ip_input.c revision 163548
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 163548 2006-10-21 00:16:31Z julian $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mac.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/syslog.h>
52#include <sys/sysctl.h>
53
54#include <net/pfil.h>
55#include <net/if.h>
56#include <net/if_types.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_icmp.h>
69#include <netinet/ip_options.h>
70#include <machine/in_cksum.h>
71#ifdef DEV_CARP
72#include <netinet/ip_carp.h>
73#endif
74#if defined(IPSEC) || defined(FAST_IPSEC)
75#include <netinet/ip_ipsec.h>
76#endif /* IPSEC */
77
78#include <sys/socketvar.h>
79
80/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
81#include <netinet/ip_fw.h>
82#include <netinet/ip_dummynet.h>
83
84int rsvp_on = 0;
85
86int	ipforwarding = 0;
87SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
88    &ipforwarding, 0, "Enable IP forwarding between interfaces");
89
90static int	ipsendredirects = 1; /* XXX */
91SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
92    &ipsendredirects, 0, "Enable sending IP redirects");
93
94int	ip_defttl = IPDEFTTL;
95SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
96    &ip_defttl, 0, "Maximum TTL on IP packets");
97
98static int	ip_keepfaith = 0;
99SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
100	&ip_keepfaith,	0,
101	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
102
103static int	ip_sendsourcequench = 0;
104SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
105	&ip_sendsourcequench, 0,
106	"Enable the transmission of source quench packets");
107
108int	ip_do_randomid = 0;
109SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
110	&ip_do_randomid, 0,
111	"Assign random ip_id values");
112
113/*
114 * XXX - Setting ip_checkinterface mostly implements the receive side of
115 * the Strong ES model described in RFC 1122, but since the routing table
116 * and transmit implementation do not implement the Strong ES model,
117 * setting this to 1 results in an odd hybrid.
118 *
119 * XXX - ip_checkinterface currently must be disabled if you use ipnat
120 * to translate the destination address to another local interface.
121 *
122 * XXX - ip_checkinterface must be disabled if you add IP aliases
123 * to the loopback interface instead of the interface where the
124 * packets for those addresses are received.
125 */
126static int	ip_checkinterface = 0;
127SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
128    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
129
130struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
131
132static struct	ifqueue ipintrq;
133static int	ipqmaxlen = IFQ_MAXLEN;
134
135extern	struct domain inetdomain;
136extern	struct protosw inetsw[];
137u_char	ip_protox[IPPROTO_MAX];
138struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
139struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
140u_long 	in_ifaddrhmask;				/* mask for hash table */
141
142SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
143    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
144SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
145    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
146
147struct ipstat ipstat;
148SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
149    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
150
151/*
152 * IP datagram reassembly.
153 */
154#define IPREASS_NHASH_LOG2      6
155#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
156#define IPREASS_HMASK           (IPREASS_NHASH - 1)
157#define IPREASS_HASH(x,y) \
158	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
159
160static uma_zone_t ipq_zone;
161static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
162static struct mtx ipqlock;
163
164#define	IPQ_LOCK()	mtx_lock(&ipqlock)
165#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
166#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
167#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
168
169static void	maxnipq_update(void);
170static void	ipq_zone_change(void *);
171
172static int	maxnipq;	/* Administrative limit on # reass queues. */
173static int	nipq = 0;	/* Total # of reass queues */
174SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
175	"Current number of IPv4 fragment reassembly queue entries");
176
177static int	maxfragsperpacket;
178SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
179	&maxfragsperpacket, 0,
180	"Maximum number of IPv4 fragments allowed per packet");
181
182struct callout	ipport_tick_callout;
183
184#ifdef IPCTL_DEFMTU
185SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
186    &ip_mtu, 0, "Default MTU");
187#endif
188
189#ifdef IPSTEALTH
190int	ipstealth = 0;
191SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
192    &ipstealth, 0, "");
193#endif
194
195/*
196 * ipfw_ether and ipfw_bridge hooks.
197 * XXX: Temporary until those are converted to pfil_hooks as well.
198 */
199ip_fw_chk_t *ip_fw_chk_ptr = NULL;
200ip_dn_io_t *ip_dn_io_ptr = NULL;
201int fw_one_pass = 1;
202
203static void	ip_freef(struct ipqhead *, struct ipq *);
204
205/*
206 * IP initialization: fill in IP protocol switch table.
207 * All protocols not implemented in kernel go to raw IP protocol handler.
208 */
209void
210ip_init()
211{
212	register struct protosw *pr;
213	register int i;
214
215	TAILQ_INIT(&in_ifaddrhead);
216	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
217	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
218	if (pr == NULL)
219		panic("ip_init: PF_INET not found");
220
221	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
222	for (i = 0; i < IPPROTO_MAX; i++)
223		ip_protox[i] = pr - inetsw;
224	/*
225	 * Cycle through IP protocols and put them into the appropriate place
226	 * in ip_protox[].
227	 */
228	for (pr = inetdomain.dom_protosw;
229	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
230		if (pr->pr_domain->dom_family == PF_INET &&
231		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
232			/* Be careful to only index valid IP protocols. */
233			if (pr->pr_protocol < IPPROTO_MAX)
234				ip_protox[pr->pr_protocol] = pr - inetsw;
235		}
236
237	/* Initialize packet filter hooks. */
238	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
239	inet_pfil_hook.ph_af = AF_INET;
240	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
241		printf("%s: WARNING: unable to register pfil hook, "
242			"error %d\n", __func__, i);
243
244	/* Initialize IP reassembly queue. */
245	IPQ_LOCK_INIT();
246	for (i = 0; i < IPREASS_NHASH; i++)
247	    TAILQ_INIT(&ipq[i]);
248	maxnipq = nmbclusters / 32;
249	maxfragsperpacket = 16;
250	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
251	    NULL, UMA_ALIGN_PTR, 0);
252	maxnipq_update();
253
254	/* Start ipport_tick. */
255	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
256	ipport_tick(NULL);
257	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
258		SHUTDOWN_PRI_DEFAULT);
259	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
260		NULL, EVENTHANDLER_PRI_ANY);
261
262	/* Initialize various other remaining things. */
263	ip_id = time_second & 0xffff;
264	ipintrq.ifq_maxlen = ipqmaxlen;
265	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
266	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
267}
268
269void ip_fini(xtp)
270	void *xtp;
271{
272	callout_stop(&ipport_tick_callout);
273}
274
275/*
276 * Ip input routine.  Checksum and byte swap header.  If fragmented
277 * try to reassemble.  Process options.  Pass to next level.
278 */
279void
280ip_input(struct mbuf *m)
281{
282	struct ip *ip = NULL;
283	struct in_ifaddr *ia = NULL;
284	struct ifaddr *ifa;
285	int    checkif, hlen = 0;
286	u_short sum;
287	int dchg = 0;				/* dest changed after fw */
288	struct in_addr odst;			/* original dst address */
289
290  	M_ASSERTPKTHDR(m);
291
292	if (m->m_flags & M_FASTFWD_OURS) {
293		/*
294		 * Firewall or NAT changed destination to local.
295		 * We expect ip_len and ip_off to be in host byte order.
296		 */
297		m->m_flags &= ~M_FASTFWD_OURS;
298		/* Set up some basics that will be used later. */
299		ip = mtod(m, struct ip *);
300		hlen = ip->ip_hl << 2;
301  		goto ours;
302  	}
303
304	ipstat.ips_total++;
305
306	if (m->m_pkthdr.len < sizeof(struct ip))
307		goto tooshort;
308
309	if (m->m_len < sizeof (struct ip) &&
310	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
311		ipstat.ips_toosmall++;
312		return;
313	}
314	ip = mtod(m, struct ip *);
315
316	if (ip->ip_v != IPVERSION) {
317		ipstat.ips_badvers++;
318		goto bad;
319	}
320
321	hlen = ip->ip_hl << 2;
322	if (hlen < sizeof(struct ip)) {	/* minimum header length */
323		ipstat.ips_badhlen++;
324		goto bad;
325	}
326	if (hlen > m->m_len) {
327		if ((m = m_pullup(m, hlen)) == NULL) {
328			ipstat.ips_badhlen++;
329			return;
330		}
331		ip = mtod(m, struct ip *);
332	}
333
334	/* 127/8 must not appear on wire - RFC1122 */
335	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
336	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
337		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
338			ipstat.ips_badaddr++;
339			goto bad;
340		}
341	}
342
343	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
344		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
345	} else {
346		if (hlen == sizeof(struct ip)) {
347			sum = in_cksum_hdr(ip);
348		} else {
349			sum = in_cksum(m, hlen);
350		}
351	}
352	if (sum) {
353		ipstat.ips_badsum++;
354		goto bad;
355	}
356
357#ifdef ALTQ
358	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
359		/* packet is dropped by traffic conditioner */
360		return;
361#endif
362
363	/*
364	 * Convert fields to host representation.
365	 */
366	ip->ip_len = ntohs(ip->ip_len);
367	if (ip->ip_len < hlen) {
368		ipstat.ips_badlen++;
369		goto bad;
370	}
371	ip->ip_off = ntohs(ip->ip_off);
372
373	/*
374	 * Check that the amount of data in the buffers
375	 * is as at least much as the IP header would have us expect.
376	 * Trim mbufs if longer than we expect.
377	 * Drop packet if shorter than we expect.
378	 */
379	if (m->m_pkthdr.len < ip->ip_len) {
380tooshort:
381		ipstat.ips_tooshort++;
382		goto bad;
383	}
384	if (m->m_pkthdr.len > ip->ip_len) {
385		if (m->m_len == m->m_pkthdr.len) {
386			m->m_len = ip->ip_len;
387			m->m_pkthdr.len = ip->ip_len;
388		} else
389			m_adj(m, ip->ip_len - m->m_pkthdr.len);
390	}
391#if defined(IPSEC) || defined(FAST_IPSEC)
392	/*
393	 * Bypass packet filtering for packets from a tunnel (gif).
394	 */
395	if (ip_ipsec_filtergif(m))
396		goto passin;
397#endif /* IPSEC */
398
399	/*
400	 * Run through list of hooks for input packets.
401	 *
402	 * NB: Beware of the destination address changing (e.g.
403	 *     by NAT rewriting).  When this happens, tell
404	 *     ip_forward to do the right thing.
405	 */
406
407	/* Jump over all PFIL processing if hooks are not active. */
408	if (!PFIL_HOOKED(&inet_pfil_hook))
409		goto passin;
410
411	odst = ip->ip_dst;
412	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
413	    PFIL_IN, NULL) != 0)
414		return;
415	if (m == NULL)			/* consumed by filter */
416		return;
417
418	ip = mtod(m, struct ip *);
419	dchg = (odst.s_addr != ip->ip_dst.s_addr);
420
421#ifdef IPFIREWALL_FORWARD
422	if (m->m_flags & M_FASTFWD_OURS) {
423		m->m_flags &= ~M_FASTFWD_OURS;
424		goto ours;
425	}
426	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
427		/*
428		 * Directly ship on the packet.  This allows to forward packets
429		 * that were destined for us to some other directly connected
430		 * host.
431		 */
432		ip_forward(m, dchg);
433		return;
434	}
435#endif /* IPFIREWALL_FORWARD */
436
437passin:
438	/*
439	 * Process options and, if not destined for us,
440	 * ship it on.  ip_dooptions returns 1 when an
441	 * error was detected (causing an icmp message
442	 * to be sent and the original packet to be freed).
443	 */
444	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
445		return;
446
447        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
448         * matter if it is destined to another node, or whether it is
449         * a multicast one, RSVP wants it! and prevents it from being forwarded
450         * anywhere else. Also checks if the rsvp daemon is running before
451	 * grabbing the packet.
452         */
453	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
454		goto ours;
455
456	/*
457	 * Check our list of addresses, to see if the packet is for us.
458	 * If we don't have any addresses, assume any unicast packet
459	 * we receive might be for us (and let the upper layers deal
460	 * with it).
461	 */
462	if (TAILQ_EMPTY(&in_ifaddrhead) &&
463	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
464		goto ours;
465
466	/*
467	 * Enable a consistency check between the destination address
468	 * and the arrival interface for a unicast packet (the RFC 1122
469	 * strong ES model) if IP forwarding is disabled and the packet
470	 * is not locally generated and the packet is not subject to
471	 * 'ipfw fwd'.
472	 *
473	 * XXX - Checking also should be disabled if the destination
474	 * address is ipnat'ed to a different interface.
475	 *
476	 * XXX - Checking is incompatible with IP aliases added
477	 * to the loopback interface instead of the interface where
478	 * the packets are received.
479	 *
480	 * XXX - This is the case for carp vhost IPs as well so we
481	 * insert a workaround. If the packet got here, we already
482	 * checked with carp_iamatch() and carp_forus().
483	 */
484	checkif = ip_checkinterface && (ipforwarding == 0) &&
485	    m->m_pkthdr.rcvif != NULL &&
486	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
487#ifdef DEV_CARP
488	    !m->m_pkthdr.rcvif->if_carp &&
489#endif
490	    (dchg == 0);
491
492	/*
493	 * Check for exact addresses in the hash bucket.
494	 */
495	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
496		/*
497		 * If the address matches, verify that the packet
498		 * arrived via the correct interface if checking is
499		 * enabled.
500		 */
501		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
502		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
503			goto ours;
504	}
505	/*
506	 * Check for broadcast addresses.
507	 *
508	 * Only accept broadcast packets that arrive via the matching
509	 * interface.  Reception of forwarded directed broadcasts would
510	 * be handled via ip_forward() and ether_output() with the loopback
511	 * into the stack for SIMPLEX interfaces handled by ether_output().
512	 */
513	if (m->m_pkthdr.rcvif != NULL &&
514	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
515	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
516			if (ifa->ifa_addr->sa_family != AF_INET)
517				continue;
518			ia = ifatoia(ifa);
519			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
520			    ip->ip_dst.s_addr)
521				goto ours;
522			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
523				goto ours;
524#ifdef BOOTP_COMPAT
525			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
526				goto ours;
527#endif
528		}
529	}
530	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
531		struct in_multi *inm;
532		if (ip_mrouter) {
533			/*
534			 * If we are acting as a multicast router, all
535			 * incoming multicast packets are passed to the
536			 * kernel-level multicast forwarding function.
537			 * The packet is returned (relatively) intact; if
538			 * ip_mforward() returns a non-zero value, the packet
539			 * must be discarded, else it may be accepted below.
540			 */
541			if (ip_mforward &&
542			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
543				ipstat.ips_cantforward++;
544				m_freem(m);
545				return;
546			}
547
548			/*
549			 * The process-level routing daemon needs to receive
550			 * all multicast IGMP packets, whether or not this
551			 * host belongs to their destination groups.
552			 */
553			if (ip->ip_p == IPPROTO_IGMP)
554				goto ours;
555			ipstat.ips_forward++;
556		}
557		/*
558		 * See if we belong to the destination multicast group on the
559		 * arrival interface.
560		 */
561		IN_MULTI_LOCK();
562		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
563		IN_MULTI_UNLOCK();
564		if (inm == NULL) {
565			ipstat.ips_notmember++;
566			m_freem(m);
567			return;
568		}
569		goto ours;
570	}
571	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
572		goto ours;
573	if (ip->ip_dst.s_addr == INADDR_ANY)
574		goto ours;
575
576	/*
577	 * FAITH(Firewall Aided Internet Translator)
578	 */
579	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
580		if (ip_keepfaith) {
581			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
582				goto ours;
583		}
584		m_freem(m);
585		return;
586	}
587
588	/*
589	 * Not for us; forward if possible and desirable.
590	 */
591	if (ipforwarding == 0) {
592		ipstat.ips_cantforward++;
593		m_freem(m);
594	} else {
595#if defined(IPSEC) || defined(FAST_IPSEC)
596		if (ip_ipsec_fwd(m))
597			goto bad;
598#endif /* IPSEC */
599		ip_forward(m, dchg);
600	}
601	return;
602
603ours:
604#ifdef IPSTEALTH
605	/*
606	 * IPSTEALTH: Process non-routing options only
607	 * if the packet is destined for us.
608	 */
609	if (ipstealth && hlen > sizeof (struct ip) &&
610	    ip_dooptions(m, 1))
611		return;
612#endif /* IPSTEALTH */
613
614	/* Count the packet in the ip address stats */
615	if (ia != NULL) {
616		ia->ia_ifa.if_ipackets++;
617		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
618	}
619
620	/*
621	 * Attempt reassembly; if it succeeds, proceed.
622	 * ip_reass() will return a different mbuf.
623	 */
624	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
625		m = ip_reass(m);
626		if (m == NULL)
627			return;
628		ip = mtod(m, struct ip *);
629		/* Get the header length of the reassembled packet */
630		hlen = ip->ip_hl << 2;
631	}
632
633	/*
634	 * Further protocols expect the packet length to be w/o the
635	 * IP header.
636	 */
637	ip->ip_len -= hlen;
638
639#if defined(IPSEC) || defined(FAST_IPSEC)
640	/*
641	 * enforce IPsec policy checking if we are seeing last header.
642	 * note that we do not visit this with protocols with pcb layer
643	 * code - like udp/tcp/raw ip.
644	 */
645	if (ip_ipsec_input(m))
646		goto bad;
647#endif /* IPSEC */
648
649	/*
650	 * Switch out to protocol's input routine.
651	 */
652	ipstat.ips_delivered++;
653
654	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
655	return;
656bad:
657	m_freem(m);
658}
659
660/*
661 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
662 * max has slightly different semantics than the sysctl, for historical
663 * reasons.
664 */
665static void
666maxnipq_update(void)
667{
668
669	/*
670	 * -1 for unlimited allocation.
671	 */
672	if (maxnipq < 0)
673		uma_zone_set_max(ipq_zone, 0);
674	/*
675	 * Positive number for specific bound.
676	 */
677	if (maxnipq > 0)
678		uma_zone_set_max(ipq_zone, maxnipq);
679	/*
680	 * Zero specifies no further fragment queue allocation -- set the
681	 * bound very low, but rely on implementation elsewhere to actually
682	 * prevent allocation and reclaim current queues.
683	 */
684	if (maxnipq == 0)
685		uma_zone_set_max(ipq_zone, 1);
686}
687
688static void
689ipq_zone_change(void *tag)
690{
691
692	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
693		maxnipq = nmbclusters / 32;
694		maxnipq_update();
695	}
696}
697
698static int
699sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
700{
701	int error, i;
702
703	i = maxnipq;
704	error = sysctl_handle_int(oidp, &i, 0, req);
705	if (error || !req->newptr)
706		return (error);
707
708	/*
709	 * XXXRW: Might be a good idea to sanity check the argument and place
710	 * an extreme upper bound.
711	 */
712	if (i < -1)
713		return (EINVAL);
714	maxnipq = i;
715	maxnipq_update();
716	return (0);
717}
718
719SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
720    NULL, 0, sysctl_maxnipq, "I",
721    "Maximum number of IPv4 fragment reassembly queue entries");
722
723/*
724 * Take incoming datagram fragment and try to reassemble it into
725 * whole datagram.  If the argument is the first fragment or one
726 * in between the function will return NULL and store the mbuf
727 * in the fragment chain.  If the argument is the last fragment
728 * the packet will be reassembled and the pointer to the new
729 * mbuf returned for further processing.  Only m_tags attached
730 * to the first packet/fragment are preserved.
731 * The IP header is *NOT* adjusted out of iplen.
732 */
733
734struct mbuf *
735ip_reass(struct mbuf *m)
736{
737	struct ip *ip;
738	struct mbuf *p, *q, *nq, *t;
739	struct ipq *fp = NULL;
740	struct ipqhead *head;
741	int i, hlen, next;
742	u_int8_t ecn, ecn0;
743	u_short hash;
744
745	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
746	if (maxnipq == 0 || maxfragsperpacket == 0) {
747		ipstat.ips_fragments++;
748		ipstat.ips_fragdropped++;
749		m_freem(m);
750		return (NULL);
751	}
752
753	ip = mtod(m, struct ip *);
754	hlen = ip->ip_hl << 2;
755
756	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
757	head = &ipq[hash];
758	IPQ_LOCK();
759
760	/*
761	 * Look for queue of fragments
762	 * of this datagram.
763	 */
764	TAILQ_FOREACH(fp, head, ipq_list)
765		if (ip->ip_id == fp->ipq_id &&
766		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
767		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
768#ifdef MAC
769		    mac_fragment_match(m, fp) &&
770#endif
771		    ip->ip_p == fp->ipq_p)
772			goto found;
773
774	fp = NULL;
775
776	/*
777	 * Attempt to trim the number of allocated fragment queues if it
778	 * exceeds the administrative limit.
779	 */
780	if ((nipq > maxnipq) && (maxnipq > 0)) {
781		/*
782		 * drop something from the tail of the current queue
783		 * before proceeding further
784		 */
785		struct ipq *q = TAILQ_LAST(head, ipqhead);
786		if (q == NULL) {   /* gak */
787			for (i = 0; i < IPREASS_NHASH; i++) {
788				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
789				if (r) {
790					ipstat.ips_fragtimeout += r->ipq_nfrags;
791					ip_freef(&ipq[i], r);
792					break;
793				}
794			}
795		} else {
796			ipstat.ips_fragtimeout += q->ipq_nfrags;
797			ip_freef(head, q);
798		}
799	}
800
801found:
802	/*
803	 * Adjust ip_len to not reflect header,
804	 * convert offset of this to bytes.
805	 */
806	ip->ip_len -= hlen;
807	if (ip->ip_off & IP_MF) {
808		/*
809		 * Make sure that fragments have a data length
810		 * that's a non-zero multiple of 8 bytes.
811		 */
812		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
813			ipstat.ips_toosmall++; /* XXX */
814			goto dropfrag;
815		}
816		m->m_flags |= M_FRAG;
817	} else
818		m->m_flags &= ~M_FRAG;
819	ip->ip_off <<= 3;
820
821
822	/*
823	 * Attempt reassembly; if it succeeds, proceed.
824	 * ip_reass() will return a different mbuf.
825	 */
826	ipstat.ips_fragments++;
827	m->m_pkthdr.header = ip;
828
829	/* Previous ip_reass() started here. */
830	/*
831	 * Presence of header sizes in mbufs
832	 * would confuse code below.
833	 */
834	m->m_data += hlen;
835	m->m_len -= hlen;
836
837	/*
838	 * If first fragment to arrive, create a reassembly queue.
839	 */
840	if (fp == NULL) {
841		fp = uma_zalloc(ipq_zone, M_NOWAIT);
842		if (fp == NULL)
843			goto dropfrag;
844#ifdef MAC
845		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
846			uma_zfree(ipq_zone, fp);
847			fp = NULL;
848			goto dropfrag;
849		}
850		mac_create_ipq(m, fp);
851#endif
852		TAILQ_INSERT_HEAD(head, fp, ipq_list);
853		nipq++;
854		fp->ipq_nfrags = 1;
855		fp->ipq_ttl = IPFRAGTTL;
856		fp->ipq_p = ip->ip_p;
857		fp->ipq_id = ip->ip_id;
858		fp->ipq_src = ip->ip_src;
859		fp->ipq_dst = ip->ip_dst;
860		fp->ipq_frags = m;
861		m->m_nextpkt = NULL;
862		goto done;
863	} else {
864		fp->ipq_nfrags++;
865#ifdef MAC
866		mac_update_ipq(m, fp);
867#endif
868	}
869
870#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
871
872	/*
873	 * Handle ECN by comparing this segment with the first one;
874	 * if CE is set, do not lose CE.
875	 * drop if CE and not-ECT are mixed for the same packet.
876	 */
877	ecn = ip->ip_tos & IPTOS_ECN_MASK;
878	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
879	if (ecn == IPTOS_ECN_CE) {
880		if (ecn0 == IPTOS_ECN_NOTECT)
881			goto dropfrag;
882		if (ecn0 != IPTOS_ECN_CE)
883			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
884	}
885	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
886		goto dropfrag;
887
888	/*
889	 * Find a segment which begins after this one does.
890	 */
891	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
892		if (GETIP(q)->ip_off > ip->ip_off)
893			break;
894
895	/*
896	 * If there is a preceding segment, it may provide some of
897	 * our data already.  If so, drop the data from the incoming
898	 * segment.  If it provides all of our data, drop us, otherwise
899	 * stick new segment in the proper place.
900	 *
901	 * If some of the data is dropped from the the preceding
902	 * segment, then it's checksum is invalidated.
903	 */
904	if (p) {
905		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
906		if (i > 0) {
907			if (i >= ip->ip_len)
908				goto dropfrag;
909			m_adj(m, i);
910			m->m_pkthdr.csum_flags = 0;
911			ip->ip_off += i;
912			ip->ip_len -= i;
913		}
914		m->m_nextpkt = p->m_nextpkt;
915		p->m_nextpkt = m;
916	} else {
917		m->m_nextpkt = fp->ipq_frags;
918		fp->ipq_frags = m;
919	}
920
921	/*
922	 * While we overlap succeeding segments trim them or,
923	 * if they are completely covered, dequeue them.
924	 */
925	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
926	     q = nq) {
927		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
928		if (i < GETIP(q)->ip_len) {
929			GETIP(q)->ip_len -= i;
930			GETIP(q)->ip_off += i;
931			m_adj(q, i);
932			q->m_pkthdr.csum_flags = 0;
933			break;
934		}
935		nq = q->m_nextpkt;
936		m->m_nextpkt = nq;
937		ipstat.ips_fragdropped++;
938		fp->ipq_nfrags--;
939		m_freem(q);
940	}
941
942	/*
943	 * Check for complete reassembly and perform frag per packet
944	 * limiting.
945	 *
946	 * Frag limiting is performed here so that the nth frag has
947	 * a chance to complete the packet before we drop the packet.
948	 * As a result, n+1 frags are actually allowed per packet, but
949	 * only n will ever be stored. (n = maxfragsperpacket.)
950	 *
951	 */
952	next = 0;
953	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
954		if (GETIP(q)->ip_off != next) {
955			if (fp->ipq_nfrags > maxfragsperpacket) {
956				ipstat.ips_fragdropped += fp->ipq_nfrags;
957				ip_freef(head, fp);
958			}
959			goto done;
960		}
961		next += GETIP(q)->ip_len;
962	}
963	/* Make sure the last packet didn't have the IP_MF flag */
964	if (p->m_flags & M_FRAG) {
965		if (fp->ipq_nfrags > maxfragsperpacket) {
966			ipstat.ips_fragdropped += fp->ipq_nfrags;
967			ip_freef(head, fp);
968		}
969		goto done;
970	}
971
972	/*
973	 * Reassembly is complete.  Make sure the packet is a sane size.
974	 */
975	q = fp->ipq_frags;
976	ip = GETIP(q);
977	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
978		ipstat.ips_toolong++;
979		ipstat.ips_fragdropped += fp->ipq_nfrags;
980		ip_freef(head, fp);
981		goto done;
982	}
983
984	/*
985	 * Concatenate fragments.
986	 */
987	m = q;
988	t = m->m_next;
989	m->m_next = NULL;
990	m_cat(m, t);
991	nq = q->m_nextpkt;
992	q->m_nextpkt = NULL;
993	for (q = nq; q != NULL; q = nq) {
994		nq = q->m_nextpkt;
995		q->m_nextpkt = NULL;
996		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
997		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
998		m_cat(m, q);
999	}
1000	/*
1001	 * In order to do checksumming faster we do 'end-around carry' here
1002	 * (and not in for{} loop), though it implies we are not going to
1003	 * reassemble more than 64k fragments.
1004	 */
1005	m->m_pkthdr.csum_data =
1006	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1007#ifdef MAC
1008	mac_create_datagram_from_ipq(fp, m);
1009	mac_destroy_ipq(fp);
1010#endif
1011
1012	/*
1013	 * Create header for new ip packet by modifying header of first
1014	 * packet;  dequeue and discard fragment reassembly header.
1015	 * Make header visible.
1016	 */
1017	ip->ip_len = (ip->ip_hl << 2) + next;
1018	ip->ip_src = fp->ipq_src;
1019	ip->ip_dst = fp->ipq_dst;
1020	TAILQ_REMOVE(head, fp, ipq_list);
1021	nipq--;
1022	uma_zfree(ipq_zone, fp);
1023	m->m_len += (ip->ip_hl << 2);
1024	m->m_data -= (ip->ip_hl << 2);
1025	/* some debugging cruft by sklower, below, will go away soon */
1026	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1027		m_fixhdr(m);
1028	ipstat.ips_reassembled++;
1029	IPQ_UNLOCK();
1030	return (m);
1031
1032dropfrag:
1033	ipstat.ips_fragdropped++;
1034	if (fp != NULL)
1035		fp->ipq_nfrags--;
1036	m_freem(m);
1037done:
1038	IPQ_UNLOCK();
1039	return (NULL);
1040
1041#undef GETIP
1042}
1043
1044/*
1045 * Free a fragment reassembly header and all
1046 * associated datagrams.
1047 */
1048static void
1049ip_freef(fhp, fp)
1050	struct ipqhead *fhp;
1051	struct ipq *fp;
1052{
1053	register struct mbuf *q;
1054
1055	IPQ_LOCK_ASSERT();
1056
1057	while (fp->ipq_frags) {
1058		q = fp->ipq_frags;
1059		fp->ipq_frags = q->m_nextpkt;
1060		m_freem(q);
1061	}
1062	TAILQ_REMOVE(fhp, fp, ipq_list);
1063	uma_zfree(ipq_zone, fp);
1064	nipq--;
1065}
1066
1067/*
1068 * IP timer processing;
1069 * if a timer expires on a reassembly
1070 * queue, discard it.
1071 */
1072void
1073ip_slowtimo()
1074{
1075	register struct ipq *fp;
1076	int i;
1077
1078	IPQ_LOCK();
1079	for (i = 0; i < IPREASS_NHASH; i++) {
1080		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1081			struct ipq *fpp;
1082
1083			fpp = fp;
1084			fp = TAILQ_NEXT(fp, ipq_list);
1085			if(--fpp->ipq_ttl == 0) {
1086				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1087				ip_freef(&ipq[i], fpp);
1088			}
1089		}
1090	}
1091	/*
1092	 * If we are over the maximum number of fragments
1093	 * (due to the limit being lowered), drain off
1094	 * enough to get down to the new limit.
1095	 */
1096	if (maxnipq >= 0 && nipq > maxnipq) {
1097		for (i = 0; i < IPREASS_NHASH; i++) {
1098			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1099				ipstat.ips_fragdropped +=
1100				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1101				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1102			}
1103		}
1104	}
1105	IPQ_UNLOCK();
1106}
1107
1108/*
1109 * Drain off all datagram fragments.
1110 */
1111void
1112ip_drain()
1113{
1114	int     i;
1115
1116	IPQ_LOCK();
1117	for (i = 0; i < IPREASS_NHASH; i++) {
1118		while(!TAILQ_EMPTY(&ipq[i])) {
1119			ipstat.ips_fragdropped +=
1120			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1121			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1122		}
1123	}
1124	IPQ_UNLOCK();
1125	in_rtqdrain();
1126}
1127
1128/*
1129 * The protocol to be inserted into ip_protox[] must be already registered
1130 * in inetsw[], either statically or through pf_proto_register().
1131 */
1132int
1133ipproto_register(u_char ipproto)
1134{
1135	struct protosw *pr;
1136
1137	/* Sanity checks. */
1138	if (ipproto == 0)
1139		return (EPROTONOSUPPORT);
1140
1141	/*
1142	 * The protocol slot must not be occupied by another protocol
1143	 * already.  An index pointing to IPPROTO_RAW is unused.
1144	 */
1145	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1146	if (pr == NULL)
1147		return (EPFNOSUPPORT);
1148	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1149		return (EEXIST);
1150
1151	/* Find the protocol position in inetsw[] and set the index. */
1152	for (pr = inetdomain.dom_protosw;
1153	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1154		if (pr->pr_domain->dom_family == PF_INET &&
1155		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1156			/* Be careful to only index valid IP protocols. */
1157			if (pr->pr_protocol < IPPROTO_MAX) {
1158				ip_protox[pr->pr_protocol] = pr - inetsw;
1159				return (0);
1160			} else
1161				return (EINVAL);
1162		}
1163	}
1164	return (EPROTONOSUPPORT);
1165}
1166
1167int
1168ipproto_unregister(u_char ipproto)
1169{
1170	struct protosw *pr;
1171
1172	/* Sanity checks. */
1173	if (ipproto == 0)
1174		return (EPROTONOSUPPORT);
1175
1176	/* Check if the protocol was indeed registered. */
1177	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1178	if (pr == NULL)
1179		return (EPFNOSUPPORT);
1180	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1181		return (ENOENT);
1182
1183	/* Reset the protocol slot to IPPROTO_RAW. */
1184	ip_protox[ipproto] = pr - inetsw;
1185	return (0);
1186}
1187
1188/*
1189 * Given address of next destination (final or next hop),
1190 * return internet address info of interface to be used to get there.
1191 */
1192struct in_ifaddr *
1193ip_rtaddr(dst)
1194	struct in_addr dst;
1195{
1196	struct route sro;
1197	struct sockaddr_in *sin;
1198	struct in_ifaddr *ifa;
1199
1200	bzero(&sro, sizeof(sro));
1201	sin = (struct sockaddr_in *)&sro.ro_dst;
1202	sin->sin_family = AF_INET;
1203	sin->sin_len = sizeof(*sin);
1204	sin->sin_addr = dst;
1205	rtalloc_ign(&sro, RTF_CLONING);
1206
1207	if (sro.ro_rt == NULL)
1208		return (NULL);
1209
1210	ifa = ifatoia(sro.ro_rt->rt_ifa);
1211	RTFREE(sro.ro_rt);
1212	return (ifa);
1213}
1214
1215u_char inetctlerrmap[PRC_NCMDS] = {
1216	0,		0,		0,		0,
1217	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1218	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1219	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1220	0,		0,		EHOSTUNREACH,	0,
1221	ENOPROTOOPT,	ECONNREFUSED
1222};
1223
1224/*
1225 * Forward a packet.  If some error occurs return the sender
1226 * an icmp packet.  Note we can't always generate a meaningful
1227 * icmp message because icmp doesn't have a large enough repertoire
1228 * of codes and types.
1229 *
1230 * If not forwarding, just drop the packet.  This could be confusing
1231 * if ipforwarding was zero but some routing protocol was advancing
1232 * us as a gateway to somewhere.  However, we must let the routing
1233 * protocol deal with that.
1234 *
1235 * The srcrt parameter indicates whether the packet is being forwarded
1236 * via a source route.
1237 */
1238void
1239ip_forward(struct mbuf *m, int srcrt)
1240{
1241	struct ip *ip = mtod(m, struct ip *);
1242	struct in_ifaddr *ia = NULL;
1243	struct mbuf *mcopy;
1244	struct in_addr dest;
1245	int error, type = 0, code = 0, mtu = 0;
1246
1247	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1248		ipstat.ips_cantforward++;
1249		m_freem(m);
1250		return;
1251	}
1252#ifdef IPSTEALTH
1253	if (!ipstealth) {
1254#endif
1255		if (ip->ip_ttl <= IPTTLDEC) {
1256			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1257			    0, 0);
1258			return;
1259		}
1260#ifdef IPSTEALTH
1261	}
1262#endif
1263
1264	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1265		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1266		return;
1267	}
1268
1269	/*
1270	 * Save the IP header and at most 8 bytes of the payload,
1271	 * in case we need to generate an ICMP message to the src.
1272	 *
1273	 * XXX this can be optimized a lot by saving the data in a local
1274	 * buffer on the stack (72 bytes at most), and only allocating the
1275	 * mbuf if really necessary. The vast majority of the packets
1276	 * are forwarded without having to send an ICMP back (either
1277	 * because unnecessary, or because rate limited), so we are
1278	 * really we are wasting a lot of work here.
1279	 *
1280	 * We don't use m_copy() because it might return a reference
1281	 * to a shared cluster. Both this function and ip_output()
1282	 * assume exclusive access to the IP header in `m', so any
1283	 * data in a cluster may change before we reach icmp_error().
1284	 */
1285	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1286	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1287		/*
1288		 * It's probably ok if the pkthdr dup fails (because
1289		 * the deep copy of the tag chain failed), but for now
1290		 * be conservative and just discard the copy since
1291		 * code below may some day want the tags.
1292		 */
1293		m_free(mcopy);
1294		mcopy = NULL;
1295	}
1296	if (mcopy != NULL) {
1297		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1298		mcopy->m_pkthdr.len = mcopy->m_len;
1299		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1300	}
1301
1302#ifdef IPSTEALTH
1303	if (!ipstealth) {
1304#endif
1305		ip->ip_ttl -= IPTTLDEC;
1306#ifdef IPSTEALTH
1307	}
1308#endif
1309
1310	/*
1311	 * If forwarding packet using same interface that it came in on,
1312	 * perhaps should send a redirect to sender to shortcut a hop.
1313	 * Only send redirect if source is sending directly to us,
1314	 * and if packet was not source routed (or has any options).
1315	 * Also, don't send redirect if forwarding using a default route
1316	 * or a route modified by a redirect.
1317	 */
1318	dest.s_addr = 0;
1319	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1320		struct sockaddr_in *sin;
1321		struct route ro;
1322		struct rtentry *rt;
1323
1324		bzero(&ro, sizeof(ro));
1325		sin = (struct sockaddr_in *)&ro.ro_dst;
1326		sin->sin_family = AF_INET;
1327		sin->sin_len = sizeof(*sin);
1328		sin->sin_addr = ip->ip_dst;
1329		rtalloc_ign(&ro, RTF_CLONING);
1330
1331		rt = ro.ro_rt;
1332
1333		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1334		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1335#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1336			u_long src = ntohl(ip->ip_src.s_addr);
1337
1338			if (RTA(rt) &&
1339			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1340				if (rt->rt_flags & RTF_GATEWAY)
1341					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1342				else
1343					dest.s_addr = ip->ip_dst.s_addr;
1344				/* Router requirements says to only send host redirects */
1345				type = ICMP_REDIRECT;
1346				code = ICMP_REDIRECT_HOST;
1347			}
1348		}
1349		if (rt)
1350			RTFREE(rt);
1351	}
1352
1353	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1354	if (error)
1355		ipstat.ips_cantforward++;
1356	else {
1357		ipstat.ips_forward++;
1358		if (type)
1359			ipstat.ips_redirectsent++;
1360		else {
1361			if (mcopy)
1362				m_freem(mcopy);
1363			return;
1364		}
1365	}
1366	if (mcopy == NULL)
1367		return;
1368
1369	switch (error) {
1370
1371	case 0:				/* forwarded, but need redirect */
1372		/* type, code set above */
1373		break;
1374
1375	case ENETUNREACH:		/* shouldn't happen, checked above */
1376	case EHOSTUNREACH:
1377	case ENETDOWN:
1378	case EHOSTDOWN:
1379	default:
1380		type = ICMP_UNREACH;
1381		code = ICMP_UNREACH_HOST;
1382		break;
1383
1384	case EMSGSIZE:
1385		type = ICMP_UNREACH;
1386		code = ICMP_UNREACH_NEEDFRAG;
1387
1388#if defined(IPSEC) || defined(FAST_IPSEC)
1389		mtu = ip_ipsec_mtu(m);
1390#endif /* IPSEC */
1391		/*
1392		 * If the MTU wasn't set before use the interface mtu or
1393		 * fall back to the next smaller mtu step compared to the
1394		 * current packet size.
1395		 */
1396		if (mtu == 0) {
1397			if (ia != NULL)
1398				mtu = ia->ia_ifp->if_mtu;
1399			else
1400				mtu = ip_next_mtu(ip->ip_len, 0);
1401		}
1402		ipstat.ips_cantfrag++;
1403		break;
1404
1405	case ENOBUFS:
1406		/*
1407		 * A router should not generate ICMP_SOURCEQUENCH as
1408		 * required in RFC1812 Requirements for IP Version 4 Routers.
1409		 * Source quench could be a big problem under DoS attacks,
1410		 * or if the underlying interface is rate-limited.
1411		 * Those who need source quench packets may re-enable them
1412		 * via the net.inet.ip.sendsourcequench sysctl.
1413		 */
1414		if (ip_sendsourcequench == 0) {
1415			m_freem(mcopy);
1416			return;
1417		} else {
1418			type = ICMP_SOURCEQUENCH;
1419			code = 0;
1420		}
1421		break;
1422
1423	case EACCES:			/* ipfw denied packet */
1424		m_freem(mcopy);
1425		return;
1426	}
1427	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1428}
1429
1430void
1431ip_savecontrol(inp, mp, ip, m)
1432	register struct inpcb *inp;
1433	register struct mbuf **mp;
1434	register struct ip *ip;
1435	register struct mbuf *m;
1436{
1437	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1438		struct bintime bt;
1439
1440		bintime(&bt);
1441		if (inp->inp_socket->so_options & SO_BINTIME) {
1442			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1443			SCM_BINTIME, SOL_SOCKET);
1444			if (*mp)
1445				mp = &(*mp)->m_next;
1446		}
1447		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1448			struct timeval tv;
1449
1450			bintime2timeval(&bt, &tv);
1451			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1452				SCM_TIMESTAMP, SOL_SOCKET);
1453			if (*mp)
1454				mp = &(*mp)->m_next;
1455		}
1456	}
1457	if (inp->inp_flags & INP_RECVDSTADDR) {
1458		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1459		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1460		if (*mp)
1461			mp = &(*mp)->m_next;
1462	}
1463	if (inp->inp_flags & INP_RECVTTL) {
1464		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1465		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1466		if (*mp)
1467			mp = &(*mp)->m_next;
1468	}
1469#ifdef notyet
1470	/* XXX
1471	 * Moving these out of udp_input() made them even more broken
1472	 * than they already were.
1473	 */
1474	/* options were tossed already */
1475	if (inp->inp_flags & INP_RECVOPTS) {
1476		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1477		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1478		if (*mp)
1479			mp = &(*mp)->m_next;
1480	}
1481	/* ip_srcroute doesn't do what we want here, need to fix */
1482	if (inp->inp_flags & INP_RECVRETOPTS) {
1483		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1484		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1485		if (*mp)
1486			mp = &(*mp)->m_next;
1487	}
1488#endif
1489	if (inp->inp_flags & INP_RECVIF) {
1490		struct ifnet *ifp;
1491		struct sdlbuf {
1492			struct sockaddr_dl sdl;
1493			u_char	pad[32];
1494		} sdlbuf;
1495		struct sockaddr_dl *sdp;
1496		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1497
1498		if (((ifp = m->m_pkthdr.rcvif))
1499		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1500			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1501			/*
1502			 * Change our mind and don't try copy.
1503			 */
1504			if ((sdp->sdl_family != AF_LINK)
1505			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1506				goto makedummy;
1507			}
1508			bcopy(sdp, sdl2, sdp->sdl_len);
1509		} else {
1510makedummy:
1511			sdl2->sdl_len
1512				= offsetof(struct sockaddr_dl, sdl_data[0]);
1513			sdl2->sdl_family = AF_LINK;
1514			sdl2->sdl_index = 0;
1515			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1516		}
1517		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1518			IP_RECVIF, IPPROTO_IP);
1519		if (*mp)
1520			mp = &(*mp)->m_next;
1521	}
1522}
1523
1524/*
1525 * XXX these routines are called from the upper part of the kernel.
1526 * They need to be locked when we remove Giant.
1527 *
1528 * They could also be moved to ip_mroute.c, since all the RSVP
1529 *  handling is done there already.
1530 */
1531static int ip_rsvp_on;
1532struct socket *ip_rsvpd;
1533int
1534ip_rsvp_init(struct socket *so)
1535{
1536	if (so->so_type != SOCK_RAW ||
1537	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1538		return EOPNOTSUPP;
1539
1540	if (ip_rsvpd != NULL)
1541		return EADDRINUSE;
1542
1543	ip_rsvpd = so;
1544	/*
1545	 * This may seem silly, but we need to be sure we don't over-increment
1546	 * the RSVP counter, in case something slips up.
1547	 */
1548	if (!ip_rsvp_on) {
1549		ip_rsvp_on = 1;
1550		rsvp_on++;
1551	}
1552
1553	return 0;
1554}
1555
1556int
1557ip_rsvp_done(void)
1558{
1559	ip_rsvpd = NULL;
1560	/*
1561	 * This may seem silly, but we need to be sure we don't over-decrement
1562	 * the RSVP counter, in case something slips up.
1563	 */
1564	if (ip_rsvp_on) {
1565		ip_rsvp_on = 0;
1566		rsvp_on--;
1567	}
1568	return 0;
1569}
1570
1571void
1572rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1573{
1574	if (rsvp_input_p) { /* call the real one if loaded */
1575		rsvp_input_p(m, off);
1576		return;
1577	}
1578
1579	/* Can still get packets with rsvp_on = 0 if there is a local member
1580	 * of the group to which the RSVP packet is addressed.  But in this
1581	 * case we want to throw the packet away.
1582	 */
1583
1584	if (!rsvp_on) {
1585		m_freem(m);
1586		return;
1587	}
1588
1589	if (ip_rsvpd != NULL) {
1590		rip_input(m, off);
1591		return;
1592	}
1593	/* Drop the packet */
1594	m_freem(m);
1595}
1596