ip_input.c revision 241245
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 241245 2012-10-06 10:02:11Z glebius $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/rwlock.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54
55#include <net/pfil.h>
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_var.h>
59#include <net/if_dl.h>
60#include <net/route.h>
61#include <net/netisr.h>
62#include <net/vnet.h>
63#include <net/flowtable.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_fw.h>
72#include <netinet/ip_icmp.h>
73#include <netinet/ip_options.h>
74#include <machine/in_cksum.h>
75#include <netinet/ip_carp.h>
76#ifdef IPSEC
77#include <netinet/ip_ipsec.h>
78#endif /* IPSEC */
79
80#include <sys/socketvar.h>
81
82#include <security/mac/mac_framework.h>
83
84#ifdef CTASSERT
85CTASSERT(sizeof(struct ip) == 20);
86#endif
87
88struct	rwlock in_ifaddr_lock;
89RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
90
91VNET_DEFINE(int, rsvp_on);
92
93VNET_DEFINE(int, ipforwarding);
94SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95    &VNET_NAME(ipforwarding), 0,
96    "Enable IP forwarding between interfaces");
97
98static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
99#define	V_ipsendredirects	VNET(ipsendredirects)
100SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101    &VNET_NAME(ipsendredirects), 0,
102    "Enable sending IP redirects");
103
104static VNET_DEFINE(int, ip_keepfaith);
105#define	V_ip_keepfaith		VNET(ip_keepfaith)
106SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
107    &VNET_NAME(ip_keepfaith), 0,
108    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
109
110static VNET_DEFINE(int, ip_sendsourcequench);
111#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
112SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
113    &VNET_NAME(ip_sendsourcequench), 0,
114    "Enable the transmission of source quench packets");
115
116VNET_DEFINE(int, ip_do_randomid);
117SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
118    &VNET_NAME(ip_do_randomid), 0,
119    "Assign random ip_id values");
120
121/*
122 * XXX - Setting ip_checkinterface mostly implements the receive side of
123 * the Strong ES model described in RFC 1122, but since the routing table
124 * and transmit implementation do not implement the Strong ES model,
125 * setting this to 1 results in an odd hybrid.
126 *
127 * XXX - ip_checkinterface currently must be disabled if you use ipnat
128 * to translate the destination address to another local interface.
129 *
130 * XXX - ip_checkinterface must be disabled if you add IP aliases
131 * to the loopback interface instead of the interface where the
132 * packets for those addresses are received.
133 */
134static VNET_DEFINE(int, ip_checkinterface);
135#define	V_ip_checkinterface	VNET(ip_checkinterface)
136SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
137    &VNET_NAME(ip_checkinterface), 0,
138    "Verify packet arrives on correct interface");
139
140VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
141
142static struct netisr_handler ip_nh = {
143	.nh_name = "ip",
144	.nh_handler = ip_input,
145	.nh_proto = NETISR_IP,
146	.nh_policy = NETISR_POLICY_FLOW,
147};
148
149extern	struct domain inetdomain;
150extern	struct protosw inetsw[];
151u_char	ip_protox[IPPROTO_MAX];
152VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
153VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
154VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
155
156VNET_DEFINE(struct ipstat, ipstat);
157SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
158    &VNET_NAME(ipstat), ipstat,
159    "IP statistics (struct ipstat, netinet/ip_var.h)");
160
161static VNET_DEFINE(uma_zone_t, ipq_zone);
162static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
163static struct mtx ipqlock;
164
165#define	V_ipq_zone		VNET(ipq_zone)
166#define	V_ipq			VNET(ipq)
167
168#define	IPQ_LOCK()	mtx_lock(&ipqlock)
169#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
170#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
171#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
172
173static void	maxnipq_update(void);
174static void	ipq_zone_change(void *);
175static void	ip_drain_locked(void);
176
177static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
178static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
179#define	V_maxnipq		VNET(maxnipq)
180#define	V_nipq			VNET(nipq)
181SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
182    &VNET_NAME(nipq), 0,
183    "Current number of IPv4 fragment reassembly queue entries");
184
185static VNET_DEFINE(int, maxfragsperpacket);
186#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
187SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
188    &VNET_NAME(maxfragsperpacket), 0,
189    "Maximum number of IPv4 fragments allowed per packet");
190
191#ifdef IPCTL_DEFMTU
192SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
193    &ip_mtu, 0, "Default MTU");
194#endif
195
196#ifdef IPSTEALTH
197VNET_DEFINE(int, ipstealth);
198SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
199    &VNET_NAME(ipstealth), 0,
200    "IP stealth mode, no TTL decrementation on forwarding");
201#endif
202
203#ifdef FLOWTABLE
204static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
205VNET_DEFINE(struct flowtable *, ip_ft);
206#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
207
208SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
209    &VNET_NAME(ip_output_flowtable_size), 2048,
210    "number of entries in the per-cpu output flow caches");
211#endif
212
213static void	ip_freef(struct ipqhead *, struct ipq *);
214
215/*
216 * Kernel module interface for updating ipstat.  The argument is an index
217 * into ipstat treated as an array of u_long.  While this encodes the general
218 * layout of ipstat into the caller, it doesn't encode its location, so that
219 * future changes to add, for example, per-CPU stats support won't cause
220 * binary compatibility problems for kernel modules.
221 */
222void
223kmod_ipstat_inc(int statnum)
224{
225
226	(*((u_long *)&V_ipstat + statnum))++;
227}
228
229void
230kmod_ipstat_dec(int statnum)
231{
232
233	(*((u_long *)&V_ipstat + statnum))--;
234}
235
236static int
237sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
238{
239	int error, qlimit;
240
241	netisr_getqlimit(&ip_nh, &qlimit);
242	error = sysctl_handle_int(oidp, &qlimit, 0, req);
243	if (error || !req->newptr)
244		return (error);
245	if (qlimit < 1)
246		return (EINVAL);
247	return (netisr_setqlimit(&ip_nh, qlimit));
248}
249SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
250    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
251    "Maximum size of the IP input queue");
252
253static int
254sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
255{
256	u_int64_t qdrops_long;
257	int error, qdrops;
258
259	netisr_getqdrops(&ip_nh, &qdrops_long);
260	qdrops = qdrops_long;
261	error = sysctl_handle_int(oidp, &qdrops, 0, req);
262	if (error || !req->newptr)
263		return (error);
264	if (qdrops != 0)
265		return (EINVAL);
266	netisr_clearqdrops(&ip_nh);
267	return (0);
268}
269
270SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
271    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
272    "Number of packets dropped from the IP input queue");
273
274/*
275 * IP initialization: fill in IP protocol switch table.
276 * All protocols not implemented in kernel go to raw IP protocol handler.
277 */
278void
279ip_init(void)
280{
281	struct protosw *pr;
282	int i;
283
284	V_ip_id = time_second & 0xffff;
285
286	TAILQ_INIT(&V_in_ifaddrhead);
287	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
288
289	/* Initialize IP reassembly queue. */
290	for (i = 0; i < IPREASS_NHASH; i++)
291		TAILQ_INIT(&V_ipq[i]);
292	V_maxnipq = nmbclusters / 32;
293	V_maxfragsperpacket = 16;
294	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
295	    NULL, UMA_ALIGN_PTR, 0);
296	maxnipq_update();
297
298	/* Initialize packet filter hooks. */
299	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
300	V_inet_pfil_hook.ph_af = AF_INET;
301	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
302		printf("%s: WARNING: unable to register pfil hook, "
303			"error %d\n", __func__, i);
304
305#ifdef FLOWTABLE
306	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
307		&V_ip_output_flowtable_size)) {
308		if (V_ip_output_flowtable_size < 256)
309			V_ip_output_flowtable_size = 256;
310		if (!powerof2(V_ip_output_flowtable_size)) {
311			printf("flowtable must be power of 2 size\n");
312			V_ip_output_flowtable_size = 2048;
313		}
314	} else {
315		/*
316		 * round up to the next power of 2
317		 */
318		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
319	}
320	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
321#endif
322
323	/* Skip initialization of globals for non-default instances. */
324	if (!IS_DEFAULT_VNET(curvnet))
325		return;
326
327	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
328	if (pr == NULL)
329		panic("ip_init: PF_INET not found");
330
331	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
332	for (i = 0; i < IPPROTO_MAX; i++)
333		ip_protox[i] = pr - inetsw;
334	/*
335	 * Cycle through IP protocols and put them into the appropriate place
336	 * in ip_protox[].
337	 */
338	for (pr = inetdomain.dom_protosw;
339	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
340		if (pr->pr_domain->dom_family == PF_INET &&
341		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
342			/* Be careful to only index valid IP protocols. */
343			if (pr->pr_protocol < IPPROTO_MAX)
344				ip_protox[pr->pr_protocol] = pr - inetsw;
345		}
346
347	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
348		NULL, EVENTHANDLER_PRI_ANY);
349
350	/* Initialize various other remaining things. */
351	IPQ_LOCK_INIT();
352	netisr_register(&ip_nh);
353}
354
355#ifdef VIMAGE
356void
357ip_destroy(void)
358{
359
360	/* Cleanup in_ifaddr hash table; should be empty. */
361	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
362
363	IPQ_LOCK();
364	ip_drain_locked();
365	IPQ_UNLOCK();
366
367	uma_zdestroy(V_ipq_zone);
368}
369#endif
370
371/*
372 * Ip input routine.  Checksum and byte swap header.  If fragmented
373 * try to reassemble.  Process options.  Pass to next level.
374 */
375void
376ip_input(struct mbuf *m)
377{
378	struct ip *ip = NULL;
379	struct in_ifaddr *ia = NULL;
380	struct ifaddr *ifa;
381	struct ifnet *ifp;
382	int    checkif, hlen = 0;
383	uint16_t sum, ip_len;
384	int dchg = 0;				/* dest changed after fw */
385	struct in_addr odst;			/* original dst address */
386
387	M_ASSERTPKTHDR(m);
388
389	if (m->m_flags & M_FASTFWD_OURS) {
390		m->m_flags &= ~M_FASTFWD_OURS;
391		/* Set up some basics that will be used later. */
392		ip = mtod(m, struct ip *);
393		ip->ip_len = ntohs(ip->ip_len);
394		ip->ip_off = ntohs(ip->ip_off);
395		hlen = ip->ip_hl << 2;
396		goto ours;
397	}
398
399	IPSTAT_INC(ips_total);
400
401	if (m->m_pkthdr.len < sizeof(struct ip))
402		goto tooshort;
403
404	if (m->m_len < sizeof (struct ip) &&
405	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
406		IPSTAT_INC(ips_toosmall);
407		return;
408	}
409	ip = mtod(m, struct ip *);
410
411	if (ip->ip_v != IPVERSION) {
412		IPSTAT_INC(ips_badvers);
413		goto bad;
414	}
415
416	hlen = ip->ip_hl << 2;
417	if (hlen < sizeof(struct ip)) {	/* minimum header length */
418		IPSTAT_INC(ips_badhlen);
419		goto bad;
420	}
421	if (hlen > m->m_len) {
422		if ((m = m_pullup(m, hlen)) == NULL) {
423			IPSTAT_INC(ips_badhlen);
424			return;
425		}
426		ip = mtod(m, struct ip *);
427	}
428
429	/* 127/8 must not appear on wire - RFC1122 */
430	ifp = m->m_pkthdr.rcvif;
431	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
432	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
433		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
434			IPSTAT_INC(ips_badaddr);
435			goto bad;
436		}
437	}
438
439	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
440		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
441	} else {
442		if (hlen == sizeof(struct ip)) {
443			sum = in_cksum_hdr(ip);
444		} else {
445			sum = in_cksum(m, hlen);
446		}
447	}
448	if (sum) {
449		IPSTAT_INC(ips_badsum);
450		goto bad;
451	}
452
453#ifdef ALTQ
454	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
455		/* packet is dropped by traffic conditioner */
456		return;
457#endif
458
459	ip_len = ntohs(ip->ip_len);
460	if (ip_len < hlen) {
461		IPSTAT_INC(ips_badlen);
462		goto bad;
463	}
464
465	/*
466	 * Check that the amount of data in the buffers
467	 * is as at least much as the IP header would have us expect.
468	 * Trim mbufs if longer than we expect.
469	 * Drop packet if shorter than we expect.
470	 */
471	if (m->m_pkthdr.len < ip_len) {
472tooshort:
473		IPSTAT_INC(ips_tooshort);
474		goto bad;
475	}
476	if (m->m_pkthdr.len > ip_len) {
477		if (m->m_len == m->m_pkthdr.len) {
478			m->m_len = ip_len;
479			m->m_pkthdr.len = ip_len;
480		} else
481			m_adj(m, ip_len - m->m_pkthdr.len);
482	}
483#ifdef IPSEC
484	/*
485	 * Bypass packet filtering for packets previously handled by IPsec.
486	 */
487	if (ip_ipsec_filtertunnel(m))
488		goto passin;
489#endif /* IPSEC */
490
491	/*
492	 * Run through list of hooks for input packets.
493	 *
494	 * NB: Beware of the destination address changing (e.g.
495	 *     by NAT rewriting).  When this happens, tell
496	 *     ip_forward to do the right thing.
497	 */
498
499	/* Jump over all PFIL processing if hooks are not active. */
500	if (!PFIL_HOOKED(&V_inet_pfil_hook))
501		goto passin;
502
503	odst = ip->ip_dst;
504	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
505		return;
506	if (m == NULL)			/* consumed by filter */
507		return;
508
509	ip = mtod(m, struct ip *);
510	dchg = (odst.s_addr != ip->ip_dst.s_addr);
511	ifp = m->m_pkthdr.rcvif;
512
513#ifdef IPFIREWALL_FORWARD
514	if (m->m_flags & M_FASTFWD_OURS) {
515		m->m_flags &= ~M_FASTFWD_OURS;
516		ip->ip_len = ntohs(ip->ip_len);
517		ip->ip_off = ntohs(ip->ip_off);
518		goto ours;
519	}
520	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
521		/*
522		 * Directly ship the packet on.  This allows forwarding
523		 * packets originally destined to us to some other directly
524		 * connected host.
525		 */
526		ip->ip_len = ntohs(ip->ip_len);
527		ip->ip_off = ntohs(ip->ip_off);
528		ip_forward(m, dchg);
529		return;
530	}
531#endif /* IPFIREWALL_FORWARD */
532
533passin:
534	/*
535	 *  From now and up to output pfil(9) processing in ip_output()
536	 *  the header is in host byte order.
537	 */
538	ip->ip_len = ntohs(ip->ip_len);
539	ip->ip_off = ntohs(ip->ip_off);
540
541	/*
542	 * Process options and, if not destined for us,
543	 * ship it on.  ip_dooptions returns 1 when an
544	 * error was detected (causing an icmp message
545	 * to be sent and the original packet to be freed).
546	 */
547	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
548		return;
549
550        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
551         * matter if it is destined to another node, or whether it is
552         * a multicast one, RSVP wants it! and prevents it from being forwarded
553         * anywhere else. Also checks if the rsvp daemon is running before
554	 * grabbing the packet.
555         */
556	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
557		goto ours;
558
559	/*
560	 * Check our list of addresses, to see if the packet is for us.
561	 * If we don't have any addresses, assume any unicast packet
562	 * we receive might be for us (and let the upper layers deal
563	 * with it).
564	 */
565	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
566	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
567		goto ours;
568
569	/*
570	 * Enable a consistency check between the destination address
571	 * and the arrival interface for a unicast packet (the RFC 1122
572	 * strong ES model) if IP forwarding is disabled and the packet
573	 * is not locally generated and the packet is not subject to
574	 * 'ipfw fwd'.
575	 *
576	 * XXX - Checking also should be disabled if the destination
577	 * address is ipnat'ed to a different interface.
578	 *
579	 * XXX - Checking is incompatible with IP aliases added
580	 * to the loopback interface instead of the interface where
581	 * the packets are received.
582	 *
583	 * XXX - This is the case for carp vhost IPs as well so we
584	 * insert a workaround. If the packet got here, we already
585	 * checked with carp_iamatch() and carp_forus().
586	 */
587	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
588	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
589	    ifp->if_carp == NULL && (dchg == 0);
590
591	/*
592	 * Check for exact addresses in the hash bucket.
593	 */
594	/* IN_IFADDR_RLOCK(); */
595	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
596		/*
597		 * If the address matches, verify that the packet
598		 * arrived via the correct interface if checking is
599		 * enabled.
600		 */
601		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
602		    (!checkif || ia->ia_ifp == ifp)) {
603			ifa_ref(&ia->ia_ifa);
604			/* IN_IFADDR_RUNLOCK(); */
605			goto ours;
606		}
607	}
608	/* IN_IFADDR_RUNLOCK(); */
609
610	/*
611	 * Check for broadcast addresses.
612	 *
613	 * Only accept broadcast packets that arrive via the matching
614	 * interface.  Reception of forwarded directed broadcasts would
615	 * be handled via ip_forward() and ether_output() with the loopback
616	 * into the stack for SIMPLEX interfaces handled by ether_output().
617	 */
618	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
619		IF_ADDR_RLOCK(ifp);
620	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
621			if (ifa->ifa_addr->sa_family != AF_INET)
622				continue;
623			ia = ifatoia(ifa);
624			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
625			    ip->ip_dst.s_addr) {
626				ifa_ref(ifa);
627				IF_ADDR_RUNLOCK(ifp);
628				goto ours;
629			}
630#ifdef BOOTP_COMPAT
631			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
632				ifa_ref(ifa);
633				IF_ADDR_RUNLOCK(ifp);
634				goto ours;
635			}
636#endif
637		}
638		IF_ADDR_RUNLOCK(ifp);
639		ia = NULL;
640	}
641	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
642	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
643		IPSTAT_INC(ips_cantforward);
644		m_freem(m);
645		return;
646	}
647	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
648		if (V_ip_mrouter) {
649			/*
650			 * If we are acting as a multicast router, all
651			 * incoming multicast packets are passed to the
652			 * kernel-level multicast forwarding function.
653			 * The packet is returned (relatively) intact; if
654			 * ip_mforward() returns a non-zero value, the packet
655			 * must be discarded, else it may be accepted below.
656			 */
657			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
658				IPSTAT_INC(ips_cantforward);
659				m_freem(m);
660				return;
661			}
662
663			/*
664			 * The process-level routing daemon needs to receive
665			 * all multicast IGMP packets, whether or not this
666			 * host belongs to their destination groups.
667			 */
668			if (ip->ip_p == IPPROTO_IGMP)
669				goto ours;
670			IPSTAT_INC(ips_forward);
671		}
672		/*
673		 * Assume the packet is for us, to avoid prematurely taking
674		 * a lock on the in_multi hash. Protocols must perform
675		 * their own filtering and update statistics accordingly.
676		 */
677		goto ours;
678	}
679	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
680		goto ours;
681	if (ip->ip_dst.s_addr == INADDR_ANY)
682		goto ours;
683
684	/*
685	 * FAITH(Firewall Aided Internet Translator)
686	 */
687	if (ifp && ifp->if_type == IFT_FAITH) {
688		if (V_ip_keepfaith) {
689			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
690				goto ours;
691		}
692		m_freem(m);
693		return;
694	}
695
696	/*
697	 * Not for us; forward if possible and desirable.
698	 */
699	if (V_ipforwarding == 0) {
700		IPSTAT_INC(ips_cantforward);
701		m_freem(m);
702	} else {
703#ifdef IPSEC
704		if (ip_ipsec_fwd(m))
705			goto bad;
706#endif /* IPSEC */
707		ip_forward(m, dchg);
708	}
709	return;
710
711ours:
712#ifdef IPSTEALTH
713	/*
714	 * IPSTEALTH: Process non-routing options only
715	 * if the packet is destined for us.
716	 */
717	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
718		if (ia != NULL)
719			ifa_free(&ia->ia_ifa);
720		return;
721	}
722#endif /* IPSTEALTH */
723
724	/* Count the packet in the ip address stats */
725	if (ia != NULL) {
726		ia->ia_ifa.if_ipackets++;
727		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
728		ifa_free(&ia->ia_ifa);
729	}
730
731	/*
732	 * Attempt reassembly; if it succeeds, proceed.
733	 * ip_reass() will return a different mbuf.
734	 */
735	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
736		m = ip_reass(m);
737		if (m == NULL)
738			return;
739		ip = mtod(m, struct ip *);
740		/* Get the header length of the reassembled packet */
741		hlen = ip->ip_hl << 2;
742	}
743
744	/*
745	 * Further protocols expect the packet length to be w/o the
746	 * IP header.
747	 */
748	ip->ip_len -= hlen;
749
750#ifdef IPSEC
751	/*
752	 * enforce IPsec policy checking if we are seeing last header.
753	 * note that we do not visit this with protocols with pcb layer
754	 * code - like udp/tcp/raw ip.
755	 */
756	if (ip_ipsec_input(m))
757		goto bad;
758#endif /* IPSEC */
759
760	/*
761	 * Switch out to protocol's input routine.
762	 */
763	IPSTAT_INC(ips_delivered);
764
765	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
766	return;
767bad:
768	m_freem(m);
769}
770
771/*
772 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
773 * max has slightly different semantics than the sysctl, for historical
774 * reasons.
775 */
776static void
777maxnipq_update(void)
778{
779
780	/*
781	 * -1 for unlimited allocation.
782	 */
783	if (V_maxnipq < 0)
784		uma_zone_set_max(V_ipq_zone, 0);
785	/*
786	 * Positive number for specific bound.
787	 */
788	if (V_maxnipq > 0)
789		uma_zone_set_max(V_ipq_zone, V_maxnipq);
790	/*
791	 * Zero specifies no further fragment queue allocation -- set the
792	 * bound very low, but rely on implementation elsewhere to actually
793	 * prevent allocation and reclaim current queues.
794	 */
795	if (V_maxnipq == 0)
796		uma_zone_set_max(V_ipq_zone, 1);
797}
798
799static void
800ipq_zone_change(void *tag)
801{
802
803	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
804		V_maxnipq = nmbclusters / 32;
805		maxnipq_update();
806	}
807}
808
809static int
810sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
811{
812	int error, i;
813
814	i = V_maxnipq;
815	error = sysctl_handle_int(oidp, &i, 0, req);
816	if (error || !req->newptr)
817		return (error);
818
819	/*
820	 * XXXRW: Might be a good idea to sanity check the argument and place
821	 * an extreme upper bound.
822	 */
823	if (i < -1)
824		return (EINVAL);
825	V_maxnipq = i;
826	maxnipq_update();
827	return (0);
828}
829
830SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
831    NULL, 0, sysctl_maxnipq, "I",
832    "Maximum number of IPv4 fragment reassembly queue entries");
833
834/*
835 * Take incoming datagram fragment and try to reassemble it into
836 * whole datagram.  If the argument is the first fragment or one
837 * in between the function will return NULL and store the mbuf
838 * in the fragment chain.  If the argument is the last fragment
839 * the packet will be reassembled and the pointer to the new
840 * mbuf returned for further processing.  Only m_tags attached
841 * to the first packet/fragment are preserved.
842 * The IP header is *NOT* adjusted out of iplen.
843 */
844struct mbuf *
845ip_reass(struct mbuf *m)
846{
847	struct ip *ip;
848	struct mbuf *p, *q, *nq, *t;
849	struct ipq *fp = NULL;
850	struct ipqhead *head;
851	int i, hlen, next;
852	u_int8_t ecn, ecn0;
853	u_short hash;
854
855	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
856	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
857		IPSTAT_INC(ips_fragments);
858		IPSTAT_INC(ips_fragdropped);
859		m_freem(m);
860		return (NULL);
861	}
862
863	ip = mtod(m, struct ip *);
864	hlen = ip->ip_hl << 2;
865
866	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
867	head = &V_ipq[hash];
868	IPQ_LOCK();
869
870	/*
871	 * Look for queue of fragments
872	 * of this datagram.
873	 */
874	TAILQ_FOREACH(fp, head, ipq_list)
875		if (ip->ip_id == fp->ipq_id &&
876		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
877		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
878#ifdef MAC
879		    mac_ipq_match(m, fp) &&
880#endif
881		    ip->ip_p == fp->ipq_p)
882			goto found;
883
884	fp = NULL;
885
886	/*
887	 * Attempt to trim the number of allocated fragment queues if it
888	 * exceeds the administrative limit.
889	 */
890	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
891		/*
892		 * drop something from the tail of the current queue
893		 * before proceeding further
894		 */
895		struct ipq *q = TAILQ_LAST(head, ipqhead);
896		if (q == NULL) {   /* gak */
897			for (i = 0; i < IPREASS_NHASH; i++) {
898				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
899				if (r) {
900					IPSTAT_ADD(ips_fragtimeout,
901					    r->ipq_nfrags);
902					ip_freef(&V_ipq[i], r);
903					break;
904				}
905			}
906		} else {
907			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
908			ip_freef(head, q);
909		}
910	}
911
912found:
913	/*
914	 * Adjust ip_len to not reflect header,
915	 * convert offset of this to bytes.
916	 */
917	ip->ip_len -= hlen;
918	if (ip->ip_off & IP_MF) {
919		/*
920		 * Make sure that fragments have a data length
921		 * that's a non-zero multiple of 8 bytes.
922		 */
923		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
924			IPSTAT_INC(ips_toosmall); /* XXX */
925			goto dropfrag;
926		}
927		m->m_flags |= M_FRAG;
928	} else
929		m->m_flags &= ~M_FRAG;
930	ip->ip_off <<= 3;
931
932
933	/*
934	 * Attempt reassembly; if it succeeds, proceed.
935	 * ip_reass() will return a different mbuf.
936	 */
937	IPSTAT_INC(ips_fragments);
938	m->m_pkthdr.header = ip;
939
940	/* Previous ip_reass() started here. */
941	/*
942	 * Presence of header sizes in mbufs
943	 * would confuse code below.
944	 */
945	m->m_data += hlen;
946	m->m_len -= hlen;
947
948	/*
949	 * If first fragment to arrive, create a reassembly queue.
950	 */
951	if (fp == NULL) {
952		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
953		if (fp == NULL)
954			goto dropfrag;
955#ifdef MAC
956		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
957			uma_zfree(V_ipq_zone, fp);
958			fp = NULL;
959			goto dropfrag;
960		}
961		mac_ipq_create(m, fp);
962#endif
963		TAILQ_INSERT_HEAD(head, fp, ipq_list);
964		V_nipq++;
965		fp->ipq_nfrags = 1;
966		fp->ipq_ttl = IPFRAGTTL;
967		fp->ipq_p = ip->ip_p;
968		fp->ipq_id = ip->ip_id;
969		fp->ipq_src = ip->ip_src;
970		fp->ipq_dst = ip->ip_dst;
971		fp->ipq_frags = m;
972		m->m_nextpkt = NULL;
973		goto done;
974	} else {
975		fp->ipq_nfrags++;
976#ifdef MAC
977		mac_ipq_update(m, fp);
978#endif
979	}
980
981#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
982
983	/*
984	 * Handle ECN by comparing this segment with the first one;
985	 * if CE is set, do not lose CE.
986	 * drop if CE and not-ECT are mixed for the same packet.
987	 */
988	ecn = ip->ip_tos & IPTOS_ECN_MASK;
989	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
990	if (ecn == IPTOS_ECN_CE) {
991		if (ecn0 == IPTOS_ECN_NOTECT)
992			goto dropfrag;
993		if (ecn0 != IPTOS_ECN_CE)
994			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
995	}
996	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
997		goto dropfrag;
998
999	/*
1000	 * Find a segment which begins after this one does.
1001	 */
1002	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1003		if (GETIP(q)->ip_off > ip->ip_off)
1004			break;
1005
1006	/*
1007	 * If there is a preceding segment, it may provide some of
1008	 * our data already.  If so, drop the data from the incoming
1009	 * segment.  If it provides all of our data, drop us, otherwise
1010	 * stick new segment in the proper place.
1011	 *
1012	 * If some of the data is dropped from the preceding
1013	 * segment, then it's checksum is invalidated.
1014	 */
1015	if (p) {
1016		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1017		if (i > 0) {
1018			if (i >= ip->ip_len)
1019				goto dropfrag;
1020			m_adj(m, i);
1021			m->m_pkthdr.csum_flags = 0;
1022			ip->ip_off += i;
1023			ip->ip_len -= i;
1024		}
1025		m->m_nextpkt = p->m_nextpkt;
1026		p->m_nextpkt = m;
1027	} else {
1028		m->m_nextpkt = fp->ipq_frags;
1029		fp->ipq_frags = m;
1030	}
1031
1032	/*
1033	 * While we overlap succeeding segments trim them or,
1034	 * if they are completely covered, dequeue them.
1035	 */
1036	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1037	     q = nq) {
1038		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1039		if (i < GETIP(q)->ip_len) {
1040			GETIP(q)->ip_len -= i;
1041			GETIP(q)->ip_off += i;
1042			m_adj(q, i);
1043			q->m_pkthdr.csum_flags = 0;
1044			break;
1045		}
1046		nq = q->m_nextpkt;
1047		m->m_nextpkt = nq;
1048		IPSTAT_INC(ips_fragdropped);
1049		fp->ipq_nfrags--;
1050		m_freem(q);
1051	}
1052
1053	/*
1054	 * Check for complete reassembly and perform frag per packet
1055	 * limiting.
1056	 *
1057	 * Frag limiting is performed here so that the nth frag has
1058	 * a chance to complete the packet before we drop the packet.
1059	 * As a result, n+1 frags are actually allowed per packet, but
1060	 * only n will ever be stored. (n = maxfragsperpacket.)
1061	 *
1062	 */
1063	next = 0;
1064	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1065		if (GETIP(q)->ip_off != next) {
1066			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1067				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1068				ip_freef(head, fp);
1069			}
1070			goto done;
1071		}
1072		next += GETIP(q)->ip_len;
1073	}
1074	/* Make sure the last packet didn't have the IP_MF flag */
1075	if (p->m_flags & M_FRAG) {
1076		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1077			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1078			ip_freef(head, fp);
1079		}
1080		goto done;
1081	}
1082
1083	/*
1084	 * Reassembly is complete.  Make sure the packet is a sane size.
1085	 */
1086	q = fp->ipq_frags;
1087	ip = GETIP(q);
1088	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1089		IPSTAT_INC(ips_toolong);
1090		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1091		ip_freef(head, fp);
1092		goto done;
1093	}
1094
1095	/*
1096	 * Concatenate fragments.
1097	 */
1098	m = q;
1099	t = m->m_next;
1100	m->m_next = NULL;
1101	m_cat(m, t);
1102	nq = q->m_nextpkt;
1103	q->m_nextpkt = NULL;
1104	for (q = nq; q != NULL; q = nq) {
1105		nq = q->m_nextpkt;
1106		q->m_nextpkt = NULL;
1107		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1108		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1109		m_cat(m, q);
1110	}
1111	/*
1112	 * In order to do checksumming faster we do 'end-around carry' here
1113	 * (and not in for{} loop), though it implies we are not going to
1114	 * reassemble more than 64k fragments.
1115	 */
1116	m->m_pkthdr.csum_data =
1117	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1118#ifdef MAC
1119	mac_ipq_reassemble(fp, m);
1120	mac_ipq_destroy(fp);
1121#endif
1122
1123	/*
1124	 * Create header for new ip packet by modifying header of first
1125	 * packet;  dequeue and discard fragment reassembly header.
1126	 * Make header visible.
1127	 */
1128	ip->ip_len = (ip->ip_hl << 2) + next;
1129	ip->ip_src = fp->ipq_src;
1130	ip->ip_dst = fp->ipq_dst;
1131	TAILQ_REMOVE(head, fp, ipq_list);
1132	V_nipq--;
1133	uma_zfree(V_ipq_zone, fp);
1134	m->m_len += (ip->ip_hl << 2);
1135	m->m_data -= (ip->ip_hl << 2);
1136	/* some debugging cruft by sklower, below, will go away soon */
1137	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1138		m_fixhdr(m);
1139	IPSTAT_INC(ips_reassembled);
1140	IPQ_UNLOCK();
1141	return (m);
1142
1143dropfrag:
1144	IPSTAT_INC(ips_fragdropped);
1145	if (fp != NULL)
1146		fp->ipq_nfrags--;
1147	m_freem(m);
1148done:
1149	IPQ_UNLOCK();
1150	return (NULL);
1151
1152#undef GETIP
1153}
1154
1155/*
1156 * Free a fragment reassembly header and all
1157 * associated datagrams.
1158 */
1159static void
1160ip_freef(struct ipqhead *fhp, struct ipq *fp)
1161{
1162	struct mbuf *q;
1163
1164	IPQ_LOCK_ASSERT();
1165
1166	while (fp->ipq_frags) {
1167		q = fp->ipq_frags;
1168		fp->ipq_frags = q->m_nextpkt;
1169		m_freem(q);
1170	}
1171	TAILQ_REMOVE(fhp, fp, ipq_list);
1172	uma_zfree(V_ipq_zone, fp);
1173	V_nipq--;
1174}
1175
1176/*
1177 * IP timer processing;
1178 * if a timer expires on a reassembly
1179 * queue, discard it.
1180 */
1181void
1182ip_slowtimo(void)
1183{
1184	VNET_ITERATOR_DECL(vnet_iter);
1185	struct ipq *fp;
1186	int i;
1187
1188	VNET_LIST_RLOCK_NOSLEEP();
1189	IPQ_LOCK();
1190	VNET_FOREACH(vnet_iter) {
1191		CURVNET_SET(vnet_iter);
1192		for (i = 0; i < IPREASS_NHASH; i++) {
1193			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1194				struct ipq *fpp;
1195
1196				fpp = fp;
1197				fp = TAILQ_NEXT(fp, ipq_list);
1198				if(--fpp->ipq_ttl == 0) {
1199					IPSTAT_ADD(ips_fragtimeout,
1200					    fpp->ipq_nfrags);
1201					ip_freef(&V_ipq[i], fpp);
1202				}
1203			}
1204		}
1205		/*
1206		 * If we are over the maximum number of fragments
1207		 * (due to the limit being lowered), drain off
1208		 * enough to get down to the new limit.
1209		 */
1210		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1211			for (i = 0; i < IPREASS_NHASH; i++) {
1212				while (V_nipq > V_maxnipq &&
1213				    !TAILQ_EMPTY(&V_ipq[i])) {
1214					IPSTAT_ADD(ips_fragdropped,
1215					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1216					ip_freef(&V_ipq[i],
1217					    TAILQ_FIRST(&V_ipq[i]));
1218				}
1219			}
1220		}
1221		CURVNET_RESTORE();
1222	}
1223	IPQ_UNLOCK();
1224	VNET_LIST_RUNLOCK_NOSLEEP();
1225}
1226
1227/*
1228 * Drain off all datagram fragments.
1229 */
1230static void
1231ip_drain_locked(void)
1232{
1233	int     i;
1234
1235	IPQ_LOCK_ASSERT();
1236
1237	for (i = 0; i < IPREASS_NHASH; i++) {
1238		while(!TAILQ_EMPTY(&V_ipq[i])) {
1239			IPSTAT_ADD(ips_fragdropped,
1240			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1241			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1242		}
1243	}
1244}
1245
1246void
1247ip_drain(void)
1248{
1249	VNET_ITERATOR_DECL(vnet_iter);
1250
1251	VNET_LIST_RLOCK_NOSLEEP();
1252	IPQ_LOCK();
1253	VNET_FOREACH(vnet_iter) {
1254		CURVNET_SET(vnet_iter);
1255		ip_drain_locked();
1256		CURVNET_RESTORE();
1257	}
1258	IPQ_UNLOCK();
1259	VNET_LIST_RUNLOCK_NOSLEEP();
1260	in_rtqdrain();
1261}
1262
1263/*
1264 * The protocol to be inserted into ip_protox[] must be already registered
1265 * in inetsw[], either statically or through pf_proto_register().
1266 */
1267int
1268ipproto_register(short ipproto)
1269{
1270	struct protosw *pr;
1271
1272	/* Sanity checks. */
1273	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1274		return (EPROTONOSUPPORT);
1275
1276	/*
1277	 * The protocol slot must not be occupied by another protocol
1278	 * already.  An index pointing to IPPROTO_RAW is unused.
1279	 */
1280	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1281	if (pr == NULL)
1282		return (EPFNOSUPPORT);
1283	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1284		return (EEXIST);
1285
1286	/* Find the protocol position in inetsw[] and set the index. */
1287	for (pr = inetdomain.dom_protosw;
1288	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1289		if (pr->pr_domain->dom_family == PF_INET &&
1290		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1291			ip_protox[pr->pr_protocol] = pr - inetsw;
1292			return (0);
1293		}
1294	}
1295	return (EPROTONOSUPPORT);
1296}
1297
1298int
1299ipproto_unregister(short ipproto)
1300{
1301	struct protosw *pr;
1302
1303	/* Sanity checks. */
1304	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1305		return (EPROTONOSUPPORT);
1306
1307	/* Check if the protocol was indeed registered. */
1308	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1309	if (pr == NULL)
1310		return (EPFNOSUPPORT);
1311	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1312		return (ENOENT);
1313
1314	/* Reset the protocol slot to IPPROTO_RAW. */
1315	ip_protox[ipproto] = pr - inetsw;
1316	return (0);
1317}
1318
1319/*
1320 * Given address of next destination (final or next hop), return (referenced)
1321 * internet address info of interface to be used to get there.
1322 */
1323struct in_ifaddr *
1324ip_rtaddr(struct in_addr dst, u_int fibnum)
1325{
1326	struct route sro;
1327	struct sockaddr_in *sin;
1328	struct in_ifaddr *ia;
1329
1330	bzero(&sro, sizeof(sro));
1331	sin = (struct sockaddr_in *)&sro.ro_dst;
1332	sin->sin_family = AF_INET;
1333	sin->sin_len = sizeof(*sin);
1334	sin->sin_addr = dst;
1335	in_rtalloc_ign(&sro, 0, fibnum);
1336
1337	if (sro.ro_rt == NULL)
1338		return (NULL);
1339
1340	ia = ifatoia(sro.ro_rt->rt_ifa);
1341	ifa_ref(&ia->ia_ifa);
1342	RTFREE(sro.ro_rt);
1343	return (ia);
1344}
1345
1346u_char inetctlerrmap[PRC_NCMDS] = {
1347	0,		0,		0,		0,
1348	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1349	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1350	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1351	0,		0,		EHOSTUNREACH,	0,
1352	ENOPROTOOPT,	ECONNREFUSED
1353};
1354
1355/*
1356 * Forward a packet.  If some error occurs return the sender
1357 * an icmp packet.  Note we can't always generate a meaningful
1358 * icmp message because icmp doesn't have a large enough repertoire
1359 * of codes and types.
1360 *
1361 * If not forwarding, just drop the packet.  This could be confusing
1362 * if ipforwarding was zero but some routing protocol was advancing
1363 * us as a gateway to somewhere.  However, we must let the routing
1364 * protocol deal with that.
1365 *
1366 * The srcrt parameter indicates whether the packet is being forwarded
1367 * via a source route.
1368 *
1369 * IP header in host byte order.
1370 */
1371void
1372ip_forward(struct mbuf *m, int srcrt)
1373{
1374	struct ip *ip = mtod(m, struct ip *);
1375	struct in_ifaddr *ia;
1376	struct mbuf *mcopy;
1377	struct in_addr dest;
1378	struct route ro;
1379	int error, type = 0, code = 0, mtu = 0;
1380
1381	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1382		IPSTAT_INC(ips_cantforward);
1383		m_freem(m);
1384		return;
1385	}
1386#ifdef IPSTEALTH
1387	if (!V_ipstealth) {
1388#endif
1389		if (ip->ip_ttl <= IPTTLDEC) {
1390			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1391			    0, 0);
1392			return;
1393		}
1394#ifdef IPSTEALTH
1395	}
1396#endif
1397
1398	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1399#ifndef IPSEC
1400	/*
1401	 * 'ia' may be NULL if there is no route for this destination.
1402	 * In case of IPsec, Don't discard it just yet, but pass it to
1403	 * ip_output in case of outgoing IPsec policy.
1404	 */
1405	if (!srcrt && ia == NULL) {
1406		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1407		return;
1408	}
1409#endif
1410
1411	/*
1412	 * Save the IP header and at most 8 bytes of the payload,
1413	 * in case we need to generate an ICMP message to the src.
1414	 *
1415	 * XXX this can be optimized a lot by saving the data in a local
1416	 * buffer on the stack (72 bytes at most), and only allocating the
1417	 * mbuf if really necessary. The vast majority of the packets
1418	 * are forwarded without having to send an ICMP back (either
1419	 * because unnecessary, or because rate limited), so we are
1420	 * really we are wasting a lot of work here.
1421	 *
1422	 * We don't use m_copy() because it might return a reference
1423	 * to a shared cluster. Both this function and ip_output()
1424	 * assume exclusive access to the IP header in `m', so any
1425	 * data in a cluster may change before we reach icmp_error().
1426	 */
1427	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1428	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1429		/*
1430		 * It's probably ok if the pkthdr dup fails (because
1431		 * the deep copy of the tag chain failed), but for now
1432		 * be conservative and just discard the copy since
1433		 * code below may some day want the tags.
1434		 */
1435		m_free(mcopy);
1436		mcopy = NULL;
1437	}
1438	if (mcopy != NULL) {
1439		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1440		mcopy->m_pkthdr.len = mcopy->m_len;
1441		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1442	}
1443
1444#ifdef IPSTEALTH
1445	if (!V_ipstealth) {
1446#endif
1447		ip->ip_ttl -= IPTTLDEC;
1448#ifdef IPSTEALTH
1449	}
1450#endif
1451
1452	/*
1453	 * If forwarding packet using same interface that it came in on,
1454	 * perhaps should send a redirect to sender to shortcut a hop.
1455	 * Only send redirect if source is sending directly to us,
1456	 * and if packet was not source routed (or has any options).
1457	 * Also, don't send redirect if forwarding using a default route
1458	 * or a route modified by a redirect.
1459	 */
1460	dest.s_addr = 0;
1461	if (!srcrt && V_ipsendredirects &&
1462	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1463		struct sockaddr_in *sin;
1464		struct rtentry *rt;
1465
1466		bzero(&ro, sizeof(ro));
1467		sin = (struct sockaddr_in *)&ro.ro_dst;
1468		sin->sin_family = AF_INET;
1469		sin->sin_len = sizeof(*sin);
1470		sin->sin_addr = ip->ip_dst;
1471		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1472
1473		rt = ro.ro_rt;
1474
1475		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1476		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1477#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1478			u_long src = ntohl(ip->ip_src.s_addr);
1479
1480			if (RTA(rt) &&
1481			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1482				if (rt->rt_flags & RTF_GATEWAY)
1483					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1484				else
1485					dest.s_addr = ip->ip_dst.s_addr;
1486				/* Router requirements says to only send host redirects */
1487				type = ICMP_REDIRECT;
1488				code = ICMP_REDIRECT_HOST;
1489			}
1490		}
1491		if (rt)
1492			RTFREE(rt);
1493	}
1494
1495	/*
1496	 * Try to cache the route MTU from ip_output so we can consider it for
1497	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1498	 */
1499	bzero(&ro, sizeof(ro));
1500
1501	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1502
1503	if (error == EMSGSIZE && ro.ro_rt)
1504		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1505	RO_RTFREE(&ro);
1506
1507	if (error)
1508		IPSTAT_INC(ips_cantforward);
1509	else {
1510		IPSTAT_INC(ips_forward);
1511		if (type)
1512			IPSTAT_INC(ips_redirectsent);
1513		else {
1514			if (mcopy)
1515				m_freem(mcopy);
1516			if (ia != NULL)
1517				ifa_free(&ia->ia_ifa);
1518			return;
1519		}
1520	}
1521	if (mcopy == NULL) {
1522		if (ia != NULL)
1523			ifa_free(&ia->ia_ifa);
1524		return;
1525	}
1526
1527	switch (error) {
1528
1529	case 0:				/* forwarded, but need redirect */
1530		/* type, code set above */
1531		break;
1532
1533	case ENETUNREACH:
1534	case EHOSTUNREACH:
1535	case ENETDOWN:
1536	case EHOSTDOWN:
1537	default:
1538		type = ICMP_UNREACH;
1539		code = ICMP_UNREACH_HOST;
1540		break;
1541
1542	case EMSGSIZE:
1543		type = ICMP_UNREACH;
1544		code = ICMP_UNREACH_NEEDFRAG;
1545
1546#ifdef IPSEC
1547		/*
1548		 * If IPsec is configured for this path,
1549		 * override any possibly mtu value set by ip_output.
1550		 */
1551		mtu = ip_ipsec_mtu(mcopy, mtu);
1552#endif /* IPSEC */
1553		/*
1554		 * If the MTU was set before make sure we are below the
1555		 * interface MTU.
1556		 * If the MTU wasn't set before use the interface mtu or
1557		 * fall back to the next smaller mtu step compared to the
1558		 * current packet size.
1559		 */
1560		if (mtu != 0) {
1561			if (ia != NULL)
1562				mtu = min(mtu, ia->ia_ifp->if_mtu);
1563		} else {
1564			if (ia != NULL)
1565				mtu = ia->ia_ifp->if_mtu;
1566			else
1567				mtu = ip_next_mtu(ip->ip_len, 0);
1568		}
1569		IPSTAT_INC(ips_cantfrag);
1570		break;
1571
1572	case ENOBUFS:
1573		/*
1574		 * A router should not generate ICMP_SOURCEQUENCH as
1575		 * required in RFC1812 Requirements for IP Version 4 Routers.
1576		 * Source quench could be a big problem under DoS attacks,
1577		 * or if the underlying interface is rate-limited.
1578		 * Those who need source quench packets may re-enable them
1579		 * via the net.inet.ip.sendsourcequench sysctl.
1580		 */
1581		if (V_ip_sendsourcequench == 0) {
1582			m_freem(mcopy);
1583			if (ia != NULL)
1584				ifa_free(&ia->ia_ifa);
1585			return;
1586		} else {
1587			type = ICMP_SOURCEQUENCH;
1588			code = 0;
1589		}
1590		break;
1591
1592	case EACCES:			/* ipfw denied packet */
1593		m_freem(mcopy);
1594		if (ia != NULL)
1595			ifa_free(&ia->ia_ifa);
1596		return;
1597	}
1598	if (ia != NULL)
1599		ifa_free(&ia->ia_ifa);
1600	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1601}
1602
1603void
1604ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1605    struct mbuf *m)
1606{
1607
1608	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1609		struct bintime bt;
1610
1611		bintime(&bt);
1612		if (inp->inp_socket->so_options & SO_BINTIME) {
1613			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1614			SCM_BINTIME, SOL_SOCKET);
1615			if (*mp)
1616				mp = &(*mp)->m_next;
1617		}
1618		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1619			struct timeval tv;
1620
1621			bintime2timeval(&bt, &tv);
1622			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1623				SCM_TIMESTAMP, SOL_SOCKET);
1624			if (*mp)
1625				mp = &(*mp)->m_next;
1626		}
1627	}
1628	if (inp->inp_flags & INP_RECVDSTADDR) {
1629		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1630		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1631		if (*mp)
1632			mp = &(*mp)->m_next;
1633	}
1634	if (inp->inp_flags & INP_RECVTTL) {
1635		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1636		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1637		if (*mp)
1638			mp = &(*mp)->m_next;
1639	}
1640#ifdef notyet
1641	/* XXX
1642	 * Moving these out of udp_input() made them even more broken
1643	 * than they already were.
1644	 */
1645	/* options were tossed already */
1646	if (inp->inp_flags & INP_RECVOPTS) {
1647		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1648		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1649		if (*mp)
1650			mp = &(*mp)->m_next;
1651	}
1652	/* ip_srcroute doesn't do what we want here, need to fix */
1653	if (inp->inp_flags & INP_RECVRETOPTS) {
1654		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1655		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1656		if (*mp)
1657			mp = &(*mp)->m_next;
1658	}
1659#endif
1660	if (inp->inp_flags & INP_RECVIF) {
1661		struct ifnet *ifp;
1662		struct sdlbuf {
1663			struct sockaddr_dl sdl;
1664			u_char	pad[32];
1665		} sdlbuf;
1666		struct sockaddr_dl *sdp;
1667		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1668
1669		if (((ifp = m->m_pkthdr.rcvif))
1670		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1671			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1672			/*
1673			 * Change our mind and don't try copy.
1674			 */
1675			if ((sdp->sdl_family != AF_LINK)
1676			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1677				goto makedummy;
1678			}
1679			bcopy(sdp, sdl2, sdp->sdl_len);
1680		} else {
1681makedummy:
1682			sdl2->sdl_len
1683				= offsetof(struct sockaddr_dl, sdl_data[0]);
1684			sdl2->sdl_family = AF_LINK;
1685			sdl2->sdl_index = 0;
1686			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1687		}
1688		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1689			IP_RECVIF, IPPROTO_IP);
1690		if (*mp)
1691			mp = &(*mp)->m_next;
1692	}
1693	if (inp->inp_flags & INP_RECVTOS) {
1694		*mp = sbcreatecontrol((caddr_t) &ip->ip_tos,
1695		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1696		if (*mp)
1697			mp = &(*mp)->m_next;
1698	}
1699}
1700
1701/*
1702 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1703 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1704 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1705 * compiled.
1706 */
1707static VNET_DEFINE(int, ip_rsvp_on);
1708VNET_DEFINE(struct socket *, ip_rsvpd);
1709
1710#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1711
1712int
1713ip_rsvp_init(struct socket *so)
1714{
1715
1716	if (so->so_type != SOCK_RAW ||
1717	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1718		return EOPNOTSUPP;
1719
1720	if (V_ip_rsvpd != NULL)
1721		return EADDRINUSE;
1722
1723	V_ip_rsvpd = so;
1724	/*
1725	 * This may seem silly, but we need to be sure we don't over-increment
1726	 * the RSVP counter, in case something slips up.
1727	 */
1728	if (!V_ip_rsvp_on) {
1729		V_ip_rsvp_on = 1;
1730		V_rsvp_on++;
1731	}
1732
1733	return 0;
1734}
1735
1736int
1737ip_rsvp_done(void)
1738{
1739
1740	V_ip_rsvpd = NULL;
1741	/*
1742	 * This may seem silly, but we need to be sure we don't over-decrement
1743	 * the RSVP counter, in case something slips up.
1744	 */
1745	if (V_ip_rsvp_on) {
1746		V_ip_rsvp_on = 0;
1747		V_rsvp_on--;
1748	}
1749	return 0;
1750}
1751
1752void
1753rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1754{
1755
1756	if (rsvp_input_p) { /* call the real one if loaded */
1757		rsvp_input_p(m, off);
1758		return;
1759	}
1760
1761	/* Can still get packets with rsvp_on = 0 if there is a local member
1762	 * of the group to which the RSVP packet is addressed.  But in this
1763	 * case we want to throw the packet away.
1764	 */
1765
1766	if (!V_rsvp_on) {
1767		m_freem(m);
1768		return;
1769	}
1770
1771	if (V_ip_rsvpd != NULL) {
1772		rip_input(m, off);
1773		return;
1774	}
1775	/* Drop the packet */
1776	m_freem(m);
1777}
1778