339	0,		0,		EHOSTUNREACH,	0,
1340	ENOPROTOOPT,	ECONNREFUSED
1341};
1342
1343/*
1344 * Forward a packet.  If some error occurs return the sender
1345 * an icmp packet.  Note we can't always generate a meaningful
1346 * icmp message because icmp doesn't have a large enough repertoire
1347 * of codes and types.
1348 *
1349 * If not forwarding, just drop the packet.  This could be confusing
1350 * if ipforwarding was zero but some routing protocol was advancing
1351 * us as a gateway to somewhere.  However, we must let the routing
1352 * protocol deal with that.
1353 *
1354 * The srcrt parameter indicates whether the packet is being forwarded
1355 * via a source route.
1356 */
1357void
1358ip_forward(struct mbuf *m, int srcrt)
1359{
1360	struct ip *ip = mtod(m, struct ip *);
1361	struct in_ifaddr *ia;
1362	struct mbuf *mcopy;
1363	struct in_addr dest;
1364	struct route ro;
1365	int error, type = 0, code = 0, mtu = 0;
1366
1367	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1368		IPSTAT_INC(ips_cantforward);
1369		m_freem(m);
1370		return;
1371	}
1372#ifdef IPSTEALTH
1373	if (!V_ipstealth) {
1374#endif
1375		if (ip->ip_ttl <= IPTTLDEC) {
1376			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1377			    0, 0);
1378			return;
1379		}
1380#ifdef IPSTEALTH
1381	}
1382#endif
1383
1384	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1385#ifndef IPSEC
1386	/*
1387	 * 'ia' may be NULL if there is no route for this destination.
1388	 * In case of IPsec, Don't discard it just yet, but pass it to
1389	 * ip_output in case of outgoing IPsec policy.
1390	 */
1391	if (!srcrt && ia == NULL) {
1392		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1393		return;
1394	}
1395#endif
1396
1397	/*
1398	 * Save the IP header and at most 8 bytes of the payload,
1399	 * in case we need to generate an ICMP message to the src.
1400	 *
1401	 * XXX this can be optimized a lot by saving the data in a local
1402	 * buffer on the stack (72 bytes at most), and only allocating the
1403	 * mbuf if really necessary. The vast majority of the packets
1404	 * are forwarded without having to send an ICMP back (either
1405	 * because unnecessary, or because rate limited), so we are
1406	 * really we are wasting a lot of work here.
1407	 *
1408	 * We don't use m_copy() because it might return a reference
1409	 * to a shared cluster. Both this function and ip_output()
1410	 * assume exclusive access to the IP header in `m', so any
1411	 * data in a cluster may change before we reach icmp_error().
1412	 */
1413	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1414	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1415		/*
1416		 * It's probably ok if the pkthdr dup fails (because
1417		 * the deep copy of the tag chain failed), but for now
1418		 * be conservative and just discard the copy since
1419		 * code below may some day want the tags.
1420		 */
1421		m_free(mcopy);
1422		mcopy = NULL;
1423	}
1424	if (mcopy != NULL) {
1425		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1426		mcopy->m_pkthdr.len = mcopy->m_len;
1427		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1428	}
1429
1430#ifdef IPSTEALTH
1431	if (!V_ipstealth) {
1432#endif
1433		ip->ip_ttl -= IPTTLDEC;
1434#ifdef IPSTEALTH
1435	}
1436#endif
1437
1438	/*
1439	 * If forwarding packet using same interface that it came in on,
1440	 * perhaps should send a redirect to sender to shortcut a hop.
1441	 * Only send redirect if source is sending directly to us,
1442	 * and if packet was not source routed (or has any options).
1443	 * Also, don't send redirect if forwarding using a default route
1444	 * or a route modified by a redirect.
1445	 */
1446	dest.s_addr = 0;
1447	if (!srcrt && V_ipsendredirects &&
1448	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1449		struct sockaddr_in *sin;
1450		struct rtentry *rt;
1451
1452		bzero(&ro, sizeof(ro));
1453		sin = (struct sockaddr_in *)&ro.ro_dst;
1454		sin->sin_family = AF_INET;
1455		sin->sin_len = sizeof(*sin);
1456		sin->sin_addr = ip->ip_dst;
1457		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1458
1459		rt = ro.ro_rt;
1460
1461		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1462		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1463#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1464			u_long src = ntohl(ip->ip_src.s_addr);
1465
1466			if (RTA(rt) &&
1467			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1468				if (rt->rt_flags & RTF_GATEWAY)
1469					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1470				else
1471					dest.s_addr = ip->ip_dst.s_addr;
1472				/* Router requirements says to only send host redirects */
1473				type = ICMP_REDIRECT;
1474				code = ICMP_REDIRECT_HOST;
1475			}
1476		}
1477		if (rt)
1478			RTFREE(rt);
1479	}
1480
1481	/*
1482	 * Try to cache the route MTU from ip_output so we can consider it for
1483	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1484	 */
1485	bzero(&ro, sizeof(ro));
1486
1487	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1488
1489	if (error == EMSGSIZE && ro.ro_rt)
1490		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1491	RO_RTFREE(&ro);
1492
1493	if (error)
1494		IPSTAT_INC(ips_cantforward);
1495	else {
1496		IPSTAT_INC(ips_forward);
1497		if (type)
1498			IPSTAT_INC(ips_redirectsent);
1499		else {
1500			if (mcopy)
1501				m_freem(mcopy);
1502			if (ia != NULL)
1503				ifa_free(&ia->ia_ifa);
1504			return;
1505		}
1506	}
1507	if (mcopy == NULL) {
1508		if (ia != NULL)
1509			ifa_free(&ia->ia_ifa);
1510		return;
1511	}
1512
1513	switch (error) {
1514
1515	case 0:				/* forwarded, but need redirect */
1516		/* type, code set above */
1517		break;
1518
1519	case ENETUNREACH:
1520	case EHOSTUNREACH:
1521	case ENETDOWN:
1522	case EHOSTDOWN:
1523	default:
1524		type = ICMP_UNREACH;
1525		code = ICMP_UNREACH_HOST;
1526		break;
1527
1528	case EMSGSIZE:
1529		type = ICMP_UNREACH;
1530		code = ICMP_UNREACH_NEEDFRAG;
1531
1532#ifdef IPSEC
1533		/*
1534		 * If IPsec is configured for this path,
1535		 * override any possibly mtu value set by ip_output.
1536		 */
1537		mtu = ip_ipsec_mtu(mcopy, mtu);
1538#endif /* IPSEC */
1539		/*
1540		 * If the MTU was set before make sure we are below the
1541		 * interface MTU.
1542		 * If the MTU wasn't set before use the interface mtu or
1543		 * fall back to the next smaller mtu step compared to the
1544		 * current packet size.
1545		 */
1546		if (mtu != 0) {
1547			if (ia != NULL)
1548				mtu = min(mtu, ia->ia_ifp->if_mtu);
1549		} else {
1550			if (ia != NULL)
1551				mtu = ia->ia_ifp->if_mtu;
1552			else
1553				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1554		}
1555		IPSTAT_INC(ips_cantfrag);
1556		break;
1557
1558	case ENOBUFS:
1559		/*
1560		 * A router should not generate ICMP_SOURCEQUENCH as
1561		 * required in RFC1812 Requirements for IP Version 4 Routers.
1562		 * Source quench could be a big problem under DoS attacks,
1563		 * or if the underlying interface is rate-limited.
1564		 * Those who need source quench packets may re-enable them
1565		 * via the net.inet.ip.sendsourcequench sysctl.
1566		 */
1567		if (V_ip_sendsourcequench == 0) {
1568			m_freem(mcopy);
1569			if (ia != NULL)
1570				ifa_free(&ia->ia_ifa);
1571			return;
1572		} else {
1573			type = ICMP_SOURCEQUENCH;
1574			code = 0;
1575		}
1576		break;
1577
1578	case EACCES:			/* ipfw denied packet */
1579		m_freem(mcopy);
1580		if (ia != NULL)
1581			ifa_free(&ia->ia_ifa);
1582		return;
1583	}
1584	if (ia != NULL)
1585		ifa_free(&ia->ia_ifa);
1586	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1587}
1588
1589void
1590ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1591    struct mbuf *m)
1592{
1593
1594	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1595		struct bintime bt;
1596
1597		bintime(&bt);
1598		if (inp->inp_socket->so_options & SO_BINTIME) {
1599			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1600			    SCM_BINTIME, SOL_SOCKET);
1601			if (*mp)
1602				mp = &(*mp)->m_next;
1603		}
1604		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1605			struct timeval tv;
1606
1607			bintime2timeval(&bt, &tv);
1608			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1609			    SCM_TIMESTAMP, SOL_SOCKET);
1610			if (*mp)
1611				mp = &(*mp)->m_next;
1612		}
1613	}
1614	if (inp->inp_flags & INP_RECVDSTADDR) {
1615		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1616		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1617		if (*mp)
1618			mp = &(*mp)->m_next;
1619	}
1620	if (inp->inp_flags & INP_RECVTTL) {
1621		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1622		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1623		if (*mp)
1624			mp = &(*mp)->m_next;
1625	}
1626#ifdef notyet
1627	/* XXX
1628	 * Moving these out of udp_input() made them even more broken
1629	 * than they already were.
1630	 */
1631	/* options were tossed already */
1632	if (inp->inp_flags & INP_RECVOPTS) {
1633		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1634		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1635		if (*mp)
1636			mp = &(*mp)->m_next;
1637	}
1638	/* ip_srcroute doesn't do what we want here, need to fix */
1639	if (inp->inp_flags & INP_RECVRETOPTS) {
1640		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1641		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1642		if (*mp)
1643			mp = &(*mp)->m_next;
1644	}
1645#endif
1646	if (inp->inp_flags & INP_RECVIF) {
1647		struct ifnet *ifp;
1648		struct sdlbuf {
1649			struct sockaddr_dl sdl;
1650			u_char	pad[32];
1651		} sdlbuf;
1652		struct sockaddr_dl *sdp;
1653		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1654
1655		if ((ifp = m->m_pkthdr.rcvif) &&
1656		    ifp->if_index && ifp->if_index <= V_if_index) {
1657			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1658			/*
1659			 * Change our mind and don't try copy.
1660			 */
1661			if (sdp->sdl_family != AF_LINK ||
1662			    sdp->sdl_len > sizeof(sdlbuf)) {
1663				goto makedummy;
1664			}
1665			bcopy(sdp, sdl2, sdp->sdl_len);
1666		} else {
1667makedummy:
1668			sdl2->sdl_len =
1669			    offsetof(struct sockaddr_dl, sdl_data[0]);
1670			sdl2->sdl_family = AF_LINK;
1671			sdl2->sdl_index = 0;
1672			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1673		}
1674		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1675		    IP_RECVIF, IPPROTO_IP);
1676		if (*mp)
1677			mp = &(*mp)->m_next;
1678	}
1679	if (inp->inp_flags & INP_RECVTOS) {
1680		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1681		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1682		if (*mp)
1683			mp = &(*mp)->m_next;
1684	}
1685}
1686
1687/*
1688 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1689 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1690 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1691 * compiled.
1692 */
1693static VNET_DEFINE(int, ip_rsvp_on);
1694VNET_DEFINE(struct socket *, ip_rsvpd);
1695
1696#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1697
1698int
1699ip_rsvp_init(struct socket *so)
1700{
1701
1702	if (so->so_type != SOCK_RAW ||
1703	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1704		return EOPNOTSUPP;
1705
1706	if (V_ip_rsvpd != NULL)
1707		return EADDRINUSE;
1708
1709	V_ip_rsvpd = so;
1710	/*
1711	 * This may seem silly, but we need to be sure we don't over-increment
1712	 * the RSVP counter, in case something slips up.
1713	 */
1714	if (!V_ip_rsvp_on) {
1715		V_ip_rsvp_on = 1;
1716		V_rsvp_on++;
1717	}
1718
1719	return 0;
1720}
1721
1722int
1723ip_rsvp_done(void)
1724{
1725
1726	V_ip_rsvpd = NULL;
1727	/*
1728	 * This may seem silly, but we need to be sure we don't over-decrement
1729	 * the RSVP counter, in case something slips up.
1730	 */
1731	if (V_ip_rsvp_on) {
1732		V_ip_rsvp_on = 0;
1733		V_rsvp_on--;
1734	}
1735	return 0;
1736}
1737
1738void
1739rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1740{
1741
1742	if (rsvp_input_p) { /* call the real one if loaded */
1743		rsvp_input_p(m, off);
1744		return;
1745	}
1746
1747	/* Can still get packets with rsvp_on = 0 if there is a local member
1748	 * of the group to which the RSVP packet is addressed.  But in this
1749	 * case we want to throw the packet away.
1750	 */
1751
1752	if (!V_rsvp_on) {
1753		m_freem(m);
1754		return;
1755	}
1756
1757	if (V_ip_rsvpd != NULL) {
1758		rip_input(m, off);
1759		return;
1760	}
1761	/* Drop the packet */
1762	m_freem(m);
1763}
1764