ip_input.c revision 178029
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 178029 2008-04-09 05:17:18Z bz $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40#include "opt_carp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/mbuf.h>
46#include <sys/malloc.h>
47#include <sys/domain.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/time.h>
51#include <sys/kernel.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54
55#include <net/pfil.h>
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_var.h>
59#include <net/if_dl.h>
60#include <net/route.h>
61#include <net/netisr.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <netinet/ip.h>
67#include <netinet/in_pcb.h>
68#include <netinet/ip_var.h>
69#include <netinet/ip_icmp.h>
70#include <netinet/ip_options.h>
71#include <machine/in_cksum.h>
72#ifdef DEV_CARP
73#include <netinet/ip_carp.h>
74#endif
75#ifdef IPSEC
76#include <netinet/ip_ipsec.h>
77#endif /* IPSEC */
78
79#include <sys/socketvar.h>
80
81/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
82#include <netinet/ip_fw.h>
83#include <netinet/ip_dummynet.h>
84
85#include <security/mac/mac_framework.h>
86
87int rsvp_on = 0;
88
89int	ipforwarding = 0;
90SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
91    &ipforwarding, 0, "Enable IP forwarding between interfaces");
92
93static int	ipsendredirects = 1; /* XXX */
94SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
95    &ipsendredirects, 0, "Enable sending IP redirects");
96
97int	ip_defttl = IPDEFTTL;
98SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
99    &ip_defttl, 0, "Maximum TTL on IP packets");
100
101static int	ip_keepfaith = 0;
102SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
103    &ip_keepfaith,	0,
104    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
105
106static int	ip_sendsourcequench = 0;
107SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
108    &ip_sendsourcequench, 0,
109    "Enable the transmission of source quench packets");
110
111int	ip_do_randomid = 0;
112SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
113    &ip_do_randomid, 0,
114    "Assign random ip_id values");
115
116/*
117 * XXX - Setting ip_checkinterface mostly implements the receive side of
118 * the Strong ES model described in RFC 1122, but since the routing table
119 * and transmit implementation do not implement the Strong ES model,
120 * setting this to 1 results in an odd hybrid.
121 *
122 * XXX - ip_checkinterface currently must be disabled if you use ipnat
123 * to translate the destination address to another local interface.
124 *
125 * XXX - ip_checkinterface must be disabled if you add IP aliases
126 * to the loopback interface instead of the interface where the
127 * packets for those addresses are received.
128 */
129static int	ip_checkinterface = 0;
130SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
131    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
132
133struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
134
135static struct	ifqueue ipintrq;
136static int	ipqmaxlen = IFQ_MAXLEN;
137
138extern	struct domain inetdomain;
139extern	struct protosw inetsw[];
140u_char	ip_protox[IPPROTO_MAX];
141struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
142struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
143u_long 	in_ifaddrhmask;				/* mask for hash table */
144
145SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
146    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
147SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
148    &ipintrq.ifq_drops, 0,
149    "Number of packets dropped from the IP input queue");
150
151struct ipstat ipstat;
152SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
153    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
154
155/*
156 * IP datagram reassembly.
157 */
158#define IPREASS_NHASH_LOG2      6
159#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
160#define IPREASS_HMASK           (IPREASS_NHASH - 1)
161#define IPREASS_HASH(x,y) \
162	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
163
164static uma_zone_t ipq_zone;
165static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
166static struct mtx ipqlock;
167
168#define	IPQ_LOCK()	mtx_lock(&ipqlock)
169#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
170#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
171#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
172
173static void	maxnipq_update(void);
174static void	ipq_zone_change(void *);
175
176static int	maxnipq;	/* Administrative limit on # reass queues. */
177static int	nipq = 0;	/* Total # of reass queues */
178SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
179    &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
180
181static int	maxfragsperpacket;
182SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
183    &maxfragsperpacket, 0,
184    "Maximum number of IPv4 fragments allowed per packet");
185
186struct callout	ipport_tick_callout;
187
188#ifdef IPCTL_DEFMTU
189SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
190    &ip_mtu, 0, "Default MTU");
191#endif
192
193#ifdef IPSTEALTH
194int	ipstealth = 0;
195SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
196    &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
197#endif
198
199/*
200 * ipfw_ether and ipfw_bridge hooks.
201 * XXX: Temporary until those are converted to pfil_hooks as well.
202 */
203ip_fw_chk_t *ip_fw_chk_ptr = NULL;
204ip_dn_io_t *ip_dn_io_ptr = NULL;
205int fw_one_pass = 1;
206
207static void	ip_freef(struct ipqhead *, struct ipq *);
208
209/*
210 * IP initialization: fill in IP protocol switch table.
211 * All protocols not implemented in kernel go to raw IP protocol handler.
212 */
213void
214ip_init(void)
215{
216	struct protosw *pr;
217	int i;
218
219	TAILQ_INIT(&in_ifaddrhead);
220	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
221	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
222	if (pr == NULL)
223		panic("ip_init: PF_INET not found");
224
225	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
226	for (i = 0; i < IPPROTO_MAX; i++)
227		ip_protox[i] = pr - inetsw;
228	/*
229	 * Cycle through IP protocols and put them into the appropriate place
230	 * in ip_protox[].
231	 */
232	for (pr = inetdomain.dom_protosw;
233	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
234		if (pr->pr_domain->dom_family == PF_INET &&
235		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
236			/* Be careful to only index valid IP protocols. */
237			if (pr->pr_protocol < IPPROTO_MAX)
238				ip_protox[pr->pr_protocol] = pr - inetsw;
239		}
240
241	/* Initialize packet filter hooks. */
242	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
243	inet_pfil_hook.ph_af = AF_INET;
244	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
245		printf("%s: WARNING: unable to register pfil hook, "
246			"error %d\n", __func__, i);
247
248	/* Initialize IP reassembly queue. */
249	IPQ_LOCK_INIT();
250	for (i = 0; i < IPREASS_NHASH; i++)
251	    TAILQ_INIT(&ipq[i]);
252	maxnipq = nmbclusters / 32;
253	maxfragsperpacket = 16;
254	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
255	    NULL, UMA_ALIGN_PTR, 0);
256	maxnipq_update();
257
258	/* Start ipport_tick. */
259	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
260	ipport_tick(NULL);
261	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
262		SHUTDOWN_PRI_DEFAULT);
263	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
264		NULL, EVENTHANDLER_PRI_ANY);
265
266	/* Initialize various other remaining things. */
267	ip_id = time_second & 0xffff;
268	ipintrq.ifq_maxlen = ipqmaxlen;
269	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
270	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
271}
272
273void
274ip_fini(void *xtp)
275{
276
277	callout_stop(&ipport_tick_callout);
278}
279
280/*
281 * Ip input routine.  Checksum and byte swap header.  If fragmented
282 * try to reassemble.  Process options.  Pass to next level.
283 */
284void
285ip_input(struct mbuf *m)
286{
287	struct ip *ip = NULL;
288	struct in_ifaddr *ia = NULL;
289	struct ifaddr *ifa;
290	int    checkif, hlen = 0;
291	u_short sum;
292	int dchg = 0;				/* dest changed after fw */
293	struct in_addr odst;			/* original dst address */
294
295	M_ASSERTPKTHDR(m);
296
297	if (m->m_flags & M_FASTFWD_OURS) {
298		/*
299		 * Firewall or NAT changed destination to local.
300		 * We expect ip_len and ip_off to be in host byte order.
301		 */
302		m->m_flags &= ~M_FASTFWD_OURS;
303		/* Set up some basics that will be used later. */
304		ip = mtod(m, struct ip *);
305		hlen = ip->ip_hl << 2;
306		goto ours;
307	}
308
309	ipstat.ips_total++;
310
311	if (m->m_pkthdr.len < sizeof(struct ip))
312		goto tooshort;
313
314	if (m->m_len < sizeof (struct ip) &&
315	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
316		ipstat.ips_toosmall++;
317		return;
318	}
319	ip = mtod(m, struct ip *);
320
321	if (ip->ip_v != IPVERSION) {
322		ipstat.ips_badvers++;
323		goto bad;
324	}
325
326	hlen = ip->ip_hl << 2;
327	if (hlen < sizeof(struct ip)) {	/* minimum header length */
328		ipstat.ips_badhlen++;
329		goto bad;
330	}
331	if (hlen > m->m_len) {
332		if ((m = m_pullup(m, hlen)) == NULL) {
333			ipstat.ips_badhlen++;
334			return;
335		}
336		ip = mtod(m, struct ip *);
337	}
338
339	/* 127/8 must not appear on wire - RFC1122 */
340	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
341	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
342		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
343			ipstat.ips_badaddr++;
344			goto bad;
345		}
346	}
347
348	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
349		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
350	} else {
351		if (hlen == sizeof(struct ip)) {
352			sum = in_cksum_hdr(ip);
353		} else {
354			sum = in_cksum(m, hlen);
355		}
356	}
357	if (sum) {
358		ipstat.ips_badsum++;
359		goto bad;
360	}
361
362#ifdef ALTQ
363	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
364		/* packet is dropped by traffic conditioner */
365		return;
366#endif
367
368	/*
369	 * Convert fields to host representation.
370	 */
371	ip->ip_len = ntohs(ip->ip_len);
372	if (ip->ip_len < hlen) {
373		ipstat.ips_badlen++;
374		goto bad;
375	}
376	ip->ip_off = ntohs(ip->ip_off);
377
378	/*
379	 * Check that the amount of data in the buffers
380	 * is as at least much as the IP header would have us expect.
381	 * Trim mbufs if longer than we expect.
382	 * Drop packet if shorter than we expect.
383	 */
384	if (m->m_pkthdr.len < ip->ip_len) {
385tooshort:
386		ipstat.ips_tooshort++;
387		goto bad;
388	}
389	if (m->m_pkthdr.len > ip->ip_len) {
390		if (m->m_len == m->m_pkthdr.len) {
391			m->m_len = ip->ip_len;
392			m->m_pkthdr.len = ip->ip_len;
393		} else
394			m_adj(m, ip->ip_len - m->m_pkthdr.len);
395	}
396#ifdef IPSEC
397	/*
398	 * Bypass packet filtering for packets from a tunnel (gif).
399	 */
400	if (ip_ipsec_filtertunnel(m))
401		goto passin;
402#endif /* IPSEC */
403
404	/*
405	 * Run through list of hooks for input packets.
406	 *
407	 * NB: Beware of the destination address changing (e.g.
408	 *     by NAT rewriting).  When this happens, tell
409	 *     ip_forward to do the right thing.
410	 */
411
412	/* Jump over all PFIL processing if hooks are not active. */
413	if (!PFIL_HOOKED(&inet_pfil_hook))
414		goto passin;
415
416	odst = ip->ip_dst;
417	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
418	    PFIL_IN, NULL) != 0)
419		return;
420	if (m == NULL)			/* consumed by filter */
421		return;
422
423	ip = mtod(m, struct ip *);
424	dchg = (odst.s_addr != ip->ip_dst.s_addr);
425
426#ifdef IPFIREWALL_FORWARD
427	if (m->m_flags & M_FASTFWD_OURS) {
428		m->m_flags &= ~M_FASTFWD_OURS;
429		goto ours;
430	}
431	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
432		/*
433		 * Directly ship on the packet.  This allows to forward packets
434		 * that were destined for us to some other directly connected
435		 * host.
436		 */
437		ip_forward(m, dchg);
438		return;
439	}
440#endif /* IPFIREWALL_FORWARD */
441
442passin:
443	/*
444	 * Process options and, if not destined for us,
445	 * ship it on.  ip_dooptions returns 1 when an
446	 * error was detected (causing an icmp message
447	 * to be sent and the original packet to be freed).
448	 */
449	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
450		return;
451
452        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
453         * matter if it is destined to another node, or whether it is
454         * a multicast one, RSVP wants it! and prevents it from being forwarded
455         * anywhere else. Also checks if the rsvp daemon is running before
456	 * grabbing the packet.
457         */
458	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
459		goto ours;
460
461	/*
462	 * Check our list of addresses, to see if the packet is for us.
463	 * If we don't have any addresses, assume any unicast packet
464	 * we receive might be for us (and let the upper layers deal
465	 * with it).
466	 */
467	if (TAILQ_EMPTY(&in_ifaddrhead) &&
468	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
469		goto ours;
470
471	/*
472	 * Enable a consistency check between the destination address
473	 * and the arrival interface for a unicast packet (the RFC 1122
474	 * strong ES model) if IP forwarding is disabled and the packet
475	 * is not locally generated and the packet is not subject to
476	 * 'ipfw fwd'.
477	 *
478	 * XXX - Checking also should be disabled if the destination
479	 * address is ipnat'ed to a different interface.
480	 *
481	 * XXX - Checking is incompatible with IP aliases added
482	 * to the loopback interface instead of the interface where
483	 * the packets are received.
484	 *
485	 * XXX - This is the case for carp vhost IPs as well so we
486	 * insert a workaround. If the packet got here, we already
487	 * checked with carp_iamatch() and carp_forus().
488	 */
489	checkif = ip_checkinterface && (ipforwarding == 0) &&
490	    m->m_pkthdr.rcvif != NULL &&
491	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
492#ifdef DEV_CARP
493	    !m->m_pkthdr.rcvif->if_carp &&
494#endif
495	    (dchg == 0);
496
497	/*
498	 * Check for exact addresses in the hash bucket.
499	 */
500	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
501		/*
502		 * If the address matches, verify that the packet
503		 * arrived via the correct interface if checking is
504		 * enabled.
505		 */
506		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
507		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
508			goto ours;
509	}
510	/*
511	 * Check for broadcast addresses.
512	 *
513	 * Only accept broadcast packets that arrive via the matching
514	 * interface.  Reception of forwarded directed broadcasts would
515	 * be handled via ip_forward() and ether_output() with the loopback
516	 * into the stack for SIMPLEX interfaces handled by ether_output().
517	 */
518	if (m->m_pkthdr.rcvif != NULL &&
519	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
520	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
521			if (ifa->ifa_addr->sa_family != AF_INET)
522				continue;
523			ia = ifatoia(ifa);
524			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
525			    ip->ip_dst.s_addr)
526				goto ours;
527			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
528				goto ours;
529#ifdef BOOTP_COMPAT
530			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
531				goto ours;
532#endif
533		}
534	}
535	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
536	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
537		ipstat.ips_cantforward++;
538		m_freem(m);
539		return;
540	}
541	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
542		struct in_multi *inm;
543		if (ip_mrouter) {
544			/*
545			 * If we are acting as a multicast router, all
546			 * incoming multicast packets are passed to the
547			 * kernel-level multicast forwarding function.
548			 * The packet is returned (relatively) intact; if
549			 * ip_mforward() returns a non-zero value, the packet
550			 * must be discarded, else it may be accepted below.
551			 */
552			if (ip_mforward &&
553			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
554				ipstat.ips_cantforward++;
555				m_freem(m);
556				return;
557			}
558
559			/*
560			 * The process-level routing daemon needs to receive
561			 * all multicast IGMP packets, whether or not this
562			 * host belongs to their destination groups.
563			 */
564			if (ip->ip_p == IPPROTO_IGMP)
565				goto ours;
566			ipstat.ips_forward++;
567		}
568		/*
569		 * See if we belong to the destination multicast group on the
570		 * arrival interface.
571		 */
572		IN_MULTI_LOCK();
573		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
574		IN_MULTI_UNLOCK();
575		if (inm == NULL) {
576			ipstat.ips_notmember++;
577			m_freem(m);
578			return;
579		}
580		goto ours;
581	}
582	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
583		goto ours;
584	if (ip->ip_dst.s_addr == INADDR_ANY)
585		goto ours;
586
587	/*
588	 * FAITH(Firewall Aided Internet Translator)
589	 */
590	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
591		if (ip_keepfaith) {
592			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
593				goto ours;
594		}
595		m_freem(m);
596		return;
597	}
598
599	/*
600	 * Not for us; forward if possible and desirable.
601	 */
602	if (ipforwarding == 0) {
603		ipstat.ips_cantforward++;
604		m_freem(m);
605	} else {
606#ifdef IPSEC
607		if (ip_ipsec_fwd(m))
608			goto bad;
609#endif /* IPSEC */
610		ip_forward(m, dchg);
611	}
612	return;
613
614ours:
615#ifdef IPSTEALTH
616	/*
617	 * IPSTEALTH: Process non-routing options only
618	 * if the packet is destined for us.
619	 */
620	if (ipstealth && hlen > sizeof (struct ip) &&
621	    ip_dooptions(m, 1))
622		return;
623#endif /* IPSTEALTH */
624
625	/* Count the packet in the ip address stats */
626	if (ia != NULL) {
627		ia->ia_ifa.if_ipackets++;
628		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
629	}
630
631	/*
632	 * Attempt reassembly; if it succeeds, proceed.
633	 * ip_reass() will return a different mbuf.
634	 */
635	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
636		m = ip_reass(m);
637		if (m == NULL)
638			return;
639		ip = mtod(m, struct ip *);
640		/* Get the header length of the reassembled packet */
641		hlen = ip->ip_hl << 2;
642	}
643
644	/*
645	 * Further protocols expect the packet length to be w/o the
646	 * IP header.
647	 */
648	ip->ip_len -= hlen;
649
650#ifdef IPSEC
651	/*
652	 * enforce IPsec policy checking if we are seeing last header.
653	 * note that we do not visit this with protocols with pcb layer
654	 * code - like udp/tcp/raw ip.
655	 */
656	if (ip_ipsec_input(m))
657		goto bad;
658#endif /* IPSEC */
659
660	/*
661	 * Switch out to protocol's input routine.
662	 */
663	ipstat.ips_delivered++;
664
665	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
666	return;
667bad:
668	m_freem(m);
669}
670
671/*
672 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
673 * max has slightly different semantics than the sysctl, for historical
674 * reasons.
675 */
676static void
677maxnipq_update(void)
678{
679
680	/*
681	 * -1 for unlimited allocation.
682	 */
683	if (maxnipq < 0)
684		uma_zone_set_max(ipq_zone, 0);
685	/*
686	 * Positive number for specific bound.
687	 */
688	if (maxnipq > 0)
689		uma_zone_set_max(ipq_zone, maxnipq);
690	/*
691	 * Zero specifies no further fragment queue allocation -- set the
692	 * bound very low, but rely on implementation elsewhere to actually
693	 * prevent allocation and reclaim current queues.
694	 */
695	if (maxnipq == 0)
696		uma_zone_set_max(ipq_zone, 1);
697}
698
699static void
700ipq_zone_change(void *tag)
701{
702
703	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
704		maxnipq = nmbclusters / 32;
705		maxnipq_update();
706	}
707}
708
709static int
710sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
711{
712	int error, i;
713
714	i = maxnipq;
715	error = sysctl_handle_int(oidp, &i, 0, req);
716	if (error || !req->newptr)
717		return (error);
718
719	/*
720	 * XXXRW: Might be a good idea to sanity check the argument and place
721	 * an extreme upper bound.
722	 */
723	if (i < -1)
724		return (EINVAL);
725	maxnipq = i;
726	maxnipq_update();
727	return (0);
728}
729
730SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
731    NULL, 0, sysctl_maxnipq, "I",
732    "Maximum number of IPv4 fragment reassembly queue entries");
733
734/*
735 * Take incoming datagram fragment and try to reassemble it into
736 * whole datagram.  If the argument is the first fragment or one
737 * in between the function will return NULL and store the mbuf
738 * in the fragment chain.  If the argument is the last fragment
739 * the packet will be reassembled and the pointer to the new
740 * mbuf returned for further processing.  Only m_tags attached
741 * to the first packet/fragment are preserved.
742 * The IP header is *NOT* adjusted out of iplen.
743 */
744struct mbuf *
745ip_reass(struct mbuf *m)
746{
747	struct ip *ip;
748	struct mbuf *p, *q, *nq, *t;
749	struct ipq *fp = NULL;
750	struct ipqhead *head;
751	int i, hlen, next;
752	u_int8_t ecn, ecn0;
753	u_short hash;
754
755	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
756	if (maxnipq == 0 || maxfragsperpacket == 0) {
757		ipstat.ips_fragments++;
758		ipstat.ips_fragdropped++;
759		m_freem(m);
760		return (NULL);
761	}
762
763	ip = mtod(m, struct ip *);
764	hlen = ip->ip_hl << 2;
765
766	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
767	head = &ipq[hash];
768	IPQ_LOCK();
769
770	/*
771	 * Look for queue of fragments
772	 * of this datagram.
773	 */
774	TAILQ_FOREACH(fp, head, ipq_list)
775		if (ip->ip_id == fp->ipq_id &&
776		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
777		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
778#ifdef MAC
779		    mac_ipq_match(m, fp) &&
780#endif
781		    ip->ip_p == fp->ipq_p)
782			goto found;
783
784	fp = NULL;
785
786	/*
787	 * Attempt to trim the number of allocated fragment queues if it
788	 * exceeds the administrative limit.
789	 */
790	if ((nipq > maxnipq) && (maxnipq > 0)) {
791		/*
792		 * drop something from the tail of the current queue
793		 * before proceeding further
794		 */
795		struct ipq *q = TAILQ_LAST(head, ipqhead);
796		if (q == NULL) {   /* gak */
797			for (i = 0; i < IPREASS_NHASH; i++) {
798				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
799				if (r) {
800					ipstat.ips_fragtimeout += r->ipq_nfrags;
801					ip_freef(&ipq[i], r);
802					break;
803				}
804			}
805		} else {
806			ipstat.ips_fragtimeout += q->ipq_nfrags;
807			ip_freef(head, q);
808		}
809	}
810
811found:
812	/*
813	 * Adjust ip_len to not reflect header,
814	 * convert offset of this to bytes.
815	 */
816	ip->ip_len -= hlen;
817	if (ip->ip_off & IP_MF) {
818		/*
819		 * Make sure that fragments have a data length
820		 * that's a non-zero multiple of 8 bytes.
821		 */
822		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
823			ipstat.ips_toosmall++; /* XXX */
824			goto dropfrag;
825		}
826		m->m_flags |= M_FRAG;
827	} else
828		m->m_flags &= ~M_FRAG;
829	ip->ip_off <<= 3;
830
831
832	/*
833	 * Attempt reassembly; if it succeeds, proceed.
834	 * ip_reass() will return a different mbuf.
835	 */
836	ipstat.ips_fragments++;
837	m->m_pkthdr.header = ip;
838
839	/* Previous ip_reass() started here. */
840	/*
841	 * Presence of header sizes in mbufs
842	 * would confuse code below.
843	 */
844	m->m_data += hlen;
845	m->m_len -= hlen;
846
847	/*
848	 * If first fragment to arrive, create a reassembly queue.
849	 */
850	if (fp == NULL) {
851		fp = uma_zalloc(ipq_zone, M_NOWAIT);
852		if (fp == NULL)
853			goto dropfrag;
854#ifdef MAC
855		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
856			uma_zfree(ipq_zone, fp);
857			fp = NULL;
858			goto dropfrag;
859		}
860		mac_ipq_create(m, fp);
861#endif
862		TAILQ_INSERT_HEAD(head, fp, ipq_list);
863		nipq++;
864		fp->ipq_nfrags = 1;
865		fp->ipq_ttl = IPFRAGTTL;
866		fp->ipq_p = ip->ip_p;
867		fp->ipq_id = ip->ip_id;
868		fp->ipq_src = ip->ip_src;
869		fp->ipq_dst = ip->ip_dst;
870		fp->ipq_frags = m;
871		m->m_nextpkt = NULL;
872		goto done;
873	} else {
874		fp->ipq_nfrags++;
875#ifdef MAC
876		mac_ipq_update(m, fp);
877#endif
878	}
879
880#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
881
882	/*
883	 * Handle ECN by comparing this segment with the first one;
884	 * if CE is set, do not lose CE.
885	 * drop if CE and not-ECT are mixed for the same packet.
886	 */
887	ecn = ip->ip_tos & IPTOS_ECN_MASK;
888	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
889	if (ecn == IPTOS_ECN_CE) {
890		if (ecn0 == IPTOS_ECN_NOTECT)
891			goto dropfrag;
892		if (ecn0 != IPTOS_ECN_CE)
893			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
894	}
895	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
896		goto dropfrag;
897
898	/*
899	 * Find a segment which begins after this one does.
900	 */
901	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
902		if (GETIP(q)->ip_off > ip->ip_off)
903			break;
904
905	/*
906	 * If there is a preceding segment, it may provide some of
907	 * our data already.  If so, drop the data from the incoming
908	 * segment.  If it provides all of our data, drop us, otherwise
909	 * stick new segment in the proper place.
910	 *
911	 * If some of the data is dropped from the the preceding
912	 * segment, then it's checksum is invalidated.
913	 */
914	if (p) {
915		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
916		if (i > 0) {
917			if (i >= ip->ip_len)
918				goto dropfrag;
919			m_adj(m, i);
920			m->m_pkthdr.csum_flags = 0;
921			ip->ip_off += i;
922			ip->ip_len -= i;
923		}
924		m->m_nextpkt = p->m_nextpkt;
925		p->m_nextpkt = m;
926	} else {
927		m->m_nextpkt = fp->ipq_frags;
928		fp->ipq_frags = m;
929	}
930
931	/*
932	 * While we overlap succeeding segments trim them or,
933	 * if they are completely covered, dequeue them.
934	 */
935	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
936	     q = nq) {
937		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
938		if (i < GETIP(q)->ip_len) {
939			GETIP(q)->ip_len -= i;
940			GETIP(q)->ip_off += i;
941			m_adj(q, i);
942			q->m_pkthdr.csum_flags = 0;
943			break;
944		}
945		nq = q->m_nextpkt;
946		m->m_nextpkt = nq;
947		ipstat.ips_fragdropped++;
948		fp->ipq_nfrags--;
949		m_freem(q);
950	}
951
952	/*
953	 * Check for complete reassembly and perform frag per packet
954	 * limiting.
955	 *
956	 * Frag limiting is performed here so that the nth frag has
957	 * a chance to complete the packet before we drop the packet.
958	 * As a result, n+1 frags are actually allowed per packet, but
959	 * only n will ever be stored. (n = maxfragsperpacket.)
960	 *
961	 */
962	next = 0;
963	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
964		if (GETIP(q)->ip_off != next) {
965			if (fp->ipq_nfrags > maxfragsperpacket) {
966				ipstat.ips_fragdropped += fp->ipq_nfrags;
967				ip_freef(head, fp);
968			}
969			goto done;
970		}
971		next += GETIP(q)->ip_len;
972	}
973	/* Make sure the last packet didn't have the IP_MF flag */
974	if (p->m_flags & M_FRAG) {
975		if (fp->ipq_nfrags > maxfragsperpacket) {
976			ipstat.ips_fragdropped += fp->ipq_nfrags;
977			ip_freef(head, fp);
978		}
979		goto done;
980	}
981
982	/*
983	 * Reassembly is complete.  Make sure the packet is a sane size.
984	 */
985	q = fp->ipq_frags;
986	ip = GETIP(q);
987	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
988		ipstat.ips_toolong++;
989		ipstat.ips_fragdropped += fp->ipq_nfrags;
990		ip_freef(head, fp);
991		goto done;
992	}
993
994	/*
995	 * Concatenate fragments.
996	 */
997	m = q;
998	t = m->m_next;
999	m->m_next = NULL;
1000	m_cat(m, t);
1001	nq = q->m_nextpkt;
1002	q->m_nextpkt = NULL;
1003	for (q = nq; q != NULL; q = nq) {
1004		nq = q->m_nextpkt;
1005		q->m_nextpkt = NULL;
1006		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1007		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1008		m_cat(m, q);
1009	}
1010	/*
1011	 * In order to do checksumming faster we do 'end-around carry' here
1012	 * (and not in for{} loop), though it implies we are not going to
1013	 * reassemble more than 64k fragments.
1014	 */
1015	m->m_pkthdr.csum_data =
1016	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1017#ifdef MAC
1018	mac_ipq_reassemble(fp, m);
1019	mac_ipq_destroy(fp);
1020#endif
1021
1022	/*
1023	 * Create header for new ip packet by modifying header of first
1024	 * packet;  dequeue and discard fragment reassembly header.
1025	 * Make header visible.
1026	 */
1027	ip->ip_len = (ip->ip_hl << 2) + next;
1028	ip->ip_src = fp->ipq_src;
1029	ip->ip_dst = fp->ipq_dst;
1030	TAILQ_REMOVE(head, fp, ipq_list);
1031	nipq--;
1032	uma_zfree(ipq_zone, fp);
1033	m->m_len += (ip->ip_hl << 2);
1034	m->m_data -= (ip->ip_hl << 2);
1035	/* some debugging cruft by sklower, below, will go away soon */
1036	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1037		m_fixhdr(m);
1038	ipstat.ips_reassembled++;
1039	IPQ_UNLOCK();
1040	return (m);
1041
1042dropfrag:
1043	ipstat.ips_fragdropped++;
1044	if (fp != NULL)
1045		fp->ipq_nfrags--;
1046	m_freem(m);
1047done:
1048	IPQ_UNLOCK();
1049	return (NULL);
1050
1051#undef GETIP
1052}
1053
1054/*
1055 * Free a fragment reassembly header and all
1056 * associated datagrams.
1057 */
1058static void
1059ip_freef(struct ipqhead *fhp, struct ipq *fp)
1060{
1061	struct mbuf *q;
1062
1063	IPQ_LOCK_ASSERT();
1064
1065	while (fp->ipq_frags) {
1066		q = fp->ipq_frags;
1067		fp->ipq_frags = q->m_nextpkt;
1068		m_freem(q);
1069	}
1070	TAILQ_REMOVE(fhp, fp, ipq_list);
1071	uma_zfree(ipq_zone, fp);
1072	nipq--;
1073}
1074
1075/*
1076 * IP timer processing;
1077 * if a timer expires on a reassembly
1078 * queue, discard it.
1079 */
1080void
1081ip_slowtimo(void)
1082{
1083	struct ipq *fp;
1084	int i;
1085
1086	IPQ_LOCK();
1087	for (i = 0; i < IPREASS_NHASH; i++) {
1088		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1089			struct ipq *fpp;
1090
1091			fpp = fp;
1092			fp = TAILQ_NEXT(fp, ipq_list);
1093			if(--fpp->ipq_ttl == 0) {
1094				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1095				ip_freef(&ipq[i], fpp);
1096			}
1097		}
1098	}
1099	/*
1100	 * If we are over the maximum number of fragments
1101	 * (due to the limit being lowered), drain off
1102	 * enough to get down to the new limit.
1103	 */
1104	if (maxnipq >= 0 && nipq > maxnipq) {
1105		for (i = 0; i < IPREASS_NHASH; i++) {
1106			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1107				ipstat.ips_fragdropped +=
1108				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1109				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1110			}
1111		}
1112	}
1113	IPQ_UNLOCK();
1114}
1115
1116/*
1117 * Drain off all datagram fragments.
1118 */
1119void
1120ip_drain(void)
1121{
1122	int     i;
1123
1124	IPQ_LOCK();
1125	for (i = 0; i < IPREASS_NHASH; i++) {
1126		while(!TAILQ_EMPTY(&ipq[i])) {
1127			ipstat.ips_fragdropped +=
1128			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1129			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1130		}
1131	}
1132	IPQ_UNLOCK();
1133	in_rtqdrain();
1134}
1135
1136/*
1137 * The protocol to be inserted into ip_protox[] must be already registered
1138 * in inetsw[], either statically or through pf_proto_register().
1139 */
1140int
1141ipproto_register(u_char ipproto)
1142{
1143	struct protosw *pr;
1144
1145	/* Sanity checks. */
1146	if (ipproto == 0)
1147		return (EPROTONOSUPPORT);
1148
1149	/*
1150	 * The protocol slot must not be occupied by another protocol
1151	 * already.  An index pointing to IPPROTO_RAW is unused.
1152	 */
1153	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1154	if (pr == NULL)
1155		return (EPFNOSUPPORT);
1156	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1157		return (EEXIST);
1158
1159	/* Find the protocol position in inetsw[] and set the index. */
1160	for (pr = inetdomain.dom_protosw;
1161	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1162		if (pr->pr_domain->dom_family == PF_INET &&
1163		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1164			/* Be careful to only index valid IP protocols. */
1165			if (pr->pr_protocol < IPPROTO_MAX) {
1166				ip_protox[pr->pr_protocol] = pr - inetsw;
1167				return (0);
1168			} else
1169				return (EINVAL);
1170		}
1171	}
1172	return (EPROTONOSUPPORT);
1173}
1174
1175int
1176ipproto_unregister(u_char ipproto)
1177{
1178	struct protosw *pr;
1179
1180	/* Sanity checks. */
1181	if (ipproto == 0)
1182		return (EPROTONOSUPPORT);
1183
1184	/* Check if the protocol was indeed registered. */
1185	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1186	if (pr == NULL)
1187		return (EPFNOSUPPORT);
1188	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1189		return (ENOENT);
1190
1191	/* Reset the protocol slot to IPPROTO_RAW. */
1192	ip_protox[ipproto] = pr - inetsw;
1193	return (0);
1194}
1195
1196/*
1197 * Given address of next destination (final or next hop),
1198 * return internet address info of interface to be used to get there.
1199 */
1200struct in_ifaddr *
1201ip_rtaddr(struct in_addr dst)
1202{
1203	struct route sro;
1204	struct sockaddr_in *sin;
1205	struct in_ifaddr *ifa;
1206
1207	bzero(&sro, sizeof(sro));
1208	sin = (struct sockaddr_in *)&sro.ro_dst;
1209	sin->sin_family = AF_INET;
1210	sin->sin_len = sizeof(*sin);
1211	sin->sin_addr = dst;
1212	rtalloc_ign(&sro, RTF_CLONING);
1213
1214	if (sro.ro_rt == NULL)
1215		return (NULL);
1216
1217	ifa = ifatoia(sro.ro_rt->rt_ifa);
1218	RTFREE(sro.ro_rt);
1219	return (ifa);
1220}
1221
1222u_char inetctlerrmap[PRC_NCMDS] = {
1223	0,		0,		0,		0,
1224	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1225	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1226	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1227	0,		0,		EHOSTUNREACH,	0,
1228	ENOPROTOOPT,	ECONNREFUSED
1229};
1230
1231/*
1232 * Forward a packet.  If some error occurs return the sender
1233 * an icmp packet.  Note we can't always generate a meaningful
1234 * icmp message because icmp doesn't have a large enough repertoire
1235 * of codes and types.
1236 *
1237 * If not forwarding, just drop the packet.  This could be confusing
1238 * if ipforwarding was zero but some routing protocol was advancing
1239 * us as a gateway to somewhere.  However, we must let the routing
1240 * protocol deal with that.
1241 *
1242 * The srcrt parameter indicates whether the packet is being forwarded
1243 * via a source route.
1244 */
1245void
1246ip_forward(struct mbuf *m, int srcrt)
1247{
1248	struct ip *ip = mtod(m, struct ip *);
1249	struct in_ifaddr *ia = NULL;
1250	struct mbuf *mcopy;
1251	struct in_addr dest;
1252	struct route ro;
1253	int error, type = 0, code = 0, mtu = 0;
1254
1255	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1256		ipstat.ips_cantforward++;
1257		m_freem(m);
1258		return;
1259	}
1260#ifdef IPSTEALTH
1261	if (!ipstealth) {
1262#endif
1263		if (ip->ip_ttl <= IPTTLDEC) {
1264			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1265			    0, 0);
1266			return;
1267		}
1268#ifdef IPSTEALTH
1269	}
1270#endif
1271
1272	ia = ip_rtaddr(ip->ip_dst);
1273	if (!srcrt && ia == NULL) {
1274		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1275		return;
1276	}
1277
1278	/*
1279	 * Save the IP header and at most 8 bytes of the payload,
1280	 * in case we need to generate an ICMP message to the src.
1281	 *
1282	 * XXX this can be optimized a lot by saving the data in a local
1283	 * buffer on the stack (72 bytes at most), and only allocating the
1284	 * mbuf if really necessary. The vast majority of the packets
1285	 * are forwarded without having to send an ICMP back (either
1286	 * because unnecessary, or because rate limited), so we are
1287	 * really we are wasting a lot of work here.
1288	 *
1289	 * We don't use m_copy() because it might return a reference
1290	 * to a shared cluster. Both this function and ip_output()
1291	 * assume exclusive access to the IP header in `m', so any
1292	 * data in a cluster may change before we reach icmp_error().
1293	 */
1294	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1295	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1296		/*
1297		 * It's probably ok if the pkthdr dup fails (because
1298		 * the deep copy of the tag chain failed), but for now
1299		 * be conservative and just discard the copy since
1300		 * code below may some day want the tags.
1301		 */
1302		m_free(mcopy);
1303		mcopy = NULL;
1304	}
1305	if (mcopy != NULL) {
1306		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1307		mcopy->m_pkthdr.len = mcopy->m_len;
1308		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1309	}
1310
1311#ifdef IPSTEALTH
1312	if (!ipstealth) {
1313#endif
1314		ip->ip_ttl -= IPTTLDEC;
1315#ifdef IPSTEALTH
1316	}
1317#endif
1318
1319	/*
1320	 * If forwarding packet using same interface that it came in on,
1321	 * perhaps should send a redirect to sender to shortcut a hop.
1322	 * Only send redirect if source is sending directly to us,
1323	 * and if packet was not source routed (or has any options).
1324	 * Also, don't send redirect if forwarding using a default route
1325	 * or a route modified by a redirect.
1326	 */
1327	dest.s_addr = 0;
1328	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1329		struct sockaddr_in *sin;
1330		struct rtentry *rt;
1331
1332		bzero(&ro, sizeof(ro));
1333		sin = (struct sockaddr_in *)&ro.ro_dst;
1334		sin->sin_family = AF_INET;
1335		sin->sin_len = sizeof(*sin);
1336		sin->sin_addr = ip->ip_dst;
1337		rtalloc_ign(&ro, RTF_CLONING);
1338
1339		rt = ro.ro_rt;
1340
1341		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1342		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1343#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1344			u_long src = ntohl(ip->ip_src.s_addr);
1345
1346			if (RTA(rt) &&
1347			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1348				if (rt->rt_flags & RTF_GATEWAY)
1349					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1350				else
1351					dest.s_addr = ip->ip_dst.s_addr;
1352				/* Router requirements says to only send host redirects */
1353				type = ICMP_REDIRECT;
1354				code = ICMP_REDIRECT_HOST;
1355			}
1356		}
1357		if (rt)
1358			RTFREE(rt);
1359	}
1360
1361	/*
1362	 * Try to cache the route MTU from ip_output so we can consider it for
1363	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1364	 */
1365	bzero(&ro, sizeof(ro));
1366	rtalloc_ign(&ro, RTF_CLONING);
1367
1368	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1369
1370	if (error == EMSGSIZE && ro.ro_rt)
1371		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1372	if (ro.ro_rt)
1373		RTFREE(ro.ro_rt);
1374
1375	if (error)
1376		ipstat.ips_cantforward++;
1377	else {
1378		ipstat.ips_forward++;
1379		if (type)
1380			ipstat.ips_redirectsent++;
1381		else {
1382			if (mcopy)
1383				m_freem(mcopy);
1384			return;
1385		}
1386	}
1387	if (mcopy == NULL)
1388		return;
1389
1390	switch (error) {
1391
1392	case 0:				/* forwarded, but need redirect */
1393		/* type, code set above */
1394		break;
1395
1396	case ENETUNREACH:		/* shouldn't happen, checked above */
1397	case EHOSTUNREACH:
1398	case ENETDOWN:
1399	case EHOSTDOWN:
1400	default:
1401		type = ICMP_UNREACH;
1402		code = ICMP_UNREACH_HOST;
1403		break;
1404
1405	case EMSGSIZE:
1406		type = ICMP_UNREACH;
1407		code = ICMP_UNREACH_NEEDFRAG;
1408
1409#ifdef IPSEC
1410		/*
1411		 * If IPsec is configured for this path,
1412		 * override any possibly mtu value set by ip_output.
1413		 */
1414		mtu = ip_ipsec_mtu(m, mtu);
1415#endif /* IPSEC */
1416		/*
1417		 * If the MTU was set before make sure we are below the
1418		 * interface MTU.
1419		 * If the MTU wasn't set before use the interface mtu or
1420		 * fall back to the next smaller mtu step compared to the
1421		 * current packet size.
1422		 */
1423		if (mtu != 0) {
1424			if (ia != NULL)
1425				mtu = min(mtu, ia->ia_ifp->if_mtu);
1426		} else {
1427			if (ia != NULL)
1428				mtu = ia->ia_ifp->if_mtu;
1429			else
1430				mtu = ip_next_mtu(ip->ip_len, 0);
1431		}
1432		ipstat.ips_cantfrag++;
1433		break;
1434
1435	case ENOBUFS:
1436		/*
1437		 * A router should not generate ICMP_SOURCEQUENCH as
1438		 * required in RFC1812 Requirements for IP Version 4 Routers.
1439		 * Source quench could be a big problem under DoS attacks,
1440		 * or if the underlying interface is rate-limited.
1441		 * Those who need source quench packets may re-enable them
1442		 * via the net.inet.ip.sendsourcequench sysctl.
1443		 */
1444		if (ip_sendsourcequench == 0) {
1445			m_freem(mcopy);
1446			return;
1447		} else {
1448			type = ICMP_SOURCEQUENCH;
1449			code = 0;
1450		}
1451		break;
1452
1453	case EACCES:			/* ipfw denied packet */
1454		m_freem(mcopy);
1455		return;
1456	}
1457	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1458}
1459
1460void
1461ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1462    struct mbuf *m)
1463{
1464	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1465		struct bintime bt;
1466
1467		bintime(&bt);
1468		if (inp->inp_socket->so_options & SO_BINTIME) {
1469			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1470			SCM_BINTIME, SOL_SOCKET);
1471			if (*mp)
1472				mp = &(*mp)->m_next;
1473		}
1474		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1475			struct timeval tv;
1476
1477			bintime2timeval(&bt, &tv);
1478			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1479				SCM_TIMESTAMP, SOL_SOCKET);
1480			if (*mp)
1481				mp = &(*mp)->m_next;
1482		}
1483	}
1484	if (inp->inp_flags & INP_RECVDSTADDR) {
1485		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1486		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1487		if (*mp)
1488			mp = &(*mp)->m_next;
1489	}
1490	if (inp->inp_flags & INP_RECVTTL) {
1491		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1492		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1493		if (*mp)
1494			mp = &(*mp)->m_next;
1495	}
1496#ifdef notyet
1497	/* XXX
1498	 * Moving these out of udp_input() made them even more broken
1499	 * than they already were.
1500	 */
1501	/* options were tossed already */
1502	if (inp->inp_flags & INP_RECVOPTS) {
1503		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1504		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1505		if (*mp)
1506			mp = &(*mp)->m_next;
1507	}
1508	/* ip_srcroute doesn't do what we want here, need to fix */
1509	if (inp->inp_flags & INP_RECVRETOPTS) {
1510		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1511		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1512		if (*mp)
1513			mp = &(*mp)->m_next;
1514	}
1515#endif
1516	if (inp->inp_flags & INP_RECVIF) {
1517		struct ifnet *ifp;
1518		struct sdlbuf {
1519			struct sockaddr_dl sdl;
1520			u_char	pad[32];
1521		} sdlbuf;
1522		struct sockaddr_dl *sdp;
1523		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1524
1525		if (((ifp = m->m_pkthdr.rcvif))
1526		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1527			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1528			/*
1529			 * Change our mind and don't try copy.
1530			 */
1531			if ((sdp->sdl_family != AF_LINK)
1532			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1533				goto makedummy;
1534			}
1535			bcopy(sdp, sdl2, sdp->sdl_len);
1536		} else {
1537makedummy:
1538			sdl2->sdl_len
1539				= offsetof(struct sockaddr_dl, sdl_data[0]);
1540			sdl2->sdl_family = AF_LINK;
1541			sdl2->sdl_index = 0;
1542			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1543		}
1544		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1545			IP_RECVIF, IPPROTO_IP);
1546		if (*mp)
1547			mp = &(*mp)->m_next;
1548	}
1549}
1550
1551/*
1552 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1553 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1554 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1555 * compiled.
1556 */
1557static int ip_rsvp_on;
1558struct socket *ip_rsvpd;
1559int
1560ip_rsvp_init(struct socket *so)
1561{
1562	if (so->so_type != SOCK_RAW ||
1563	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1564		return EOPNOTSUPP;
1565
1566	if (ip_rsvpd != NULL)
1567		return EADDRINUSE;
1568
1569	ip_rsvpd = so;
1570	/*
1571	 * This may seem silly, but we need to be sure we don't over-increment
1572	 * the RSVP counter, in case something slips up.
1573	 */
1574	if (!ip_rsvp_on) {
1575		ip_rsvp_on = 1;
1576		rsvp_on++;
1577	}
1578
1579	return 0;
1580}
1581
1582int
1583ip_rsvp_done(void)
1584{
1585	ip_rsvpd = NULL;
1586	/*
1587	 * This may seem silly, but we need to be sure we don't over-decrement
1588	 * the RSVP counter, in case something slips up.
1589	 */
1590	if (ip_rsvp_on) {
1591		ip_rsvp_on = 0;
1592		rsvp_on--;
1593	}
1594	return 0;
1595}
1596
1597void
1598rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1599{
1600	if (rsvp_input_p) { /* call the real one if loaded */
1601		rsvp_input_p(m, off);
1602		return;
1603	}
1604
1605	/* Can still get packets with rsvp_on = 0 if there is a local member
1606	 * of the group to which the RSVP packet is addressed.  But in this
1607	 * case we want to throw the packet away.
1608	 */
1609
1610	if (!rsvp_on) {
1611		m_freem(m);
1612		return;
1613	}
1614
1615	if (ip_rsvpd != NULL) {
1616		rip_input(m, off);
1617		return;
1618	}
1619	/* Drop the packet */
1620	m_freem(m);
1621}
1622