ip_input.c revision 181803
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 181803 2008-08-17 23:27:27Z bz $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40#include "opt_carp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54#include <sys/vimage.h>
55
56#include <net/pfil.h>
57#include <net/if.h>
58#include <net/if_types.h>
59#include <net/if_var.h>
60#include <net/if_dl.h>
61#include <net/route.h>
62#include <net/netisr.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/in_var.h>
67#include <netinet/ip.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_icmp.h>
71#include <netinet/ip_options.h>
72#include <machine/in_cksum.h>
73#ifdef DEV_CARP
74#include <netinet/ip_carp.h>
75#endif
76#ifdef IPSEC
77#include <netinet/ip_ipsec.h>
78#endif /* IPSEC */
79
80#include <sys/socketvar.h>
81
82/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
83#include <netinet/ip_fw.h>
84#include <netinet/ip_dummynet.h>
85
86#include <security/mac/mac_framework.h>
87
88int rsvp_on = 0;
89
90int	ipforwarding = 0;
91SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
92    &ipforwarding, 0, "Enable IP forwarding between interfaces");
93
94static int	ipsendredirects = 1; /* XXX */
95SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
96    &ipsendredirects, 0, "Enable sending IP redirects");
97
98int	ip_defttl = IPDEFTTL;
99SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
100    &ip_defttl, 0, "Maximum TTL on IP packets");
101
102static int	ip_keepfaith = 0;
103SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
104    &ip_keepfaith,	0,
105    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
106
107static int	ip_sendsourcequench = 0;
108SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
109    &ip_sendsourcequench, 0,
110    "Enable the transmission of source quench packets");
111
112int	ip_do_randomid = 0;
113SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
114    &ip_do_randomid, 0,
115    "Assign random ip_id values");
116
117/*
118 * XXX - Setting ip_checkinterface mostly implements the receive side of
119 * the Strong ES model described in RFC 1122, but since the routing table
120 * and transmit implementation do not implement the Strong ES model,
121 * setting this to 1 results in an odd hybrid.
122 *
123 * XXX - ip_checkinterface currently must be disabled if you use ipnat
124 * to translate the destination address to another local interface.
125 *
126 * XXX - ip_checkinterface must be disabled if you add IP aliases
127 * to the loopback interface instead of the interface where the
128 * packets for those addresses are received.
129 */
130static int	ip_checkinterface = 0;
131SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
132    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
133
134struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
135
136static struct	ifqueue ipintrq;
137static int	ipqmaxlen = IFQ_MAXLEN;
138
139extern	struct domain inetdomain;
140extern	struct protosw inetsw[];
141u_char	ip_protox[IPPROTO_MAX];
142struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
143struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
144u_long 	in_ifaddrhmask;				/* mask for hash table */
145
146SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
147    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
148SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
149    &ipintrq.ifq_drops, 0,
150    "Number of packets dropped from the IP input queue");
151
152struct ipstat ipstat;
153SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
154    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
155
156/*
157 * IP datagram reassembly.
158 */
159#define IPREASS_NHASH_LOG2      6
160#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
161#define IPREASS_HMASK           (IPREASS_NHASH - 1)
162#define IPREASS_HASH(x,y) \
163	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
164
165static uma_zone_t ipq_zone;
166static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
167static struct mtx ipqlock;
168
169#define	IPQ_LOCK()	mtx_lock(&ipqlock)
170#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
171#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
172#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
173
174static void	maxnipq_update(void);
175static void	ipq_zone_change(void *);
176
177static int	maxnipq;	/* Administrative limit on # reass queues. */
178static int	nipq = 0;	/* Total # of reass queues */
179SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
180    &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
181
182static int	maxfragsperpacket;
183SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
184    &maxfragsperpacket, 0,
185    "Maximum number of IPv4 fragments allowed per packet");
186
187struct callout	ipport_tick_callout;
188
189#ifdef IPCTL_DEFMTU
190SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
191    &ip_mtu, 0, "Default MTU");
192#endif
193
194#ifdef IPSTEALTH
195int	ipstealth = 0;
196SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
197    &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
198#endif
199
200/*
201 * ipfw_ether and ipfw_bridge hooks.
202 * XXX: Temporary until those are converted to pfil_hooks as well.
203 */
204ip_fw_chk_t *ip_fw_chk_ptr = NULL;
205ip_dn_io_t *ip_dn_io_ptr = NULL;
206int fw_one_pass = 1;
207
208static void	ip_freef(struct ipqhead *, struct ipq *);
209
210/*
211 * IP initialization: fill in IP protocol switch table.
212 * All protocols not implemented in kernel go to raw IP protocol handler.
213 */
214void
215ip_init(void)
216{
217	struct protosw *pr;
218	int i;
219
220	TAILQ_INIT(&V_in_ifaddrhead);
221	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
222	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
223	if (pr == NULL)
224		panic("ip_init: PF_INET not found");
225
226	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
227	for (i = 0; i < IPPROTO_MAX; i++)
228		ip_protox[i] = pr - inetsw;
229	/*
230	 * Cycle through IP protocols and put them into the appropriate place
231	 * in ip_protox[].
232	 */
233	for (pr = inetdomain.dom_protosw;
234	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
235		if (pr->pr_domain->dom_family == PF_INET &&
236		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
237			/* Be careful to only index valid IP protocols. */
238			if (pr->pr_protocol < IPPROTO_MAX)
239				ip_protox[pr->pr_protocol] = pr - inetsw;
240		}
241
242	/* Initialize packet filter hooks. */
243	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
244	inet_pfil_hook.ph_af = AF_INET;
245	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
246		printf("%s: WARNING: unable to register pfil hook, "
247			"error %d\n", __func__, i);
248
249	/* Initialize IP reassembly queue. */
250	IPQ_LOCK_INIT();
251	for (i = 0; i < IPREASS_NHASH; i++)
252	    TAILQ_INIT(&V_ipq[i]);
253	V_maxnipq = nmbclusters / 32;
254	V_maxfragsperpacket = 16;
255	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
256	    NULL, UMA_ALIGN_PTR, 0);
257	maxnipq_update();
258
259	/* Start ipport_tick. */
260	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
261	ipport_tick(NULL);
262	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
263		SHUTDOWN_PRI_DEFAULT);
264	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
265		NULL, EVENTHANDLER_PRI_ANY);
266
267	/* Initialize various other remaining things. */
268	ip_id = time_second & 0xffff;
269	ipintrq.ifq_maxlen = ipqmaxlen;
270	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
271	netisr_register(NETISR_IP, ip_input, &ipintrq, 0);
272}
273
274void
275ip_fini(void *xtp)
276{
277
278	callout_stop(&ipport_tick_callout);
279}
280
281/*
282 * Ip input routine.  Checksum and byte swap header.  If fragmented
283 * try to reassemble.  Process options.  Pass to next level.
284 */
285void
286ip_input(struct mbuf *m)
287{
288	struct ip *ip = NULL;
289	struct in_ifaddr *ia = NULL;
290	struct ifaddr *ifa;
291	int    checkif, hlen = 0;
292	u_short sum;
293	int dchg = 0;				/* dest changed after fw */
294	struct in_addr odst;			/* original dst address */
295
296	M_ASSERTPKTHDR(m);
297
298	if (m->m_flags & M_FASTFWD_OURS) {
299		/*
300		 * Firewall or NAT changed destination to local.
301		 * We expect ip_len and ip_off to be in host byte order.
302		 */
303		m->m_flags &= ~M_FASTFWD_OURS;
304		/* Set up some basics that will be used later. */
305		ip = mtod(m, struct ip *);
306		hlen = ip->ip_hl << 2;
307		goto ours;
308	}
309
310	V_ipstat.ips_total++;
311
312	if (m->m_pkthdr.len < sizeof(struct ip))
313		goto tooshort;
314
315	if (m->m_len < sizeof (struct ip) &&
316	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
317		V_ipstat.ips_toosmall++;
318		return;
319	}
320	ip = mtod(m, struct ip *);
321
322	if (ip->ip_v != IPVERSION) {
323		V_ipstat.ips_badvers++;
324		goto bad;
325	}
326
327	hlen = ip->ip_hl << 2;
328	if (hlen < sizeof(struct ip)) {	/* minimum header length */
329		V_ipstat.ips_badhlen++;
330		goto bad;
331	}
332	if (hlen > m->m_len) {
333		if ((m = m_pullup(m, hlen)) == NULL) {
334			V_ipstat.ips_badhlen++;
335			return;
336		}
337		ip = mtod(m, struct ip *);
338	}
339
340	/* 127/8 must not appear on wire - RFC1122 */
341	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
342	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
343		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
344			V_ipstat.ips_badaddr++;
345			goto bad;
346		}
347	}
348
349	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
350		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
351	} else {
352		if (hlen == sizeof(struct ip)) {
353			sum = in_cksum_hdr(ip);
354		} else {
355			sum = in_cksum(m, hlen);
356		}
357	}
358	if (sum) {
359		V_ipstat.ips_badsum++;
360		goto bad;
361	}
362
363#ifdef ALTQ
364	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
365		/* packet is dropped by traffic conditioner */
366		return;
367#endif
368
369	/*
370	 * Convert fields to host representation.
371	 */
372	ip->ip_len = ntohs(ip->ip_len);
373	if (ip->ip_len < hlen) {
374		V_ipstat.ips_badlen++;
375		goto bad;
376	}
377	ip->ip_off = ntohs(ip->ip_off);
378
379	/*
380	 * Check that the amount of data in the buffers
381	 * is as at least much as the IP header would have us expect.
382	 * Trim mbufs if longer than we expect.
383	 * Drop packet if shorter than we expect.
384	 */
385	if (m->m_pkthdr.len < ip->ip_len) {
386tooshort:
387		V_ipstat.ips_tooshort++;
388		goto bad;
389	}
390	if (m->m_pkthdr.len > ip->ip_len) {
391		if (m->m_len == m->m_pkthdr.len) {
392			m->m_len = ip->ip_len;
393			m->m_pkthdr.len = ip->ip_len;
394		} else
395			m_adj(m, ip->ip_len - m->m_pkthdr.len);
396	}
397#ifdef IPSEC
398	/*
399	 * Bypass packet filtering for packets from a tunnel (gif).
400	 */
401	if (ip_ipsec_filtertunnel(m))
402		goto passin;
403#endif /* IPSEC */
404
405	/*
406	 * Run through list of hooks for input packets.
407	 *
408	 * NB: Beware of the destination address changing (e.g.
409	 *     by NAT rewriting).  When this happens, tell
410	 *     ip_forward to do the right thing.
411	 */
412
413	/* Jump over all PFIL processing if hooks are not active. */
414	if (!PFIL_HOOKED(&inet_pfil_hook))
415		goto passin;
416
417	odst = ip->ip_dst;
418	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
419	    PFIL_IN, NULL) != 0)
420		return;
421	if (m == NULL)			/* consumed by filter */
422		return;
423
424	ip = mtod(m, struct ip *);
425	dchg = (odst.s_addr != ip->ip_dst.s_addr);
426
427#ifdef IPFIREWALL_FORWARD
428	if (m->m_flags & M_FASTFWD_OURS) {
429		m->m_flags &= ~M_FASTFWD_OURS;
430		goto ours;
431	}
432	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
433		/*
434		 * Directly ship on the packet.  This allows to forward packets
435		 * that were destined for us to some other directly connected
436		 * host.
437		 */
438		ip_forward(m, dchg);
439		return;
440	}
441#endif /* IPFIREWALL_FORWARD */
442
443passin:
444	/*
445	 * Process options and, if not destined for us,
446	 * ship it on.  ip_dooptions returns 1 when an
447	 * error was detected (causing an icmp message
448	 * to be sent and the original packet to be freed).
449	 */
450	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
451		return;
452
453        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
454         * matter if it is destined to another node, or whether it is
455         * a multicast one, RSVP wants it! and prevents it from being forwarded
456         * anywhere else. Also checks if the rsvp daemon is running before
457	 * grabbing the packet.
458         */
459	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
460		goto ours;
461
462	/*
463	 * Check our list of addresses, to see if the packet is for us.
464	 * If we don't have any addresses, assume any unicast packet
465	 * we receive might be for us (and let the upper layers deal
466	 * with it).
467	 */
468	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
469	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
470		goto ours;
471
472	/*
473	 * Enable a consistency check between the destination address
474	 * and the arrival interface for a unicast packet (the RFC 1122
475	 * strong ES model) if IP forwarding is disabled and the packet
476	 * is not locally generated and the packet is not subject to
477	 * 'ipfw fwd'.
478	 *
479	 * XXX - Checking also should be disabled if the destination
480	 * address is ipnat'ed to a different interface.
481	 *
482	 * XXX - Checking is incompatible with IP aliases added
483	 * to the loopback interface instead of the interface where
484	 * the packets are received.
485	 *
486	 * XXX - This is the case for carp vhost IPs as well so we
487	 * insert a workaround. If the packet got here, we already
488	 * checked with carp_iamatch() and carp_forus().
489	 */
490	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
491	    m->m_pkthdr.rcvif != NULL &&
492	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
493#ifdef DEV_CARP
494	    !m->m_pkthdr.rcvif->if_carp &&
495#endif
496	    (dchg == 0);
497
498	/*
499	 * Check for exact addresses in the hash bucket.
500	 */
501	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
502		/*
503		 * If the address matches, verify that the packet
504		 * arrived via the correct interface if checking is
505		 * enabled.
506		 */
507		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
508		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
509			goto ours;
510	}
511	/*
512	 * Check for broadcast addresses.
513	 *
514	 * Only accept broadcast packets that arrive via the matching
515	 * interface.  Reception of forwarded directed broadcasts would
516	 * be handled via ip_forward() and ether_output() with the loopback
517	 * into the stack for SIMPLEX interfaces handled by ether_output().
518	 */
519	if (m->m_pkthdr.rcvif != NULL &&
520	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
521	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
522			if (ifa->ifa_addr->sa_family != AF_INET)
523				continue;
524			ia = ifatoia(ifa);
525			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
526			    ip->ip_dst.s_addr)
527				goto ours;
528			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
529				goto ours;
530#ifdef BOOTP_COMPAT
531			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
532				goto ours;
533#endif
534		}
535	}
536	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
537	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
538		V_ipstat.ips_cantforward++;
539		m_freem(m);
540		return;
541	}
542	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
543		struct in_multi *inm;
544		if (V_ip_mrouter) {
545			/*
546			 * If we are acting as a multicast router, all
547			 * incoming multicast packets are passed to the
548			 * kernel-level multicast forwarding function.
549			 * The packet is returned (relatively) intact; if
550			 * ip_mforward() returns a non-zero value, the packet
551			 * must be discarded, else it may be accepted below.
552			 */
553			if (ip_mforward &&
554			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
555				V_ipstat.ips_cantforward++;
556				m_freem(m);
557				return;
558			}
559
560			/*
561			 * The process-level routing daemon needs to receive
562			 * all multicast IGMP packets, whether or not this
563			 * host belongs to their destination groups.
564			 */
565			if (ip->ip_p == IPPROTO_IGMP)
566				goto ours;
567			V_ipstat.ips_forward++;
568		}
569		/*
570		 * See if we belong to the destination multicast group on the
571		 * arrival interface.
572		 */
573		IN_MULTI_LOCK();
574		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
575		IN_MULTI_UNLOCK();
576		if (inm == NULL) {
577			V_ipstat.ips_notmember++;
578			m_freem(m);
579			return;
580		}
581		goto ours;
582	}
583	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
584		goto ours;
585	if (ip->ip_dst.s_addr == INADDR_ANY)
586		goto ours;
587
588	/*
589	 * FAITH(Firewall Aided Internet Translator)
590	 */
591	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
592		if (V_ip_keepfaith) {
593			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
594				goto ours;
595		}
596		m_freem(m);
597		return;
598	}
599
600	/*
601	 * Not for us; forward if possible and desirable.
602	 */
603	if (V_ipforwarding == 0) {
604		V_ipstat.ips_cantforward++;
605		m_freem(m);
606	} else {
607#ifdef IPSEC
608		if (ip_ipsec_fwd(m))
609			goto bad;
610#endif /* IPSEC */
611		ip_forward(m, dchg);
612	}
613	return;
614
615ours:
616#ifdef IPSTEALTH
617	/*
618	 * IPSTEALTH: Process non-routing options only
619	 * if the packet is destined for us.
620	 */
621	if (V_ipstealth && hlen > sizeof (struct ip) &&
622	    ip_dooptions(m, 1))
623		return;
624#endif /* IPSTEALTH */
625
626	/* Count the packet in the ip address stats */
627	if (ia != NULL) {
628		ia->ia_ifa.if_ipackets++;
629		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
630	}
631
632	/*
633	 * Attempt reassembly; if it succeeds, proceed.
634	 * ip_reass() will return a different mbuf.
635	 */
636	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
637		m = ip_reass(m);
638		if (m == NULL)
639			return;
640		ip = mtod(m, struct ip *);
641		/* Get the header length of the reassembled packet */
642		hlen = ip->ip_hl << 2;
643	}
644
645	/*
646	 * Further protocols expect the packet length to be w/o the
647	 * IP header.
648	 */
649	ip->ip_len -= hlen;
650
651#ifdef IPSEC
652	/*
653	 * enforce IPsec policy checking if we are seeing last header.
654	 * note that we do not visit this with protocols with pcb layer
655	 * code - like udp/tcp/raw ip.
656	 */
657	if (ip_ipsec_input(m))
658		goto bad;
659#endif /* IPSEC */
660
661	/*
662	 * Switch out to protocol's input routine.
663	 */
664	V_ipstat.ips_delivered++;
665
666	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
667	return;
668bad:
669	m_freem(m);
670}
671
672/*
673 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
674 * max has slightly different semantics than the sysctl, for historical
675 * reasons.
676 */
677static void
678maxnipq_update(void)
679{
680
681	/*
682	 * -1 for unlimited allocation.
683	 */
684	if (V_maxnipq < 0)
685		uma_zone_set_max(V_ipq_zone, 0);
686	/*
687	 * Positive number for specific bound.
688	 */
689	if (V_maxnipq > 0)
690		uma_zone_set_max(V_ipq_zone, V_maxnipq);
691	/*
692	 * Zero specifies no further fragment queue allocation -- set the
693	 * bound very low, but rely on implementation elsewhere to actually
694	 * prevent allocation and reclaim current queues.
695	 */
696	if (V_maxnipq == 0)
697		uma_zone_set_max(V_ipq_zone, 1);
698}
699
700static void
701ipq_zone_change(void *tag)
702{
703
704	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
705		V_maxnipq = nmbclusters / 32;
706		maxnipq_update();
707	}
708}
709
710static int
711sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
712{
713	int error, i;
714
715	i = V_maxnipq;
716	error = sysctl_handle_int(oidp, &i, 0, req);
717	if (error || !req->newptr)
718		return (error);
719
720	/*
721	 * XXXRW: Might be a good idea to sanity check the argument and place
722	 * an extreme upper bound.
723	 */
724	if (i < -1)
725		return (EINVAL);
726	V_maxnipq = i;
727	maxnipq_update();
728	return (0);
729}
730
731SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
732    NULL, 0, sysctl_maxnipq, "I",
733    "Maximum number of IPv4 fragment reassembly queue entries");
734
735/*
736 * Take incoming datagram fragment and try to reassemble it into
737 * whole datagram.  If the argument is the first fragment or one
738 * in between the function will return NULL and store the mbuf
739 * in the fragment chain.  If the argument is the last fragment
740 * the packet will be reassembled and the pointer to the new
741 * mbuf returned for further processing.  Only m_tags attached
742 * to the first packet/fragment are preserved.
743 * The IP header is *NOT* adjusted out of iplen.
744 */
745struct mbuf *
746ip_reass(struct mbuf *m)
747{
748	struct ip *ip;
749	struct mbuf *p, *q, *nq, *t;
750	struct ipq *fp = NULL;
751	struct ipqhead *head;
752	int i, hlen, next;
753	u_int8_t ecn, ecn0;
754	u_short hash;
755
756	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
757	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
758		V_ipstat.ips_fragments++;
759		V_ipstat.ips_fragdropped++;
760		m_freem(m);
761		return (NULL);
762	}
763
764	ip = mtod(m, struct ip *);
765	hlen = ip->ip_hl << 2;
766
767	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
768	head = &V_ipq[hash];
769	IPQ_LOCK();
770
771	/*
772	 * Look for queue of fragments
773	 * of this datagram.
774	 */
775	TAILQ_FOREACH(fp, head, ipq_list)
776		if (ip->ip_id == fp->ipq_id &&
777		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
778		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
779#ifdef MAC
780		    mac_ipq_match(m, fp) &&
781#endif
782		    ip->ip_p == fp->ipq_p)
783			goto found;
784
785	fp = NULL;
786
787	/*
788	 * Attempt to trim the number of allocated fragment queues if it
789	 * exceeds the administrative limit.
790	 */
791	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
792		/*
793		 * drop something from the tail of the current queue
794		 * before proceeding further
795		 */
796		struct ipq *q = TAILQ_LAST(head, ipqhead);
797		if (q == NULL) {   /* gak */
798			for (i = 0; i < IPREASS_NHASH; i++) {
799				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
800				if (r) {
801					V_ipstat.ips_fragtimeout += r->ipq_nfrags;
802					ip_freef(&V_ipq[i], r);
803					break;
804				}
805			}
806		} else {
807			V_ipstat.ips_fragtimeout += q->ipq_nfrags;
808			ip_freef(head, q);
809		}
810	}
811
812found:
813	/*
814	 * Adjust ip_len to not reflect header,
815	 * convert offset of this to bytes.
816	 */
817	ip->ip_len -= hlen;
818	if (ip->ip_off & IP_MF) {
819		/*
820		 * Make sure that fragments have a data length
821		 * that's a non-zero multiple of 8 bytes.
822		 */
823		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
824			V_ipstat.ips_toosmall++; /* XXX */
825			goto dropfrag;
826		}
827		m->m_flags |= M_FRAG;
828	} else
829		m->m_flags &= ~M_FRAG;
830	ip->ip_off <<= 3;
831
832
833	/*
834	 * Attempt reassembly; if it succeeds, proceed.
835	 * ip_reass() will return a different mbuf.
836	 */
837	V_ipstat.ips_fragments++;
838	m->m_pkthdr.header = ip;
839
840	/* Previous ip_reass() started here. */
841	/*
842	 * Presence of header sizes in mbufs
843	 * would confuse code below.
844	 */
845	m->m_data += hlen;
846	m->m_len -= hlen;
847
848	/*
849	 * If first fragment to arrive, create a reassembly queue.
850	 */
851	if (fp == NULL) {
852		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
853		if (fp == NULL)
854			goto dropfrag;
855#ifdef MAC
856		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
857			uma_zfree(V_ipq_zone, fp);
858			fp = NULL;
859			goto dropfrag;
860		}
861		mac_ipq_create(m, fp);
862#endif
863		TAILQ_INSERT_HEAD(head, fp, ipq_list);
864		V_nipq++;
865		fp->ipq_nfrags = 1;
866		fp->ipq_ttl = IPFRAGTTL;
867		fp->ipq_p = ip->ip_p;
868		fp->ipq_id = ip->ip_id;
869		fp->ipq_src = ip->ip_src;
870		fp->ipq_dst = ip->ip_dst;
871		fp->ipq_frags = m;
872		m->m_nextpkt = NULL;
873		goto done;
874	} else {
875		fp->ipq_nfrags++;
876#ifdef MAC
877		mac_ipq_update(m, fp);
878#endif
879	}
880
881#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
882
883	/*
884	 * Handle ECN by comparing this segment with the first one;
885	 * if CE is set, do not lose CE.
886	 * drop if CE and not-ECT are mixed for the same packet.
887	 */
888	ecn = ip->ip_tos & IPTOS_ECN_MASK;
889	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
890	if (ecn == IPTOS_ECN_CE) {
891		if (ecn0 == IPTOS_ECN_NOTECT)
892			goto dropfrag;
893		if (ecn0 != IPTOS_ECN_CE)
894			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
895	}
896	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
897		goto dropfrag;
898
899	/*
900	 * Find a segment which begins after this one does.
901	 */
902	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
903		if (GETIP(q)->ip_off > ip->ip_off)
904			break;
905
906	/*
907	 * If there is a preceding segment, it may provide some of
908	 * our data already.  If so, drop the data from the incoming
909	 * segment.  If it provides all of our data, drop us, otherwise
910	 * stick new segment in the proper place.
911	 *
912	 * If some of the data is dropped from the the preceding
913	 * segment, then it's checksum is invalidated.
914	 */
915	if (p) {
916		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
917		if (i > 0) {
918			if (i >= ip->ip_len)
919				goto dropfrag;
920			m_adj(m, i);
921			m->m_pkthdr.csum_flags = 0;
922			ip->ip_off += i;
923			ip->ip_len -= i;
924		}
925		m->m_nextpkt = p->m_nextpkt;
926		p->m_nextpkt = m;
927	} else {
928		m->m_nextpkt = fp->ipq_frags;
929		fp->ipq_frags = m;
930	}
931
932	/*
933	 * While we overlap succeeding segments trim them or,
934	 * if they are completely covered, dequeue them.
935	 */
936	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
937	     q = nq) {
938		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
939		if (i < GETIP(q)->ip_len) {
940			GETIP(q)->ip_len -= i;
941			GETIP(q)->ip_off += i;
942			m_adj(q, i);
943			q->m_pkthdr.csum_flags = 0;
944			break;
945		}
946		nq = q->m_nextpkt;
947		m->m_nextpkt = nq;
948		V_ipstat.ips_fragdropped++;
949		fp->ipq_nfrags--;
950		m_freem(q);
951	}
952
953	/*
954	 * Check for complete reassembly and perform frag per packet
955	 * limiting.
956	 *
957	 * Frag limiting is performed here so that the nth frag has
958	 * a chance to complete the packet before we drop the packet.
959	 * As a result, n+1 frags are actually allowed per packet, but
960	 * only n will ever be stored. (n = maxfragsperpacket.)
961	 *
962	 */
963	next = 0;
964	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
965		if (GETIP(q)->ip_off != next) {
966			if (fp->ipq_nfrags > V_maxfragsperpacket) {
967				V_ipstat.ips_fragdropped += fp->ipq_nfrags;
968				ip_freef(head, fp);
969			}
970			goto done;
971		}
972		next += GETIP(q)->ip_len;
973	}
974	/* Make sure the last packet didn't have the IP_MF flag */
975	if (p->m_flags & M_FRAG) {
976		if (fp->ipq_nfrags > V_maxfragsperpacket) {
977			V_ipstat.ips_fragdropped += fp->ipq_nfrags;
978			ip_freef(head, fp);
979		}
980		goto done;
981	}
982
983	/*
984	 * Reassembly is complete.  Make sure the packet is a sane size.
985	 */
986	q = fp->ipq_frags;
987	ip = GETIP(q);
988	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
989		V_ipstat.ips_toolong++;
990		V_ipstat.ips_fragdropped += fp->ipq_nfrags;
991		ip_freef(head, fp);
992		goto done;
993	}
994
995	/*
996	 * Concatenate fragments.
997	 */
998	m = q;
999	t = m->m_next;
1000	m->m_next = NULL;
1001	m_cat(m, t);
1002	nq = q->m_nextpkt;
1003	q->m_nextpkt = NULL;
1004	for (q = nq; q != NULL; q = nq) {
1005		nq = q->m_nextpkt;
1006		q->m_nextpkt = NULL;
1007		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1008		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1009		m_cat(m, q);
1010	}
1011	/*
1012	 * In order to do checksumming faster we do 'end-around carry' here
1013	 * (and not in for{} loop), though it implies we are not going to
1014	 * reassemble more than 64k fragments.
1015	 */
1016	m->m_pkthdr.csum_data =
1017	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1018#ifdef MAC
1019	mac_ipq_reassemble(fp, m);
1020	mac_ipq_destroy(fp);
1021#endif
1022
1023	/*
1024	 * Create header for new ip packet by modifying header of first
1025	 * packet;  dequeue and discard fragment reassembly header.
1026	 * Make header visible.
1027	 */
1028	ip->ip_len = (ip->ip_hl << 2) + next;
1029	ip->ip_src = fp->ipq_src;
1030	ip->ip_dst = fp->ipq_dst;
1031	TAILQ_REMOVE(head, fp, ipq_list);
1032	V_nipq--;
1033	uma_zfree(V_ipq_zone, fp);
1034	m->m_len += (ip->ip_hl << 2);
1035	m->m_data -= (ip->ip_hl << 2);
1036	/* some debugging cruft by sklower, below, will go away soon */
1037	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1038		m_fixhdr(m);
1039	V_ipstat.ips_reassembled++;
1040	IPQ_UNLOCK();
1041	return (m);
1042
1043dropfrag:
1044	V_ipstat.ips_fragdropped++;
1045	if (fp != NULL)
1046		fp->ipq_nfrags--;
1047	m_freem(m);
1048done:
1049	IPQ_UNLOCK();
1050	return (NULL);
1051
1052#undef GETIP
1053}
1054
1055/*
1056 * Free a fragment reassembly header and all
1057 * associated datagrams.
1058 */
1059static void
1060ip_freef(struct ipqhead *fhp, struct ipq *fp)
1061{
1062	struct mbuf *q;
1063
1064	IPQ_LOCK_ASSERT();
1065
1066	while (fp->ipq_frags) {
1067		q = fp->ipq_frags;
1068		fp->ipq_frags = q->m_nextpkt;
1069		m_freem(q);
1070	}
1071	TAILQ_REMOVE(fhp, fp, ipq_list);
1072	uma_zfree(V_ipq_zone, fp);
1073	V_nipq--;
1074}
1075
1076/*
1077 * IP timer processing;
1078 * if a timer expires on a reassembly
1079 * queue, discard it.
1080 */
1081void
1082ip_slowtimo(void)
1083{
1084	struct ipq *fp;
1085	int i;
1086
1087	IPQ_LOCK();
1088	for (i = 0; i < IPREASS_NHASH; i++) {
1089		for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1090			struct ipq *fpp;
1091
1092			fpp = fp;
1093			fp = TAILQ_NEXT(fp, ipq_list);
1094			if(--fpp->ipq_ttl == 0) {
1095				V_ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1096				ip_freef(&V_ipq[i], fpp);
1097			}
1098		}
1099	}
1100	/*
1101	 * If we are over the maximum number of fragments
1102	 * (due to the limit being lowered), drain off
1103	 * enough to get down to the new limit.
1104	 */
1105	if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1106		for (i = 0; i < IPREASS_NHASH; i++) {
1107			while (V_nipq > V_maxnipq && !TAILQ_EMPTY(&V_ipq[i])) {
1108				V_ipstat.ips_fragdropped +=
1109				    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1110				ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1111			}
1112		}
1113	}
1114	IPQ_UNLOCK();
1115}
1116
1117/*
1118 * Drain off all datagram fragments.
1119 */
1120void
1121ip_drain(void)
1122{
1123	int     i;
1124
1125	IPQ_LOCK();
1126	for (i = 0; i < IPREASS_NHASH; i++) {
1127		while(!TAILQ_EMPTY(&V_ipq[i])) {
1128			V_ipstat.ips_fragdropped +=
1129			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags;
1130			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1131		}
1132	}
1133	IPQ_UNLOCK();
1134	in_rtqdrain();
1135}
1136
1137/*
1138 * The protocol to be inserted into ip_protox[] must be already registered
1139 * in inetsw[], either statically or through pf_proto_register().
1140 */
1141int
1142ipproto_register(u_char ipproto)
1143{
1144	struct protosw *pr;
1145
1146	/* Sanity checks. */
1147	if (ipproto == 0)
1148		return (EPROTONOSUPPORT);
1149
1150	/*
1151	 * The protocol slot must not be occupied by another protocol
1152	 * already.  An index pointing to IPPROTO_RAW is unused.
1153	 */
1154	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1155	if (pr == NULL)
1156		return (EPFNOSUPPORT);
1157	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1158		return (EEXIST);
1159
1160	/* Find the protocol position in inetsw[] and set the index. */
1161	for (pr = inetdomain.dom_protosw;
1162	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1163		if (pr->pr_domain->dom_family == PF_INET &&
1164		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1165			/* Be careful to only index valid IP protocols. */
1166			if (pr->pr_protocol < IPPROTO_MAX) {
1167				ip_protox[pr->pr_protocol] = pr - inetsw;
1168				return (0);
1169			} else
1170				return (EINVAL);
1171		}
1172	}
1173	return (EPROTONOSUPPORT);
1174}
1175
1176int
1177ipproto_unregister(u_char ipproto)
1178{
1179	struct protosw *pr;
1180
1181	/* Sanity checks. */
1182	if (ipproto == 0)
1183		return (EPROTONOSUPPORT);
1184
1185	/* Check if the protocol was indeed registered. */
1186	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1187	if (pr == NULL)
1188		return (EPFNOSUPPORT);
1189	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1190		return (ENOENT);
1191
1192	/* Reset the protocol slot to IPPROTO_RAW. */
1193	ip_protox[ipproto] = pr - inetsw;
1194	return (0);
1195}
1196
1197/*
1198 * Given address of next destination (final or next hop),
1199 * return internet address info of interface to be used to get there.
1200 */
1201struct in_ifaddr *
1202ip_rtaddr(struct in_addr dst, u_int fibnum)
1203{
1204	struct route sro;
1205	struct sockaddr_in *sin;
1206	struct in_ifaddr *ifa;
1207
1208	bzero(&sro, sizeof(sro));
1209	sin = (struct sockaddr_in *)&sro.ro_dst;
1210	sin->sin_family = AF_INET;
1211	sin->sin_len = sizeof(*sin);
1212	sin->sin_addr = dst;
1213	in_rtalloc_ign(&sro, RTF_CLONING, fibnum);
1214
1215	if (sro.ro_rt == NULL)
1216		return (NULL);
1217
1218	ifa = ifatoia(sro.ro_rt->rt_ifa);
1219	RTFREE(sro.ro_rt);
1220	return (ifa);
1221}
1222
1223u_char inetctlerrmap[PRC_NCMDS] = {
1224	0,		0,		0,		0,
1225	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1226	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1227	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1228	0,		0,		EHOSTUNREACH,	0,
1229	ENOPROTOOPT,	ECONNREFUSED
1230};
1231
1232/*
1233 * Forward a packet.  If some error occurs return the sender
1234 * an icmp packet.  Note we can't always generate a meaningful
1235 * icmp message because icmp doesn't have a large enough repertoire
1236 * of codes and types.
1237 *
1238 * If not forwarding, just drop the packet.  This could be confusing
1239 * if ipforwarding was zero but some routing protocol was advancing
1240 * us as a gateway to somewhere.  However, we must let the routing
1241 * protocol deal with that.
1242 *
1243 * The srcrt parameter indicates whether the packet is being forwarded
1244 * via a source route.
1245 */
1246void
1247ip_forward(struct mbuf *m, int srcrt)
1248{
1249	struct ip *ip = mtod(m, struct ip *);
1250	struct in_ifaddr *ia = NULL;
1251	struct mbuf *mcopy;
1252	struct in_addr dest;
1253	struct route ro;
1254	int error, type = 0, code = 0, mtu = 0;
1255
1256	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1257		V_ipstat.ips_cantforward++;
1258		m_freem(m);
1259		return;
1260	}
1261#ifdef IPSTEALTH
1262	if (!V_ipstealth) {
1263#endif
1264		if (ip->ip_ttl <= IPTTLDEC) {
1265			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1266			    0, 0);
1267			return;
1268		}
1269#ifdef IPSTEALTH
1270	}
1271#endif
1272
1273	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1274	if (!srcrt && ia == NULL) {
1275		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1276		return;
1277	}
1278
1279	/*
1280	 * Save the IP header and at most 8 bytes of the payload,
1281	 * in case we need to generate an ICMP message to the src.
1282	 *
1283	 * XXX this can be optimized a lot by saving the data in a local
1284	 * buffer on the stack (72 bytes at most), and only allocating the
1285	 * mbuf if really necessary. The vast majority of the packets
1286	 * are forwarded without having to send an ICMP back (either
1287	 * because unnecessary, or because rate limited), so we are
1288	 * really we are wasting a lot of work here.
1289	 *
1290	 * We don't use m_copy() because it might return a reference
1291	 * to a shared cluster. Both this function and ip_output()
1292	 * assume exclusive access to the IP header in `m', so any
1293	 * data in a cluster may change before we reach icmp_error().
1294	 */
1295	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1296	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1297		/*
1298		 * It's probably ok if the pkthdr dup fails (because
1299		 * the deep copy of the tag chain failed), but for now
1300		 * be conservative and just discard the copy since
1301		 * code below may some day want the tags.
1302		 */
1303		m_free(mcopy);
1304		mcopy = NULL;
1305	}
1306	if (mcopy != NULL) {
1307		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1308		mcopy->m_pkthdr.len = mcopy->m_len;
1309		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1310	}
1311
1312#ifdef IPSTEALTH
1313	if (!V_ipstealth) {
1314#endif
1315		ip->ip_ttl -= IPTTLDEC;
1316#ifdef IPSTEALTH
1317	}
1318#endif
1319
1320	/*
1321	 * If forwarding packet using same interface that it came in on,
1322	 * perhaps should send a redirect to sender to shortcut a hop.
1323	 * Only send redirect if source is sending directly to us,
1324	 * and if packet was not source routed (or has any options).
1325	 * Also, don't send redirect if forwarding using a default route
1326	 * or a route modified by a redirect.
1327	 */
1328	dest.s_addr = 0;
1329	if (!srcrt && V_ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1330		struct sockaddr_in *sin;
1331		struct rtentry *rt;
1332
1333		bzero(&ro, sizeof(ro));
1334		sin = (struct sockaddr_in *)&ro.ro_dst;
1335		sin->sin_family = AF_INET;
1336		sin->sin_len = sizeof(*sin);
1337		sin->sin_addr = ip->ip_dst;
1338		in_rtalloc_ign(&ro, RTF_CLONING, M_GETFIB(m));
1339
1340		rt = ro.ro_rt;
1341
1342		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1343		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1344#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1345			u_long src = ntohl(ip->ip_src.s_addr);
1346
1347			if (RTA(rt) &&
1348			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1349				if (rt->rt_flags & RTF_GATEWAY)
1350					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1351				else
1352					dest.s_addr = ip->ip_dst.s_addr;
1353				/* Router requirements says to only send host redirects */
1354				type = ICMP_REDIRECT;
1355				code = ICMP_REDIRECT_HOST;
1356			}
1357		}
1358		if (rt)
1359			RTFREE(rt);
1360	}
1361
1362	/*
1363	 * Try to cache the route MTU from ip_output so we can consider it for
1364	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1365	 */
1366	bzero(&ro, sizeof(ro));
1367
1368	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1369
1370	if (error == EMSGSIZE && ro.ro_rt)
1371		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1372	if (ro.ro_rt)
1373		RTFREE(ro.ro_rt);
1374
1375	if (error)
1376		V_ipstat.ips_cantforward++;
1377	else {
1378		V_ipstat.ips_forward++;
1379		if (type)
1380			V_ipstat.ips_redirectsent++;
1381		else {
1382			if (mcopy)
1383				m_freem(mcopy);
1384			return;
1385		}
1386	}
1387	if (mcopy == NULL)
1388		return;
1389
1390	switch (error) {
1391
1392	case 0:				/* forwarded, but need redirect */
1393		/* type, code set above */
1394		break;
1395
1396	case ENETUNREACH:		/* shouldn't happen, checked above */
1397	case EHOSTUNREACH:
1398	case ENETDOWN:
1399	case EHOSTDOWN:
1400	default:
1401		type = ICMP_UNREACH;
1402		code = ICMP_UNREACH_HOST;
1403		break;
1404
1405	case EMSGSIZE:
1406		type = ICMP_UNREACH;
1407		code = ICMP_UNREACH_NEEDFRAG;
1408
1409#ifdef IPSEC
1410		/*
1411		 * If IPsec is configured for this path,
1412		 * override any possibly mtu value set by ip_output.
1413		 */
1414		mtu = ip_ipsec_mtu(m, mtu);
1415#endif /* IPSEC */
1416		/*
1417		 * If the MTU was set before make sure we are below the
1418		 * interface MTU.
1419		 * If the MTU wasn't set before use the interface mtu or
1420		 * fall back to the next smaller mtu step compared to the
1421		 * current packet size.
1422		 */
1423		if (mtu != 0) {
1424			if (ia != NULL)
1425				mtu = min(mtu, ia->ia_ifp->if_mtu);
1426		} else {
1427			if (ia != NULL)
1428				mtu = ia->ia_ifp->if_mtu;
1429			else
1430				mtu = ip_next_mtu(ip->ip_len, 0);
1431		}
1432		V_ipstat.ips_cantfrag++;
1433		break;
1434
1435	case ENOBUFS:
1436		/*
1437		 * A router should not generate ICMP_SOURCEQUENCH as
1438		 * required in RFC1812 Requirements for IP Version 4 Routers.
1439		 * Source quench could be a big problem under DoS attacks,
1440		 * or if the underlying interface is rate-limited.
1441		 * Those who need source quench packets may re-enable them
1442		 * via the net.inet.ip.sendsourcequench sysctl.
1443		 */
1444		if (V_ip_sendsourcequench == 0) {
1445			m_freem(mcopy);
1446			return;
1447		} else {
1448			type = ICMP_SOURCEQUENCH;
1449			code = 0;
1450		}
1451		break;
1452
1453	case EACCES:			/* ipfw denied packet */
1454		m_freem(mcopy);
1455		return;
1456	}
1457	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1458}
1459
1460void
1461ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1462    struct mbuf *m)
1463{
1464	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1465		struct bintime bt;
1466
1467		bintime(&bt);
1468		if (inp->inp_socket->so_options & SO_BINTIME) {
1469			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1470			SCM_BINTIME, SOL_SOCKET);
1471			if (*mp)
1472				mp = &(*mp)->m_next;
1473		}
1474		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1475			struct timeval tv;
1476
1477			bintime2timeval(&bt, &tv);
1478			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1479				SCM_TIMESTAMP, SOL_SOCKET);
1480			if (*mp)
1481				mp = &(*mp)->m_next;
1482		}
1483	}
1484	if (inp->inp_flags & INP_RECVDSTADDR) {
1485		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1486		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1487		if (*mp)
1488			mp = &(*mp)->m_next;
1489	}
1490	if (inp->inp_flags & INP_RECVTTL) {
1491		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1492		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1493		if (*mp)
1494			mp = &(*mp)->m_next;
1495	}
1496#ifdef notyet
1497	/* XXX
1498	 * Moving these out of udp_input() made them even more broken
1499	 * than they already were.
1500	 */
1501	/* options were tossed already */
1502	if (inp->inp_flags & INP_RECVOPTS) {
1503		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1504		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1505		if (*mp)
1506			mp = &(*mp)->m_next;
1507	}
1508	/* ip_srcroute doesn't do what we want here, need to fix */
1509	if (inp->inp_flags & INP_RECVRETOPTS) {
1510		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1511		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1512		if (*mp)
1513			mp = &(*mp)->m_next;
1514	}
1515#endif
1516	if (inp->inp_flags & INP_RECVIF) {
1517		struct ifnet *ifp;
1518		struct sdlbuf {
1519			struct sockaddr_dl sdl;
1520			u_char	pad[32];
1521		} sdlbuf;
1522		struct sockaddr_dl *sdp;
1523		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1524
1525		if (((ifp = m->m_pkthdr.rcvif))
1526		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1527			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1528			/*
1529			 * Change our mind and don't try copy.
1530			 */
1531			if ((sdp->sdl_family != AF_LINK)
1532			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1533				goto makedummy;
1534			}
1535			bcopy(sdp, sdl2, sdp->sdl_len);
1536		} else {
1537makedummy:
1538			sdl2->sdl_len
1539				= offsetof(struct sockaddr_dl, sdl_data[0]);
1540			sdl2->sdl_family = AF_LINK;
1541			sdl2->sdl_index = 0;
1542			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1543		}
1544		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1545			IP_RECVIF, IPPROTO_IP);
1546		if (*mp)
1547			mp = &(*mp)->m_next;
1548	}
1549}
1550
1551/*
1552 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1553 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1554 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1555 * compiled.
1556 */
1557static int ip_rsvp_on;
1558struct socket *ip_rsvpd;
1559int
1560ip_rsvp_init(struct socket *so)
1561{
1562	if (so->so_type != SOCK_RAW ||
1563	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1564		return EOPNOTSUPP;
1565
1566	if (V_ip_rsvpd != NULL)
1567		return EADDRINUSE;
1568
1569	V_ip_rsvpd = so;
1570	/*
1571	 * This may seem silly, but we need to be sure we don't over-increment
1572	 * the RSVP counter, in case something slips up.
1573	 */
1574	if (!V_ip_rsvp_on) {
1575		V_ip_rsvp_on = 1;
1576		V_rsvp_on++;
1577	}
1578
1579	return 0;
1580}
1581
1582int
1583ip_rsvp_done(void)
1584{
1585	V_ip_rsvpd = NULL;
1586	/*
1587	 * This may seem silly, but we need to be sure we don't over-decrement
1588	 * the RSVP counter, in case something slips up.
1589	 */
1590	if (V_ip_rsvp_on) {
1591		V_ip_rsvp_on = 0;
1592		V_rsvp_on--;
1593	}
1594	return 0;
1595}
1596
1597void
1598rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1599{
1600	if (rsvp_input_p) { /* call the real one if loaded */
1601		rsvp_input_p(m, off);
1602		return;
1603	}
1604
1605	/* Can still get packets with rsvp_on = 0 if there is a local member
1606	 * of the group to which the RSVP packet is addressed.  But in this
1607	 * case we want to throw the packet away.
1608	 */
1609
1610	if (!V_rsvp_on) {
1611		m_freem(m);
1612		return;
1613	}
1614
1615	if (V_ip_rsvpd != NULL) {
1616		rip_input(m, off);
1617		return;
1618	}
1619	/* Drop the packet */
1620	m_freem(m);
1621}
1622