ip_input.c revision 166450
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 166450 2007-02-03 06:45:51Z bms $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/syslog.h>
51#include <sys/sysctl.h>
52
53#include <net/pfil.h>
54#include <net/if.h>
55#include <net/if_types.h>
56#include <net/if_var.h>
57#include <net/if_dl.h>
58#include <net/route.h>
59#include <net/netisr.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/in_pcb.h>
66#include <netinet/ip_var.h>
67#include <netinet/ip_icmp.h>
68#include <netinet/ip_options.h>
69#include <machine/in_cksum.h>
70#ifdef DEV_CARP
71#include <netinet/ip_carp.h>
72#endif
73#if defined(IPSEC) || defined(FAST_IPSEC)
74#include <netinet/ip_ipsec.h>
75#endif /* IPSEC */
76
77#include <sys/socketvar.h>
78
79/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
80#include <netinet/ip_fw.h>
81#include <netinet/ip_dummynet.h>
82
83#include <security/mac/mac_framework.h>
84
85int rsvp_on = 0;
86
87int	ipforwarding = 0;
88SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
89    &ipforwarding, 0, "Enable IP forwarding between interfaces");
90
91static int	ipsendredirects = 1; /* XXX */
92SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
93    &ipsendredirects, 0, "Enable sending IP redirects");
94
95int	ip_defttl = IPDEFTTL;
96SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
97    &ip_defttl, 0, "Maximum TTL on IP packets");
98
99static int	ip_keepfaith = 0;
100SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
101	&ip_keepfaith,	0,
102	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
103
104static int	ip_sendsourcequench = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
106	&ip_sendsourcequench, 0,
107	"Enable the transmission of source quench packets");
108
109int	ip_do_randomid = 0;
110SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
111	&ip_do_randomid, 0,
112	"Assign random ip_id values");
113
114/*
115 * XXX - Setting ip_checkinterface mostly implements the receive side of
116 * the Strong ES model described in RFC 1122, but since the routing table
117 * and transmit implementation do not implement the Strong ES model,
118 * setting this to 1 results in an odd hybrid.
119 *
120 * XXX - ip_checkinterface currently must be disabled if you use ipnat
121 * to translate the destination address to another local interface.
122 *
123 * XXX - ip_checkinterface must be disabled if you add IP aliases
124 * to the loopback interface instead of the interface where the
125 * packets for those addresses are received.
126 */
127static int	ip_checkinterface = 0;
128SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
129    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
130
131struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
132
133static struct	ifqueue ipintrq;
134static int	ipqmaxlen = IFQ_MAXLEN;
135
136extern	struct domain inetdomain;
137extern	struct protosw inetsw[];
138u_char	ip_protox[IPPROTO_MAX];
139struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
140struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
141u_long 	in_ifaddrhmask;				/* mask for hash table */
142
143SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
144    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
145SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
146    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
147
148struct ipstat ipstat;
149SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
150    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
151
152/*
153 * IP datagram reassembly.
154 */
155#define IPREASS_NHASH_LOG2      6
156#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
157#define IPREASS_HMASK           (IPREASS_NHASH - 1)
158#define IPREASS_HASH(x,y) \
159	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
160
161static uma_zone_t ipq_zone;
162static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
163static struct mtx ipqlock;
164
165#define	IPQ_LOCK()	mtx_lock(&ipqlock)
166#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
167#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
168#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
169
170static void	maxnipq_update(void);
171static void	ipq_zone_change(void *);
172
173static int	maxnipq;	/* Administrative limit on # reass queues. */
174static int	nipq = 0;	/* Total # of reass queues */
175SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
176	"Current number of IPv4 fragment reassembly queue entries");
177
178static int	maxfragsperpacket;
179SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
180	&maxfragsperpacket, 0,
181	"Maximum number of IPv4 fragments allowed per packet");
182
183struct callout	ipport_tick_callout;
184
185#ifdef IPCTL_DEFMTU
186SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
187    &ip_mtu, 0, "Default MTU");
188#endif
189
190#ifdef IPSTEALTH
191int	ipstealth = 0;
192SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
193    &ipstealth, 0, "");
194#endif
195
196/*
197 * ipfw_ether and ipfw_bridge hooks.
198 * XXX: Temporary until those are converted to pfil_hooks as well.
199 */
200ip_fw_chk_t *ip_fw_chk_ptr = NULL;
201ip_dn_io_t *ip_dn_io_ptr = NULL;
202int fw_one_pass = 1;
203
204static void	ip_freef(struct ipqhead *, struct ipq *);
205
206/*
207 * IP initialization: fill in IP protocol switch table.
208 * All protocols not implemented in kernel go to raw IP protocol handler.
209 */
210void
211ip_init()
212{
213	register struct protosw *pr;
214	register int i;
215
216	TAILQ_INIT(&in_ifaddrhead);
217	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
218	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
219	if (pr == NULL)
220		panic("ip_init: PF_INET not found");
221
222	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
223	for (i = 0; i < IPPROTO_MAX; i++)
224		ip_protox[i] = pr - inetsw;
225	/*
226	 * Cycle through IP protocols and put them into the appropriate place
227	 * in ip_protox[].
228	 */
229	for (pr = inetdomain.dom_protosw;
230	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
231		if (pr->pr_domain->dom_family == PF_INET &&
232		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
233			/* Be careful to only index valid IP protocols. */
234			if (pr->pr_protocol < IPPROTO_MAX)
235				ip_protox[pr->pr_protocol] = pr - inetsw;
236		}
237
238	/* Initialize packet filter hooks. */
239	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
240	inet_pfil_hook.ph_af = AF_INET;
241	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
242		printf("%s: WARNING: unable to register pfil hook, "
243			"error %d\n", __func__, i);
244
245	/* Initialize IP reassembly queue. */
246	IPQ_LOCK_INIT();
247	for (i = 0; i < IPREASS_NHASH; i++)
248	    TAILQ_INIT(&ipq[i]);
249	maxnipq = nmbclusters / 32;
250	maxfragsperpacket = 16;
251	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
252	    NULL, UMA_ALIGN_PTR, 0);
253	maxnipq_update();
254
255	/* Start ipport_tick. */
256	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
257	ipport_tick(NULL);
258	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
259		SHUTDOWN_PRI_DEFAULT);
260	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
261		NULL, EVENTHANDLER_PRI_ANY);
262
263	/* Initialize various other remaining things. */
264	ip_id = time_second & 0xffff;
265	ipintrq.ifq_maxlen = ipqmaxlen;
266	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
267	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
268}
269
270void ip_fini(xtp)
271	void *xtp;
272{
273	callout_stop(&ipport_tick_callout);
274}
275
276/*
277 * Ip input routine.  Checksum and byte swap header.  If fragmented
278 * try to reassemble.  Process options.  Pass to next level.
279 */
280void
281ip_input(struct mbuf *m)
282{
283	struct ip *ip = NULL;
284	struct in_ifaddr *ia = NULL;
285	struct ifaddr *ifa;
286	int    checkif, hlen = 0;
287	u_short sum;
288	int dchg = 0;				/* dest changed after fw */
289	struct in_addr odst;			/* original dst address */
290
291  	M_ASSERTPKTHDR(m);
292
293	if (m->m_flags & M_FASTFWD_OURS) {
294		/*
295		 * Firewall or NAT changed destination to local.
296		 * We expect ip_len and ip_off to be in host byte order.
297		 */
298		m->m_flags &= ~M_FASTFWD_OURS;
299		/* Set up some basics that will be used later. */
300		ip = mtod(m, struct ip *);
301		hlen = ip->ip_hl << 2;
302  		goto ours;
303  	}
304
305	ipstat.ips_total++;
306
307	if (m->m_pkthdr.len < sizeof(struct ip))
308		goto tooshort;
309
310	if (m->m_len < sizeof (struct ip) &&
311	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
312		ipstat.ips_toosmall++;
313		return;
314	}
315	ip = mtod(m, struct ip *);
316
317	if (ip->ip_v != IPVERSION) {
318		ipstat.ips_badvers++;
319		goto bad;
320	}
321
322	hlen = ip->ip_hl << 2;
323	if (hlen < sizeof(struct ip)) {	/* minimum header length */
324		ipstat.ips_badhlen++;
325		goto bad;
326	}
327	if (hlen > m->m_len) {
328		if ((m = m_pullup(m, hlen)) == NULL) {
329			ipstat.ips_badhlen++;
330			return;
331		}
332		ip = mtod(m, struct ip *);
333	}
334
335	/* 127/8 must not appear on wire - RFC1122 */
336	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
337	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
338		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
339			ipstat.ips_badaddr++;
340			goto bad;
341		}
342	}
343
344	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
345		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
346	} else {
347		if (hlen == sizeof(struct ip)) {
348			sum = in_cksum_hdr(ip);
349		} else {
350			sum = in_cksum(m, hlen);
351		}
352	}
353	if (sum) {
354		ipstat.ips_badsum++;
355		goto bad;
356	}
357
358#ifdef ALTQ
359	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
360		/* packet is dropped by traffic conditioner */
361		return;
362#endif
363
364	/*
365	 * Convert fields to host representation.
366	 */
367	ip->ip_len = ntohs(ip->ip_len);
368	if (ip->ip_len < hlen) {
369		ipstat.ips_badlen++;
370		goto bad;
371	}
372	ip->ip_off = ntohs(ip->ip_off);
373
374	/*
375	 * Check that the amount of data in the buffers
376	 * is as at least much as the IP header would have us expect.
377	 * Trim mbufs if longer than we expect.
378	 * Drop packet if shorter than we expect.
379	 */
380	if (m->m_pkthdr.len < ip->ip_len) {
381tooshort:
382		ipstat.ips_tooshort++;
383		goto bad;
384	}
385	if (m->m_pkthdr.len > ip->ip_len) {
386		if (m->m_len == m->m_pkthdr.len) {
387			m->m_len = ip->ip_len;
388			m->m_pkthdr.len = ip->ip_len;
389		} else
390			m_adj(m, ip->ip_len - m->m_pkthdr.len);
391	}
392#if defined(IPSEC) || defined(FAST_IPSEC)
393	/*
394	 * Bypass packet filtering for packets from a tunnel (gif).
395	 */
396	if (ip_ipsec_filtergif(m))
397		goto passin;
398#endif /* IPSEC */
399
400	/*
401	 * Run through list of hooks for input packets.
402	 *
403	 * NB: Beware of the destination address changing (e.g.
404	 *     by NAT rewriting).  When this happens, tell
405	 *     ip_forward to do the right thing.
406	 */
407
408	/* Jump over all PFIL processing if hooks are not active. */
409	if (!PFIL_HOOKED(&inet_pfil_hook))
410		goto passin;
411
412	odst = ip->ip_dst;
413	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
414	    PFIL_IN, NULL) != 0)
415		return;
416	if (m == NULL)			/* consumed by filter */
417		return;
418
419	ip = mtod(m, struct ip *);
420	dchg = (odst.s_addr != ip->ip_dst.s_addr);
421
422#ifdef IPFIREWALL_FORWARD
423	if (m->m_flags & M_FASTFWD_OURS) {
424		m->m_flags &= ~M_FASTFWD_OURS;
425		goto ours;
426	}
427	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
428		/*
429		 * Directly ship on the packet.  This allows to forward packets
430		 * that were destined for us to some other directly connected
431		 * host.
432		 */
433		ip_forward(m, dchg);
434		return;
435	}
436#endif /* IPFIREWALL_FORWARD */
437
438passin:
439	/*
440	 * Process options and, if not destined for us,
441	 * ship it on.  ip_dooptions returns 1 when an
442	 * error was detected (causing an icmp message
443	 * to be sent and the original packet to be freed).
444	 */
445	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
446		return;
447
448        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
449         * matter if it is destined to another node, or whether it is
450         * a multicast one, RSVP wants it! and prevents it from being forwarded
451         * anywhere else. Also checks if the rsvp daemon is running before
452	 * grabbing the packet.
453         */
454	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
455		goto ours;
456
457	/*
458	 * Check our list of addresses, to see if the packet is for us.
459	 * If we don't have any addresses, assume any unicast packet
460	 * we receive might be for us (and let the upper layers deal
461	 * with it).
462	 */
463	if (TAILQ_EMPTY(&in_ifaddrhead) &&
464	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
465		goto ours;
466
467	/*
468	 * Enable a consistency check between the destination address
469	 * and the arrival interface for a unicast packet (the RFC 1122
470	 * strong ES model) if IP forwarding is disabled and the packet
471	 * is not locally generated and the packet is not subject to
472	 * 'ipfw fwd'.
473	 *
474	 * XXX - Checking also should be disabled if the destination
475	 * address is ipnat'ed to a different interface.
476	 *
477	 * XXX - Checking is incompatible with IP aliases added
478	 * to the loopback interface instead of the interface where
479	 * the packets are received.
480	 *
481	 * XXX - This is the case for carp vhost IPs as well so we
482	 * insert a workaround. If the packet got here, we already
483	 * checked with carp_iamatch() and carp_forus().
484	 */
485	checkif = ip_checkinterface && (ipforwarding == 0) &&
486	    m->m_pkthdr.rcvif != NULL &&
487	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
488#ifdef DEV_CARP
489	    !m->m_pkthdr.rcvif->if_carp &&
490#endif
491	    (dchg == 0);
492
493	/*
494	 * Check for exact addresses in the hash bucket.
495	 */
496	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
497		/*
498		 * If the address matches, verify that the packet
499		 * arrived via the correct interface if checking is
500		 * enabled.
501		 */
502		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
503		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
504			goto ours;
505	}
506	/*
507	 * Check for broadcast addresses.
508	 *
509	 * Only accept broadcast packets that arrive via the matching
510	 * interface.  Reception of forwarded directed broadcasts would
511	 * be handled via ip_forward() and ether_output() with the loopback
512	 * into the stack for SIMPLEX interfaces handled by ether_output().
513	 */
514	if (m->m_pkthdr.rcvif != NULL &&
515	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
516	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
517			if (ifa->ifa_addr->sa_family != AF_INET)
518				continue;
519			ia = ifatoia(ifa);
520			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
521			    ip->ip_dst.s_addr)
522				goto ours;
523			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
524				goto ours;
525#ifdef BOOTP_COMPAT
526			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
527				goto ours;
528#endif
529		}
530	}
531	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
532	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
533		ipstat.ips_cantforward++;
534		m_freem(m);
535		return;
536	}
537	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
538		struct in_multi *inm;
539		if (ip_mrouter) {
540			/*
541			 * If we are acting as a multicast router, all
542			 * incoming multicast packets are passed to the
543			 * kernel-level multicast forwarding function.
544			 * The packet is returned (relatively) intact; if
545			 * ip_mforward() returns a non-zero value, the packet
546			 * must be discarded, else it may be accepted below.
547			 */
548			if (ip_mforward &&
549			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
550				ipstat.ips_cantforward++;
551				m_freem(m);
552				return;
553			}
554
555			/*
556			 * The process-level routing daemon needs to receive
557			 * all multicast IGMP packets, whether or not this
558			 * host belongs to their destination groups.
559			 */
560			if (ip->ip_p == IPPROTO_IGMP)
561				goto ours;
562			ipstat.ips_forward++;
563		}
564		/*
565		 * See if we belong to the destination multicast group on the
566		 * arrival interface.
567		 */
568		IN_MULTI_LOCK();
569		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
570		IN_MULTI_UNLOCK();
571		if (inm == NULL) {
572			ipstat.ips_notmember++;
573			m_freem(m);
574			return;
575		}
576		goto ours;
577	}
578	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
579		goto ours;
580	if (ip->ip_dst.s_addr == INADDR_ANY)
581		goto ours;
582
583	/*
584	 * FAITH(Firewall Aided Internet Translator)
585	 */
586	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
587		if (ip_keepfaith) {
588			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
589				goto ours;
590		}
591		m_freem(m);
592		return;
593	}
594
595	/*
596	 * Not for us; forward if possible and desirable.
597	 */
598	if (ipforwarding == 0) {
599		ipstat.ips_cantforward++;
600		m_freem(m);
601	} else {
602#if defined(IPSEC) || defined(FAST_IPSEC)
603		if (ip_ipsec_fwd(m))
604			goto bad;
605#endif /* IPSEC */
606		ip_forward(m, dchg);
607	}
608	return;
609
610ours:
611#ifdef IPSTEALTH
612	/*
613	 * IPSTEALTH: Process non-routing options only
614	 * if the packet is destined for us.
615	 */
616	if (ipstealth && hlen > sizeof (struct ip) &&
617	    ip_dooptions(m, 1))
618		return;
619#endif /* IPSTEALTH */
620
621	/* Count the packet in the ip address stats */
622	if (ia != NULL) {
623		ia->ia_ifa.if_ipackets++;
624		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
625	}
626
627	/*
628	 * Attempt reassembly; if it succeeds, proceed.
629	 * ip_reass() will return a different mbuf.
630	 */
631	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
632		m = ip_reass(m);
633		if (m == NULL)
634			return;
635		ip = mtod(m, struct ip *);
636		/* Get the header length of the reassembled packet */
637		hlen = ip->ip_hl << 2;
638	}
639
640	/*
641	 * Further protocols expect the packet length to be w/o the
642	 * IP header.
643	 */
644	ip->ip_len -= hlen;
645
646#if defined(IPSEC) || defined(FAST_IPSEC)
647	/*
648	 * enforce IPsec policy checking if we are seeing last header.
649	 * note that we do not visit this with protocols with pcb layer
650	 * code - like udp/tcp/raw ip.
651	 */
652	if (ip_ipsec_input(m))
653		goto bad;
654#endif /* IPSEC */
655
656	/*
657	 * Switch out to protocol's input routine.
658	 */
659	ipstat.ips_delivered++;
660
661	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
662	return;
663bad:
664	m_freem(m);
665}
666
667/*
668 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
669 * max has slightly different semantics than the sysctl, for historical
670 * reasons.
671 */
672static void
673maxnipq_update(void)
674{
675
676	/*
677	 * -1 for unlimited allocation.
678	 */
679	if (maxnipq < 0)
680		uma_zone_set_max(ipq_zone, 0);
681	/*
682	 * Positive number for specific bound.
683	 */
684	if (maxnipq > 0)
685		uma_zone_set_max(ipq_zone, maxnipq);
686	/*
687	 * Zero specifies no further fragment queue allocation -- set the
688	 * bound very low, but rely on implementation elsewhere to actually
689	 * prevent allocation and reclaim current queues.
690	 */
691	if (maxnipq == 0)
692		uma_zone_set_max(ipq_zone, 1);
693}
694
695static void
696ipq_zone_change(void *tag)
697{
698
699	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
700		maxnipq = nmbclusters / 32;
701		maxnipq_update();
702	}
703}
704
705static int
706sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
707{
708	int error, i;
709
710	i = maxnipq;
711	error = sysctl_handle_int(oidp, &i, 0, req);
712	if (error || !req->newptr)
713		return (error);
714
715	/*
716	 * XXXRW: Might be a good idea to sanity check the argument and place
717	 * an extreme upper bound.
718	 */
719	if (i < -1)
720		return (EINVAL);
721	maxnipq = i;
722	maxnipq_update();
723	return (0);
724}
725
726SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
727    NULL, 0, sysctl_maxnipq, "I",
728    "Maximum number of IPv4 fragment reassembly queue entries");
729
730/*
731 * Take incoming datagram fragment and try to reassemble it into
732 * whole datagram.  If the argument is the first fragment or one
733 * in between the function will return NULL and store the mbuf
734 * in the fragment chain.  If the argument is the last fragment
735 * the packet will be reassembled and the pointer to the new
736 * mbuf returned for further processing.  Only m_tags attached
737 * to the first packet/fragment are preserved.
738 * The IP header is *NOT* adjusted out of iplen.
739 */
740
741struct mbuf *
742ip_reass(struct mbuf *m)
743{
744	struct ip *ip;
745	struct mbuf *p, *q, *nq, *t;
746	struct ipq *fp = NULL;
747	struct ipqhead *head;
748	int i, hlen, next;
749	u_int8_t ecn, ecn0;
750	u_short hash;
751
752	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
753	if (maxnipq == 0 || maxfragsperpacket == 0) {
754		ipstat.ips_fragments++;
755		ipstat.ips_fragdropped++;
756		m_freem(m);
757		return (NULL);
758	}
759
760	ip = mtod(m, struct ip *);
761	hlen = ip->ip_hl << 2;
762
763	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
764	head = &ipq[hash];
765	IPQ_LOCK();
766
767	/*
768	 * Look for queue of fragments
769	 * of this datagram.
770	 */
771	TAILQ_FOREACH(fp, head, ipq_list)
772		if (ip->ip_id == fp->ipq_id &&
773		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
774		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
775#ifdef MAC
776		    mac_fragment_match(m, fp) &&
777#endif
778		    ip->ip_p == fp->ipq_p)
779			goto found;
780
781	fp = NULL;
782
783	/*
784	 * Attempt to trim the number of allocated fragment queues if it
785	 * exceeds the administrative limit.
786	 */
787	if ((nipq > maxnipq) && (maxnipq > 0)) {
788		/*
789		 * drop something from the tail of the current queue
790		 * before proceeding further
791		 */
792		struct ipq *q = TAILQ_LAST(head, ipqhead);
793		if (q == NULL) {   /* gak */
794			for (i = 0; i < IPREASS_NHASH; i++) {
795				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
796				if (r) {
797					ipstat.ips_fragtimeout += r->ipq_nfrags;
798					ip_freef(&ipq[i], r);
799					break;
800				}
801			}
802		} else {
803			ipstat.ips_fragtimeout += q->ipq_nfrags;
804			ip_freef(head, q);
805		}
806	}
807
808found:
809	/*
810	 * Adjust ip_len to not reflect header,
811	 * convert offset of this to bytes.
812	 */
813	ip->ip_len -= hlen;
814	if (ip->ip_off & IP_MF) {
815		/*
816		 * Make sure that fragments have a data length
817		 * that's a non-zero multiple of 8 bytes.
818		 */
819		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
820			ipstat.ips_toosmall++; /* XXX */
821			goto dropfrag;
822		}
823		m->m_flags |= M_FRAG;
824	} else
825		m->m_flags &= ~M_FRAG;
826	ip->ip_off <<= 3;
827
828
829	/*
830	 * Attempt reassembly; if it succeeds, proceed.
831	 * ip_reass() will return a different mbuf.
832	 */
833	ipstat.ips_fragments++;
834	m->m_pkthdr.header = ip;
835
836	/* Previous ip_reass() started here. */
837	/*
838	 * Presence of header sizes in mbufs
839	 * would confuse code below.
840	 */
841	m->m_data += hlen;
842	m->m_len -= hlen;
843
844	/*
845	 * If first fragment to arrive, create a reassembly queue.
846	 */
847	if (fp == NULL) {
848		fp = uma_zalloc(ipq_zone, M_NOWAIT);
849		if (fp == NULL)
850			goto dropfrag;
851#ifdef MAC
852		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
853			uma_zfree(ipq_zone, fp);
854			fp = NULL;
855			goto dropfrag;
856		}
857		mac_create_ipq(m, fp);
858#endif
859		TAILQ_INSERT_HEAD(head, fp, ipq_list);
860		nipq++;
861		fp->ipq_nfrags = 1;
862		fp->ipq_ttl = IPFRAGTTL;
863		fp->ipq_p = ip->ip_p;
864		fp->ipq_id = ip->ip_id;
865		fp->ipq_src = ip->ip_src;
866		fp->ipq_dst = ip->ip_dst;
867		fp->ipq_frags = m;
868		m->m_nextpkt = NULL;
869		goto done;
870	} else {
871		fp->ipq_nfrags++;
872#ifdef MAC
873		mac_update_ipq(m, fp);
874#endif
875	}
876
877#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
878
879	/*
880	 * Handle ECN by comparing this segment with the first one;
881	 * if CE is set, do not lose CE.
882	 * drop if CE and not-ECT are mixed for the same packet.
883	 */
884	ecn = ip->ip_tos & IPTOS_ECN_MASK;
885	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
886	if (ecn == IPTOS_ECN_CE) {
887		if (ecn0 == IPTOS_ECN_NOTECT)
888			goto dropfrag;
889		if (ecn0 != IPTOS_ECN_CE)
890			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
891	}
892	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
893		goto dropfrag;
894
895	/*
896	 * Find a segment which begins after this one does.
897	 */
898	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
899		if (GETIP(q)->ip_off > ip->ip_off)
900			break;
901
902	/*
903	 * If there is a preceding segment, it may provide some of
904	 * our data already.  If so, drop the data from the incoming
905	 * segment.  If it provides all of our data, drop us, otherwise
906	 * stick new segment in the proper place.
907	 *
908	 * If some of the data is dropped from the the preceding
909	 * segment, then it's checksum is invalidated.
910	 */
911	if (p) {
912		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
913		if (i > 0) {
914			if (i >= ip->ip_len)
915				goto dropfrag;
916			m_adj(m, i);
917			m->m_pkthdr.csum_flags = 0;
918			ip->ip_off += i;
919			ip->ip_len -= i;
920		}
921		m->m_nextpkt = p->m_nextpkt;
922		p->m_nextpkt = m;
923	} else {
924		m->m_nextpkt = fp->ipq_frags;
925		fp->ipq_frags = m;
926	}
927
928	/*
929	 * While we overlap succeeding segments trim them or,
930	 * if they are completely covered, dequeue them.
931	 */
932	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
933	     q = nq) {
934		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
935		if (i < GETIP(q)->ip_len) {
936			GETIP(q)->ip_len -= i;
937			GETIP(q)->ip_off += i;
938			m_adj(q, i);
939			q->m_pkthdr.csum_flags = 0;
940			break;
941		}
942		nq = q->m_nextpkt;
943		m->m_nextpkt = nq;
944		ipstat.ips_fragdropped++;
945		fp->ipq_nfrags--;
946		m_freem(q);
947	}
948
949	/*
950	 * Check for complete reassembly and perform frag per packet
951	 * limiting.
952	 *
953	 * Frag limiting is performed here so that the nth frag has
954	 * a chance to complete the packet before we drop the packet.
955	 * As a result, n+1 frags are actually allowed per packet, but
956	 * only n will ever be stored. (n = maxfragsperpacket.)
957	 *
958	 */
959	next = 0;
960	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
961		if (GETIP(q)->ip_off != next) {
962			if (fp->ipq_nfrags > maxfragsperpacket) {
963				ipstat.ips_fragdropped += fp->ipq_nfrags;
964				ip_freef(head, fp);
965			}
966			goto done;
967		}
968		next += GETIP(q)->ip_len;
969	}
970	/* Make sure the last packet didn't have the IP_MF flag */
971	if (p->m_flags & M_FRAG) {
972		if (fp->ipq_nfrags > maxfragsperpacket) {
973			ipstat.ips_fragdropped += fp->ipq_nfrags;
974			ip_freef(head, fp);
975		}
976		goto done;
977	}
978
979	/*
980	 * Reassembly is complete.  Make sure the packet is a sane size.
981	 */
982	q = fp->ipq_frags;
983	ip = GETIP(q);
984	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
985		ipstat.ips_toolong++;
986		ipstat.ips_fragdropped += fp->ipq_nfrags;
987		ip_freef(head, fp);
988		goto done;
989	}
990
991	/*
992	 * Concatenate fragments.
993	 */
994	m = q;
995	t = m->m_next;
996	m->m_next = NULL;
997	m_cat(m, t);
998	nq = q->m_nextpkt;
999	q->m_nextpkt = NULL;
1000	for (q = nq; q != NULL; q = nq) {
1001		nq = q->m_nextpkt;
1002		q->m_nextpkt = NULL;
1003		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1004		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1005		m_cat(m, q);
1006	}
1007	/*
1008	 * In order to do checksumming faster we do 'end-around carry' here
1009	 * (and not in for{} loop), though it implies we are not going to
1010	 * reassemble more than 64k fragments.
1011	 */
1012	m->m_pkthdr.csum_data =
1013	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1014#ifdef MAC
1015	mac_create_datagram_from_ipq(fp, m);
1016	mac_destroy_ipq(fp);
1017#endif
1018
1019	/*
1020	 * Create header for new ip packet by modifying header of first
1021	 * packet;  dequeue and discard fragment reassembly header.
1022	 * Make header visible.
1023	 */
1024	ip->ip_len = (ip->ip_hl << 2) + next;
1025	ip->ip_src = fp->ipq_src;
1026	ip->ip_dst = fp->ipq_dst;
1027	TAILQ_REMOVE(head, fp, ipq_list);
1028	nipq--;
1029	uma_zfree(ipq_zone, fp);
1030	m->m_len += (ip->ip_hl << 2);
1031	m->m_data -= (ip->ip_hl << 2);
1032	/* some debugging cruft by sklower, below, will go away soon */
1033	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1034		m_fixhdr(m);
1035	ipstat.ips_reassembled++;
1036	IPQ_UNLOCK();
1037	return (m);
1038
1039dropfrag:
1040	ipstat.ips_fragdropped++;
1041	if (fp != NULL)
1042		fp->ipq_nfrags--;
1043	m_freem(m);
1044done:
1045	IPQ_UNLOCK();
1046	return (NULL);
1047
1048#undef GETIP
1049}
1050
1051/*
1052 * Free a fragment reassembly header and all
1053 * associated datagrams.
1054 */
1055static void
1056ip_freef(fhp, fp)
1057	struct ipqhead *fhp;
1058	struct ipq *fp;
1059{
1060	register struct mbuf *q;
1061
1062	IPQ_LOCK_ASSERT();
1063
1064	while (fp->ipq_frags) {
1065		q = fp->ipq_frags;
1066		fp->ipq_frags = q->m_nextpkt;
1067		m_freem(q);
1068	}
1069	TAILQ_REMOVE(fhp, fp, ipq_list);
1070	uma_zfree(ipq_zone, fp);
1071	nipq--;
1072}
1073
1074/*
1075 * IP timer processing;
1076 * if a timer expires on a reassembly
1077 * queue, discard it.
1078 */
1079void
1080ip_slowtimo()
1081{
1082	register struct ipq *fp;
1083	int i;
1084
1085	IPQ_LOCK();
1086	for (i = 0; i < IPREASS_NHASH; i++) {
1087		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1088			struct ipq *fpp;
1089
1090			fpp = fp;
1091			fp = TAILQ_NEXT(fp, ipq_list);
1092			if(--fpp->ipq_ttl == 0) {
1093				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1094				ip_freef(&ipq[i], fpp);
1095			}
1096		}
1097	}
1098	/*
1099	 * If we are over the maximum number of fragments
1100	 * (due to the limit being lowered), drain off
1101	 * enough to get down to the new limit.
1102	 */
1103	if (maxnipq >= 0 && nipq > maxnipq) {
1104		for (i = 0; i < IPREASS_NHASH; i++) {
1105			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1106				ipstat.ips_fragdropped +=
1107				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1108				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1109			}
1110		}
1111	}
1112	IPQ_UNLOCK();
1113}
1114
1115/*
1116 * Drain off all datagram fragments.
1117 */
1118void
1119ip_drain()
1120{
1121	int     i;
1122
1123	IPQ_LOCK();
1124	for (i = 0; i < IPREASS_NHASH; i++) {
1125		while(!TAILQ_EMPTY(&ipq[i])) {
1126			ipstat.ips_fragdropped +=
1127			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1128			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1129		}
1130	}
1131	IPQ_UNLOCK();
1132	in_rtqdrain();
1133}
1134
1135/*
1136 * The protocol to be inserted into ip_protox[] must be already registered
1137 * in inetsw[], either statically or through pf_proto_register().
1138 */
1139int
1140ipproto_register(u_char ipproto)
1141{
1142	struct protosw *pr;
1143
1144	/* Sanity checks. */
1145	if (ipproto == 0)
1146		return (EPROTONOSUPPORT);
1147
1148	/*
1149	 * The protocol slot must not be occupied by another protocol
1150	 * already.  An index pointing to IPPROTO_RAW is unused.
1151	 */
1152	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1153	if (pr == NULL)
1154		return (EPFNOSUPPORT);
1155	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1156		return (EEXIST);
1157
1158	/* Find the protocol position in inetsw[] and set the index. */
1159	for (pr = inetdomain.dom_protosw;
1160	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1161		if (pr->pr_domain->dom_family == PF_INET &&
1162		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1163			/* Be careful to only index valid IP protocols. */
1164			if (pr->pr_protocol < IPPROTO_MAX) {
1165				ip_protox[pr->pr_protocol] = pr - inetsw;
1166				return (0);
1167			} else
1168				return (EINVAL);
1169		}
1170	}
1171	return (EPROTONOSUPPORT);
1172}
1173
1174int
1175ipproto_unregister(u_char ipproto)
1176{
1177	struct protosw *pr;
1178
1179	/* Sanity checks. */
1180	if (ipproto == 0)
1181		return (EPROTONOSUPPORT);
1182
1183	/* Check if the protocol was indeed registered. */
1184	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1185	if (pr == NULL)
1186		return (EPFNOSUPPORT);
1187	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1188		return (ENOENT);
1189
1190	/* Reset the protocol slot to IPPROTO_RAW. */
1191	ip_protox[ipproto] = pr - inetsw;
1192	return (0);
1193}
1194
1195/*
1196 * Given address of next destination (final or next hop),
1197 * return internet address info of interface to be used to get there.
1198 */
1199struct in_ifaddr *
1200ip_rtaddr(dst)
1201	struct in_addr dst;
1202{
1203	struct route sro;
1204	struct sockaddr_in *sin;
1205	struct in_ifaddr *ifa;
1206
1207	bzero(&sro, sizeof(sro));
1208	sin = (struct sockaddr_in *)&sro.ro_dst;
1209	sin->sin_family = AF_INET;
1210	sin->sin_len = sizeof(*sin);
1211	sin->sin_addr = dst;
1212	rtalloc_ign(&sro, RTF_CLONING);
1213
1214	if (sro.ro_rt == NULL)
1215		return (NULL);
1216
1217	ifa = ifatoia(sro.ro_rt->rt_ifa);
1218	RTFREE(sro.ro_rt);
1219	return (ifa);
1220}
1221
1222u_char inetctlerrmap[PRC_NCMDS] = {
1223	0,		0,		0,		0,
1224	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1225	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1226	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1227	0,		0,		EHOSTUNREACH,	0,
1228	ENOPROTOOPT,	ECONNREFUSED
1229};
1230
1231/*
1232 * Forward a packet.  If some error occurs return the sender
1233 * an icmp packet.  Note we can't always generate a meaningful
1234 * icmp message because icmp doesn't have a large enough repertoire
1235 * of codes and types.
1236 *
1237 * If not forwarding, just drop the packet.  This could be confusing
1238 * if ipforwarding was zero but some routing protocol was advancing
1239 * us as a gateway to somewhere.  However, we must let the routing
1240 * protocol deal with that.
1241 *
1242 * The srcrt parameter indicates whether the packet is being forwarded
1243 * via a source route.
1244 */
1245void
1246ip_forward(struct mbuf *m, int srcrt)
1247{
1248	struct ip *ip = mtod(m, struct ip *);
1249	struct in_ifaddr *ia = NULL;
1250	struct mbuf *mcopy;
1251	struct in_addr dest;
1252	int error, type = 0, code = 0, mtu = 0;
1253
1254	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1255		ipstat.ips_cantforward++;
1256		m_freem(m);
1257		return;
1258	}
1259#ifdef IPSTEALTH
1260	if (!ipstealth) {
1261#endif
1262		if (ip->ip_ttl <= IPTTLDEC) {
1263			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1264			    0, 0);
1265			return;
1266		}
1267#ifdef IPSTEALTH
1268	}
1269#endif
1270
1271	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1272		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1273		return;
1274	}
1275
1276	/*
1277	 * Save the IP header and at most 8 bytes of the payload,
1278	 * in case we need to generate an ICMP message to the src.
1279	 *
1280	 * XXX this can be optimized a lot by saving the data in a local
1281	 * buffer on the stack (72 bytes at most), and only allocating the
1282	 * mbuf if really necessary. The vast majority of the packets
1283	 * are forwarded without having to send an ICMP back (either
1284	 * because unnecessary, or because rate limited), so we are
1285	 * really we are wasting a lot of work here.
1286	 *
1287	 * We don't use m_copy() because it might return a reference
1288	 * to a shared cluster. Both this function and ip_output()
1289	 * assume exclusive access to the IP header in `m', so any
1290	 * data in a cluster may change before we reach icmp_error().
1291	 */
1292	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1293	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1294		/*
1295		 * It's probably ok if the pkthdr dup fails (because
1296		 * the deep copy of the tag chain failed), but for now
1297		 * be conservative and just discard the copy since
1298		 * code below may some day want the tags.
1299		 */
1300		m_free(mcopy);
1301		mcopy = NULL;
1302	}
1303	if (mcopy != NULL) {
1304		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1305		mcopy->m_pkthdr.len = mcopy->m_len;
1306		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1307	}
1308
1309#ifdef IPSTEALTH
1310	if (!ipstealth) {
1311#endif
1312		ip->ip_ttl -= IPTTLDEC;
1313#ifdef IPSTEALTH
1314	}
1315#endif
1316
1317	/*
1318	 * If forwarding packet using same interface that it came in on,
1319	 * perhaps should send a redirect to sender to shortcut a hop.
1320	 * Only send redirect if source is sending directly to us,
1321	 * and if packet was not source routed (or has any options).
1322	 * Also, don't send redirect if forwarding using a default route
1323	 * or a route modified by a redirect.
1324	 */
1325	dest.s_addr = 0;
1326	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1327		struct sockaddr_in *sin;
1328		struct route ro;
1329		struct rtentry *rt;
1330
1331		bzero(&ro, sizeof(ro));
1332		sin = (struct sockaddr_in *)&ro.ro_dst;
1333		sin->sin_family = AF_INET;
1334		sin->sin_len = sizeof(*sin);
1335		sin->sin_addr = ip->ip_dst;
1336		rtalloc_ign(&ro, RTF_CLONING);
1337
1338		rt = ro.ro_rt;
1339
1340		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1341		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1342#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1343			u_long src = ntohl(ip->ip_src.s_addr);
1344
1345			if (RTA(rt) &&
1346			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1347				if (rt->rt_flags & RTF_GATEWAY)
1348					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1349				else
1350					dest.s_addr = ip->ip_dst.s_addr;
1351				/* Router requirements says to only send host redirects */
1352				type = ICMP_REDIRECT;
1353				code = ICMP_REDIRECT_HOST;
1354			}
1355		}
1356		if (rt)
1357			RTFREE(rt);
1358	}
1359
1360	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1361	if (error)
1362		ipstat.ips_cantforward++;
1363	else {
1364		ipstat.ips_forward++;
1365		if (type)
1366			ipstat.ips_redirectsent++;
1367		else {
1368			if (mcopy)
1369				m_freem(mcopy);
1370			return;
1371		}
1372	}
1373	if (mcopy == NULL)
1374		return;
1375
1376	switch (error) {
1377
1378	case 0:				/* forwarded, but need redirect */
1379		/* type, code set above */
1380		break;
1381
1382	case ENETUNREACH:		/* shouldn't happen, checked above */
1383	case EHOSTUNREACH:
1384	case ENETDOWN:
1385	case EHOSTDOWN:
1386	default:
1387		type = ICMP_UNREACH;
1388		code = ICMP_UNREACH_HOST;
1389		break;
1390
1391	case EMSGSIZE:
1392		type = ICMP_UNREACH;
1393		code = ICMP_UNREACH_NEEDFRAG;
1394
1395#if defined(IPSEC) || defined(FAST_IPSEC)
1396		mtu = ip_ipsec_mtu(m);
1397#endif /* IPSEC */
1398		/*
1399		 * If the MTU wasn't set before use the interface mtu or
1400		 * fall back to the next smaller mtu step compared to the
1401		 * current packet size.
1402		 */
1403		if (mtu == 0) {
1404			if (ia != NULL)
1405				mtu = ia->ia_ifp->if_mtu;
1406			else
1407				mtu = ip_next_mtu(ip->ip_len, 0);
1408		}
1409		ipstat.ips_cantfrag++;
1410		break;
1411
1412	case ENOBUFS:
1413		/*
1414		 * A router should not generate ICMP_SOURCEQUENCH as
1415		 * required in RFC1812 Requirements for IP Version 4 Routers.
1416		 * Source quench could be a big problem under DoS attacks,
1417		 * or if the underlying interface is rate-limited.
1418		 * Those who need source quench packets may re-enable them
1419		 * via the net.inet.ip.sendsourcequench sysctl.
1420		 */
1421		if (ip_sendsourcequench == 0) {
1422			m_freem(mcopy);
1423			return;
1424		} else {
1425			type = ICMP_SOURCEQUENCH;
1426			code = 0;
1427		}
1428		break;
1429
1430	case EACCES:			/* ipfw denied packet */
1431		m_freem(mcopy);
1432		return;
1433	}
1434	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1435}
1436
1437void
1438ip_savecontrol(inp, mp, ip, m)
1439	register struct inpcb *inp;
1440	register struct mbuf **mp;
1441	register struct ip *ip;
1442	register struct mbuf *m;
1443{
1444	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1445		struct bintime bt;
1446
1447		bintime(&bt);
1448		if (inp->inp_socket->so_options & SO_BINTIME) {
1449			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1450			SCM_BINTIME, SOL_SOCKET);
1451			if (*mp)
1452				mp = &(*mp)->m_next;
1453		}
1454		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1455			struct timeval tv;
1456
1457			bintime2timeval(&bt, &tv);
1458			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1459				SCM_TIMESTAMP, SOL_SOCKET);
1460			if (*mp)
1461				mp = &(*mp)->m_next;
1462		}
1463	}
1464	if (inp->inp_flags & INP_RECVDSTADDR) {
1465		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1466		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1467		if (*mp)
1468			mp = &(*mp)->m_next;
1469	}
1470	if (inp->inp_flags & INP_RECVTTL) {
1471		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1472		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1473		if (*mp)
1474			mp = &(*mp)->m_next;
1475	}
1476#ifdef notyet
1477	/* XXX
1478	 * Moving these out of udp_input() made them even more broken
1479	 * than they already were.
1480	 */
1481	/* options were tossed already */
1482	if (inp->inp_flags & INP_RECVOPTS) {
1483		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1484		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1485		if (*mp)
1486			mp = &(*mp)->m_next;
1487	}
1488	/* ip_srcroute doesn't do what we want here, need to fix */
1489	if (inp->inp_flags & INP_RECVRETOPTS) {
1490		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1491		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1492		if (*mp)
1493			mp = &(*mp)->m_next;
1494	}
1495#endif
1496	if (inp->inp_flags & INP_RECVIF) {
1497		struct ifnet *ifp;
1498		struct sdlbuf {
1499			struct sockaddr_dl sdl;
1500			u_char	pad[32];
1501		} sdlbuf;
1502		struct sockaddr_dl *sdp;
1503		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1504
1505		if (((ifp = m->m_pkthdr.rcvif))
1506		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1507			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1508			/*
1509			 * Change our mind and don't try copy.
1510			 */
1511			if ((sdp->sdl_family != AF_LINK)
1512			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1513				goto makedummy;
1514			}
1515			bcopy(sdp, sdl2, sdp->sdl_len);
1516		} else {
1517makedummy:
1518			sdl2->sdl_len
1519				= offsetof(struct sockaddr_dl, sdl_data[0]);
1520			sdl2->sdl_family = AF_LINK;
1521			sdl2->sdl_index = 0;
1522			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1523		}
1524		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1525			IP_RECVIF, IPPROTO_IP);
1526		if (*mp)
1527			mp = &(*mp)->m_next;
1528	}
1529}
1530
1531/*
1532 * XXX these routines are called from the upper part of the kernel.
1533 * They need to be locked when we remove Giant.
1534 *
1535 * They could also be moved to ip_mroute.c, since all the RSVP
1536 *  handling is done there already.
1537 */
1538static int ip_rsvp_on;
1539struct socket *ip_rsvpd;
1540int
1541ip_rsvp_init(struct socket *so)
1542{
1543	if (so->so_type != SOCK_RAW ||
1544	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1545		return EOPNOTSUPP;
1546
1547	if (ip_rsvpd != NULL)
1548		return EADDRINUSE;
1549
1550	ip_rsvpd = so;
1551	/*
1552	 * This may seem silly, but we need to be sure we don't over-increment
1553	 * the RSVP counter, in case something slips up.
1554	 */
1555	if (!ip_rsvp_on) {
1556		ip_rsvp_on = 1;
1557		rsvp_on++;
1558	}
1559
1560	return 0;
1561}
1562
1563int
1564ip_rsvp_done(void)
1565{
1566	ip_rsvpd = NULL;
1567	/*
1568	 * This may seem silly, but we need to be sure we don't over-decrement
1569	 * the RSVP counter, in case something slips up.
1570	 */
1571	if (ip_rsvp_on) {
1572		ip_rsvp_on = 0;
1573		rsvp_on--;
1574	}
1575	return 0;
1576}
1577
1578void
1579rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1580{
1581	if (rsvp_input_p) { /* call the real one if loaded */
1582		rsvp_input_p(m, off);
1583		return;
1584	}
1585
1586	/* Can still get packets with rsvp_on = 0 if there is a local member
1587	 * of the group to which the RSVP packet is addressed.  But in this
1588	 * case we want to throw the packet away.
1589	 */
1590
1591	if (!rsvp_on) {
1592		m_freem(m);
1593		return;
1594	}
1595
1596	if (ip_rsvpd != NULL) {
1597		rip_input(m, off);
1598		return;
1599	}
1600	/* Drop the packet */
1601	m_freem(m);
1602}
1603