ip_input.c revision 167886
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 167886 2007-03-25 21:49:50Z rwatson $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/syslog.h>
51#include <sys/sysctl.h>
52
53#include <net/pfil.h>
54#include <net/if.h>
55#include <net/if_types.h>
56#include <net/if_var.h>
57#include <net/if_dl.h>
58#include <net/route.h>
59#include <net/netisr.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/in_pcb.h>
66#include <netinet/ip_var.h>
67#include <netinet/ip_icmp.h>
68#include <netinet/ip_options.h>
69#include <machine/in_cksum.h>
70#ifdef DEV_CARP
71#include <netinet/ip_carp.h>
72#endif
73#if defined(IPSEC) || defined(FAST_IPSEC)
74#include <netinet/ip_ipsec.h>
75#endif /* IPSEC */
76
77#include <sys/socketvar.h>
78
79/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
80#include <netinet/ip_fw.h>
81#include <netinet/ip_dummynet.h>
82
83#include <security/mac/mac_framework.h>
84
85int rsvp_on = 0;
86
87int	ipforwarding = 0;
88SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
89    &ipforwarding, 0, "Enable IP forwarding between interfaces");
90
91static int	ipsendredirects = 1; /* XXX */
92SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
93    &ipsendredirects, 0, "Enable sending IP redirects");
94
95int	ip_defttl = IPDEFTTL;
96SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
97    &ip_defttl, 0, "Maximum TTL on IP packets");
98
99static int	ip_keepfaith = 0;
100SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
101    &ip_keepfaith,	0,
102    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
103
104static int	ip_sendsourcequench = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
106    &ip_sendsourcequench, 0,
107    "Enable the transmission of source quench packets");
108
109int	ip_do_randomid = 0;
110SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
111    &ip_do_randomid, 0,
112    "Assign random ip_id values");
113
114/*
115 * XXX - Setting ip_checkinterface mostly implements the receive side of
116 * the Strong ES model described in RFC 1122, but since the routing table
117 * and transmit implementation do not implement the Strong ES model,
118 * setting this to 1 results in an odd hybrid.
119 *
120 * XXX - ip_checkinterface currently must be disabled if you use ipnat
121 * to translate the destination address to another local interface.
122 *
123 * XXX - ip_checkinterface must be disabled if you add IP aliases
124 * to the loopback interface instead of the interface where the
125 * packets for those addresses are received.
126 */
127static int	ip_checkinterface = 0;
128SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
129    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
130
131struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
132
133static struct	ifqueue ipintrq;
134static int	ipqmaxlen = IFQ_MAXLEN;
135
136extern	struct domain inetdomain;
137extern	struct protosw inetsw[];
138u_char	ip_protox[IPPROTO_MAX];
139struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
140struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
141u_long 	in_ifaddrhmask;				/* mask for hash table */
142
143SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
144    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
145SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
146    &ipintrq.ifq_drops, 0,
147    "Number of packets dropped from the IP input queue");
148
149struct ipstat ipstat;
150SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
151    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
152
153/*
154 * IP datagram reassembly.
155 */
156#define IPREASS_NHASH_LOG2      6
157#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
158#define IPREASS_HMASK           (IPREASS_NHASH - 1)
159#define IPREASS_HASH(x,y) \
160	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
161
162static uma_zone_t ipq_zone;
163static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
164static struct mtx ipqlock;
165
166#define	IPQ_LOCK()	mtx_lock(&ipqlock)
167#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
168#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
169#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
170
171static void	maxnipq_update(void);
172static void	ipq_zone_change(void *);
173
174static int	maxnipq;	/* Administrative limit on # reass queues. */
175static int	nipq = 0;	/* Total # of reass queues */
176SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
177    &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
178
179static int	maxfragsperpacket;
180SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
181    &maxfragsperpacket, 0,
182    "Maximum number of IPv4 fragments allowed per packet");
183
184struct callout	ipport_tick_callout;
185
186#ifdef IPCTL_DEFMTU
187SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188    &ip_mtu, 0, "Default MTU");
189#endif
190
191#ifdef IPSTEALTH
192int	ipstealth = 0;
193SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194    &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
195#endif
196
197/*
198 * ipfw_ether and ipfw_bridge hooks.
199 * XXX: Temporary until those are converted to pfil_hooks as well.
200 */
201ip_fw_chk_t *ip_fw_chk_ptr = NULL;
202ip_dn_io_t *ip_dn_io_ptr = NULL;
203int fw_one_pass = 1;
204
205static void	ip_freef(struct ipqhead *, struct ipq *);
206
207/*
208 * IP initialization: fill in IP protocol switch table.
209 * All protocols not implemented in kernel go to raw IP protocol handler.
210 */
211void
212ip_init()
213{
214	register struct protosw *pr;
215	register int i;
216
217	TAILQ_INIT(&in_ifaddrhead);
218	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
219	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
220	if (pr == NULL)
221		panic("ip_init: PF_INET not found");
222
223	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
224	for (i = 0; i < IPPROTO_MAX; i++)
225		ip_protox[i] = pr - inetsw;
226	/*
227	 * Cycle through IP protocols and put them into the appropriate place
228	 * in ip_protox[].
229	 */
230	for (pr = inetdomain.dom_protosw;
231	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
232		if (pr->pr_domain->dom_family == PF_INET &&
233		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
234			/* Be careful to only index valid IP protocols. */
235			if (pr->pr_protocol < IPPROTO_MAX)
236				ip_protox[pr->pr_protocol] = pr - inetsw;
237		}
238
239	/* Initialize packet filter hooks. */
240	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
241	inet_pfil_hook.ph_af = AF_INET;
242	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
243		printf("%s: WARNING: unable to register pfil hook, "
244			"error %d\n", __func__, i);
245
246	/* Initialize IP reassembly queue. */
247	IPQ_LOCK_INIT();
248	for (i = 0; i < IPREASS_NHASH; i++)
249	    TAILQ_INIT(&ipq[i]);
250	maxnipq = nmbclusters / 32;
251	maxfragsperpacket = 16;
252	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
253	    NULL, UMA_ALIGN_PTR, 0);
254	maxnipq_update();
255
256	/* Start ipport_tick. */
257	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
258	ipport_tick(NULL);
259	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
260		SHUTDOWN_PRI_DEFAULT);
261	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
262		NULL, EVENTHANDLER_PRI_ANY);
263
264	/* Initialize various other remaining things. */
265	ip_id = time_second & 0xffff;
266	ipintrq.ifq_maxlen = ipqmaxlen;
267	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
268	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
269}
270
271void ip_fini(xtp)
272	void *xtp;
273{
274	callout_stop(&ipport_tick_callout);
275}
276
277/*
278 * Ip input routine.  Checksum and byte swap header.  If fragmented
279 * try to reassemble.  Process options.  Pass to next level.
280 */
281void
282ip_input(struct mbuf *m)
283{
284	struct ip *ip = NULL;
285	struct in_ifaddr *ia = NULL;
286	struct ifaddr *ifa;
287	int    checkif, hlen = 0;
288	u_short sum;
289	int dchg = 0;				/* dest changed after fw */
290	struct in_addr odst;			/* original dst address */
291
292  	M_ASSERTPKTHDR(m);
293
294	if (m->m_flags & M_FASTFWD_OURS) {
295		/*
296		 * Firewall or NAT changed destination to local.
297		 * We expect ip_len and ip_off to be in host byte order.
298		 */
299		m->m_flags &= ~M_FASTFWD_OURS;
300		/* Set up some basics that will be used later. */
301		ip = mtod(m, struct ip *);
302		hlen = ip->ip_hl << 2;
303  		goto ours;
304  	}
305
306	ipstat.ips_total++;
307
308	if (m->m_pkthdr.len < sizeof(struct ip))
309		goto tooshort;
310
311	if (m->m_len < sizeof (struct ip) &&
312	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
313		ipstat.ips_toosmall++;
314		return;
315	}
316	ip = mtod(m, struct ip *);
317
318	if (ip->ip_v != IPVERSION) {
319		ipstat.ips_badvers++;
320		goto bad;
321	}
322
323	hlen = ip->ip_hl << 2;
324	if (hlen < sizeof(struct ip)) {	/* minimum header length */
325		ipstat.ips_badhlen++;
326		goto bad;
327	}
328	if (hlen > m->m_len) {
329		if ((m = m_pullup(m, hlen)) == NULL) {
330			ipstat.ips_badhlen++;
331			return;
332		}
333		ip = mtod(m, struct ip *);
334	}
335
336	/* 127/8 must not appear on wire - RFC1122 */
337	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
338	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
339		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
340			ipstat.ips_badaddr++;
341			goto bad;
342		}
343	}
344
345	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
346		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
347	} else {
348		if (hlen == sizeof(struct ip)) {
349			sum = in_cksum_hdr(ip);
350		} else {
351			sum = in_cksum(m, hlen);
352		}
353	}
354	if (sum) {
355		ipstat.ips_badsum++;
356		goto bad;
357	}
358
359#ifdef ALTQ
360	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
361		/* packet is dropped by traffic conditioner */
362		return;
363#endif
364
365	/*
366	 * Convert fields to host representation.
367	 */
368	ip->ip_len = ntohs(ip->ip_len);
369	if (ip->ip_len < hlen) {
370		ipstat.ips_badlen++;
371		goto bad;
372	}
373	ip->ip_off = ntohs(ip->ip_off);
374
375	/*
376	 * Check that the amount of data in the buffers
377	 * is as at least much as the IP header would have us expect.
378	 * Trim mbufs if longer than we expect.
379	 * Drop packet if shorter than we expect.
380	 */
381	if (m->m_pkthdr.len < ip->ip_len) {
382tooshort:
383		ipstat.ips_tooshort++;
384		goto bad;
385	}
386	if (m->m_pkthdr.len > ip->ip_len) {
387		if (m->m_len == m->m_pkthdr.len) {
388			m->m_len = ip->ip_len;
389			m->m_pkthdr.len = ip->ip_len;
390		} else
391			m_adj(m, ip->ip_len - m->m_pkthdr.len);
392	}
393#if defined(IPSEC) || defined(FAST_IPSEC)
394	/*
395	 * Bypass packet filtering for packets from a tunnel (gif).
396	 */
397	if (ip_ipsec_filtergif(m))
398		goto passin;
399#endif /* IPSEC */
400
401	/*
402	 * Run through list of hooks for input packets.
403	 *
404	 * NB: Beware of the destination address changing (e.g.
405	 *     by NAT rewriting).  When this happens, tell
406	 *     ip_forward to do the right thing.
407	 */
408
409	/* Jump over all PFIL processing if hooks are not active. */
410	if (!PFIL_HOOKED(&inet_pfil_hook))
411		goto passin;
412
413	odst = ip->ip_dst;
414	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
415	    PFIL_IN, NULL) != 0)
416		return;
417	if (m == NULL)			/* consumed by filter */
418		return;
419
420	ip = mtod(m, struct ip *);
421	dchg = (odst.s_addr != ip->ip_dst.s_addr);
422
423#ifdef IPFIREWALL_FORWARD
424	if (m->m_flags & M_FASTFWD_OURS) {
425		m->m_flags &= ~M_FASTFWD_OURS;
426		goto ours;
427	}
428	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
429		/*
430		 * Directly ship on the packet.  This allows to forward packets
431		 * that were destined for us to some other directly connected
432		 * host.
433		 */
434		ip_forward(m, dchg);
435		return;
436	}
437#endif /* IPFIREWALL_FORWARD */
438
439passin:
440	/*
441	 * Process options and, if not destined for us,
442	 * ship it on.  ip_dooptions returns 1 when an
443	 * error was detected (causing an icmp message
444	 * to be sent and the original packet to be freed).
445	 */
446	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
447		return;
448
449        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
450         * matter if it is destined to another node, or whether it is
451         * a multicast one, RSVP wants it! and prevents it from being forwarded
452         * anywhere else. Also checks if the rsvp daemon is running before
453	 * grabbing the packet.
454         */
455	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
456		goto ours;
457
458	/*
459	 * Check our list of addresses, to see if the packet is for us.
460	 * If we don't have any addresses, assume any unicast packet
461	 * we receive might be for us (and let the upper layers deal
462	 * with it).
463	 */
464	if (TAILQ_EMPTY(&in_ifaddrhead) &&
465	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
466		goto ours;
467
468	/*
469	 * Enable a consistency check between the destination address
470	 * and the arrival interface for a unicast packet (the RFC 1122
471	 * strong ES model) if IP forwarding is disabled and the packet
472	 * is not locally generated and the packet is not subject to
473	 * 'ipfw fwd'.
474	 *
475	 * XXX - Checking also should be disabled if the destination
476	 * address is ipnat'ed to a different interface.
477	 *
478	 * XXX - Checking is incompatible with IP aliases added
479	 * to the loopback interface instead of the interface where
480	 * the packets are received.
481	 *
482	 * XXX - This is the case for carp vhost IPs as well so we
483	 * insert a workaround. If the packet got here, we already
484	 * checked with carp_iamatch() and carp_forus().
485	 */
486	checkif = ip_checkinterface && (ipforwarding == 0) &&
487	    m->m_pkthdr.rcvif != NULL &&
488	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
489#ifdef DEV_CARP
490	    !m->m_pkthdr.rcvif->if_carp &&
491#endif
492	    (dchg == 0);
493
494	/*
495	 * Check for exact addresses in the hash bucket.
496	 */
497	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
498		/*
499		 * If the address matches, verify that the packet
500		 * arrived via the correct interface if checking is
501		 * enabled.
502		 */
503		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
504		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
505			goto ours;
506	}
507	/*
508	 * Check for broadcast addresses.
509	 *
510	 * Only accept broadcast packets that arrive via the matching
511	 * interface.  Reception of forwarded directed broadcasts would
512	 * be handled via ip_forward() and ether_output() with the loopback
513	 * into the stack for SIMPLEX interfaces handled by ether_output().
514	 */
515	if (m->m_pkthdr.rcvif != NULL &&
516	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
517	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
518			if (ifa->ifa_addr->sa_family != AF_INET)
519				continue;
520			ia = ifatoia(ifa);
521			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
522			    ip->ip_dst.s_addr)
523				goto ours;
524			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
525				goto ours;
526#ifdef BOOTP_COMPAT
527			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
528				goto ours;
529#endif
530		}
531	}
532	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
533	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
534		ipstat.ips_cantforward++;
535		m_freem(m);
536		return;
537	}
538	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
539		struct in_multi *inm;
540		if (ip_mrouter) {
541			/*
542			 * If we are acting as a multicast router, all
543			 * incoming multicast packets are passed to the
544			 * kernel-level multicast forwarding function.
545			 * The packet is returned (relatively) intact; if
546			 * ip_mforward() returns a non-zero value, the packet
547			 * must be discarded, else it may be accepted below.
548			 */
549			if (ip_mforward &&
550			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
551				ipstat.ips_cantforward++;
552				m_freem(m);
553				return;
554			}
555
556			/*
557			 * The process-level routing daemon needs to receive
558			 * all multicast IGMP packets, whether or not this
559			 * host belongs to their destination groups.
560			 */
561			if (ip->ip_p == IPPROTO_IGMP)
562				goto ours;
563			ipstat.ips_forward++;
564		}
565		/*
566		 * See if we belong to the destination multicast group on the
567		 * arrival interface.
568		 */
569		IN_MULTI_LOCK();
570		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
571		IN_MULTI_UNLOCK();
572		if (inm == NULL) {
573			ipstat.ips_notmember++;
574			m_freem(m);
575			return;
576		}
577		goto ours;
578	}
579	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
580		goto ours;
581	if (ip->ip_dst.s_addr == INADDR_ANY)
582		goto ours;
583
584	/*
585	 * FAITH(Firewall Aided Internet Translator)
586	 */
587	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
588		if (ip_keepfaith) {
589			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
590				goto ours;
591		}
592		m_freem(m);
593		return;
594	}
595
596	/*
597	 * Not for us; forward if possible and desirable.
598	 */
599	if (ipforwarding == 0) {
600		ipstat.ips_cantforward++;
601		m_freem(m);
602	} else {
603#if defined(IPSEC) || defined(FAST_IPSEC)
604		if (ip_ipsec_fwd(m))
605			goto bad;
606#endif /* IPSEC */
607		ip_forward(m, dchg);
608	}
609	return;
610
611ours:
612#ifdef IPSTEALTH
613	/*
614	 * IPSTEALTH: Process non-routing options only
615	 * if the packet is destined for us.
616	 */
617	if (ipstealth && hlen > sizeof (struct ip) &&
618	    ip_dooptions(m, 1))
619		return;
620#endif /* IPSTEALTH */
621
622	/* Count the packet in the ip address stats */
623	if (ia != NULL) {
624		ia->ia_ifa.if_ipackets++;
625		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
626	}
627
628	/*
629	 * Attempt reassembly; if it succeeds, proceed.
630	 * ip_reass() will return a different mbuf.
631	 */
632	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
633		m = ip_reass(m);
634		if (m == NULL)
635			return;
636		ip = mtod(m, struct ip *);
637		/* Get the header length of the reassembled packet */
638		hlen = ip->ip_hl << 2;
639	}
640
641	/*
642	 * Further protocols expect the packet length to be w/o the
643	 * IP header.
644	 */
645	ip->ip_len -= hlen;
646
647#if defined(IPSEC) || defined(FAST_IPSEC)
648	/*
649	 * enforce IPsec policy checking if we are seeing last header.
650	 * note that we do not visit this with protocols with pcb layer
651	 * code - like udp/tcp/raw ip.
652	 */
653	if (ip_ipsec_input(m))
654		goto bad;
655#endif /* IPSEC */
656
657	/*
658	 * Switch out to protocol's input routine.
659	 */
660	ipstat.ips_delivered++;
661
662	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
663	return;
664bad:
665	m_freem(m);
666}
667
668/*
669 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
670 * max has slightly different semantics than the sysctl, for historical
671 * reasons.
672 */
673static void
674maxnipq_update(void)
675{
676
677	/*
678	 * -1 for unlimited allocation.
679	 */
680	if (maxnipq < 0)
681		uma_zone_set_max(ipq_zone, 0);
682	/*
683	 * Positive number for specific bound.
684	 */
685	if (maxnipq > 0)
686		uma_zone_set_max(ipq_zone, maxnipq);
687	/*
688	 * Zero specifies no further fragment queue allocation -- set the
689	 * bound very low, but rely on implementation elsewhere to actually
690	 * prevent allocation and reclaim current queues.
691	 */
692	if (maxnipq == 0)
693		uma_zone_set_max(ipq_zone, 1);
694}
695
696static void
697ipq_zone_change(void *tag)
698{
699
700	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
701		maxnipq = nmbclusters / 32;
702		maxnipq_update();
703	}
704}
705
706static int
707sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
708{
709	int error, i;
710
711	i = maxnipq;
712	error = sysctl_handle_int(oidp, &i, 0, req);
713	if (error || !req->newptr)
714		return (error);
715
716	/*
717	 * XXXRW: Might be a good idea to sanity check the argument and place
718	 * an extreme upper bound.
719	 */
720	if (i < -1)
721		return (EINVAL);
722	maxnipq = i;
723	maxnipq_update();
724	return (0);
725}
726
727SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
728    NULL, 0, sysctl_maxnipq, "I",
729    "Maximum number of IPv4 fragment reassembly queue entries");
730
731/*
732 * Take incoming datagram fragment and try to reassemble it into
733 * whole datagram.  If the argument is the first fragment or one
734 * in between the function will return NULL and store the mbuf
735 * in the fragment chain.  If the argument is the last fragment
736 * the packet will be reassembled and the pointer to the new
737 * mbuf returned for further processing.  Only m_tags attached
738 * to the first packet/fragment are preserved.
739 * The IP header is *NOT* adjusted out of iplen.
740 */
741
742struct mbuf *
743ip_reass(struct mbuf *m)
744{
745	struct ip *ip;
746	struct mbuf *p, *q, *nq, *t;
747	struct ipq *fp = NULL;
748	struct ipqhead *head;
749	int i, hlen, next;
750	u_int8_t ecn, ecn0;
751	u_short hash;
752
753	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
754	if (maxnipq == 0 || maxfragsperpacket == 0) {
755		ipstat.ips_fragments++;
756		ipstat.ips_fragdropped++;
757		m_freem(m);
758		return (NULL);
759	}
760
761	ip = mtod(m, struct ip *);
762	hlen = ip->ip_hl << 2;
763
764	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
765	head = &ipq[hash];
766	IPQ_LOCK();
767
768	/*
769	 * Look for queue of fragments
770	 * of this datagram.
771	 */
772	TAILQ_FOREACH(fp, head, ipq_list)
773		if (ip->ip_id == fp->ipq_id &&
774		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
775		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
776#ifdef MAC
777		    mac_fragment_match(m, fp) &&
778#endif
779		    ip->ip_p == fp->ipq_p)
780			goto found;
781
782	fp = NULL;
783
784	/*
785	 * Attempt to trim the number of allocated fragment queues if it
786	 * exceeds the administrative limit.
787	 */
788	if ((nipq > maxnipq) && (maxnipq > 0)) {
789		/*
790		 * drop something from the tail of the current queue
791		 * before proceeding further
792		 */
793		struct ipq *q = TAILQ_LAST(head, ipqhead);
794		if (q == NULL) {   /* gak */
795			for (i = 0; i < IPREASS_NHASH; i++) {
796				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
797				if (r) {
798					ipstat.ips_fragtimeout += r->ipq_nfrags;
799					ip_freef(&ipq[i], r);
800					break;
801				}
802			}
803		} else {
804			ipstat.ips_fragtimeout += q->ipq_nfrags;
805			ip_freef(head, q);
806		}
807	}
808
809found:
810	/*
811	 * Adjust ip_len to not reflect header,
812	 * convert offset of this to bytes.
813	 */
814	ip->ip_len -= hlen;
815	if (ip->ip_off & IP_MF) {
816		/*
817		 * Make sure that fragments have a data length
818		 * that's a non-zero multiple of 8 bytes.
819		 */
820		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
821			ipstat.ips_toosmall++; /* XXX */
822			goto dropfrag;
823		}
824		m->m_flags |= M_FRAG;
825	} else
826		m->m_flags &= ~M_FRAG;
827	ip->ip_off <<= 3;
828
829
830	/*
831	 * Attempt reassembly; if it succeeds, proceed.
832	 * ip_reass() will return a different mbuf.
833	 */
834	ipstat.ips_fragments++;
835	m->m_pkthdr.header = ip;
836
837	/* Previous ip_reass() started here. */
838	/*
839	 * Presence of header sizes in mbufs
840	 * would confuse code below.
841	 */
842	m->m_data += hlen;
843	m->m_len -= hlen;
844
845	/*
846	 * If first fragment to arrive, create a reassembly queue.
847	 */
848	if (fp == NULL) {
849		fp = uma_zalloc(ipq_zone, M_NOWAIT);
850		if (fp == NULL)
851			goto dropfrag;
852#ifdef MAC
853		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
854			uma_zfree(ipq_zone, fp);
855			fp = NULL;
856			goto dropfrag;
857		}
858		mac_create_ipq(m, fp);
859#endif
860		TAILQ_INSERT_HEAD(head, fp, ipq_list);
861		nipq++;
862		fp->ipq_nfrags = 1;
863		fp->ipq_ttl = IPFRAGTTL;
864		fp->ipq_p = ip->ip_p;
865		fp->ipq_id = ip->ip_id;
866		fp->ipq_src = ip->ip_src;
867		fp->ipq_dst = ip->ip_dst;
868		fp->ipq_frags = m;
869		m->m_nextpkt = NULL;
870		goto done;
871	} else {
872		fp->ipq_nfrags++;
873#ifdef MAC
874		mac_update_ipq(m, fp);
875#endif
876	}
877
878#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
879
880	/*
881	 * Handle ECN by comparing this segment with the first one;
882	 * if CE is set, do not lose CE.
883	 * drop if CE and not-ECT are mixed for the same packet.
884	 */
885	ecn = ip->ip_tos & IPTOS_ECN_MASK;
886	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
887	if (ecn == IPTOS_ECN_CE) {
888		if (ecn0 == IPTOS_ECN_NOTECT)
889			goto dropfrag;
890		if (ecn0 != IPTOS_ECN_CE)
891			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
892	}
893	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
894		goto dropfrag;
895
896	/*
897	 * Find a segment which begins after this one does.
898	 */
899	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
900		if (GETIP(q)->ip_off > ip->ip_off)
901			break;
902
903	/*
904	 * If there is a preceding segment, it may provide some of
905	 * our data already.  If so, drop the data from the incoming
906	 * segment.  If it provides all of our data, drop us, otherwise
907	 * stick new segment in the proper place.
908	 *
909	 * If some of the data is dropped from the the preceding
910	 * segment, then it's checksum is invalidated.
911	 */
912	if (p) {
913		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
914		if (i > 0) {
915			if (i >= ip->ip_len)
916				goto dropfrag;
917			m_adj(m, i);
918			m->m_pkthdr.csum_flags = 0;
919			ip->ip_off += i;
920			ip->ip_len -= i;
921		}
922		m->m_nextpkt = p->m_nextpkt;
923		p->m_nextpkt = m;
924	} else {
925		m->m_nextpkt = fp->ipq_frags;
926		fp->ipq_frags = m;
927	}
928
929	/*
930	 * While we overlap succeeding segments trim them or,
931	 * if they are completely covered, dequeue them.
932	 */
933	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
934	     q = nq) {
935		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
936		if (i < GETIP(q)->ip_len) {
937			GETIP(q)->ip_len -= i;
938			GETIP(q)->ip_off += i;
939			m_adj(q, i);
940			q->m_pkthdr.csum_flags = 0;
941			break;
942		}
943		nq = q->m_nextpkt;
944		m->m_nextpkt = nq;
945		ipstat.ips_fragdropped++;
946		fp->ipq_nfrags--;
947		m_freem(q);
948	}
949
950	/*
951	 * Check for complete reassembly and perform frag per packet
952	 * limiting.
953	 *
954	 * Frag limiting is performed here so that the nth frag has
955	 * a chance to complete the packet before we drop the packet.
956	 * As a result, n+1 frags are actually allowed per packet, but
957	 * only n will ever be stored. (n = maxfragsperpacket.)
958	 *
959	 */
960	next = 0;
961	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
962		if (GETIP(q)->ip_off != next) {
963			if (fp->ipq_nfrags > maxfragsperpacket) {
964				ipstat.ips_fragdropped += fp->ipq_nfrags;
965				ip_freef(head, fp);
966			}
967			goto done;
968		}
969		next += GETIP(q)->ip_len;
970	}
971	/* Make sure the last packet didn't have the IP_MF flag */
972	if (p->m_flags & M_FRAG) {
973		if (fp->ipq_nfrags > maxfragsperpacket) {
974			ipstat.ips_fragdropped += fp->ipq_nfrags;
975			ip_freef(head, fp);
976		}
977		goto done;
978	}
979
980	/*
981	 * Reassembly is complete.  Make sure the packet is a sane size.
982	 */
983	q = fp->ipq_frags;
984	ip = GETIP(q);
985	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
986		ipstat.ips_toolong++;
987		ipstat.ips_fragdropped += fp->ipq_nfrags;
988		ip_freef(head, fp);
989		goto done;
990	}
991
992	/*
993	 * Concatenate fragments.
994	 */
995	m = q;
996	t = m->m_next;
997	m->m_next = NULL;
998	m_cat(m, t);
999	nq = q->m_nextpkt;
1000	q->m_nextpkt = NULL;
1001	for (q = nq; q != NULL; q = nq) {
1002		nq = q->m_nextpkt;
1003		q->m_nextpkt = NULL;
1004		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1005		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1006		m_cat(m, q);
1007	}
1008	/*
1009	 * In order to do checksumming faster we do 'end-around carry' here
1010	 * (and not in for{} loop), though it implies we are not going to
1011	 * reassemble more than 64k fragments.
1012	 */
1013	m->m_pkthdr.csum_data =
1014	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1015#ifdef MAC
1016	mac_create_datagram_from_ipq(fp, m);
1017	mac_destroy_ipq(fp);
1018#endif
1019
1020	/*
1021	 * Create header for new ip packet by modifying header of first
1022	 * packet;  dequeue and discard fragment reassembly header.
1023	 * Make header visible.
1024	 */
1025	ip->ip_len = (ip->ip_hl << 2) + next;
1026	ip->ip_src = fp->ipq_src;
1027	ip->ip_dst = fp->ipq_dst;
1028	TAILQ_REMOVE(head, fp, ipq_list);
1029	nipq--;
1030	uma_zfree(ipq_zone, fp);
1031	m->m_len += (ip->ip_hl << 2);
1032	m->m_data -= (ip->ip_hl << 2);
1033	/* some debugging cruft by sklower, below, will go away soon */
1034	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1035		m_fixhdr(m);
1036	ipstat.ips_reassembled++;
1037	IPQ_UNLOCK();
1038	return (m);
1039
1040dropfrag:
1041	ipstat.ips_fragdropped++;
1042	if (fp != NULL)
1043		fp->ipq_nfrags--;
1044	m_freem(m);
1045done:
1046	IPQ_UNLOCK();
1047	return (NULL);
1048
1049#undef GETIP
1050}
1051
1052/*
1053 * Free a fragment reassembly header and all
1054 * associated datagrams.
1055 */
1056static void
1057ip_freef(fhp, fp)
1058	struct ipqhead *fhp;
1059	struct ipq *fp;
1060{
1061	register struct mbuf *q;
1062
1063	IPQ_LOCK_ASSERT();
1064
1065	while (fp->ipq_frags) {
1066		q = fp->ipq_frags;
1067		fp->ipq_frags = q->m_nextpkt;
1068		m_freem(q);
1069	}
1070	TAILQ_REMOVE(fhp, fp, ipq_list);
1071	uma_zfree(ipq_zone, fp);
1072	nipq--;
1073}
1074
1075/*
1076 * IP timer processing;
1077 * if a timer expires on a reassembly
1078 * queue, discard it.
1079 */
1080void
1081ip_slowtimo()
1082{
1083	register struct ipq *fp;
1084	int i;
1085
1086	IPQ_LOCK();
1087	for (i = 0; i < IPREASS_NHASH; i++) {
1088		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1089			struct ipq *fpp;
1090
1091			fpp = fp;
1092			fp = TAILQ_NEXT(fp, ipq_list);
1093			if(--fpp->ipq_ttl == 0) {
1094				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1095				ip_freef(&ipq[i], fpp);
1096			}
1097		}
1098	}
1099	/*
1100	 * If we are over the maximum number of fragments
1101	 * (due to the limit being lowered), drain off
1102	 * enough to get down to the new limit.
1103	 */
1104	if (maxnipq >= 0 && nipq > maxnipq) {
1105		for (i = 0; i < IPREASS_NHASH; i++) {
1106			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1107				ipstat.ips_fragdropped +=
1108				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1109				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1110			}
1111		}
1112	}
1113	IPQ_UNLOCK();
1114}
1115
1116/*
1117 * Drain off all datagram fragments.
1118 */
1119void
1120ip_drain()
1121{
1122	int     i;
1123
1124	IPQ_LOCK();
1125	for (i = 0; i < IPREASS_NHASH; i++) {
1126		while(!TAILQ_EMPTY(&ipq[i])) {
1127			ipstat.ips_fragdropped +=
1128			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1129			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1130		}
1131	}
1132	IPQ_UNLOCK();
1133	in_rtqdrain();
1134}
1135
1136/*
1137 * The protocol to be inserted into ip_protox[] must be already registered
1138 * in inetsw[], either statically or through pf_proto_register().
1139 */
1140int
1141ipproto_register(u_char ipproto)
1142{
1143	struct protosw *pr;
1144
1145	/* Sanity checks. */
1146	if (ipproto == 0)
1147		return (EPROTONOSUPPORT);
1148
1149	/*
1150	 * The protocol slot must not be occupied by another protocol
1151	 * already.  An index pointing to IPPROTO_RAW is unused.
1152	 */
1153	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1154	if (pr == NULL)
1155		return (EPFNOSUPPORT);
1156	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1157		return (EEXIST);
1158
1159	/* Find the protocol position in inetsw[] and set the index. */
1160	for (pr = inetdomain.dom_protosw;
1161	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1162		if (pr->pr_domain->dom_family == PF_INET &&
1163		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1164			/* Be careful to only index valid IP protocols. */
1165			if (pr->pr_protocol < IPPROTO_MAX) {
1166				ip_protox[pr->pr_protocol] = pr - inetsw;
1167				return (0);
1168			} else
1169				return (EINVAL);
1170		}
1171	}
1172	return (EPROTONOSUPPORT);
1173}
1174
1175int
1176ipproto_unregister(u_char ipproto)
1177{
1178	struct protosw *pr;
1179
1180	/* Sanity checks. */
1181	if (ipproto == 0)
1182		return (EPROTONOSUPPORT);
1183
1184	/* Check if the protocol was indeed registered. */
1185	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1186	if (pr == NULL)
1187		return (EPFNOSUPPORT);
1188	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1189		return (ENOENT);
1190
1191	/* Reset the protocol slot to IPPROTO_RAW. */
1192	ip_protox[ipproto] = pr - inetsw;
1193	return (0);
1194}
1195
1196/*
1197 * Given address of next destination (final or next hop),
1198 * return internet address info of interface to be used to get there.
1199 */
1200struct in_ifaddr *
1201ip_rtaddr(dst)
1202	struct in_addr dst;
1203{
1204	struct route sro;
1205	struct sockaddr_in *sin;
1206	struct in_ifaddr *ifa;
1207
1208	bzero(&sro, sizeof(sro));
1209	sin = (struct sockaddr_in *)&sro.ro_dst;
1210	sin->sin_family = AF_INET;
1211	sin->sin_len = sizeof(*sin);
1212	sin->sin_addr = dst;
1213	rtalloc_ign(&sro, RTF_CLONING);
1214
1215	if (sro.ro_rt == NULL)
1216		return (NULL);
1217
1218	ifa = ifatoia(sro.ro_rt->rt_ifa);
1219	RTFREE(sro.ro_rt);
1220	return (ifa);
1221}
1222
1223u_char inetctlerrmap[PRC_NCMDS] = {
1224	0,		0,		0,		0,
1225	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1226	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1227	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1228	0,		0,		EHOSTUNREACH,	0,
1229	ENOPROTOOPT,	ECONNREFUSED
1230};
1231
1232/*
1233 * Forward a packet.  If some error occurs return the sender
1234 * an icmp packet.  Note we can't always generate a meaningful
1235 * icmp message because icmp doesn't have a large enough repertoire
1236 * of codes and types.
1237 *
1238 * If not forwarding, just drop the packet.  This could be confusing
1239 * if ipforwarding was zero but some routing protocol was advancing
1240 * us as a gateway to somewhere.  However, we must let the routing
1241 * protocol deal with that.
1242 *
1243 * The srcrt parameter indicates whether the packet is being forwarded
1244 * via a source route.
1245 */
1246void
1247ip_forward(struct mbuf *m, int srcrt)
1248{
1249	struct ip *ip = mtod(m, struct ip *);
1250	struct in_ifaddr *ia = NULL;
1251	struct mbuf *mcopy;
1252	struct in_addr dest;
1253	int error, type = 0, code = 0, mtu = 0;
1254
1255	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1256		ipstat.ips_cantforward++;
1257		m_freem(m);
1258		return;
1259	}
1260#ifdef IPSTEALTH
1261	if (!ipstealth) {
1262#endif
1263		if (ip->ip_ttl <= IPTTLDEC) {
1264			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1265			    0, 0);
1266			return;
1267		}
1268#ifdef IPSTEALTH
1269	}
1270#endif
1271
1272	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1273		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1274		return;
1275	}
1276
1277	/*
1278	 * Save the IP header and at most 8 bytes of the payload,
1279	 * in case we need to generate an ICMP message to the src.
1280	 *
1281	 * XXX this can be optimized a lot by saving the data in a local
1282	 * buffer on the stack (72 bytes at most), and only allocating the
1283	 * mbuf if really necessary. The vast majority of the packets
1284	 * are forwarded without having to send an ICMP back (either
1285	 * because unnecessary, or because rate limited), so we are
1286	 * really we are wasting a lot of work here.
1287	 *
1288	 * We don't use m_copy() because it might return a reference
1289	 * to a shared cluster. Both this function and ip_output()
1290	 * assume exclusive access to the IP header in `m', so any
1291	 * data in a cluster may change before we reach icmp_error().
1292	 */
1293	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1294	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1295		/*
1296		 * It's probably ok if the pkthdr dup fails (because
1297		 * the deep copy of the tag chain failed), but for now
1298		 * be conservative and just discard the copy since
1299		 * code below may some day want the tags.
1300		 */
1301		m_free(mcopy);
1302		mcopy = NULL;
1303	}
1304	if (mcopy != NULL) {
1305		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1306		mcopy->m_pkthdr.len = mcopy->m_len;
1307		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1308	}
1309
1310#ifdef IPSTEALTH
1311	if (!ipstealth) {
1312#endif
1313		ip->ip_ttl -= IPTTLDEC;
1314#ifdef IPSTEALTH
1315	}
1316#endif
1317
1318	/*
1319	 * If forwarding packet using same interface that it came in on,
1320	 * perhaps should send a redirect to sender to shortcut a hop.
1321	 * Only send redirect if source is sending directly to us,
1322	 * and if packet was not source routed (or has any options).
1323	 * Also, don't send redirect if forwarding using a default route
1324	 * or a route modified by a redirect.
1325	 */
1326	dest.s_addr = 0;
1327	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1328		struct sockaddr_in *sin;
1329		struct route ro;
1330		struct rtentry *rt;
1331
1332		bzero(&ro, sizeof(ro));
1333		sin = (struct sockaddr_in *)&ro.ro_dst;
1334		sin->sin_family = AF_INET;
1335		sin->sin_len = sizeof(*sin);
1336		sin->sin_addr = ip->ip_dst;
1337		rtalloc_ign(&ro, RTF_CLONING);
1338
1339		rt = ro.ro_rt;
1340
1341		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1342		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1343#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1344			u_long src = ntohl(ip->ip_src.s_addr);
1345
1346			if (RTA(rt) &&
1347			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1348				if (rt->rt_flags & RTF_GATEWAY)
1349					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1350				else
1351					dest.s_addr = ip->ip_dst.s_addr;
1352				/* Router requirements says to only send host redirects */
1353				type = ICMP_REDIRECT;
1354				code = ICMP_REDIRECT_HOST;
1355			}
1356		}
1357		if (rt)
1358			RTFREE(rt);
1359	}
1360
1361	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1362	if (error)
1363		ipstat.ips_cantforward++;
1364	else {
1365		ipstat.ips_forward++;
1366		if (type)
1367			ipstat.ips_redirectsent++;
1368		else {
1369			if (mcopy)
1370				m_freem(mcopy);
1371			return;
1372		}
1373	}
1374	if (mcopy == NULL)
1375		return;
1376
1377	switch (error) {
1378
1379	case 0:				/* forwarded, but need redirect */
1380		/* type, code set above */
1381		break;
1382
1383	case ENETUNREACH:		/* shouldn't happen, checked above */
1384	case EHOSTUNREACH:
1385	case ENETDOWN:
1386	case EHOSTDOWN:
1387	default:
1388		type = ICMP_UNREACH;
1389		code = ICMP_UNREACH_HOST;
1390		break;
1391
1392	case EMSGSIZE:
1393		type = ICMP_UNREACH;
1394		code = ICMP_UNREACH_NEEDFRAG;
1395
1396#if defined(IPSEC) || defined(FAST_IPSEC)
1397		mtu = ip_ipsec_mtu(m);
1398#endif /* IPSEC */
1399		/*
1400		 * If the MTU wasn't set before use the interface mtu or
1401		 * fall back to the next smaller mtu step compared to the
1402		 * current packet size.
1403		 */
1404		if (mtu == 0) {
1405			if (ia != NULL)
1406				mtu = ia->ia_ifp->if_mtu;
1407			else
1408				mtu = ip_next_mtu(ip->ip_len, 0);
1409		}
1410		ipstat.ips_cantfrag++;
1411		break;
1412
1413	case ENOBUFS:
1414		/*
1415		 * A router should not generate ICMP_SOURCEQUENCH as
1416		 * required in RFC1812 Requirements for IP Version 4 Routers.
1417		 * Source quench could be a big problem under DoS attacks,
1418		 * or if the underlying interface is rate-limited.
1419		 * Those who need source quench packets may re-enable them
1420		 * via the net.inet.ip.sendsourcequench sysctl.
1421		 */
1422		if (ip_sendsourcequench == 0) {
1423			m_freem(mcopy);
1424			return;
1425		} else {
1426			type = ICMP_SOURCEQUENCH;
1427			code = 0;
1428		}
1429		break;
1430
1431	case EACCES:			/* ipfw denied packet */
1432		m_freem(mcopy);
1433		return;
1434	}
1435	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1436}
1437
1438void
1439ip_savecontrol(inp, mp, ip, m)
1440	register struct inpcb *inp;
1441	register struct mbuf **mp;
1442	register struct ip *ip;
1443	register struct mbuf *m;
1444{
1445	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1446		struct bintime bt;
1447
1448		bintime(&bt);
1449		if (inp->inp_socket->so_options & SO_BINTIME) {
1450			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1451			SCM_BINTIME, SOL_SOCKET);
1452			if (*mp)
1453				mp = &(*mp)->m_next;
1454		}
1455		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1456			struct timeval tv;
1457
1458			bintime2timeval(&bt, &tv);
1459			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1460				SCM_TIMESTAMP, SOL_SOCKET);
1461			if (*mp)
1462				mp = &(*mp)->m_next;
1463		}
1464	}
1465	if (inp->inp_flags & INP_RECVDSTADDR) {
1466		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1467		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1468		if (*mp)
1469			mp = &(*mp)->m_next;
1470	}
1471	if (inp->inp_flags & INP_RECVTTL) {
1472		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1473		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1474		if (*mp)
1475			mp = &(*mp)->m_next;
1476	}
1477#ifdef notyet
1478	/* XXX
1479	 * Moving these out of udp_input() made them even more broken
1480	 * than they already were.
1481	 */
1482	/* options were tossed already */
1483	if (inp->inp_flags & INP_RECVOPTS) {
1484		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1485		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1486		if (*mp)
1487			mp = &(*mp)->m_next;
1488	}
1489	/* ip_srcroute doesn't do what we want here, need to fix */
1490	if (inp->inp_flags & INP_RECVRETOPTS) {
1491		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1492		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1493		if (*mp)
1494			mp = &(*mp)->m_next;
1495	}
1496#endif
1497	if (inp->inp_flags & INP_RECVIF) {
1498		struct ifnet *ifp;
1499		struct sdlbuf {
1500			struct sockaddr_dl sdl;
1501			u_char	pad[32];
1502		} sdlbuf;
1503		struct sockaddr_dl *sdp;
1504		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1505
1506		if (((ifp = m->m_pkthdr.rcvif))
1507		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1508			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1509			/*
1510			 * Change our mind and don't try copy.
1511			 */
1512			if ((sdp->sdl_family != AF_LINK)
1513			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1514				goto makedummy;
1515			}
1516			bcopy(sdp, sdl2, sdp->sdl_len);
1517		} else {
1518makedummy:
1519			sdl2->sdl_len
1520				= offsetof(struct sockaddr_dl, sdl_data[0]);
1521			sdl2->sdl_family = AF_LINK;
1522			sdl2->sdl_index = 0;
1523			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1524		}
1525		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1526			IP_RECVIF, IPPROTO_IP);
1527		if (*mp)
1528			mp = &(*mp)->m_next;
1529	}
1530}
1531
1532/*
1533 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1534 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1535 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1536 * compiled.
1537 */
1538static int ip_rsvp_on;
1539struct socket *ip_rsvpd;
1540int
1541ip_rsvp_init(struct socket *so)
1542{
1543	if (so->so_type != SOCK_RAW ||
1544	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1545		return EOPNOTSUPP;
1546
1547	if (ip_rsvpd != NULL)
1548		return EADDRINUSE;
1549
1550	ip_rsvpd = so;
1551	/*
1552	 * This may seem silly, but we need to be sure we don't over-increment
1553	 * the RSVP counter, in case something slips up.
1554	 */
1555	if (!ip_rsvp_on) {
1556		ip_rsvp_on = 1;
1557		rsvp_on++;
1558	}
1559
1560	return 0;
1561}
1562
1563int
1564ip_rsvp_done(void)
1565{
1566	ip_rsvpd = NULL;
1567	/*
1568	 * This may seem silly, but we need to be sure we don't over-decrement
1569	 * the RSVP counter, in case something slips up.
1570	 */
1571	if (ip_rsvp_on) {
1572		ip_rsvp_on = 0;
1573		rsvp_on--;
1574	}
1575	return 0;
1576}
1577
1578void
1579rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1580{
1581	if (rsvp_input_p) { /* call the real one if loaded */
1582		rsvp_input_p(m, off);
1583		return;
1584	}
1585
1586	/* Can still get packets with rsvp_on = 0 if there is a local member
1587	 * of the group to which the RSVP packet is addressed.  But in this
1588	 * case we want to throw the packet away.
1589	 */
1590
1591	if (!rsvp_on) {
1592		m_freem(m);
1593		return;
1594	}
1595
1596	if (ip_rsvpd != NULL) {
1597		rip_input(m, off);
1598		return;
1599	}
1600	/* Drop the packet */
1601	m_freem(m);
1602}
1603