ip_input.c revision 226401
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 226401 2011-10-15 16:28:06Z glebius $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/rwlock.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54
55#include <net/pfil.h>
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_var.h>
59#include <net/if_dl.h>
60#include <net/route.h>
61#include <net/netisr.h>
62#include <net/vnet.h>
63#include <net/flowtable.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_fw.h>
72#include <netinet/ip_icmp.h>
73#include <netinet/ip_options.h>
74#include <machine/in_cksum.h>
75#include <netinet/ip_carp.h>
76#ifdef IPSEC
77#include <netinet/ip_ipsec.h>
78#endif /* IPSEC */
79
80#include <sys/socketvar.h>
81
82#include <security/mac/mac_framework.h>
83
84#ifdef CTASSERT
85CTASSERT(sizeof(struct ip) == 20);
86#endif
87
88struct	rwlock in_ifaddr_lock;
89RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
90
91VNET_DEFINE(int, rsvp_on);
92
93VNET_DEFINE(int, ipforwarding);
94SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95    &VNET_NAME(ipforwarding), 0,
96    "Enable IP forwarding between interfaces");
97
98static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
99#define	V_ipsendredirects	VNET(ipsendredirects)
100SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101    &VNET_NAME(ipsendredirects), 0,
102    "Enable sending IP redirects");
103
104static VNET_DEFINE(int, ip_keepfaith);
105#define	V_ip_keepfaith		VNET(ip_keepfaith)
106SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
107    &VNET_NAME(ip_keepfaith), 0,
108    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
109
110static VNET_DEFINE(int, ip_sendsourcequench);
111#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
112SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
113    &VNET_NAME(ip_sendsourcequench), 0,
114    "Enable the transmission of source quench packets");
115
116VNET_DEFINE(int, ip_do_randomid);
117SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
118    &VNET_NAME(ip_do_randomid), 0,
119    "Assign random ip_id values");
120
121/*
122 * XXX - Setting ip_checkinterface mostly implements the receive side of
123 * the Strong ES model described in RFC 1122, but since the routing table
124 * and transmit implementation do not implement the Strong ES model,
125 * setting this to 1 results in an odd hybrid.
126 *
127 * XXX - ip_checkinterface currently must be disabled if you use ipnat
128 * to translate the destination address to another local interface.
129 *
130 * XXX - ip_checkinterface must be disabled if you add IP aliases
131 * to the loopback interface instead of the interface where the
132 * packets for those addresses are received.
133 */
134static VNET_DEFINE(int, ip_checkinterface);
135#define	V_ip_checkinterface	VNET(ip_checkinterface)
136SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
137    &VNET_NAME(ip_checkinterface), 0,
138    "Verify packet arrives on correct interface");
139
140VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
141
142static struct netisr_handler ip_nh = {
143	.nh_name = "ip",
144	.nh_handler = ip_input,
145	.nh_proto = NETISR_IP,
146	.nh_policy = NETISR_POLICY_FLOW,
147};
148
149extern	struct domain inetdomain;
150extern	struct protosw inetsw[];
151u_char	ip_protox[IPPROTO_MAX];
152VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
153VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
154VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
155
156VNET_DEFINE(struct ipstat, ipstat);
157SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
158    &VNET_NAME(ipstat), ipstat,
159    "IP statistics (struct ipstat, netinet/ip_var.h)");
160
161static VNET_DEFINE(uma_zone_t, ipq_zone);
162static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
163static struct mtx ipqlock;
164
165#define	V_ipq_zone		VNET(ipq_zone)
166#define	V_ipq			VNET(ipq)
167
168#define	IPQ_LOCK()	mtx_lock(&ipqlock)
169#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
170#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
171#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
172
173static void	maxnipq_update(void);
174static void	ipq_zone_change(void *);
175static void	ip_drain_locked(void);
176
177static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
178static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
179#define	V_maxnipq		VNET(maxnipq)
180#define	V_nipq			VNET(nipq)
181SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
182    &VNET_NAME(nipq), 0,
183    "Current number of IPv4 fragment reassembly queue entries");
184
185static VNET_DEFINE(int, maxfragsperpacket);
186#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
187SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
188    &VNET_NAME(maxfragsperpacket), 0,
189    "Maximum number of IPv4 fragments allowed per packet");
190
191#ifdef IPCTL_DEFMTU
192SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
193    &ip_mtu, 0, "Default MTU");
194#endif
195
196#ifdef IPSTEALTH
197VNET_DEFINE(int, ipstealth);
198SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
199    &VNET_NAME(ipstealth), 0,
200    "IP stealth mode, no TTL decrementation on forwarding");
201#endif
202
203#ifdef FLOWTABLE
204static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
205VNET_DEFINE(struct flowtable *, ip_ft);
206#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
207
208SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
209    &VNET_NAME(ip_output_flowtable_size), 2048,
210    "number of entries in the per-cpu output flow caches");
211#endif
212
213static void	ip_freef(struct ipqhead *, struct ipq *);
214
215/*
216 * Kernel module interface for updating ipstat.  The argument is an index
217 * into ipstat treated as an array of u_long.  While this encodes the general
218 * layout of ipstat into the caller, it doesn't encode its location, so that
219 * future changes to add, for example, per-CPU stats support won't cause
220 * binary compatibility problems for kernel modules.
221 */
222void
223kmod_ipstat_inc(int statnum)
224{
225
226	(*((u_long *)&V_ipstat + statnum))++;
227}
228
229void
230kmod_ipstat_dec(int statnum)
231{
232
233	(*((u_long *)&V_ipstat + statnum))--;
234}
235
236static int
237sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
238{
239	int error, qlimit;
240
241	netisr_getqlimit(&ip_nh, &qlimit);
242	error = sysctl_handle_int(oidp, &qlimit, 0, req);
243	if (error || !req->newptr)
244		return (error);
245	if (qlimit < 1)
246		return (EINVAL);
247	return (netisr_setqlimit(&ip_nh, qlimit));
248}
249SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
250    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
251    "Maximum size of the IP input queue");
252
253static int
254sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
255{
256	u_int64_t qdrops_long;
257	int error, qdrops;
258
259	netisr_getqdrops(&ip_nh, &qdrops_long);
260	qdrops = qdrops_long;
261	error = sysctl_handle_int(oidp, &qdrops, 0, req);
262	if (error || !req->newptr)
263		return (error);
264	if (qdrops != 0)
265		return (EINVAL);
266	netisr_clearqdrops(&ip_nh);
267	return (0);
268}
269
270SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
271    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
272    "Number of packets dropped from the IP input queue");
273
274/*
275 * IP initialization: fill in IP protocol switch table.
276 * All protocols not implemented in kernel go to raw IP protocol handler.
277 */
278void
279ip_init(void)
280{
281	struct protosw *pr;
282	int i;
283
284	V_ip_id = time_second & 0xffff;
285
286	TAILQ_INIT(&V_in_ifaddrhead);
287	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
288
289	/* Initialize IP reassembly queue. */
290	for (i = 0; i < IPREASS_NHASH; i++)
291		TAILQ_INIT(&V_ipq[i]);
292	V_maxnipq = nmbclusters / 32;
293	V_maxfragsperpacket = 16;
294	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
295	    NULL, UMA_ALIGN_PTR, 0);
296	maxnipq_update();
297
298	/* Initialize packet filter hooks. */
299	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
300	V_inet_pfil_hook.ph_af = AF_INET;
301	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
302		printf("%s: WARNING: unable to register pfil hook, "
303			"error %d\n", __func__, i);
304
305#ifdef FLOWTABLE
306	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
307		&V_ip_output_flowtable_size)) {
308		if (V_ip_output_flowtable_size < 256)
309			V_ip_output_flowtable_size = 256;
310		if (!powerof2(V_ip_output_flowtable_size)) {
311			printf("flowtable must be power of 2 size\n");
312			V_ip_output_flowtable_size = 2048;
313		}
314	} else {
315		/*
316		 * round up to the next power of 2
317		 */
318		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
319	}
320	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
321#endif
322
323	/* Skip initialization of globals for non-default instances. */
324	if (!IS_DEFAULT_VNET(curvnet))
325		return;
326
327	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
328	if (pr == NULL)
329		panic("ip_init: PF_INET not found");
330
331	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
332	for (i = 0; i < IPPROTO_MAX; i++)
333		ip_protox[i] = pr - inetsw;
334	/*
335	 * Cycle through IP protocols and put them into the appropriate place
336	 * in ip_protox[].
337	 */
338	for (pr = inetdomain.dom_protosw;
339	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
340		if (pr->pr_domain->dom_family == PF_INET &&
341		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
342			/* Be careful to only index valid IP protocols. */
343			if (pr->pr_protocol < IPPROTO_MAX)
344				ip_protox[pr->pr_protocol] = pr - inetsw;
345		}
346
347	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
348		NULL, EVENTHANDLER_PRI_ANY);
349
350	/* Initialize various other remaining things. */
351	IPQ_LOCK_INIT();
352	netisr_register(&ip_nh);
353}
354
355#ifdef VIMAGE
356void
357ip_destroy(void)
358{
359
360	/* Cleanup in_ifaddr hash table; should be empty. */
361	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
362
363	IPQ_LOCK();
364	ip_drain_locked();
365	IPQ_UNLOCK();
366
367	uma_zdestroy(V_ipq_zone);
368}
369#endif
370
371/*
372 * Ip input routine.  Checksum and byte swap header.  If fragmented
373 * try to reassemble.  Process options.  Pass to next level.
374 */
375void
376ip_input(struct mbuf *m)
377{
378	struct ip *ip = NULL;
379	struct in_ifaddr *ia = NULL;
380	struct ifaddr *ifa;
381	struct ifnet *ifp;
382	int    checkif, hlen = 0;
383	u_short sum;
384	int dchg = 0;				/* dest changed after fw */
385	struct in_addr odst;			/* original dst address */
386
387	M_ASSERTPKTHDR(m);
388
389	if (m->m_flags & M_FASTFWD_OURS) {
390		/*
391		 * Firewall or NAT changed destination to local.
392		 * We expect ip_len and ip_off to be in host byte order.
393		 */
394		m->m_flags &= ~M_FASTFWD_OURS;
395		/* Set up some basics that will be used later. */
396		ip = mtod(m, struct ip *);
397		hlen = ip->ip_hl << 2;
398		goto ours;
399	}
400
401	IPSTAT_INC(ips_total);
402
403	if (m->m_pkthdr.len < sizeof(struct ip))
404		goto tooshort;
405
406	if (m->m_len < sizeof (struct ip) &&
407	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
408		IPSTAT_INC(ips_toosmall);
409		return;
410	}
411	ip = mtod(m, struct ip *);
412
413	if (ip->ip_v != IPVERSION) {
414		IPSTAT_INC(ips_badvers);
415		goto bad;
416	}
417
418	hlen = ip->ip_hl << 2;
419	if (hlen < sizeof(struct ip)) {	/* minimum header length */
420		IPSTAT_INC(ips_badhlen);
421		goto bad;
422	}
423	if (hlen > m->m_len) {
424		if ((m = m_pullup(m, hlen)) == NULL) {
425			IPSTAT_INC(ips_badhlen);
426			return;
427		}
428		ip = mtod(m, struct ip *);
429	}
430
431	/* 127/8 must not appear on wire - RFC1122 */
432	ifp = m->m_pkthdr.rcvif;
433	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
434	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
435		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
436			IPSTAT_INC(ips_badaddr);
437			goto bad;
438		}
439	}
440
441	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
442		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
443	} else {
444		if (hlen == sizeof(struct ip)) {
445			sum = in_cksum_hdr(ip);
446		} else {
447			sum = in_cksum(m, hlen);
448		}
449	}
450	if (sum) {
451		IPSTAT_INC(ips_badsum);
452		goto bad;
453	}
454
455#ifdef ALTQ
456	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
457		/* packet is dropped by traffic conditioner */
458		return;
459#endif
460
461	/*
462	 * Convert fields to host representation.
463	 */
464	ip->ip_len = ntohs(ip->ip_len);
465	if (ip->ip_len < hlen) {
466		IPSTAT_INC(ips_badlen);
467		goto bad;
468	}
469	ip->ip_off = ntohs(ip->ip_off);
470
471	/*
472	 * Check that the amount of data in the buffers
473	 * is as at least much as the IP header would have us expect.
474	 * Trim mbufs if longer than we expect.
475	 * Drop packet if shorter than we expect.
476	 */
477	if (m->m_pkthdr.len < ip->ip_len) {
478tooshort:
479		IPSTAT_INC(ips_tooshort);
480		goto bad;
481	}
482	if (m->m_pkthdr.len > ip->ip_len) {
483		if (m->m_len == m->m_pkthdr.len) {
484			m->m_len = ip->ip_len;
485			m->m_pkthdr.len = ip->ip_len;
486		} else
487			m_adj(m, ip->ip_len - m->m_pkthdr.len);
488	}
489#ifdef IPSEC
490	/*
491	 * Bypass packet filtering for packets previously handled by IPsec.
492	 */
493	if (ip_ipsec_filtertunnel(m))
494		goto passin;
495#endif /* IPSEC */
496
497	/*
498	 * Run through list of hooks for input packets.
499	 *
500	 * NB: Beware of the destination address changing (e.g.
501	 *     by NAT rewriting).  When this happens, tell
502	 *     ip_forward to do the right thing.
503	 */
504
505	/* Jump over all PFIL processing if hooks are not active. */
506	if (!PFIL_HOOKED(&V_inet_pfil_hook))
507		goto passin;
508
509	odst = ip->ip_dst;
510	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
511		return;
512	if (m == NULL)			/* consumed by filter */
513		return;
514
515	ip = mtod(m, struct ip *);
516	dchg = (odst.s_addr != ip->ip_dst.s_addr);
517	ifp = m->m_pkthdr.rcvif;
518
519#ifdef IPFIREWALL_FORWARD
520	if (m->m_flags & M_FASTFWD_OURS) {
521		m->m_flags &= ~M_FASTFWD_OURS;
522		goto ours;
523	}
524	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
525		/*
526		 * Directly ship the packet on.  This allows forwarding
527		 * packets originally destined to us to some other directly
528		 * connected host.
529		 */
530		ip_forward(m, dchg);
531		return;
532	}
533#endif /* IPFIREWALL_FORWARD */
534
535passin:
536	/*
537	 * Process options and, if not destined for us,
538	 * ship it on.  ip_dooptions returns 1 when an
539	 * error was detected (causing an icmp message
540	 * to be sent and the original packet to be freed).
541	 */
542	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
543		return;
544
545        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
546         * matter if it is destined to another node, or whether it is
547         * a multicast one, RSVP wants it! and prevents it from being forwarded
548         * anywhere else. Also checks if the rsvp daemon is running before
549	 * grabbing the packet.
550         */
551	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
552		goto ours;
553
554	/*
555	 * Check our list of addresses, to see if the packet is for us.
556	 * If we don't have any addresses, assume any unicast packet
557	 * we receive might be for us (and let the upper layers deal
558	 * with it).
559	 */
560	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
561	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
562		goto ours;
563
564	/*
565	 * Enable a consistency check between the destination address
566	 * and the arrival interface for a unicast packet (the RFC 1122
567	 * strong ES model) if IP forwarding is disabled and the packet
568	 * is not locally generated and the packet is not subject to
569	 * 'ipfw fwd'.
570	 *
571	 * XXX - Checking also should be disabled if the destination
572	 * address is ipnat'ed to a different interface.
573	 *
574	 * XXX - Checking is incompatible with IP aliases added
575	 * to the loopback interface instead of the interface where
576	 * the packets are received.
577	 *
578	 * XXX - This is the case for carp vhost IPs as well so we
579	 * insert a workaround. If the packet got here, we already
580	 * checked with carp_iamatch() and carp_forus().
581	 */
582	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
583	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
584	    ifp->if_carp == NULL && (dchg == 0);
585
586	/*
587	 * Check for exact addresses in the hash bucket.
588	 */
589	/* IN_IFADDR_RLOCK(); */
590	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
591		/*
592		 * If the address matches, verify that the packet
593		 * arrived via the correct interface if checking is
594		 * enabled.
595		 */
596		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
597		    (!checkif || ia->ia_ifp == ifp)) {
598			ifa_ref(&ia->ia_ifa);
599			/* IN_IFADDR_RUNLOCK(); */
600			goto ours;
601		}
602	}
603	/* IN_IFADDR_RUNLOCK(); */
604
605	/*
606	 * Check for broadcast addresses.
607	 *
608	 * Only accept broadcast packets that arrive via the matching
609	 * interface.  Reception of forwarded directed broadcasts would
610	 * be handled via ip_forward() and ether_output() with the loopback
611	 * into the stack for SIMPLEX interfaces handled by ether_output().
612	 */
613	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
614		IF_ADDR_LOCK(ifp);
615	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
616			if (ifa->ifa_addr->sa_family != AF_INET)
617				continue;
618			ia = ifatoia(ifa);
619			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
620			    ip->ip_dst.s_addr) {
621				ifa_ref(ifa);
622				IF_ADDR_UNLOCK(ifp);
623				goto ours;
624			}
625#ifdef BOOTP_COMPAT
626			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
627				ifa_ref(ifa);
628				IF_ADDR_UNLOCK(ifp);
629				goto ours;
630			}
631#endif
632		}
633		IF_ADDR_UNLOCK(ifp);
634		ia = NULL;
635	}
636	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
637	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
638		IPSTAT_INC(ips_cantforward);
639		m_freem(m);
640		return;
641	}
642	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
643		if (V_ip_mrouter) {
644			/*
645			 * If we are acting as a multicast router, all
646			 * incoming multicast packets are passed to the
647			 * kernel-level multicast forwarding function.
648			 * The packet is returned (relatively) intact; if
649			 * ip_mforward() returns a non-zero value, the packet
650			 * must be discarded, else it may be accepted below.
651			 */
652			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
653				IPSTAT_INC(ips_cantforward);
654				m_freem(m);
655				return;
656			}
657
658			/*
659			 * The process-level routing daemon needs to receive
660			 * all multicast IGMP packets, whether or not this
661			 * host belongs to their destination groups.
662			 */
663			if (ip->ip_p == IPPROTO_IGMP)
664				goto ours;
665			IPSTAT_INC(ips_forward);
666		}
667		/*
668		 * Assume the packet is for us, to avoid prematurely taking
669		 * a lock on the in_multi hash. Protocols must perform
670		 * their own filtering and update statistics accordingly.
671		 */
672		goto ours;
673	}
674	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
675		goto ours;
676	if (ip->ip_dst.s_addr == INADDR_ANY)
677		goto ours;
678
679	/*
680	 * FAITH(Firewall Aided Internet Translator)
681	 */
682	if (ifp && ifp->if_type == IFT_FAITH) {
683		if (V_ip_keepfaith) {
684			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
685				goto ours;
686		}
687		m_freem(m);
688		return;
689	}
690
691	/*
692	 * Not for us; forward if possible and desirable.
693	 */
694	if (V_ipforwarding == 0) {
695		IPSTAT_INC(ips_cantforward);
696		m_freem(m);
697	} else {
698#ifdef IPSEC
699		if (ip_ipsec_fwd(m))
700			goto bad;
701#endif /* IPSEC */
702		ip_forward(m, dchg);
703	}
704	return;
705
706ours:
707#ifdef IPSTEALTH
708	/*
709	 * IPSTEALTH: Process non-routing options only
710	 * if the packet is destined for us.
711	 */
712	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
713		if (ia != NULL)
714			ifa_free(&ia->ia_ifa);
715		return;
716	}
717#endif /* IPSTEALTH */
718
719	/* Count the packet in the ip address stats */
720	if (ia != NULL) {
721		ia->ia_ifa.if_ipackets++;
722		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
723		ifa_free(&ia->ia_ifa);
724	}
725
726	/*
727	 * Attempt reassembly; if it succeeds, proceed.
728	 * ip_reass() will return a different mbuf.
729	 */
730	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
731		m = ip_reass(m);
732		if (m == NULL)
733			return;
734		ip = mtod(m, struct ip *);
735		/* Get the header length of the reassembled packet */
736		hlen = ip->ip_hl << 2;
737	}
738
739	/*
740	 * Further protocols expect the packet length to be w/o the
741	 * IP header.
742	 */
743	ip->ip_len -= hlen;
744
745#ifdef IPSEC
746	/*
747	 * enforce IPsec policy checking if we are seeing last header.
748	 * note that we do not visit this with protocols with pcb layer
749	 * code - like udp/tcp/raw ip.
750	 */
751	if (ip_ipsec_input(m))
752		goto bad;
753#endif /* IPSEC */
754
755	/*
756	 * Switch out to protocol's input routine.
757	 */
758	IPSTAT_INC(ips_delivered);
759
760	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
761	return;
762bad:
763	m_freem(m);
764}
765
766/*
767 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
768 * max has slightly different semantics than the sysctl, for historical
769 * reasons.
770 */
771static void
772maxnipq_update(void)
773{
774
775	/*
776	 * -1 for unlimited allocation.
777	 */
778	if (V_maxnipq < 0)
779		uma_zone_set_max(V_ipq_zone, 0);
780	/*
781	 * Positive number for specific bound.
782	 */
783	if (V_maxnipq > 0)
784		uma_zone_set_max(V_ipq_zone, V_maxnipq);
785	/*
786	 * Zero specifies no further fragment queue allocation -- set the
787	 * bound very low, but rely on implementation elsewhere to actually
788	 * prevent allocation and reclaim current queues.
789	 */
790	if (V_maxnipq == 0)
791		uma_zone_set_max(V_ipq_zone, 1);
792}
793
794static void
795ipq_zone_change(void *tag)
796{
797
798	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
799		V_maxnipq = nmbclusters / 32;
800		maxnipq_update();
801	}
802}
803
804static int
805sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
806{
807	int error, i;
808
809	i = V_maxnipq;
810	error = sysctl_handle_int(oidp, &i, 0, req);
811	if (error || !req->newptr)
812		return (error);
813
814	/*
815	 * XXXRW: Might be a good idea to sanity check the argument and place
816	 * an extreme upper bound.
817	 */
818	if (i < -1)
819		return (EINVAL);
820	V_maxnipq = i;
821	maxnipq_update();
822	return (0);
823}
824
825SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
826    NULL, 0, sysctl_maxnipq, "I",
827    "Maximum number of IPv4 fragment reassembly queue entries");
828
829/*
830 * Take incoming datagram fragment and try to reassemble it into
831 * whole datagram.  If the argument is the first fragment or one
832 * in between the function will return NULL and store the mbuf
833 * in the fragment chain.  If the argument is the last fragment
834 * the packet will be reassembled and the pointer to the new
835 * mbuf returned for further processing.  Only m_tags attached
836 * to the first packet/fragment are preserved.
837 * The IP header is *NOT* adjusted out of iplen.
838 */
839struct mbuf *
840ip_reass(struct mbuf *m)
841{
842	struct ip *ip;
843	struct mbuf *p, *q, *nq, *t;
844	struct ipq *fp = NULL;
845	struct ipqhead *head;
846	int i, hlen, next;
847	u_int8_t ecn, ecn0;
848	u_short hash;
849
850	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
851	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
852		IPSTAT_INC(ips_fragments);
853		IPSTAT_INC(ips_fragdropped);
854		m_freem(m);
855		return (NULL);
856	}
857
858	ip = mtod(m, struct ip *);
859	hlen = ip->ip_hl << 2;
860
861	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
862	head = &V_ipq[hash];
863	IPQ_LOCK();
864
865	/*
866	 * Look for queue of fragments
867	 * of this datagram.
868	 */
869	TAILQ_FOREACH(fp, head, ipq_list)
870		if (ip->ip_id == fp->ipq_id &&
871		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
872		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
873#ifdef MAC
874		    mac_ipq_match(m, fp) &&
875#endif
876		    ip->ip_p == fp->ipq_p)
877			goto found;
878
879	fp = NULL;
880
881	/*
882	 * Attempt to trim the number of allocated fragment queues if it
883	 * exceeds the administrative limit.
884	 */
885	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
886		/*
887		 * drop something from the tail of the current queue
888		 * before proceeding further
889		 */
890		struct ipq *q = TAILQ_LAST(head, ipqhead);
891		if (q == NULL) {   /* gak */
892			for (i = 0; i < IPREASS_NHASH; i++) {
893				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
894				if (r) {
895					IPSTAT_ADD(ips_fragtimeout,
896					    r->ipq_nfrags);
897					ip_freef(&V_ipq[i], r);
898					break;
899				}
900			}
901		} else {
902			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
903			ip_freef(head, q);
904		}
905	}
906
907found:
908	/*
909	 * Adjust ip_len to not reflect header,
910	 * convert offset of this to bytes.
911	 */
912	ip->ip_len -= hlen;
913	if (ip->ip_off & IP_MF) {
914		/*
915		 * Make sure that fragments have a data length
916		 * that's a non-zero multiple of 8 bytes.
917		 */
918		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
919			IPSTAT_INC(ips_toosmall); /* XXX */
920			goto dropfrag;
921		}
922		m->m_flags |= M_FRAG;
923	} else
924		m->m_flags &= ~M_FRAG;
925	ip->ip_off <<= 3;
926
927
928	/*
929	 * Attempt reassembly; if it succeeds, proceed.
930	 * ip_reass() will return a different mbuf.
931	 */
932	IPSTAT_INC(ips_fragments);
933	m->m_pkthdr.header = ip;
934
935	/* Previous ip_reass() started here. */
936	/*
937	 * Presence of header sizes in mbufs
938	 * would confuse code below.
939	 */
940	m->m_data += hlen;
941	m->m_len -= hlen;
942
943	/*
944	 * If first fragment to arrive, create a reassembly queue.
945	 */
946	if (fp == NULL) {
947		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
948		if (fp == NULL)
949			goto dropfrag;
950#ifdef MAC
951		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
952			uma_zfree(V_ipq_zone, fp);
953			fp = NULL;
954			goto dropfrag;
955		}
956		mac_ipq_create(m, fp);
957#endif
958		TAILQ_INSERT_HEAD(head, fp, ipq_list);
959		V_nipq++;
960		fp->ipq_nfrags = 1;
961		fp->ipq_ttl = IPFRAGTTL;
962		fp->ipq_p = ip->ip_p;
963		fp->ipq_id = ip->ip_id;
964		fp->ipq_src = ip->ip_src;
965		fp->ipq_dst = ip->ip_dst;
966		fp->ipq_frags = m;
967		m->m_nextpkt = NULL;
968		goto done;
969	} else {
970		fp->ipq_nfrags++;
971#ifdef MAC
972		mac_ipq_update(m, fp);
973#endif
974	}
975
976#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
977
978	/*
979	 * Handle ECN by comparing this segment with the first one;
980	 * if CE is set, do not lose CE.
981	 * drop if CE and not-ECT are mixed for the same packet.
982	 */
983	ecn = ip->ip_tos & IPTOS_ECN_MASK;
984	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
985	if (ecn == IPTOS_ECN_CE) {
986		if (ecn0 == IPTOS_ECN_NOTECT)
987			goto dropfrag;
988		if (ecn0 != IPTOS_ECN_CE)
989			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
990	}
991	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
992		goto dropfrag;
993
994	/*
995	 * Find a segment which begins after this one does.
996	 */
997	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
998		if (GETIP(q)->ip_off > ip->ip_off)
999			break;
1000
1001	/*
1002	 * If there is a preceding segment, it may provide some of
1003	 * our data already.  If so, drop the data from the incoming
1004	 * segment.  If it provides all of our data, drop us, otherwise
1005	 * stick new segment in the proper place.
1006	 *
1007	 * If some of the data is dropped from the preceding
1008	 * segment, then it's checksum is invalidated.
1009	 */
1010	if (p) {
1011		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1012		if (i > 0) {
1013			if (i >= ip->ip_len)
1014				goto dropfrag;
1015			m_adj(m, i);
1016			m->m_pkthdr.csum_flags = 0;
1017			ip->ip_off += i;
1018			ip->ip_len -= i;
1019		}
1020		m->m_nextpkt = p->m_nextpkt;
1021		p->m_nextpkt = m;
1022	} else {
1023		m->m_nextpkt = fp->ipq_frags;
1024		fp->ipq_frags = m;
1025	}
1026
1027	/*
1028	 * While we overlap succeeding segments trim them or,
1029	 * if they are completely covered, dequeue them.
1030	 */
1031	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1032	     q = nq) {
1033		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1034		if (i < GETIP(q)->ip_len) {
1035			GETIP(q)->ip_len -= i;
1036			GETIP(q)->ip_off += i;
1037			m_adj(q, i);
1038			q->m_pkthdr.csum_flags = 0;
1039			break;
1040		}
1041		nq = q->m_nextpkt;
1042		m->m_nextpkt = nq;
1043		IPSTAT_INC(ips_fragdropped);
1044		fp->ipq_nfrags--;
1045		m_freem(q);
1046	}
1047
1048	/*
1049	 * Check for complete reassembly and perform frag per packet
1050	 * limiting.
1051	 *
1052	 * Frag limiting is performed here so that the nth frag has
1053	 * a chance to complete the packet before we drop the packet.
1054	 * As a result, n+1 frags are actually allowed per packet, but
1055	 * only n will ever be stored. (n = maxfragsperpacket.)
1056	 *
1057	 */
1058	next = 0;
1059	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1060		if (GETIP(q)->ip_off != next) {
1061			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1062				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1063				ip_freef(head, fp);
1064			}
1065			goto done;
1066		}
1067		next += GETIP(q)->ip_len;
1068	}
1069	/* Make sure the last packet didn't have the IP_MF flag */
1070	if (p->m_flags & M_FRAG) {
1071		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1072			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1073			ip_freef(head, fp);
1074		}
1075		goto done;
1076	}
1077
1078	/*
1079	 * Reassembly is complete.  Make sure the packet is a sane size.
1080	 */
1081	q = fp->ipq_frags;
1082	ip = GETIP(q);
1083	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1084		IPSTAT_INC(ips_toolong);
1085		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1086		ip_freef(head, fp);
1087		goto done;
1088	}
1089
1090	/*
1091	 * Concatenate fragments.
1092	 */
1093	m = q;
1094	t = m->m_next;
1095	m->m_next = NULL;
1096	m_cat(m, t);
1097	nq = q->m_nextpkt;
1098	q->m_nextpkt = NULL;
1099	for (q = nq; q != NULL; q = nq) {
1100		nq = q->m_nextpkt;
1101		q->m_nextpkt = NULL;
1102		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1103		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1104		m_cat(m, q);
1105	}
1106	/*
1107	 * In order to do checksumming faster we do 'end-around carry' here
1108	 * (and not in for{} loop), though it implies we are not going to
1109	 * reassemble more than 64k fragments.
1110	 */
1111	m->m_pkthdr.csum_data =
1112	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1113#ifdef MAC
1114	mac_ipq_reassemble(fp, m);
1115	mac_ipq_destroy(fp);
1116#endif
1117
1118	/*
1119	 * Create header for new ip packet by modifying header of first
1120	 * packet;  dequeue and discard fragment reassembly header.
1121	 * Make header visible.
1122	 */
1123	ip->ip_len = (ip->ip_hl << 2) + next;
1124	ip->ip_src = fp->ipq_src;
1125	ip->ip_dst = fp->ipq_dst;
1126	TAILQ_REMOVE(head, fp, ipq_list);
1127	V_nipq--;
1128	uma_zfree(V_ipq_zone, fp);
1129	m->m_len += (ip->ip_hl << 2);
1130	m->m_data -= (ip->ip_hl << 2);
1131	/* some debugging cruft by sklower, below, will go away soon */
1132	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1133		m_fixhdr(m);
1134	IPSTAT_INC(ips_reassembled);
1135	IPQ_UNLOCK();
1136	return (m);
1137
1138dropfrag:
1139	IPSTAT_INC(ips_fragdropped);
1140	if (fp != NULL)
1141		fp->ipq_nfrags--;
1142	m_freem(m);
1143done:
1144	IPQ_UNLOCK();
1145	return (NULL);
1146
1147#undef GETIP
1148}
1149
1150/*
1151 * Free a fragment reassembly header and all
1152 * associated datagrams.
1153 */
1154static void
1155ip_freef(struct ipqhead *fhp, struct ipq *fp)
1156{
1157	struct mbuf *q;
1158
1159	IPQ_LOCK_ASSERT();
1160
1161	while (fp->ipq_frags) {
1162		q = fp->ipq_frags;
1163		fp->ipq_frags = q->m_nextpkt;
1164		m_freem(q);
1165	}
1166	TAILQ_REMOVE(fhp, fp, ipq_list);
1167	uma_zfree(V_ipq_zone, fp);
1168	V_nipq--;
1169}
1170
1171/*
1172 * IP timer processing;
1173 * if a timer expires on a reassembly
1174 * queue, discard it.
1175 */
1176void
1177ip_slowtimo(void)
1178{
1179	VNET_ITERATOR_DECL(vnet_iter);
1180	struct ipq *fp;
1181	int i;
1182
1183	VNET_LIST_RLOCK_NOSLEEP();
1184	IPQ_LOCK();
1185	VNET_FOREACH(vnet_iter) {
1186		CURVNET_SET(vnet_iter);
1187		for (i = 0; i < IPREASS_NHASH; i++) {
1188			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1189				struct ipq *fpp;
1190
1191				fpp = fp;
1192				fp = TAILQ_NEXT(fp, ipq_list);
1193				if(--fpp->ipq_ttl == 0) {
1194					IPSTAT_ADD(ips_fragtimeout,
1195					    fpp->ipq_nfrags);
1196					ip_freef(&V_ipq[i], fpp);
1197				}
1198			}
1199		}
1200		/*
1201		 * If we are over the maximum number of fragments
1202		 * (due to the limit being lowered), drain off
1203		 * enough to get down to the new limit.
1204		 */
1205		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1206			for (i = 0; i < IPREASS_NHASH; i++) {
1207				while (V_nipq > V_maxnipq &&
1208				    !TAILQ_EMPTY(&V_ipq[i])) {
1209					IPSTAT_ADD(ips_fragdropped,
1210					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1211					ip_freef(&V_ipq[i],
1212					    TAILQ_FIRST(&V_ipq[i]));
1213				}
1214			}
1215		}
1216		CURVNET_RESTORE();
1217	}
1218	IPQ_UNLOCK();
1219	VNET_LIST_RUNLOCK_NOSLEEP();
1220}
1221
1222/*
1223 * Drain off all datagram fragments.
1224 */
1225static void
1226ip_drain_locked(void)
1227{
1228	int     i;
1229
1230	IPQ_LOCK_ASSERT();
1231
1232	for (i = 0; i < IPREASS_NHASH; i++) {
1233		while(!TAILQ_EMPTY(&V_ipq[i])) {
1234			IPSTAT_ADD(ips_fragdropped,
1235			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1236			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1237		}
1238	}
1239}
1240
1241void
1242ip_drain(void)
1243{
1244	VNET_ITERATOR_DECL(vnet_iter);
1245
1246	VNET_LIST_RLOCK_NOSLEEP();
1247	IPQ_LOCK();
1248	VNET_FOREACH(vnet_iter) {
1249		CURVNET_SET(vnet_iter);
1250		ip_drain_locked();
1251		CURVNET_RESTORE();
1252	}
1253	IPQ_UNLOCK();
1254	VNET_LIST_RUNLOCK_NOSLEEP();
1255	in_rtqdrain();
1256}
1257
1258/*
1259 * The protocol to be inserted into ip_protox[] must be already registered
1260 * in inetsw[], either statically or through pf_proto_register().
1261 */
1262int
1263ipproto_register(short ipproto)
1264{
1265	struct protosw *pr;
1266
1267	/* Sanity checks. */
1268	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1269		return (EPROTONOSUPPORT);
1270
1271	/*
1272	 * The protocol slot must not be occupied by another protocol
1273	 * already.  An index pointing to IPPROTO_RAW is unused.
1274	 */
1275	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1276	if (pr == NULL)
1277		return (EPFNOSUPPORT);
1278	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1279		return (EEXIST);
1280
1281	/* Find the protocol position in inetsw[] and set the index. */
1282	for (pr = inetdomain.dom_protosw;
1283	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1284		if (pr->pr_domain->dom_family == PF_INET &&
1285		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1286			ip_protox[pr->pr_protocol] = pr - inetsw;
1287			return (0);
1288		}
1289	}
1290	return (EPROTONOSUPPORT);
1291}
1292
1293int
1294ipproto_unregister(short ipproto)
1295{
1296	struct protosw *pr;
1297
1298	/* Sanity checks. */
1299	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1300		return (EPROTONOSUPPORT);
1301
1302	/* Check if the protocol was indeed registered. */
1303	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1304	if (pr == NULL)
1305		return (EPFNOSUPPORT);
1306	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1307		return (ENOENT);
1308
1309	/* Reset the protocol slot to IPPROTO_RAW. */
1310	ip_protox[ipproto] = pr - inetsw;
1311	return (0);
1312}
1313
1314/*
1315 * Given address of next destination (final or next hop), return (referenced)
1316 * internet address info of interface to be used to get there.
1317 */
1318struct in_ifaddr *
1319ip_rtaddr(struct in_addr dst, u_int fibnum)
1320{
1321	struct route sro;
1322	struct sockaddr_in *sin;
1323	struct in_ifaddr *ia;
1324
1325	bzero(&sro, sizeof(sro));
1326	sin = (struct sockaddr_in *)&sro.ro_dst;
1327	sin->sin_family = AF_INET;
1328	sin->sin_len = sizeof(*sin);
1329	sin->sin_addr = dst;
1330	in_rtalloc_ign(&sro, 0, fibnum);
1331
1332	if (sro.ro_rt == NULL)
1333		return (NULL);
1334
1335	ia = ifatoia(sro.ro_rt->rt_ifa);
1336	ifa_ref(&ia->ia_ifa);
1337	RTFREE(sro.ro_rt);
1338	return (ia);
1339}
1340
1341u_char inetctlerrmap[PRC_NCMDS] = {
1342	0,		0,		0,		0,
1343	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1344	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1345	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1346	0,		0,		EHOSTUNREACH,	0,
1347	ENOPROTOOPT,	ECONNREFUSED
1348};
1349
1350/*
1351 * Forward a packet.  If some error occurs return the sender
1352 * an icmp packet.  Note we can't always generate a meaningful
1353 * icmp message because icmp doesn't have a large enough repertoire
1354 * of codes and types.
1355 *
1356 * If not forwarding, just drop the packet.  This could be confusing
1357 * if ipforwarding was zero but some routing protocol was advancing
1358 * us as a gateway to somewhere.  However, we must let the routing
1359 * protocol deal with that.
1360 *
1361 * The srcrt parameter indicates whether the packet is being forwarded
1362 * via a source route.
1363 */
1364void
1365ip_forward(struct mbuf *m, int srcrt)
1366{
1367	struct ip *ip = mtod(m, struct ip *);
1368	struct in_ifaddr *ia;
1369	struct mbuf *mcopy;
1370	struct in_addr dest;
1371	struct route ro;
1372	int error, type = 0, code = 0, mtu = 0;
1373
1374	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1375		IPSTAT_INC(ips_cantforward);
1376		m_freem(m);
1377		return;
1378	}
1379#ifdef IPSTEALTH
1380	if (!V_ipstealth) {
1381#endif
1382		if (ip->ip_ttl <= IPTTLDEC) {
1383			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1384			    0, 0);
1385			return;
1386		}
1387#ifdef IPSTEALTH
1388	}
1389#endif
1390
1391	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1392#ifndef IPSEC
1393	/*
1394	 * 'ia' may be NULL if there is no route for this destination.
1395	 * In case of IPsec, Don't discard it just yet, but pass it to
1396	 * ip_output in case of outgoing IPsec policy.
1397	 */
1398	if (!srcrt && ia == NULL) {
1399		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1400		return;
1401	}
1402#endif
1403
1404	/*
1405	 * Save the IP header and at most 8 bytes of the payload,
1406	 * in case we need to generate an ICMP message to the src.
1407	 *
1408	 * XXX this can be optimized a lot by saving the data in a local
1409	 * buffer on the stack (72 bytes at most), and only allocating the
1410	 * mbuf if really necessary. The vast majority of the packets
1411	 * are forwarded without having to send an ICMP back (either
1412	 * because unnecessary, or because rate limited), so we are
1413	 * really we are wasting a lot of work here.
1414	 *
1415	 * We don't use m_copy() because it might return a reference
1416	 * to a shared cluster. Both this function and ip_output()
1417	 * assume exclusive access to the IP header in `m', so any
1418	 * data in a cluster may change before we reach icmp_error().
1419	 */
1420	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1421	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1422		/*
1423		 * It's probably ok if the pkthdr dup fails (because
1424		 * the deep copy of the tag chain failed), but for now
1425		 * be conservative and just discard the copy since
1426		 * code below may some day want the tags.
1427		 */
1428		m_free(mcopy);
1429		mcopy = NULL;
1430	}
1431	if (mcopy != NULL) {
1432		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1433		mcopy->m_pkthdr.len = mcopy->m_len;
1434		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1435	}
1436
1437#ifdef IPSTEALTH
1438	if (!V_ipstealth) {
1439#endif
1440		ip->ip_ttl -= IPTTLDEC;
1441#ifdef IPSTEALTH
1442	}
1443#endif
1444
1445	/*
1446	 * If forwarding packet using same interface that it came in on,
1447	 * perhaps should send a redirect to sender to shortcut a hop.
1448	 * Only send redirect if source is sending directly to us,
1449	 * and if packet was not source routed (or has any options).
1450	 * Also, don't send redirect if forwarding using a default route
1451	 * or a route modified by a redirect.
1452	 */
1453	dest.s_addr = 0;
1454	if (!srcrt && V_ipsendredirects &&
1455	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1456		struct sockaddr_in *sin;
1457		struct rtentry *rt;
1458
1459		bzero(&ro, sizeof(ro));
1460		sin = (struct sockaddr_in *)&ro.ro_dst;
1461		sin->sin_family = AF_INET;
1462		sin->sin_len = sizeof(*sin);
1463		sin->sin_addr = ip->ip_dst;
1464		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1465
1466		rt = ro.ro_rt;
1467
1468		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1469		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1470#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1471			u_long src = ntohl(ip->ip_src.s_addr);
1472
1473			if (RTA(rt) &&
1474			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1475				if (rt->rt_flags & RTF_GATEWAY)
1476					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1477				else
1478					dest.s_addr = ip->ip_dst.s_addr;
1479				/* Router requirements says to only send host redirects */
1480				type = ICMP_REDIRECT;
1481				code = ICMP_REDIRECT_HOST;
1482			}
1483		}
1484		if (rt)
1485			RTFREE(rt);
1486	}
1487
1488	/*
1489	 * Try to cache the route MTU from ip_output so we can consider it for
1490	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1491	 */
1492	bzero(&ro, sizeof(ro));
1493
1494	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1495
1496	if (error == EMSGSIZE && ro.ro_rt)
1497		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1498	if (ro.ro_rt)
1499		RTFREE(ro.ro_rt);
1500
1501	if (error)
1502		IPSTAT_INC(ips_cantforward);
1503	else {
1504		IPSTAT_INC(ips_forward);
1505		if (type)
1506			IPSTAT_INC(ips_redirectsent);
1507		else {
1508			if (mcopy)
1509				m_freem(mcopy);
1510			if (ia != NULL)
1511				ifa_free(&ia->ia_ifa);
1512			return;
1513		}
1514	}
1515	if (mcopy == NULL) {
1516		if (ia != NULL)
1517			ifa_free(&ia->ia_ifa);
1518		return;
1519	}
1520
1521	switch (error) {
1522
1523	case 0:				/* forwarded, but need redirect */
1524		/* type, code set above */
1525		break;
1526
1527	case ENETUNREACH:
1528	case EHOSTUNREACH:
1529	case ENETDOWN:
1530	case EHOSTDOWN:
1531	default:
1532		type = ICMP_UNREACH;
1533		code = ICMP_UNREACH_HOST;
1534		break;
1535
1536	case EMSGSIZE:
1537		type = ICMP_UNREACH;
1538		code = ICMP_UNREACH_NEEDFRAG;
1539
1540#ifdef IPSEC
1541		/*
1542		 * If IPsec is configured for this path,
1543		 * override any possibly mtu value set by ip_output.
1544		 */
1545		mtu = ip_ipsec_mtu(mcopy, mtu);
1546#endif /* IPSEC */
1547		/*
1548		 * If the MTU was set before make sure we are below the
1549		 * interface MTU.
1550		 * If the MTU wasn't set before use the interface mtu or
1551		 * fall back to the next smaller mtu step compared to the
1552		 * current packet size.
1553		 */
1554		if (mtu != 0) {
1555			if (ia != NULL)
1556				mtu = min(mtu, ia->ia_ifp->if_mtu);
1557		} else {
1558			if (ia != NULL)
1559				mtu = ia->ia_ifp->if_mtu;
1560			else
1561				mtu = ip_next_mtu(ip->ip_len, 0);
1562		}
1563		IPSTAT_INC(ips_cantfrag);
1564		break;
1565
1566	case ENOBUFS:
1567		/*
1568		 * A router should not generate ICMP_SOURCEQUENCH as
1569		 * required in RFC1812 Requirements for IP Version 4 Routers.
1570		 * Source quench could be a big problem under DoS attacks,
1571		 * or if the underlying interface is rate-limited.
1572		 * Those who need source quench packets may re-enable them
1573		 * via the net.inet.ip.sendsourcequench sysctl.
1574		 */
1575		if (V_ip_sendsourcequench == 0) {
1576			m_freem(mcopy);
1577			if (ia != NULL)
1578				ifa_free(&ia->ia_ifa);
1579			return;
1580		} else {
1581			type = ICMP_SOURCEQUENCH;
1582			code = 0;
1583		}
1584		break;
1585
1586	case EACCES:			/* ipfw denied packet */
1587		m_freem(mcopy);
1588		if (ia != NULL)
1589			ifa_free(&ia->ia_ifa);
1590		return;
1591	}
1592	if (ia != NULL)
1593		ifa_free(&ia->ia_ifa);
1594	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1595}
1596
1597void
1598ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1599    struct mbuf *m)
1600{
1601
1602	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1603		struct bintime bt;
1604
1605		bintime(&bt);
1606		if (inp->inp_socket->so_options & SO_BINTIME) {
1607			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1608			SCM_BINTIME, SOL_SOCKET);
1609			if (*mp)
1610				mp = &(*mp)->m_next;
1611		}
1612		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1613			struct timeval tv;
1614
1615			bintime2timeval(&bt, &tv);
1616			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1617				SCM_TIMESTAMP, SOL_SOCKET);
1618			if (*mp)
1619				mp = &(*mp)->m_next;
1620		}
1621	}
1622	if (inp->inp_flags & INP_RECVDSTADDR) {
1623		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1624		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1625		if (*mp)
1626			mp = &(*mp)->m_next;
1627	}
1628	if (inp->inp_flags & INP_RECVTTL) {
1629		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1630		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1631		if (*mp)
1632			mp = &(*mp)->m_next;
1633	}
1634#ifdef notyet
1635	/* XXX
1636	 * Moving these out of udp_input() made them even more broken
1637	 * than they already were.
1638	 */
1639	/* options were tossed already */
1640	if (inp->inp_flags & INP_RECVOPTS) {
1641		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1642		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1643		if (*mp)
1644			mp = &(*mp)->m_next;
1645	}
1646	/* ip_srcroute doesn't do what we want here, need to fix */
1647	if (inp->inp_flags & INP_RECVRETOPTS) {
1648		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1649		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1650		if (*mp)
1651			mp = &(*mp)->m_next;
1652	}
1653#endif
1654	if (inp->inp_flags & INP_RECVIF) {
1655		struct ifnet *ifp;
1656		struct sdlbuf {
1657			struct sockaddr_dl sdl;
1658			u_char	pad[32];
1659		} sdlbuf;
1660		struct sockaddr_dl *sdp;
1661		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1662
1663		if (((ifp = m->m_pkthdr.rcvif))
1664		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1665			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1666			/*
1667			 * Change our mind and don't try copy.
1668			 */
1669			if ((sdp->sdl_family != AF_LINK)
1670			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1671				goto makedummy;
1672			}
1673			bcopy(sdp, sdl2, sdp->sdl_len);
1674		} else {
1675makedummy:
1676			sdl2->sdl_len
1677				= offsetof(struct sockaddr_dl, sdl_data[0]);
1678			sdl2->sdl_family = AF_LINK;
1679			sdl2->sdl_index = 0;
1680			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1681		}
1682		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1683			IP_RECVIF, IPPROTO_IP);
1684		if (*mp)
1685			mp = &(*mp)->m_next;
1686	}
1687}
1688
1689/*
1690 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1691 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1692 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1693 * compiled.
1694 */
1695static VNET_DEFINE(int, ip_rsvp_on);
1696VNET_DEFINE(struct socket *, ip_rsvpd);
1697
1698#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1699
1700int
1701ip_rsvp_init(struct socket *so)
1702{
1703
1704	if (so->so_type != SOCK_RAW ||
1705	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1706		return EOPNOTSUPP;
1707
1708	if (V_ip_rsvpd != NULL)
1709		return EADDRINUSE;
1710
1711	V_ip_rsvpd = so;
1712	/*
1713	 * This may seem silly, but we need to be sure we don't over-increment
1714	 * the RSVP counter, in case something slips up.
1715	 */
1716	if (!V_ip_rsvp_on) {
1717		V_ip_rsvp_on = 1;
1718		V_rsvp_on++;
1719	}
1720
1721	return 0;
1722}
1723
1724int
1725ip_rsvp_done(void)
1726{
1727
1728	V_ip_rsvpd = NULL;
1729	/*
1730	 * This may seem silly, but we need to be sure we don't over-decrement
1731	 * the RSVP counter, in case something slips up.
1732	 */
1733	if (V_ip_rsvp_on) {
1734		V_ip_rsvp_on = 0;
1735		V_rsvp_on--;
1736	}
1737	return 0;
1738}
1739
1740void
1741rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1742{
1743
1744	if (rsvp_input_p) { /* call the real one if loaded */
1745		rsvp_input_p(m, off);
1746		return;
1747	}
1748
1749	/* Can still get packets with rsvp_on = 0 if there is a local member
1750	 * of the group to which the RSVP packet is addressed.  But in this
1751	 * case we want to throw the packet away.
1752	 */
1753
1754	if (!V_rsvp_on) {
1755		m_freem(m);
1756		return;
1757	}
1758
1759	if (V_ip_rsvpd != NULL) {
1760		rip_input(m, off);
1761		return;
1762	}
1763	/* Drop the packet */
1764	m_freem(m);
1765}
1766