ip_input.c revision 190909
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 190909 2009-04-11 05:58:58Z zec $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40#include "opt_mac.h"
41#include "opt_carp.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/callout.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/time.h>
52#include <sys/kernel.h>
53#include <sys/lock.h>
54#include <sys/rwlock.h>
55#include <sys/syslog.h>
56#include <sys/sysctl.h>
57#include <sys/vimage.h>
58
59#include <net/pfil.h>
60#include <net/if.h>
61#include <net/if_types.h>
62#include <net/if_var.h>
63#include <net/if_dl.h>
64#include <net/route.h>
65#include <net/netisr.h>
66#include <net/vnet.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#include <netinet/vinet.h>
78#ifdef DEV_CARP
79#include <netinet/ip_carp.h>
80#endif
81#ifdef IPSEC
82#include <netinet/ip_ipsec.h>
83#endif /* IPSEC */
84
85#include <sys/socketvar.h>
86
87/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
88#include <netinet/ip_fw.h>
89#include <netinet/ip_dummynet.h>
90
91#include <security/mac/mac_framework.h>
92
93#ifdef CTASSERT
94CTASSERT(sizeof(struct ip) == 20);
95#endif
96
97#ifndef VIMAGE
98#ifndef VIMAGE_GLOBALS
99struct vnet_inet vnet_inet_0;
100#endif
101#endif
102
103#ifdef VIMAGE_GLOBALS
104static int	ipsendredirects;
105static int	ip_checkinterface;
106static int	ip_keepfaith;
107static int	ip_sendsourcequench;
108int	ip_defttl;
109int	ip_do_randomid;
110int	ipforwarding;
111struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
112struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
113u_long 	in_ifaddrhmask;				/* mask for hash table */
114struct ipstat ipstat;
115static int ip_rsvp_on;
116struct socket *ip_rsvpd;
117int	rsvp_on;
118static struct ipqhead ipq[IPREASS_NHASH];
119static int	maxnipq;	/* Administrative limit on # reass queues. */
120static int	maxfragsperpacket;
121int	ipstealth;
122static int	nipq;	/* Total # of reass queues */
123#endif
124
125SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_FORWARDING,
126    forwarding, CTLFLAG_RW, ipforwarding, 0,
127    "Enable IP forwarding between interfaces");
128
129SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_SENDREDIRECTS,
130    redirect, CTLFLAG_RW, ipsendredirects, 0,
131    "Enable sending IP redirects");
132
133SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_DEFTTL,
134    ttl, CTLFLAG_RW, ip_defttl, 0, "Maximum TTL on IP packets");
135
136SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, IPCTL_KEEPFAITH,
137    keepfaith, CTLFLAG_RW, ip_keepfaith,	0,
138    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
139
140SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
141    sendsourcequench, CTLFLAG_RW, ip_sendsourcequench, 0,
142    "Enable the transmission of source quench packets");
143
144SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, random_id,
145    CTLFLAG_RW, ip_do_randomid, 0, "Assign random ip_id values");
146
147/*
148 * XXX - Setting ip_checkinterface mostly implements the receive side of
149 * the Strong ES model described in RFC 1122, but since the routing table
150 * and transmit implementation do not implement the Strong ES model,
151 * setting this to 1 results in an odd hybrid.
152 *
153 * XXX - ip_checkinterface currently must be disabled if you use ipnat
154 * to translate the destination address to another local interface.
155 *
156 * XXX - ip_checkinterface must be disabled if you add IP aliases
157 * to the loopback interface instead of the interface where the
158 * packets for those addresses are received.
159 */
160SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO,
161    check_interface, CTLFLAG_RW, ip_checkinterface, 0,
162    "Verify packet arrives on correct interface");
163
164struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
165
166static struct	ifqueue ipintrq;
167static int	ipqmaxlen = IFQ_MAXLEN;
168
169extern	struct domain inetdomain;
170extern	struct protosw inetsw[];
171u_char	ip_protox[IPPROTO_MAX];
172
173SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
174    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
175SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
176    &ipintrq.ifq_drops, 0,
177    "Number of packets dropped from the IP input queue");
178
179SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
180    ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
181
182#ifdef VIMAGE_GLOBALS
183static uma_zone_t ipq_zone;
184#endif
185static struct mtx ipqlock;
186
187#define	IPQ_LOCK()	mtx_lock(&ipqlock)
188#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
189#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
190#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
191
192static void	maxnipq_update(void);
193static void	ipq_zone_change(void *);
194
195SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, fragpackets,
196    CTLFLAG_RD, nipq, 0,
197    "Current number of IPv4 fragment reassembly queue entries");
198
199SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, maxfragsperpacket,
200    CTLFLAG_RW, maxfragsperpacket, 0,
201    "Maximum number of IPv4 fragments allowed per packet");
202
203struct callout	ipport_tick_callout;
204
205#ifdef IPCTL_DEFMTU
206SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
207    &ip_mtu, 0, "Default MTU");
208#endif
209
210#ifdef IPSTEALTH
211SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
212    ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
213#endif
214
215/*
216 * ipfw_ether and ipfw_bridge hooks.
217 * XXX: Temporary until those are converted to pfil_hooks as well.
218 */
219ip_fw_chk_t *ip_fw_chk_ptr = NULL;
220ip_dn_io_t *ip_dn_io_ptr = NULL;
221#ifdef VIMAGE_GLOBALS
222int fw_one_pass;
223#endif
224
225static void	ip_freef(struct ipqhead *, struct ipq *);
226
227#ifndef VIMAGE_GLOBALS
228static void vnet_inet_register(void);
229
230static const vnet_modinfo_t vnet_inet_modinfo = {
231	.vmi_id		= VNET_MOD_INET,
232	.vmi_name	= "inet",
233};
234
235static void vnet_inet_register()
236{
237
238	vnet_mod_register(&vnet_inet_modinfo);
239}
240
241SYSINIT(inet, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST, vnet_inet_register, 0);
242#endif
243
244/*
245 * IP initialization: fill in IP protocol switch table.
246 * All protocols not implemented in kernel go to raw IP protocol handler.
247 */
248void
249ip_init(void)
250{
251	INIT_VNET_INET(curvnet);
252	struct protosw *pr;
253	int i;
254
255	V_ipsendredirects = 1; /* XXX */
256	V_ip_checkinterface = 0;
257	V_ip_keepfaith = 0;
258	V_ip_sendsourcequench = 0;
259	V_rsvp_on = 0;
260	V_ip_defttl = IPDEFTTL;
261	V_ip_do_randomid = 0;
262	V_ip_id = time_second & 0xffff;
263	V_ipforwarding = 0;
264	V_ipstealth = 0;
265	V_nipq = 0;	/* Total # of reass queues */
266
267	V_ipport_lowfirstauto = IPPORT_RESERVED - 1;	/* 1023 */
268	V_ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
269	V_ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
270	V_ipport_lastauto = IPPORT_EPHEMERALLAST;	/* 65535 */
271	V_ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
272	V_ipport_hilastauto = IPPORT_HILASTAUTO;	/* 65535 */
273	V_ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
274	V_ipport_reservedlow = 0;
275	V_ipport_randomized = 1;	/* user controlled via sysctl */
276	V_ipport_randomcps = 10;	/* user controlled via sysctl */
277	V_ipport_randomtime = 45;	/* user controlled via sysctl */
278	V_ipport_stoprandom = 0;	/* toggled by ipport_tick */
279
280	V_fw_one_pass = 1;
281
282#ifdef NOTYET
283	/* XXX global static but not instantiated in this file */
284	V_ipfastforward_active = 0;
285	V_subnetsarelocal = 0;
286	V_sameprefixcarponly = 0;
287#endif
288
289	TAILQ_INIT(&V_in_ifaddrhead);
290	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
291
292	/* Initialize IP reassembly queue. */
293	for (i = 0; i < IPREASS_NHASH; i++)
294		TAILQ_INIT(&V_ipq[i]);
295	V_maxnipq = nmbclusters / 32;
296	V_maxfragsperpacket = 16;
297	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
298	    NULL, UMA_ALIGN_PTR, 0);
299	maxnipq_update();
300
301	/* Skip initialization of globals for non-default instances. */
302	if (!IS_DEFAULT_VNET(curvnet))
303		return;
304
305	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
306	if (pr == NULL)
307		panic("ip_init: PF_INET not found");
308
309	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
310	for (i = 0; i < IPPROTO_MAX; i++)
311		ip_protox[i] = pr - inetsw;
312	/*
313	 * Cycle through IP protocols and put them into the appropriate place
314	 * in ip_protox[].
315	 */
316	for (pr = inetdomain.dom_protosw;
317	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
318		if (pr->pr_domain->dom_family == PF_INET &&
319		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
320			/* Be careful to only index valid IP protocols. */
321			if (pr->pr_protocol < IPPROTO_MAX)
322				ip_protox[pr->pr_protocol] = pr - inetsw;
323		}
324
325	/* Initialize packet filter hooks. */
326	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
327	inet_pfil_hook.ph_af = AF_INET;
328	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
329		printf("%s: WARNING: unable to register pfil hook, "
330			"error %d\n", __func__, i);
331
332	/* Start ipport_tick. */
333	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
334	ipport_tick(NULL);
335	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
336		SHUTDOWN_PRI_DEFAULT);
337	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
338		NULL, EVENTHANDLER_PRI_ANY);
339
340	/* Initialize various other remaining things. */
341	IPQ_LOCK_INIT();
342	ipintrq.ifq_maxlen = ipqmaxlen;
343	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
344	netisr_register(NETISR_IP, ip_input, &ipintrq, 0);
345}
346
347void
348ip_fini(void *xtp)
349{
350
351	callout_stop(&ipport_tick_callout);
352}
353
354/*
355 * Ip input routine.  Checksum and byte swap header.  If fragmented
356 * try to reassemble.  Process options.  Pass to next level.
357 */
358void
359ip_input(struct mbuf *m)
360{
361	INIT_VNET_INET(curvnet);
362	struct ip *ip = NULL;
363	struct in_ifaddr *ia = NULL;
364	struct ifaddr *ifa;
365	int    checkif, hlen = 0;
366	u_short sum;
367	int dchg = 0;				/* dest changed after fw */
368	struct in_addr odst;			/* original dst address */
369
370	M_ASSERTPKTHDR(m);
371
372	if (m->m_flags & M_FASTFWD_OURS) {
373		/*
374		 * Firewall or NAT changed destination to local.
375		 * We expect ip_len and ip_off to be in host byte order.
376		 */
377		m->m_flags &= ~M_FASTFWD_OURS;
378		/* Set up some basics that will be used later. */
379		ip = mtod(m, struct ip *);
380		hlen = ip->ip_hl << 2;
381		goto ours;
382	}
383
384	V_ipstat.ips_total++;
385
386	if (m->m_pkthdr.len < sizeof(struct ip))
387		goto tooshort;
388
389	if (m->m_len < sizeof (struct ip) &&
390	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
391		V_ipstat.ips_toosmall++;
392		return;
393	}
394	ip = mtod(m, struct ip *);
395
396	if (ip->ip_v != IPVERSION) {
397		V_ipstat.ips_badvers++;
398		goto bad;
399	}
400
401	hlen = ip->ip_hl << 2;
402	if (hlen < sizeof(struct ip)) {	/* minimum header length */
403		V_ipstat.ips_badhlen++;
404		goto bad;
405	}
406	if (hlen > m->m_len) {
407		if ((m = m_pullup(m, hlen)) == NULL) {
408			V_ipstat.ips_badhlen++;
409			return;
410		}
411		ip = mtod(m, struct ip *);
412	}
413
414	/* 127/8 must not appear on wire - RFC1122 */
415	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
416	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
417		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
418			V_ipstat.ips_badaddr++;
419			goto bad;
420		}
421	}
422
423	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
424		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
425	} else {
426		if (hlen == sizeof(struct ip)) {
427			sum = in_cksum_hdr(ip);
428		} else {
429			sum = in_cksum(m, hlen);
430		}
431	}
432	if (sum) {
433		V_ipstat.ips_badsum++;
434		goto bad;
435	}
436
437#ifdef ALTQ
438	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
439		/* packet is dropped by traffic conditioner */
440		return;
441#endif
442
443	/*
444	 * Convert fields to host representation.
445	 */
446	ip->ip_len = ntohs(ip->ip_len);
447	if (ip->ip_len < hlen) {
448		V_ipstat.ips_badlen++;
449		goto bad;
450	}
451	ip->ip_off = ntohs(ip->ip_off);
452
453	/*
454	 * Check that the amount of data in the buffers
455	 * is as at least much as the IP header would have us expect.
456	 * Trim mbufs if longer than we expect.
457	 * Drop packet if shorter than we expect.
458	 */
459	if (m->m_pkthdr.len < ip->ip_len) {
460tooshort:
461		V_ipstat.ips_tooshort++;
462		goto bad;
463	}
464	if (m->m_pkthdr.len > ip->ip_len) {
465		if (m->m_len == m->m_pkthdr.len) {
466			m->m_len = ip->ip_len;
467			m->m_pkthdr.len = ip->ip_len;
468		} else
469			m_adj(m, ip->ip_len - m->m_pkthdr.len);
470	}
471#ifdef IPSEC
472	/*
473	 * Bypass packet filtering for packets from a tunnel (gif).
474	 */
475	if (ip_ipsec_filtertunnel(m))
476		goto passin;
477#endif /* IPSEC */
478
479	/*
480	 * Run through list of hooks for input packets.
481	 *
482	 * NB: Beware of the destination address changing (e.g.
483	 *     by NAT rewriting).  When this happens, tell
484	 *     ip_forward to do the right thing.
485	 */
486
487	/* Jump over all PFIL processing if hooks are not active. */
488	if (!PFIL_HOOKED(&inet_pfil_hook))
489		goto passin;
490
491	odst = ip->ip_dst;
492	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
493	    PFIL_IN, NULL) != 0)
494		return;
495	if (m == NULL)			/* consumed by filter */
496		return;
497
498	ip = mtod(m, struct ip *);
499	dchg = (odst.s_addr != ip->ip_dst.s_addr);
500
501#ifdef IPFIREWALL_FORWARD
502	if (m->m_flags & M_FASTFWD_OURS) {
503		m->m_flags &= ~M_FASTFWD_OURS;
504		goto ours;
505	}
506	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
507		/*
508		 * Directly ship on the packet.  This allows to forward packets
509		 * that were destined for us to some other directly connected
510		 * host.
511		 */
512		ip_forward(m, dchg);
513		return;
514	}
515#endif /* IPFIREWALL_FORWARD */
516
517passin:
518	/*
519	 * Process options and, if not destined for us,
520	 * ship it on.  ip_dooptions returns 1 when an
521	 * error was detected (causing an icmp message
522	 * to be sent and the original packet to be freed).
523	 */
524	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
525		return;
526
527        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
528         * matter if it is destined to another node, or whether it is
529         * a multicast one, RSVP wants it! and prevents it from being forwarded
530         * anywhere else. Also checks if the rsvp daemon is running before
531	 * grabbing the packet.
532         */
533	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
534		goto ours;
535
536	/*
537	 * Check our list of addresses, to see if the packet is for us.
538	 * If we don't have any addresses, assume any unicast packet
539	 * we receive might be for us (and let the upper layers deal
540	 * with it).
541	 */
542	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
543	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
544		goto ours;
545
546	/*
547	 * Enable a consistency check between the destination address
548	 * and the arrival interface for a unicast packet (the RFC 1122
549	 * strong ES model) if IP forwarding is disabled and the packet
550	 * is not locally generated and the packet is not subject to
551	 * 'ipfw fwd'.
552	 *
553	 * XXX - Checking also should be disabled if the destination
554	 * address is ipnat'ed to a different interface.
555	 *
556	 * XXX - Checking is incompatible with IP aliases added
557	 * to the loopback interface instead of the interface where
558	 * the packets are received.
559	 *
560	 * XXX - This is the case for carp vhost IPs as well so we
561	 * insert a workaround. If the packet got here, we already
562	 * checked with carp_iamatch() and carp_forus().
563	 */
564	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
565	    m->m_pkthdr.rcvif != NULL &&
566	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
567#ifdef DEV_CARP
568	    !m->m_pkthdr.rcvif->if_carp &&
569#endif
570	    (dchg == 0);
571
572	/*
573	 * Check for exact addresses in the hash bucket.
574	 */
575	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
576		/*
577		 * If the address matches, verify that the packet
578		 * arrived via the correct interface if checking is
579		 * enabled.
580		 */
581		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
582		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
583			goto ours;
584	}
585	/*
586	 * Check for broadcast addresses.
587	 *
588	 * Only accept broadcast packets that arrive via the matching
589	 * interface.  Reception of forwarded directed broadcasts would
590	 * be handled via ip_forward() and ether_output() with the loopback
591	 * into the stack for SIMPLEX interfaces handled by ether_output().
592	 */
593	if (m->m_pkthdr.rcvif != NULL &&
594	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
595	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
596			if (ifa->ifa_addr->sa_family != AF_INET)
597				continue;
598			ia = ifatoia(ifa);
599			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
600			    ip->ip_dst.s_addr)
601				goto ours;
602			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
603				goto ours;
604#ifdef BOOTP_COMPAT
605			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
606				goto ours;
607#endif
608		}
609	}
610	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
611	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
612		V_ipstat.ips_cantforward++;
613		m_freem(m);
614		return;
615	}
616	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
617		if (V_ip_mrouter) {
618			/*
619			 * If we are acting as a multicast router, all
620			 * incoming multicast packets are passed to the
621			 * kernel-level multicast forwarding function.
622			 * The packet is returned (relatively) intact; if
623			 * ip_mforward() returns a non-zero value, the packet
624			 * must be discarded, else it may be accepted below.
625			 */
626			if (ip_mforward &&
627			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
628				V_ipstat.ips_cantforward++;
629				m_freem(m);
630				return;
631			}
632
633			/*
634			 * The process-level routing daemon needs to receive
635			 * all multicast IGMP packets, whether or not this
636			 * host belongs to their destination groups.
637			 */
638			if (ip->ip_p == IPPROTO_IGMP)
639				goto ours;
640			V_ipstat.ips_forward++;
641		}
642		/*
643		 * Assume the packet is for us, to avoid prematurely taking
644		 * a lock on the in_multi hash. Protocols must perform
645		 * their own filtering and update statistics accordingly.
646		 */
647		goto ours;
648	}
649	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
650		goto ours;
651	if (ip->ip_dst.s_addr == INADDR_ANY)
652		goto ours;
653
654	/*
655	 * FAITH(Firewall Aided Internet Translator)
656	 */
657	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
658		if (V_ip_keepfaith) {
659			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
660				goto ours;
661		}
662		m_freem(m);
663		return;
664	}
665
666	/*
667	 * Not for us; forward if possible and desirable.
668	 */
669	if (V_ipforwarding == 0) {
670		V_ipstat.ips_cantforward++;
671		m_freem(m);
672	} else {
673#ifdef IPSEC
674		if (ip_ipsec_fwd(m))
675			goto bad;
676#endif /* IPSEC */
677		ip_forward(m, dchg);
678	}
679	return;
680
681ours:
682#ifdef IPSTEALTH
683	/*
684	 * IPSTEALTH: Process non-routing options only
685	 * if the packet is destined for us.
686	 */
687	if (V_ipstealth && hlen > sizeof (struct ip) &&
688	    ip_dooptions(m, 1))
689		return;
690#endif /* IPSTEALTH */
691
692	/* Count the packet in the ip address stats */
693	if (ia != NULL) {
694		ia->ia_ifa.if_ipackets++;
695		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
696	}
697
698	/*
699	 * Attempt reassembly; if it succeeds, proceed.
700	 * ip_reass() will return a different mbuf.
701	 */
702	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
703		m = ip_reass(m);
704		if (m == NULL)
705			return;
706		ip = mtod(m, struct ip *);
707		/* Get the header length of the reassembled packet */
708		hlen = ip->ip_hl << 2;
709	}
710
711	/*
712	 * Further protocols expect the packet length to be w/o the
713	 * IP header.
714	 */
715	ip->ip_len -= hlen;
716
717#ifdef IPSEC
718	/*
719	 * enforce IPsec policy checking if we are seeing last header.
720	 * note that we do not visit this with protocols with pcb layer
721	 * code - like udp/tcp/raw ip.
722	 */
723	if (ip_ipsec_input(m))
724		goto bad;
725#endif /* IPSEC */
726
727	/*
728	 * Switch out to protocol's input routine.
729	 */
730	V_ipstat.ips_delivered++;
731
732	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
733	return;
734bad:
735	m_freem(m);
736}
737
738/*
739 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
740 * max has slightly different semantics than the sysctl, for historical
741 * reasons.
742 */
743static void
744maxnipq_update(void)
745{
746	INIT_VNET_INET(curvnet);
747
748	/*
749	 * -1 for unlimited allocation.
750	 */
751	if (V_maxnipq < 0)
752		uma_zone_set_max(V_ipq_zone, 0);
753	/*
754	 * Positive number for specific bound.
755	 */
756	if (V_maxnipq > 0)
757		uma_zone_set_max(V_ipq_zone, V_maxnipq);
758	/*
759	 * Zero specifies no further fragment queue allocation -- set the
760	 * bound very low, but rely on implementation elsewhere to actually
761	 * prevent allocation and reclaim current queues.
762	 */
763	if (V_maxnipq == 0)
764		uma_zone_set_max(V_ipq_zone, 1);
765}
766
767static void
768ipq_zone_change(void *tag)
769{
770	INIT_VNET_INET(curvnet);
771
772	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
773		V_maxnipq = nmbclusters / 32;
774		maxnipq_update();
775	}
776}
777
778static int
779sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
780{
781	INIT_VNET_INET(curvnet);
782	int error, i;
783
784	i = V_maxnipq;
785	error = sysctl_handle_int(oidp, &i, 0, req);
786	if (error || !req->newptr)
787		return (error);
788
789	/*
790	 * XXXRW: Might be a good idea to sanity check the argument and place
791	 * an extreme upper bound.
792	 */
793	if (i < -1)
794		return (EINVAL);
795	V_maxnipq = i;
796	maxnipq_update();
797	return (0);
798}
799
800SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
801    NULL, 0, sysctl_maxnipq, "I",
802    "Maximum number of IPv4 fragment reassembly queue entries");
803
804/*
805 * Take incoming datagram fragment and try to reassemble it into
806 * whole datagram.  If the argument is the first fragment or one
807 * in between the function will return NULL and store the mbuf
808 * in the fragment chain.  If the argument is the last fragment
809 * the packet will be reassembled and the pointer to the new
810 * mbuf returned for further processing.  Only m_tags attached
811 * to the first packet/fragment are preserved.
812 * The IP header is *NOT* adjusted out of iplen.
813 */
814struct mbuf *
815ip_reass(struct mbuf *m)
816{
817	INIT_VNET_INET(curvnet);
818	struct ip *ip;
819	struct mbuf *p, *q, *nq, *t;
820	struct ipq *fp = NULL;
821	struct ipqhead *head;
822	int i, hlen, next;
823	u_int8_t ecn, ecn0;
824	u_short hash;
825
826	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
827	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
828		V_ipstat.ips_fragments++;
829		V_ipstat.ips_fragdropped++;
830		m_freem(m);
831		return (NULL);
832	}
833
834	ip = mtod(m, struct ip *);
835	hlen = ip->ip_hl << 2;
836
837	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
838	head = &V_ipq[hash];
839	IPQ_LOCK();
840
841	/*
842	 * Look for queue of fragments
843	 * of this datagram.
844	 */
845	TAILQ_FOREACH(fp, head, ipq_list)
846		if (ip->ip_id == fp->ipq_id &&
847		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
848		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
849#ifdef MAC
850		    mac_ipq_match(m, fp) &&
851#endif
852		    ip->ip_p == fp->ipq_p)
853			goto found;
854
855	fp = NULL;
856
857	/*
858	 * Attempt to trim the number of allocated fragment queues if it
859	 * exceeds the administrative limit.
860	 */
861	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
862		/*
863		 * drop something from the tail of the current queue
864		 * before proceeding further
865		 */
866		struct ipq *q = TAILQ_LAST(head, ipqhead);
867		if (q == NULL) {   /* gak */
868			for (i = 0; i < IPREASS_NHASH; i++) {
869				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
870				if (r) {
871					V_ipstat.ips_fragtimeout +=
872					    r->ipq_nfrags;
873					ip_freef(&V_ipq[i], r);
874					break;
875				}
876			}
877		} else {
878			V_ipstat.ips_fragtimeout += q->ipq_nfrags;
879			ip_freef(head, q);
880		}
881	}
882
883found:
884	/*
885	 * Adjust ip_len to not reflect header,
886	 * convert offset of this to bytes.
887	 */
888	ip->ip_len -= hlen;
889	if (ip->ip_off & IP_MF) {
890		/*
891		 * Make sure that fragments have a data length
892		 * that's a non-zero multiple of 8 bytes.
893		 */
894		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
895			V_ipstat.ips_toosmall++; /* XXX */
896			goto dropfrag;
897		}
898		m->m_flags |= M_FRAG;
899	} else
900		m->m_flags &= ~M_FRAG;
901	ip->ip_off <<= 3;
902
903
904	/*
905	 * Attempt reassembly; if it succeeds, proceed.
906	 * ip_reass() will return a different mbuf.
907	 */
908	V_ipstat.ips_fragments++;
909	m->m_pkthdr.header = ip;
910
911	/* Previous ip_reass() started here. */
912	/*
913	 * Presence of header sizes in mbufs
914	 * would confuse code below.
915	 */
916	m->m_data += hlen;
917	m->m_len -= hlen;
918
919	/*
920	 * If first fragment to arrive, create a reassembly queue.
921	 */
922	if (fp == NULL) {
923		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
924		if (fp == NULL)
925			goto dropfrag;
926#ifdef MAC
927		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
928			uma_zfree(V_ipq_zone, fp);
929			fp = NULL;
930			goto dropfrag;
931		}
932		mac_ipq_create(m, fp);
933#endif
934		TAILQ_INSERT_HEAD(head, fp, ipq_list);
935		V_nipq++;
936		fp->ipq_nfrags = 1;
937		fp->ipq_ttl = IPFRAGTTL;
938		fp->ipq_p = ip->ip_p;
939		fp->ipq_id = ip->ip_id;
940		fp->ipq_src = ip->ip_src;
941		fp->ipq_dst = ip->ip_dst;
942		fp->ipq_frags = m;
943		m->m_nextpkt = NULL;
944		goto done;
945	} else {
946		fp->ipq_nfrags++;
947#ifdef MAC
948		mac_ipq_update(m, fp);
949#endif
950	}
951
952#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
953
954	/*
955	 * Handle ECN by comparing this segment with the first one;
956	 * if CE is set, do not lose CE.
957	 * drop if CE and not-ECT are mixed for the same packet.
958	 */
959	ecn = ip->ip_tos & IPTOS_ECN_MASK;
960	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
961	if (ecn == IPTOS_ECN_CE) {
962		if (ecn0 == IPTOS_ECN_NOTECT)
963			goto dropfrag;
964		if (ecn0 != IPTOS_ECN_CE)
965			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
966	}
967	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
968		goto dropfrag;
969
970	/*
971	 * Find a segment which begins after this one does.
972	 */
973	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
974		if (GETIP(q)->ip_off > ip->ip_off)
975			break;
976
977	/*
978	 * If there is a preceding segment, it may provide some of
979	 * our data already.  If so, drop the data from the incoming
980	 * segment.  If it provides all of our data, drop us, otherwise
981	 * stick new segment in the proper place.
982	 *
983	 * If some of the data is dropped from the the preceding
984	 * segment, then it's checksum is invalidated.
985	 */
986	if (p) {
987		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
988		if (i > 0) {
989			if (i >= ip->ip_len)
990				goto dropfrag;
991			m_adj(m, i);
992			m->m_pkthdr.csum_flags = 0;
993			ip->ip_off += i;
994			ip->ip_len -= i;
995		}
996		m->m_nextpkt = p->m_nextpkt;
997		p->m_nextpkt = m;
998	} else {
999		m->m_nextpkt = fp->ipq_frags;
1000		fp->ipq_frags = m;
1001	}
1002
1003	/*
1004	 * While we overlap succeeding segments trim them or,
1005	 * if they are completely covered, dequeue them.
1006	 */
1007	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1008	     q = nq) {
1009		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1010		if (i < GETIP(q)->ip_len) {
1011			GETIP(q)->ip_len -= i;
1012			GETIP(q)->ip_off += i;
1013			m_adj(q, i);
1014			q->m_pkthdr.csum_flags = 0;
1015			break;
1016		}
1017		nq = q->m_nextpkt;
1018		m->m_nextpkt = nq;
1019		V_ipstat.ips_fragdropped++;
1020		fp->ipq_nfrags--;
1021		m_freem(q);
1022	}
1023
1024	/*
1025	 * Check for complete reassembly and perform frag per packet
1026	 * limiting.
1027	 *
1028	 * Frag limiting is performed here so that the nth frag has
1029	 * a chance to complete the packet before we drop the packet.
1030	 * As a result, n+1 frags are actually allowed per packet, but
1031	 * only n will ever be stored. (n = maxfragsperpacket.)
1032	 *
1033	 */
1034	next = 0;
1035	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1036		if (GETIP(q)->ip_off != next) {
1037			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1038				V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1039				ip_freef(head, fp);
1040			}
1041			goto done;
1042		}
1043		next += GETIP(q)->ip_len;
1044	}
1045	/* Make sure the last packet didn't have the IP_MF flag */
1046	if (p->m_flags & M_FRAG) {
1047		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1048			V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1049			ip_freef(head, fp);
1050		}
1051		goto done;
1052	}
1053
1054	/*
1055	 * Reassembly is complete.  Make sure the packet is a sane size.
1056	 */
1057	q = fp->ipq_frags;
1058	ip = GETIP(q);
1059	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1060		V_ipstat.ips_toolong++;
1061		V_ipstat.ips_fragdropped += fp->ipq_nfrags;
1062		ip_freef(head, fp);
1063		goto done;
1064	}
1065
1066	/*
1067	 * Concatenate fragments.
1068	 */
1069	m = q;
1070	t = m->m_next;
1071	m->m_next = NULL;
1072	m_cat(m, t);
1073	nq = q->m_nextpkt;
1074	q->m_nextpkt = NULL;
1075	for (q = nq; q != NULL; q = nq) {
1076		nq = q->m_nextpkt;
1077		q->m_nextpkt = NULL;
1078		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1079		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1080		m_cat(m, q);
1081	}
1082	/*
1083	 * In order to do checksumming faster we do 'end-around carry' here
1084	 * (and not in for{} loop), though it implies we are not going to
1085	 * reassemble more than 64k fragments.
1086	 */
1087	m->m_pkthdr.csum_data =
1088	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1089#ifdef MAC
1090	mac_ipq_reassemble(fp, m);
1091	mac_ipq_destroy(fp);
1092#endif
1093
1094	/*
1095	 * Create header for new ip packet by modifying header of first
1096	 * packet;  dequeue and discard fragment reassembly header.
1097	 * Make header visible.
1098	 */
1099	ip->ip_len = (ip->ip_hl << 2) + next;
1100	ip->ip_src = fp->ipq_src;
1101	ip->ip_dst = fp->ipq_dst;
1102	TAILQ_REMOVE(head, fp, ipq_list);
1103	V_nipq--;
1104	uma_zfree(V_ipq_zone, fp);
1105	m->m_len += (ip->ip_hl << 2);
1106	m->m_data -= (ip->ip_hl << 2);
1107	/* some debugging cruft by sklower, below, will go away soon */
1108	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1109		m_fixhdr(m);
1110	V_ipstat.ips_reassembled++;
1111	IPQ_UNLOCK();
1112	return (m);
1113
1114dropfrag:
1115	V_ipstat.ips_fragdropped++;
1116	if (fp != NULL)
1117		fp->ipq_nfrags--;
1118	m_freem(m);
1119done:
1120	IPQ_UNLOCK();
1121	return (NULL);
1122
1123#undef GETIP
1124}
1125
1126/*
1127 * Free a fragment reassembly header and all
1128 * associated datagrams.
1129 */
1130static void
1131ip_freef(struct ipqhead *fhp, struct ipq *fp)
1132{
1133	INIT_VNET_INET(curvnet);
1134	struct mbuf *q;
1135
1136	IPQ_LOCK_ASSERT();
1137
1138	while (fp->ipq_frags) {
1139		q = fp->ipq_frags;
1140		fp->ipq_frags = q->m_nextpkt;
1141		m_freem(q);
1142	}
1143	TAILQ_REMOVE(fhp, fp, ipq_list);
1144	uma_zfree(V_ipq_zone, fp);
1145	V_nipq--;
1146}
1147
1148/*
1149 * IP timer processing;
1150 * if a timer expires on a reassembly
1151 * queue, discard it.
1152 */
1153void
1154ip_slowtimo(void)
1155{
1156	VNET_ITERATOR_DECL(vnet_iter);
1157	struct ipq *fp;
1158	int i;
1159
1160	IPQ_LOCK();
1161	VNET_LIST_RLOCK();
1162	VNET_FOREACH(vnet_iter) {
1163		CURVNET_SET(vnet_iter);
1164		INIT_VNET_INET(vnet_iter);
1165		for (i = 0; i < IPREASS_NHASH; i++) {
1166			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1167				struct ipq *fpp;
1168
1169				fpp = fp;
1170				fp = TAILQ_NEXT(fp, ipq_list);
1171				if(--fpp->ipq_ttl == 0) {
1172					V_ipstat.ips_fragtimeout +=
1173					    fpp->ipq_nfrags;
1174					ip_freef(&V_ipq[i], fpp);
1175				}
1176			}
1177		}
1178		/*
1179		 * If we are over the maximum number of fragments
1180		 * (due to the limit being lowered), drain off
1181		 * enough to get down to the new limit.
1182		 */
1183		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1184			for (i = 0; i < IPREASS_NHASH; i++) {
1185				while (V_nipq > V_maxnipq &&
1186				    !TAILQ_EMPTY(&V_ipq[i])) {
1187					V_ipstat.ips_fragdropped +=
1188					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1189					ip_freef(&V_ipq[i],
1190					    TAILQ_FIRST(&V_ipq[i]));
1191				}
1192			}
1193		}
1194		CURVNET_RESTORE();
1195	}
1196	VNET_LIST_RUNLOCK();
1197	IPQ_UNLOCK();
1198}
1199
1200/*
1201 * Drain off all datagram fragments.
1202 */
1203void
1204ip_drain(void)
1205{
1206	VNET_ITERATOR_DECL(vnet_iter);
1207	int     i;
1208
1209	IPQ_LOCK();
1210	VNET_LIST_RLOCK();
1211	VNET_FOREACH(vnet_iter) {
1212		CURVNET_SET(vnet_iter);
1213		INIT_VNET_INET(vnet_iter);
1214		for (i = 0; i < IPREASS_NHASH; i++) {
1215			while(!TAILQ_EMPTY(&V_ipq[i])) {
1216				V_ipstat.ips_fragdropped +=
1217				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1218				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1219			}
1220		}
1221		CURVNET_RESTORE();
1222	}
1223	VNET_LIST_RUNLOCK();
1224	IPQ_UNLOCK();
1225	in_rtqdrain();
1226}
1227
1228/*
1229 * The protocol to be inserted into ip_protox[] must be already registered
1230 * in inetsw[], either statically or through pf_proto_register().
1231 */
1232int
1233ipproto_register(u_char ipproto)
1234{
1235	struct protosw *pr;
1236
1237	/* Sanity checks. */
1238	if (ipproto == 0)
1239		return (EPROTONOSUPPORT);
1240
1241	/*
1242	 * The protocol slot must not be occupied by another protocol
1243	 * already.  An index pointing to IPPROTO_RAW is unused.
1244	 */
1245	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1246	if (pr == NULL)
1247		return (EPFNOSUPPORT);
1248	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1249		return (EEXIST);
1250
1251	/* Find the protocol position in inetsw[] and set the index. */
1252	for (pr = inetdomain.dom_protosw;
1253	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1254		if (pr->pr_domain->dom_family == PF_INET &&
1255		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1256			/* Be careful to only index valid IP protocols. */
1257			if (pr->pr_protocol < IPPROTO_MAX) {
1258				ip_protox[pr->pr_protocol] = pr - inetsw;
1259				return (0);
1260			} else
1261				return (EINVAL);
1262		}
1263	}
1264	return (EPROTONOSUPPORT);
1265}
1266
1267int
1268ipproto_unregister(u_char ipproto)
1269{
1270	struct protosw *pr;
1271
1272	/* Sanity checks. */
1273	if (ipproto == 0)
1274		return (EPROTONOSUPPORT);
1275
1276	/* Check if the protocol was indeed registered. */
1277	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1278	if (pr == NULL)
1279		return (EPFNOSUPPORT);
1280	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1281		return (ENOENT);
1282
1283	/* Reset the protocol slot to IPPROTO_RAW. */
1284	ip_protox[ipproto] = pr - inetsw;
1285	return (0);
1286}
1287
1288/*
1289 * Given address of next destination (final or next hop),
1290 * return internet address info of interface to be used to get there.
1291 */
1292struct in_ifaddr *
1293ip_rtaddr(struct in_addr dst, u_int fibnum)
1294{
1295	struct route sro;
1296	struct sockaddr_in *sin;
1297	struct in_ifaddr *ifa;
1298
1299	bzero(&sro, sizeof(sro));
1300	sin = (struct sockaddr_in *)&sro.ro_dst;
1301	sin->sin_family = AF_INET;
1302	sin->sin_len = sizeof(*sin);
1303	sin->sin_addr = dst;
1304	in_rtalloc_ign(&sro, 0, fibnum);
1305
1306	if (sro.ro_rt == NULL)
1307		return (NULL);
1308
1309	ifa = ifatoia(sro.ro_rt->rt_ifa);
1310	RTFREE(sro.ro_rt);
1311	return (ifa);
1312}
1313
1314u_char inetctlerrmap[PRC_NCMDS] = {
1315	0,		0,		0,		0,
1316	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1317	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1318	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1319	0,		0,		EHOSTUNREACH,	0,
1320	ENOPROTOOPT,	ECONNREFUSED
1321};
1322
1323/*
1324 * Forward a packet.  If some error occurs return the sender
1325 * an icmp packet.  Note we can't always generate a meaningful
1326 * icmp message because icmp doesn't have a large enough repertoire
1327 * of codes and types.
1328 *
1329 * If not forwarding, just drop the packet.  This could be confusing
1330 * if ipforwarding was zero but some routing protocol was advancing
1331 * us as a gateway to somewhere.  However, we must let the routing
1332 * protocol deal with that.
1333 *
1334 * The srcrt parameter indicates whether the packet is being forwarded
1335 * via a source route.
1336 */
1337void
1338ip_forward(struct mbuf *m, int srcrt)
1339{
1340	INIT_VNET_INET(curvnet);
1341	struct ip *ip = mtod(m, struct ip *);
1342	struct in_ifaddr *ia = NULL;
1343	struct mbuf *mcopy;
1344	struct in_addr dest;
1345	struct route ro;
1346	int error, type = 0, code = 0, mtu = 0;
1347
1348	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1349		V_ipstat.ips_cantforward++;
1350		m_freem(m);
1351		return;
1352	}
1353#ifdef IPSTEALTH
1354	if (!V_ipstealth) {
1355#endif
1356		if (ip->ip_ttl <= IPTTLDEC) {
1357			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1358			    0, 0);
1359			return;
1360		}
1361#ifdef IPSTEALTH
1362	}
1363#endif
1364
1365	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1366	if (!srcrt && ia == NULL) {
1367		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1368		return;
1369	}
1370
1371	/*
1372	 * Save the IP header and at most 8 bytes of the payload,
1373	 * in case we need to generate an ICMP message to the src.
1374	 *
1375	 * XXX this can be optimized a lot by saving the data in a local
1376	 * buffer on the stack (72 bytes at most), and only allocating the
1377	 * mbuf if really necessary. The vast majority of the packets
1378	 * are forwarded without having to send an ICMP back (either
1379	 * because unnecessary, or because rate limited), so we are
1380	 * really we are wasting a lot of work here.
1381	 *
1382	 * We don't use m_copy() because it might return a reference
1383	 * to a shared cluster. Both this function and ip_output()
1384	 * assume exclusive access to the IP header in `m', so any
1385	 * data in a cluster may change before we reach icmp_error().
1386	 */
1387	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1388	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1389		/*
1390		 * It's probably ok if the pkthdr dup fails (because
1391		 * the deep copy of the tag chain failed), but for now
1392		 * be conservative and just discard the copy since
1393		 * code below may some day want the tags.
1394		 */
1395		m_free(mcopy);
1396		mcopy = NULL;
1397	}
1398	if (mcopy != NULL) {
1399		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1400		mcopy->m_pkthdr.len = mcopy->m_len;
1401		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1402	}
1403
1404#ifdef IPSTEALTH
1405	if (!V_ipstealth) {
1406#endif
1407		ip->ip_ttl -= IPTTLDEC;
1408#ifdef IPSTEALTH
1409	}
1410#endif
1411
1412	/*
1413	 * If forwarding packet using same interface that it came in on,
1414	 * perhaps should send a redirect to sender to shortcut a hop.
1415	 * Only send redirect if source is sending directly to us,
1416	 * and if packet was not source routed (or has any options).
1417	 * Also, don't send redirect if forwarding using a default route
1418	 * or a route modified by a redirect.
1419	 */
1420	dest.s_addr = 0;
1421	if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1422		struct sockaddr_in *sin;
1423		struct rtentry *rt;
1424
1425		bzero(&ro, sizeof(ro));
1426		sin = (struct sockaddr_in *)&ro.ro_dst;
1427		sin->sin_family = AF_INET;
1428		sin->sin_len = sizeof(*sin);
1429		sin->sin_addr = ip->ip_dst;
1430		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1431
1432		rt = ro.ro_rt;
1433
1434		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1435		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1436#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1437			u_long src = ntohl(ip->ip_src.s_addr);
1438
1439			if (RTA(rt) &&
1440			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1441				if (rt->rt_flags & RTF_GATEWAY)
1442					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1443				else
1444					dest.s_addr = ip->ip_dst.s_addr;
1445				/* Router requirements says to only send host redirects */
1446				type = ICMP_REDIRECT;
1447				code = ICMP_REDIRECT_HOST;
1448			}
1449		}
1450		if (rt)
1451			RTFREE(rt);
1452	}
1453
1454	/*
1455	 * Try to cache the route MTU from ip_output so we can consider it for
1456	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1457	 */
1458	bzero(&ro, sizeof(ro));
1459
1460	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1461
1462	if (error == EMSGSIZE && ro.ro_rt)
1463		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1464	if (ro.ro_rt)
1465		RTFREE(ro.ro_rt);
1466
1467	if (error)
1468		V_ipstat.ips_cantforward++;
1469	else {
1470		V_ipstat.ips_forward++;
1471		if (type)
1472			V_ipstat.ips_redirectsent++;
1473		else {
1474			if (mcopy)
1475				m_freem(mcopy);
1476			return;
1477		}
1478	}
1479	if (mcopy == NULL)
1480		return;
1481
1482	switch (error) {
1483
1484	case 0:				/* forwarded, but need redirect */
1485		/* type, code set above */
1486		break;
1487
1488	case ENETUNREACH:		/* shouldn't happen, checked above */
1489	case EHOSTUNREACH:
1490	case ENETDOWN:
1491	case EHOSTDOWN:
1492	default:
1493		type = ICMP_UNREACH;
1494		code = ICMP_UNREACH_HOST;
1495		break;
1496
1497	case EMSGSIZE:
1498		type = ICMP_UNREACH;
1499		code = ICMP_UNREACH_NEEDFRAG;
1500
1501#ifdef IPSEC
1502		/*
1503		 * If IPsec is configured for this path,
1504		 * override any possibly mtu value set by ip_output.
1505		 */
1506		mtu = ip_ipsec_mtu(m, mtu);
1507#endif /* IPSEC */
1508		/*
1509		 * If the MTU was set before make sure we are below the
1510		 * interface MTU.
1511		 * If the MTU wasn't set before use the interface mtu or
1512		 * fall back to the next smaller mtu step compared to the
1513		 * current packet size.
1514		 */
1515		if (mtu != 0) {
1516			if (ia != NULL)
1517				mtu = min(mtu, ia->ia_ifp->if_mtu);
1518		} else {
1519			if (ia != NULL)
1520				mtu = ia->ia_ifp->if_mtu;
1521			else
1522				mtu = ip_next_mtu(ip->ip_len, 0);
1523		}
1524		V_ipstat.ips_cantfrag++;
1525		break;
1526
1527	case ENOBUFS:
1528		/*
1529		 * A router should not generate ICMP_SOURCEQUENCH as
1530		 * required in RFC1812 Requirements for IP Version 4 Routers.
1531		 * Source quench could be a big problem under DoS attacks,
1532		 * or if the underlying interface is rate-limited.
1533		 * Those who need source quench packets may re-enable them
1534		 * via the net.inet.ip.sendsourcequench sysctl.
1535		 */
1536		if (V_ip_sendsourcequench == 0) {
1537			m_freem(mcopy);
1538			return;
1539		} else {
1540			type = ICMP_SOURCEQUENCH;
1541			code = 0;
1542		}
1543		break;
1544
1545	case EACCES:			/* ipfw denied packet */
1546		m_freem(mcopy);
1547		return;
1548	}
1549	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1550}
1551
1552void
1553ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1554    struct mbuf *m)
1555{
1556	INIT_VNET_NET(inp->inp_vnet);
1557
1558	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1559		struct bintime bt;
1560
1561		bintime(&bt);
1562		if (inp->inp_socket->so_options & SO_BINTIME) {
1563			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1564			SCM_BINTIME, SOL_SOCKET);
1565			if (*mp)
1566				mp = &(*mp)->m_next;
1567		}
1568		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1569			struct timeval tv;
1570
1571			bintime2timeval(&bt, &tv);
1572			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1573				SCM_TIMESTAMP, SOL_SOCKET);
1574			if (*mp)
1575				mp = &(*mp)->m_next;
1576		}
1577	}
1578	if (inp->inp_flags & INP_RECVDSTADDR) {
1579		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1580		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1581		if (*mp)
1582			mp = &(*mp)->m_next;
1583	}
1584	if (inp->inp_flags & INP_RECVTTL) {
1585		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1586		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1587		if (*mp)
1588			mp = &(*mp)->m_next;
1589	}
1590#ifdef notyet
1591	/* XXX
1592	 * Moving these out of udp_input() made them even more broken
1593	 * than they already were.
1594	 */
1595	/* options were tossed already */
1596	if (inp->inp_flags & INP_RECVOPTS) {
1597		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1598		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1599		if (*mp)
1600			mp = &(*mp)->m_next;
1601	}
1602	/* ip_srcroute doesn't do what we want here, need to fix */
1603	if (inp->inp_flags & INP_RECVRETOPTS) {
1604		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1605		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1606		if (*mp)
1607			mp = &(*mp)->m_next;
1608	}
1609#endif
1610	if (inp->inp_flags & INP_RECVIF) {
1611		struct ifnet *ifp;
1612		struct sdlbuf {
1613			struct sockaddr_dl sdl;
1614			u_char	pad[32];
1615		} sdlbuf;
1616		struct sockaddr_dl *sdp;
1617		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1618
1619		if (((ifp = m->m_pkthdr.rcvif))
1620		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1621			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1622			/*
1623			 * Change our mind and don't try copy.
1624			 */
1625			if ((sdp->sdl_family != AF_LINK)
1626			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1627				goto makedummy;
1628			}
1629			bcopy(sdp, sdl2, sdp->sdl_len);
1630		} else {
1631makedummy:
1632			sdl2->sdl_len
1633				= offsetof(struct sockaddr_dl, sdl_data[0]);
1634			sdl2->sdl_family = AF_LINK;
1635			sdl2->sdl_index = 0;
1636			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1637		}
1638		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1639			IP_RECVIF, IPPROTO_IP);
1640		if (*mp)
1641			mp = &(*mp)->m_next;
1642	}
1643}
1644
1645/*
1646 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1647 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1648 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1649 * compiled.
1650 */
1651int
1652ip_rsvp_init(struct socket *so)
1653{
1654	INIT_VNET_INET(so->so_vnet);
1655
1656	if (so->so_type != SOCK_RAW ||
1657	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1658		return EOPNOTSUPP;
1659
1660	if (V_ip_rsvpd != NULL)
1661		return EADDRINUSE;
1662
1663	V_ip_rsvpd = so;
1664	/*
1665	 * This may seem silly, but we need to be sure we don't over-increment
1666	 * the RSVP counter, in case something slips up.
1667	 */
1668	if (!V_ip_rsvp_on) {
1669		V_ip_rsvp_on = 1;
1670		V_rsvp_on++;
1671	}
1672
1673	return 0;
1674}
1675
1676int
1677ip_rsvp_done(void)
1678{
1679	INIT_VNET_INET(curvnet);
1680
1681	V_ip_rsvpd = NULL;
1682	/*
1683	 * This may seem silly, but we need to be sure we don't over-decrement
1684	 * the RSVP counter, in case something slips up.
1685	 */
1686	if (V_ip_rsvp_on) {
1687		V_ip_rsvp_on = 0;
1688		V_rsvp_on--;
1689	}
1690	return 0;
1691}
1692
1693void
1694rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1695{
1696	INIT_VNET_INET(curvnet);
1697
1698	if (rsvp_input_p) { /* call the real one if loaded */
1699		rsvp_input_p(m, off);
1700		return;
1701	}
1702
1703	/* Can still get packets with rsvp_on = 0 if there is a local member
1704	 * of the group to which the RSVP packet is addressed.  But in this
1705	 * case we want to throw the packet away.
1706	 */
1707
1708	if (!V_rsvp_on) {
1709		m_freem(m);
1710		return;
1711	}
1712
1713	if (V_ip_rsvpd != NULL) {
1714		rip_input(m, off);
1715		return;
1716	}
1717	/* Drop the packet */
1718	m_freem(m);
1719}
1720