ip_input.c revision 163545
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 163545 2006-10-20 19:32:08Z julian $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mac.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/syslog.h>
52#include <sys/sysctl.h>
53
54#include <net/pfil.h>
55#include <net/if.h>
56#include <net/if_types.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_icmp.h>
69#include <netinet/ip_options.h>
70#include <machine/in_cksum.h>
71#ifdef DEV_CARP
72#include <netinet/ip_carp.h>
73#endif
74#if defined(IPSEC) || defined(FAST_IPSEC)
75#include <netinet/ip_ipsec.h>
76#endif /* IPSEC */
77
78#include <sys/socketvar.h>
79
80int rsvp_on = 0;
81
82int	ipforwarding = 0;
83SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
84    &ipforwarding, 0, "Enable IP forwarding between interfaces");
85
86static int	ipsendredirects = 1; /* XXX */
87SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
88    &ipsendredirects, 0, "Enable sending IP redirects");
89
90int	ip_defttl = IPDEFTTL;
91SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
92    &ip_defttl, 0, "Maximum TTL on IP packets");
93
94static int	ip_keepfaith = 0;
95SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
96	&ip_keepfaith,	0,
97	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
98
99static int	ip_sendsourcequench = 0;
100SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
101	&ip_sendsourcequench, 0,
102	"Enable the transmission of source quench packets");
103
104int	ip_do_randomid = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
106	&ip_do_randomid, 0,
107	"Assign random ip_id values");
108
109/*
110 * XXX - Setting ip_checkinterface mostly implements the receive side of
111 * the Strong ES model described in RFC 1122, but since the routing table
112 * and transmit implementation do not implement the Strong ES model,
113 * setting this to 1 results in an odd hybrid.
114 *
115 * XXX - ip_checkinterface currently must be disabled if you use ipnat
116 * to translate the destination address to another local interface.
117 *
118 * XXX - ip_checkinterface must be disabled if you add IP aliases
119 * to the loopback interface instead of the interface where the
120 * packets for those addresses are received.
121 */
122static int	ip_checkinterface = 0;
123SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
124    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
125
126struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
127
128static struct	ifqueue ipintrq;
129static int	ipqmaxlen = IFQ_MAXLEN;
130
131extern	struct domain inetdomain;
132extern	struct protosw inetsw[];
133u_char	ip_protox[IPPROTO_MAX];
134struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
135struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
136u_long 	in_ifaddrhmask;				/* mask for hash table */
137
138SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
139    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
140SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
141    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
142
143struct ipstat ipstat;
144SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
145    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
146
147/*
148 * IP datagram reassembly.
149 */
150#define IPREASS_NHASH_LOG2      6
151#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
152#define IPREASS_HMASK           (IPREASS_NHASH - 1)
153#define IPREASS_HASH(x,y) \
154	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
155
156static uma_zone_t ipq_zone;
157static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
158static struct mtx ipqlock;
159
160#define	IPQ_LOCK()	mtx_lock(&ipqlock)
161#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
162#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
163#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
164
165static void	maxnipq_update(void);
166static void	ipq_zone_change(void *);
167
168static int	maxnipq;	/* Administrative limit on # reass queues. */
169static int	nipq = 0;	/* Total # of reass queues */
170SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
171	"Current number of IPv4 fragment reassembly queue entries");
172
173static int	maxfragsperpacket;
174SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
175	&maxfragsperpacket, 0,
176	"Maximum number of IPv4 fragments allowed per packet");
177
178struct callout	ipport_tick_callout;
179
180#ifdef IPCTL_DEFMTU
181SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
182    &ip_mtu, 0, "Default MTU");
183#endif
184
185#ifdef IPSTEALTH
186int	ipstealth = 0;
187SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
188    &ipstealth, 0, "");
189#endif
190
191static void	ip_freef(struct ipqhead *, struct ipq *);
192
193/*
194 * IP initialization: fill in IP protocol switch table.
195 * All protocols not implemented in kernel go to raw IP protocol handler.
196 */
197void
198ip_init()
199{
200	register struct protosw *pr;
201	register int i;
202
203	TAILQ_INIT(&in_ifaddrhead);
204	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
205	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
206	if (pr == NULL)
207		panic("ip_init: PF_INET not found");
208
209	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
210	for (i = 0; i < IPPROTO_MAX; i++)
211		ip_protox[i] = pr - inetsw;
212	/*
213	 * Cycle through IP protocols and put them into the appropriate place
214	 * in ip_protox[].
215	 */
216	for (pr = inetdomain.dom_protosw;
217	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
218		if (pr->pr_domain->dom_family == PF_INET &&
219		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
220			/* Be careful to only index valid IP protocols. */
221			if (pr->pr_protocol < IPPROTO_MAX)
222				ip_protox[pr->pr_protocol] = pr - inetsw;
223		}
224
225	/* Initialize packet filter hooks. */
226	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
227	inet_pfil_hook.ph_af = AF_INET;
228	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
229		printf("%s: WARNING: unable to register pfil hook, "
230			"error %d\n", __func__, i);
231
232	/* Initialize IP reassembly queue. */
233	IPQ_LOCK_INIT();
234	for (i = 0; i < IPREASS_NHASH; i++)
235	    TAILQ_INIT(&ipq[i]);
236	maxnipq = nmbclusters / 32;
237	maxfragsperpacket = 16;
238	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
239	    NULL, UMA_ALIGN_PTR, 0);
240	maxnipq_update();
241
242	/* Start ipport_tick. */
243	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
244	ipport_tick(NULL);
245	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
246		SHUTDOWN_PRI_DEFAULT);
247	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
248		NULL, EVENTHANDLER_PRI_ANY);
249
250	/* Initialize various other remaining things. */
251	ip_id = time_second & 0xffff;
252	ipintrq.ifq_maxlen = ipqmaxlen;
253	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
254	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
255}
256
257void ip_fini(xtp)
258	void *xtp;
259{
260	callout_stop(&ipport_tick_callout);
261}
262
263/*
264 * Ip input routine.  Checksum and byte swap header.  If fragmented
265 * try to reassemble.  Process options.  Pass to next level.
266 */
267void
268ip_input(struct mbuf *m)
269{
270	struct ip *ip = NULL;
271	struct in_ifaddr *ia = NULL;
272	struct ifaddr *ifa;
273	int    checkif, hlen = 0;
274	u_short sum;
275	int dchg = 0;				/* dest changed after fw */
276	struct in_addr odst;			/* original dst address */
277
278  	M_ASSERTPKTHDR(m);
279
280	if (m->m_flags & M_FASTFWD_OURS) {
281		/*
282		 * Firewall or NAT changed destination to local.
283		 * We expect ip_len and ip_off to be in host byte order.
284		 */
285		m->m_flags &= ~M_FASTFWD_OURS;
286		/* Set up some basics that will be used later. */
287		ip = mtod(m, struct ip *);
288		hlen = ip->ip_hl << 2;
289  		goto ours;
290  	}
291
292	ipstat.ips_total++;
293
294	if (m->m_pkthdr.len < sizeof(struct ip))
295		goto tooshort;
296
297	if (m->m_len < sizeof (struct ip) &&
298	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
299		ipstat.ips_toosmall++;
300		return;
301	}
302	ip = mtod(m, struct ip *);
303
304	if (ip->ip_v != IPVERSION) {
305		ipstat.ips_badvers++;
306		goto bad;
307	}
308
309	hlen = ip->ip_hl << 2;
310	if (hlen < sizeof(struct ip)) {	/* minimum header length */
311		ipstat.ips_badhlen++;
312		goto bad;
313	}
314	if (hlen > m->m_len) {
315		if ((m = m_pullup(m, hlen)) == NULL) {
316			ipstat.ips_badhlen++;
317			return;
318		}
319		ip = mtod(m, struct ip *);
320	}
321
322	/* 127/8 must not appear on wire - RFC1122 */
323	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
324	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
325		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
326			ipstat.ips_badaddr++;
327			goto bad;
328		}
329	}
330
331	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
332		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
333	} else {
334		if (hlen == sizeof(struct ip)) {
335			sum = in_cksum_hdr(ip);
336		} else {
337			sum = in_cksum(m, hlen);
338		}
339	}
340	if (sum) {
341		ipstat.ips_badsum++;
342		goto bad;
343	}
344
345#ifdef ALTQ
346	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
347		/* packet is dropped by traffic conditioner */
348		return;
349#endif
350
351	/*
352	 * Convert fields to host representation.
353	 */
354	ip->ip_len = ntohs(ip->ip_len);
355	if (ip->ip_len < hlen) {
356		ipstat.ips_badlen++;
357		goto bad;
358	}
359	ip->ip_off = ntohs(ip->ip_off);
360
361	/*
362	 * Check that the amount of data in the buffers
363	 * is as at least much as the IP header would have us expect.
364	 * Trim mbufs if longer than we expect.
365	 * Drop packet if shorter than we expect.
366	 */
367	if (m->m_pkthdr.len < ip->ip_len) {
368tooshort:
369		ipstat.ips_tooshort++;
370		goto bad;
371	}
372	if (m->m_pkthdr.len > ip->ip_len) {
373		if (m->m_len == m->m_pkthdr.len) {
374			m->m_len = ip->ip_len;
375			m->m_pkthdr.len = ip->ip_len;
376		} else
377			m_adj(m, ip->ip_len - m->m_pkthdr.len);
378	}
379#if defined(IPSEC) || defined(FAST_IPSEC)
380	/*
381	 * Bypass packet filtering for packets from a tunnel (gif).
382	 */
383	if (ip_ipsec_filtergif(m))
384		goto passin;
385#endif /* IPSEC */
386
387	/*
388	 * Run through list of hooks for input packets.
389	 *
390	 * NB: Beware of the destination address changing (e.g.
391	 *     by NAT rewriting).  When this happens, tell
392	 *     ip_forward to do the right thing.
393	 */
394
395	/* Jump over all PFIL processing if hooks are not active. */
396	if (!PFIL_HOOKED(&inet_pfil_hook))
397		goto passin;
398
399	odst = ip->ip_dst;
400	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
401	    PFIL_IN, NULL) != 0)
402		return;
403	if (m == NULL)			/* consumed by filter */
404		return;
405
406	ip = mtod(m, struct ip *);
407	dchg = (odst.s_addr != ip->ip_dst.s_addr);
408
409#ifdef IPFIREWALL_FORWARD
410	if (m->m_flags & M_FASTFWD_OURS) {
411		m->m_flags &= ~M_FASTFWD_OURS;
412		goto ours;
413	}
414	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
415		/*
416		 * Directly ship on the packet.  This allows to forward packets
417		 * that were destined for us to some other directly connected
418		 * host.
419		 */
420		ip_forward(m, dchg);
421		return;
422	}
423#endif /* IPFIREWALL_FORWARD */
424
425passin:
426	/*
427	 * Process options and, if not destined for us,
428	 * ship it on.  ip_dooptions returns 1 when an
429	 * error was detected (causing an icmp message
430	 * to be sent and the original packet to be freed).
431	 */
432	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
433		return;
434
435        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
436         * matter if it is destined to another node, or whether it is
437         * a multicast one, RSVP wants it! and prevents it from being forwarded
438         * anywhere else. Also checks if the rsvp daemon is running before
439	 * grabbing the packet.
440         */
441	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
442		goto ours;
443
444	/*
445	 * Check our list of addresses, to see if the packet is for us.
446	 * If we don't have any addresses, assume any unicast packet
447	 * we receive might be for us (and let the upper layers deal
448	 * with it).
449	 */
450	if (TAILQ_EMPTY(&in_ifaddrhead) &&
451	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
452		goto ours;
453
454	/*
455	 * Enable a consistency check between the destination address
456	 * and the arrival interface for a unicast packet (the RFC 1122
457	 * strong ES model) if IP forwarding is disabled and the packet
458	 * is not locally generated and the packet is not subject to
459	 * 'ipfw fwd'.
460	 *
461	 * XXX - Checking also should be disabled if the destination
462	 * address is ipnat'ed to a different interface.
463	 *
464	 * XXX - Checking is incompatible with IP aliases added
465	 * to the loopback interface instead of the interface where
466	 * the packets are received.
467	 *
468	 * XXX - This is the case for carp vhost IPs as well so we
469	 * insert a workaround. If the packet got here, we already
470	 * checked with carp_iamatch() and carp_forus().
471	 */
472	checkif = ip_checkinterface && (ipforwarding == 0) &&
473	    m->m_pkthdr.rcvif != NULL &&
474	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
475#ifdef DEV_CARP
476	    !m->m_pkthdr.rcvif->if_carp &&
477#endif
478	    (dchg == 0);
479
480	/*
481	 * Check for exact addresses in the hash bucket.
482	 */
483	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
484		/*
485		 * If the address matches, verify that the packet
486		 * arrived via the correct interface if checking is
487		 * enabled.
488		 */
489		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
490		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
491			goto ours;
492	}
493	/*
494	 * Check for broadcast addresses.
495	 *
496	 * Only accept broadcast packets that arrive via the matching
497	 * interface.  Reception of forwarded directed broadcasts would
498	 * be handled via ip_forward() and ether_output() with the loopback
499	 * into the stack for SIMPLEX interfaces handled by ether_output().
500	 */
501	if (m->m_pkthdr.rcvif != NULL &&
502	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
503	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
504			if (ifa->ifa_addr->sa_family != AF_INET)
505				continue;
506			ia = ifatoia(ifa);
507			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
508			    ip->ip_dst.s_addr)
509				goto ours;
510			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
511				goto ours;
512#ifdef BOOTP_COMPAT
513			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
514				goto ours;
515#endif
516		}
517	}
518	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
519		struct in_multi *inm;
520		if (ip_mrouter) {
521			/*
522			 * If we are acting as a multicast router, all
523			 * incoming multicast packets are passed to the
524			 * kernel-level multicast forwarding function.
525			 * The packet is returned (relatively) intact; if
526			 * ip_mforward() returns a non-zero value, the packet
527			 * must be discarded, else it may be accepted below.
528			 */
529			if (ip_mforward &&
530			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
531				ipstat.ips_cantforward++;
532				m_freem(m);
533				return;
534			}
535
536			/*
537			 * The process-level routing daemon needs to receive
538			 * all multicast IGMP packets, whether or not this
539			 * host belongs to their destination groups.
540			 */
541			if (ip->ip_p == IPPROTO_IGMP)
542				goto ours;
543			ipstat.ips_forward++;
544		}
545		/*
546		 * See if we belong to the destination multicast group on the
547		 * arrival interface.
548		 */
549		IN_MULTI_LOCK();
550		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
551		IN_MULTI_UNLOCK();
552		if (inm == NULL) {
553			ipstat.ips_notmember++;
554			m_freem(m);
555			return;
556		}
557		goto ours;
558	}
559	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
560		goto ours;
561	if (ip->ip_dst.s_addr == INADDR_ANY)
562		goto ours;
563
564	/*
565	 * FAITH(Firewall Aided Internet Translator)
566	 */
567	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
568		if (ip_keepfaith) {
569			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
570				goto ours;
571		}
572		m_freem(m);
573		return;
574	}
575
576	/*
577	 * Not for us; forward if possible and desirable.
578	 */
579	if (ipforwarding == 0) {
580		ipstat.ips_cantforward++;
581		m_freem(m);
582	} else {
583#if defined(IPSEC) || defined(FAST_IPSEC)
584		if (ip_ipsec_fwd(m))
585			goto bad;
586#endif /* IPSEC */
587		ip_forward(m, dchg);
588	}
589	return;
590
591ours:
592#ifdef IPSTEALTH
593	/*
594	 * IPSTEALTH: Process non-routing options only
595	 * if the packet is destined for us.
596	 */
597	if (ipstealth && hlen > sizeof (struct ip) &&
598	    ip_dooptions(m, 1))
599		return;
600#endif /* IPSTEALTH */
601
602	/* Count the packet in the ip address stats */
603	if (ia != NULL) {
604		ia->ia_ifa.if_ipackets++;
605		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
606	}
607
608	/*
609	 * Attempt reassembly; if it succeeds, proceed.
610	 * ip_reass() will return a different mbuf.
611	 */
612	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
613		m = ip_reass(m);
614		if (m == NULL)
615			return;
616		ip = mtod(m, struct ip *);
617		/* Get the header length of the reassembled packet */
618		hlen = ip->ip_hl << 2;
619	}
620
621	/*
622	 * Further protocols expect the packet length to be w/o the
623	 * IP header.
624	 */
625	ip->ip_len -= hlen;
626
627#if defined(IPSEC) || defined(FAST_IPSEC)
628	/*
629	 * enforce IPsec policy checking if we are seeing last header.
630	 * note that we do not visit this with protocols with pcb layer
631	 * code - like udp/tcp/raw ip.
632	 */
633	if (ip_ipsec_input(m))
634		goto bad;
635#endif /* IPSEC */
636
637	/*
638	 * Switch out to protocol's input routine.
639	 */
640	ipstat.ips_delivered++;
641
642	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
643	return;
644bad:
645	m_freem(m);
646}
647
648/*
649 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
650 * max has slightly different semantics than the sysctl, for historical
651 * reasons.
652 */
653static void
654maxnipq_update(void)
655{
656
657	/*
658	 * -1 for unlimited allocation.
659	 */
660	if (maxnipq < 0)
661		uma_zone_set_max(ipq_zone, 0);
662	/*
663	 * Positive number for specific bound.
664	 */
665	if (maxnipq > 0)
666		uma_zone_set_max(ipq_zone, maxnipq);
667	/*
668	 * Zero specifies no further fragment queue allocation -- set the
669	 * bound very low, but rely on implementation elsewhere to actually
670	 * prevent allocation and reclaim current queues.
671	 */
672	if (maxnipq == 0)
673		uma_zone_set_max(ipq_zone, 1);
674}
675
676static void
677ipq_zone_change(void *tag)
678{
679
680	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
681		maxnipq = nmbclusters / 32;
682		maxnipq_update();
683	}
684}
685
686static int
687sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
688{
689	int error, i;
690
691	i = maxnipq;
692	error = sysctl_handle_int(oidp, &i, 0, req);
693	if (error || !req->newptr)
694		return (error);
695
696	/*
697	 * XXXRW: Might be a good idea to sanity check the argument and place
698	 * an extreme upper bound.
699	 */
700	if (i < -1)
701		return (EINVAL);
702	maxnipq = i;
703	maxnipq_update();
704	return (0);
705}
706
707SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
708    NULL, 0, sysctl_maxnipq, "I",
709    "Maximum number of IPv4 fragment reassembly queue entries");
710
711/*
712 * Take incoming datagram fragment and try to reassemble it into
713 * whole datagram.  If the argument is the first fragment or one
714 * in between the function will return NULL and store the mbuf
715 * in the fragment chain.  If the argument is the last fragment
716 * the packet will be reassembled and the pointer to the new
717 * mbuf returned for further processing.  Only m_tags attached
718 * to the first packet/fragment are preserved.
719 * The IP header is *NOT* adjusted out of iplen.
720 */
721
722struct mbuf *
723ip_reass(struct mbuf *m)
724{
725	struct ip *ip;
726	struct mbuf *p, *q, *nq, *t;
727	struct ipq *fp = NULL;
728	struct ipqhead *head;
729	int i, hlen, next;
730	u_int8_t ecn, ecn0;
731	u_short hash;
732
733	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
734	if (maxnipq == 0 || maxfragsperpacket == 0) {
735		ipstat.ips_fragments++;
736		ipstat.ips_fragdropped++;
737		m_freem(m);
738		return (NULL);
739	}
740
741	ip = mtod(m, struct ip *);
742	hlen = ip->ip_hl << 2;
743
744	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
745	head = &ipq[hash];
746	IPQ_LOCK();
747
748	/*
749	 * Look for queue of fragments
750	 * of this datagram.
751	 */
752	TAILQ_FOREACH(fp, head, ipq_list)
753		if (ip->ip_id == fp->ipq_id &&
754		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
755		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
756#ifdef MAC
757		    mac_fragment_match(m, fp) &&
758#endif
759		    ip->ip_p == fp->ipq_p)
760			goto found;
761
762	fp = NULL;
763
764	/*
765	 * Attempt to trim the number of allocated fragment queues if it
766	 * exceeds the administrative limit.
767	 */
768	if ((nipq > maxnipq) && (maxnipq > 0)) {
769		/*
770		 * drop something from the tail of the current queue
771		 * before proceeding further
772		 */
773		struct ipq *q = TAILQ_LAST(head, ipqhead);
774		if (q == NULL) {   /* gak */
775			for (i = 0; i < IPREASS_NHASH; i++) {
776				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
777				if (r) {
778					ipstat.ips_fragtimeout += r->ipq_nfrags;
779					ip_freef(&ipq[i], r);
780					break;
781				}
782			}
783		} else {
784			ipstat.ips_fragtimeout += q->ipq_nfrags;
785			ip_freef(head, q);
786		}
787	}
788
789found:
790	/*
791	 * Adjust ip_len to not reflect header,
792	 * convert offset of this to bytes.
793	 */
794	ip->ip_len -= hlen;
795	if (ip->ip_off & IP_MF) {
796		/*
797		 * Make sure that fragments have a data length
798		 * that's a non-zero multiple of 8 bytes.
799		 */
800		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
801			ipstat.ips_toosmall++; /* XXX */
802			goto dropfrag;
803		}
804		m->m_flags |= M_FRAG;
805	} else
806		m->m_flags &= ~M_FRAG;
807	ip->ip_off <<= 3;
808
809
810	/*
811	 * Attempt reassembly; if it succeeds, proceed.
812	 * ip_reass() will return a different mbuf.
813	 */
814	ipstat.ips_fragments++;
815	m->m_pkthdr.header = ip;
816
817	/* Previous ip_reass() started here. */
818	/*
819	 * Presence of header sizes in mbufs
820	 * would confuse code below.
821	 */
822	m->m_data += hlen;
823	m->m_len -= hlen;
824
825	/*
826	 * If first fragment to arrive, create a reassembly queue.
827	 */
828	if (fp == NULL) {
829		fp = uma_zalloc(ipq_zone, M_NOWAIT);
830		if (fp == NULL)
831			goto dropfrag;
832#ifdef MAC
833		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
834			uma_zfree(ipq_zone, fp);
835			fp = NULL;
836			goto dropfrag;
837		}
838		mac_create_ipq(m, fp);
839#endif
840		TAILQ_INSERT_HEAD(head, fp, ipq_list);
841		nipq++;
842		fp->ipq_nfrags = 1;
843		fp->ipq_ttl = IPFRAGTTL;
844		fp->ipq_p = ip->ip_p;
845		fp->ipq_id = ip->ip_id;
846		fp->ipq_src = ip->ip_src;
847		fp->ipq_dst = ip->ip_dst;
848		fp->ipq_frags = m;
849		m->m_nextpkt = NULL;
850		goto done;
851	} else {
852		fp->ipq_nfrags++;
853#ifdef MAC
854		mac_update_ipq(m, fp);
855#endif
856	}
857
858#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
859
860	/*
861	 * Handle ECN by comparing this segment with the first one;
862	 * if CE is set, do not lose CE.
863	 * drop if CE and not-ECT are mixed for the same packet.
864	 */
865	ecn = ip->ip_tos & IPTOS_ECN_MASK;
866	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
867	if (ecn == IPTOS_ECN_CE) {
868		if (ecn0 == IPTOS_ECN_NOTECT)
869			goto dropfrag;
870		if (ecn0 != IPTOS_ECN_CE)
871			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
872	}
873	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
874		goto dropfrag;
875
876	/*
877	 * Find a segment which begins after this one does.
878	 */
879	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
880		if (GETIP(q)->ip_off > ip->ip_off)
881			break;
882
883	/*
884	 * If there is a preceding segment, it may provide some of
885	 * our data already.  If so, drop the data from the incoming
886	 * segment.  If it provides all of our data, drop us, otherwise
887	 * stick new segment in the proper place.
888	 *
889	 * If some of the data is dropped from the the preceding
890	 * segment, then it's checksum is invalidated.
891	 */
892	if (p) {
893		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
894		if (i > 0) {
895			if (i >= ip->ip_len)
896				goto dropfrag;
897			m_adj(m, i);
898			m->m_pkthdr.csum_flags = 0;
899			ip->ip_off += i;
900			ip->ip_len -= i;
901		}
902		m->m_nextpkt = p->m_nextpkt;
903		p->m_nextpkt = m;
904	} else {
905		m->m_nextpkt = fp->ipq_frags;
906		fp->ipq_frags = m;
907	}
908
909	/*
910	 * While we overlap succeeding segments trim them or,
911	 * if they are completely covered, dequeue them.
912	 */
913	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
914	     q = nq) {
915		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
916		if (i < GETIP(q)->ip_len) {
917			GETIP(q)->ip_len -= i;
918			GETIP(q)->ip_off += i;
919			m_adj(q, i);
920			q->m_pkthdr.csum_flags = 0;
921			break;
922		}
923		nq = q->m_nextpkt;
924		m->m_nextpkt = nq;
925		ipstat.ips_fragdropped++;
926		fp->ipq_nfrags--;
927		m_freem(q);
928	}
929
930	/*
931	 * Check for complete reassembly and perform frag per packet
932	 * limiting.
933	 *
934	 * Frag limiting is performed here so that the nth frag has
935	 * a chance to complete the packet before we drop the packet.
936	 * As a result, n+1 frags are actually allowed per packet, but
937	 * only n will ever be stored. (n = maxfragsperpacket.)
938	 *
939	 */
940	next = 0;
941	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
942		if (GETIP(q)->ip_off != next) {
943			if (fp->ipq_nfrags > maxfragsperpacket) {
944				ipstat.ips_fragdropped += fp->ipq_nfrags;
945				ip_freef(head, fp);
946			}
947			goto done;
948		}
949		next += GETIP(q)->ip_len;
950	}
951	/* Make sure the last packet didn't have the IP_MF flag */
952	if (p->m_flags & M_FRAG) {
953		if (fp->ipq_nfrags > maxfragsperpacket) {
954			ipstat.ips_fragdropped += fp->ipq_nfrags;
955			ip_freef(head, fp);
956		}
957		goto done;
958	}
959
960	/*
961	 * Reassembly is complete.  Make sure the packet is a sane size.
962	 */
963	q = fp->ipq_frags;
964	ip = GETIP(q);
965	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
966		ipstat.ips_toolong++;
967		ipstat.ips_fragdropped += fp->ipq_nfrags;
968		ip_freef(head, fp);
969		goto done;
970	}
971
972	/*
973	 * Concatenate fragments.
974	 */
975	m = q;
976	t = m->m_next;
977	m->m_next = NULL;
978	m_cat(m, t);
979	nq = q->m_nextpkt;
980	q->m_nextpkt = NULL;
981	for (q = nq; q != NULL; q = nq) {
982		nq = q->m_nextpkt;
983		q->m_nextpkt = NULL;
984		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
985		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
986		m_cat(m, q);
987	}
988	/*
989	 * In order to do checksumming faster we do 'end-around carry' here
990	 * (and not in for{} loop), though it implies we are not going to
991	 * reassemble more than 64k fragments.
992	 */
993	m->m_pkthdr.csum_data =
994	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
995#ifdef MAC
996	mac_create_datagram_from_ipq(fp, m);
997	mac_destroy_ipq(fp);
998#endif
999
1000	/*
1001	 * Create header for new ip packet by modifying header of first
1002	 * packet;  dequeue and discard fragment reassembly header.
1003	 * Make header visible.
1004	 */
1005	ip->ip_len = (ip->ip_hl << 2) + next;
1006	ip->ip_src = fp->ipq_src;
1007	ip->ip_dst = fp->ipq_dst;
1008	TAILQ_REMOVE(head, fp, ipq_list);
1009	nipq--;
1010	uma_zfree(ipq_zone, fp);
1011	m->m_len += (ip->ip_hl << 2);
1012	m->m_data -= (ip->ip_hl << 2);
1013	/* some debugging cruft by sklower, below, will go away soon */
1014	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1015		m_fixhdr(m);
1016	ipstat.ips_reassembled++;
1017	IPQ_UNLOCK();
1018	return (m);
1019
1020dropfrag:
1021	ipstat.ips_fragdropped++;
1022	if (fp != NULL)
1023		fp->ipq_nfrags--;
1024	m_freem(m);
1025done:
1026	IPQ_UNLOCK();
1027	return (NULL);
1028
1029#undef GETIP
1030}
1031
1032/*
1033 * Free a fragment reassembly header and all
1034 * associated datagrams.
1035 */
1036static void
1037ip_freef(fhp, fp)
1038	struct ipqhead *fhp;
1039	struct ipq *fp;
1040{
1041	register struct mbuf *q;
1042
1043	IPQ_LOCK_ASSERT();
1044
1045	while (fp->ipq_frags) {
1046		q = fp->ipq_frags;
1047		fp->ipq_frags = q->m_nextpkt;
1048		m_freem(q);
1049	}
1050	TAILQ_REMOVE(fhp, fp, ipq_list);
1051	uma_zfree(ipq_zone, fp);
1052	nipq--;
1053}
1054
1055/*
1056 * IP timer processing;
1057 * if a timer expires on a reassembly
1058 * queue, discard it.
1059 */
1060void
1061ip_slowtimo()
1062{
1063	register struct ipq *fp;
1064	int i;
1065
1066	IPQ_LOCK();
1067	for (i = 0; i < IPREASS_NHASH; i++) {
1068		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1069			struct ipq *fpp;
1070
1071			fpp = fp;
1072			fp = TAILQ_NEXT(fp, ipq_list);
1073			if(--fpp->ipq_ttl == 0) {
1074				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1075				ip_freef(&ipq[i], fpp);
1076			}
1077		}
1078	}
1079	/*
1080	 * If we are over the maximum number of fragments
1081	 * (due to the limit being lowered), drain off
1082	 * enough to get down to the new limit.
1083	 */
1084	if (maxnipq >= 0 && nipq > maxnipq) {
1085		for (i = 0; i < IPREASS_NHASH; i++) {
1086			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1087				ipstat.ips_fragdropped +=
1088				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1089				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1090			}
1091		}
1092	}
1093	IPQ_UNLOCK();
1094}
1095
1096/*
1097 * Drain off all datagram fragments.
1098 */
1099void
1100ip_drain()
1101{
1102	int     i;
1103
1104	IPQ_LOCK();
1105	for (i = 0; i < IPREASS_NHASH; i++) {
1106		while(!TAILQ_EMPTY(&ipq[i])) {
1107			ipstat.ips_fragdropped +=
1108			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1109			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1110		}
1111	}
1112	IPQ_UNLOCK();
1113	in_rtqdrain();
1114}
1115
1116/*
1117 * The protocol to be inserted into ip_protox[] must be already registered
1118 * in inetsw[], either statically or through pf_proto_register().
1119 */
1120int
1121ipproto_register(u_char ipproto)
1122{
1123	struct protosw *pr;
1124
1125	/* Sanity checks. */
1126	if (ipproto == 0)
1127		return (EPROTONOSUPPORT);
1128
1129	/*
1130	 * The protocol slot must not be occupied by another protocol
1131	 * already.  An index pointing to IPPROTO_RAW is unused.
1132	 */
1133	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1134	if (pr == NULL)
1135		return (EPFNOSUPPORT);
1136	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1137		return (EEXIST);
1138
1139	/* Find the protocol position in inetsw[] and set the index. */
1140	for (pr = inetdomain.dom_protosw;
1141	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1142		if (pr->pr_domain->dom_family == PF_INET &&
1143		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1144			/* Be careful to only index valid IP protocols. */
1145			if (pr->pr_protocol < IPPROTO_MAX) {
1146				ip_protox[pr->pr_protocol] = pr - inetsw;
1147				return (0);
1148			} else
1149				return (EINVAL);
1150		}
1151	}
1152	return (EPROTONOSUPPORT);
1153}
1154
1155int
1156ipproto_unregister(u_char ipproto)
1157{
1158	struct protosw *pr;
1159
1160	/* Sanity checks. */
1161	if (ipproto == 0)
1162		return (EPROTONOSUPPORT);
1163
1164	/* Check if the protocol was indeed registered. */
1165	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1166	if (pr == NULL)
1167		return (EPFNOSUPPORT);
1168	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1169		return (ENOENT);
1170
1171	/* Reset the protocol slot to IPPROTO_RAW. */
1172	ip_protox[ipproto] = pr - inetsw;
1173	return (0);
1174}
1175
1176/*
1177 * Given address of next destination (final or next hop),
1178 * return internet address info of interface to be used to get there.
1179 */
1180struct in_ifaddr *
1181ip_rtaddr(dst)
1182	struct in_addr dst;
1183{
1184	struct route sro;
1185	struct sockaddr_in *sin;
1186	struct in_ifaddr *ifa;
1187
1188	bzero(&sro, sizeof(sro));
1189	sin = (struct sockaddr_in *)&sro.ro_dst;
1190	sin->sin_family = AF_INET;
1191	sin->sin_len = sizeof(*sin);
1192	sin->sin_addr = dst;
1193	rtalloc_ign(&sro, RTF_CLONING);
1194
1195	if (sro.ro_rt == NULL)
1196		return (NULL);
1197
1198	ifa = ifatoia(sro.ro_rt->rt_ifa);
1199	RTFREE(sro.ro_rt);
1200	return (ifa);
1201}
1202
1203u_char inetctlerrmap[PRC_NCMDS] = {
1204	0,		0,		0,		0,
1205	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1206	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1207	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1208	0,		0,		EHOSTUNREACH,	0,
1209	ENOPROTOOPT,	ECONNREFUSED
1210};
1211
1212/*
1213 * Forward a packet.  If some error occurs return the sender
1214 * an icmp packet.  Note we can't always generate a meaningful
1215 * icmp message because icmp doesn't have a large enough repertoire
1216 * of codes and types.
1217 *
1218 * If not forwarding, just drop the packet.  This could be confusing
1219 * if ipforwarding was zero but some routing protocol was advancing
1220 * us as a gateway to somewhere.  However, we must let the routing
1221 * protocol deal with that.
1222 *
1223 * The srcrt parameter indicates whether the packet is being forwarded
1224 * via a source route.
1225 */
1226void
1227ip_forward(struct mbuf *m, int srcrt)
1228{
1229	struct ip *ip = mtod(m, struct ip *);
1230	struct in_ifaddr *ia = NULL;
1231	struct mbuf *mcopy;
1232	struct in_addr dest;
1233	int error, type = 0, code = 0, mtu = 0;
1234
1235	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1236		ipstat.ips_cantforward++;
1237		m_freem(m);
1238		return;
1239	}
1240#ifdef IPSTEALTH
1241	if (!ipstealth) {
1242#endif
1243		if (ip->ip_ttl <= IPTTLDEC) {
1244			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1245			    0, 0);
1246			return;
1247		}
1248#ifdef IPSTEALTH
1249	}
1250#endif
1251
1252	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1253		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1254		return;
1255	}
1256
1257	/*
1258	 * Save the IP header and at most 8 bytes of the payload,
1259	 * in case we need to generate an ICMP message to the src.
1260	 *
1261	 * XXX this can be optimized a lot by saving the data in a local
1262	 * buffer on the stack (72 bytes at most), and only allocating the
1263	 * mbuf if really necessary. The vast majority of the packets
1264	 * are forwarded without having to send an ICMP back (either
1265	 * because unnecessary, or because rate limited), so we are
1266	 * really we are wasting a lot of work here.
1267	 *
1268	 * We don't use m_copy() because it might return a reference
1269	 * to a shared cluster. Both this function and ip_output()
1270	 * assume exclusive access to the IP header in `m', so any
1271	 * data in a cluster may change before we reach icmp_error().
1272	 */
1273	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1274	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1275		/*
1276		 * It's probably ok if the pkthdr dup fails (because
1277		 * the deep copy of the tag chain failed), but for now
1278		 * be conservative and just discard the copy since
1279		 * code below may some day want the tags.
1280		 */
1281		m_free(mcopy);
1282		mcopy = NULL;
1283	}
1284	if (mcopy != NULL) {
1285		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1286		mcopy->m_pkthdr.len = mcopy->m_len;
1287		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1288	}
1289
1290#ifdef IPSTEALTH
1291	if (!ipstealth) {
1292#endif
1293		ip->ip_ttl -= IPTTLDEC;
1294#ifdef IPSTEALTH
1295	}
1296#endif
1297
1298	/*
1299	 * If forwarding packet using same interface that it came in on,
1300	 * perhaps should send a redirect to sender to shortcut a hop.
1301	 * Only send redirect if source is sending directly to us,
1302	 * and if packet was not source routed (or has any options).
1303	 * Also, don't send redirect if forwarding using a default route
1304	 * or a route modified by a redirect.
1305	 */
1306	dest.s_addr = 0;
1307	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1308		struct sockaddr_in *sin;
1309		struct route ro;
1310		struct rtentry *rt;
1311
1312		bzero(&ro, sizeof(ro));
1313		sin = (struct sockaddr_in *)&ro.ro_dst;
1314		sin->sin_family = AF_INET;
1315		sin->sin_len = sizeof(*sin);
1316		sin->sin_addr = ip->ip_dst;
1317		rtalloc_ign(&ro, RTF_CLONING);
1318
1319		rt = ro.ro_rt;
1320
1321		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1322		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1323#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1324			u_long src = ntohl(ip->ip_src.s_addr);
1325
1326			if (RTA(rt) &&
1327			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1328				if (rt->rt_flags & RTF_GATEWAY)
1329					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1330				else
1331					dest.s_addr = ip->ip_dst.s_addr;
1332				/* Router requirements says to only send host redirects */
1333				type = ICMP_REDIRECT;
1334				code = ICMP_REDIRECT_HOST;
1335			}
1336		}
1337		if (rt)
1338			RTFREE(rt);
1339	}
1340
1341	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1342	if (error)
1343		ipstat.ips_cantforward++;
1344	else {
1345		ipstat.ips_forward++;
1346		if (type)
1347			ipstat.ips_redirectsent++;
1348		else {
1349			if (mcopy)
1350				m_freem(mcopy);
1351			return;
1352		}
1353	}
1354	if (mcopy == NULL)
1355		return;
1356
1357	switch (error) {
1358
1359	case 0:				/* forwarded, but need redirect */
1360		/* type, code set above */
1361		break;
1362
1363	case ENETUNREACH:		/* shouldn't happen, checked above */
1364	case EHOSTUNREACH:
1365	case ENETDOWN:
1366	case EHOSTDOWN:
1367	default:
1368		type = ICMP_UNREACH;
1369		code = ICMP_UNREACH_HOST;
1370		break;
1371
1372	case EMSGSIZE:
1373		type = ICMP_UNREACH;
1374		code = ICMP_UNREACH_NEEDFRAG;
1375
1376#if defined(IPSEC) || defined(FAST_IPSEC)
1377		mtu = ip_ipsec_mtu(m);
1378#endif /* IPSEC */
1379		/*
1380		 * If the MTU wasn't set before use the interface mtu or
1381		 * fall back to the next smaller mtu step compared to the
1382		 * current packet size.
1383		 */
1384		if (mtu == 0) {
1385			if (ia != NULL)
1386				mtu = ia->ia_ifp->if_mtu;
1387			else
1388				mtu = ip_next_mtu(ip->ip_len, 0);
1389		}
1390		ipstat.ips_cantfrag++;
1391		break;
1392
1393	case ENOBUFS:
1394		/*
1395		 * A router should not generate ICMP_SOURCEQUENCH as
1396		 * required in RFC1812 Requirements for IP Version 4 Routers.
1397		 * Source quench could be a big problem under DoS attacks,
1398		 * or if the underlying interface is rate-limited.
1399		 * Those who need source quench packets may re-enable them
1400		 * via the net.inet.ip.sendsourcequench sysctl.
1401		 */
1402		if (ip_sendsourcequench == 0) {
1403			m_freem(mcopy);
1404			return;
1405		} else {
1406			type = ICMP_SOURCEQUENCH;
1407			code = 0;
1408		}
1409		break;
1410
1411	case EACCES:			/* ipfw denied packet */
1412		m_freem(mcopy);
1413		return;
1414	}
1415	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1416}
1417
1418void
1419ip_savecontrol(inp, mp, ip, m)
1420	register struct inpcb *inp;
1421	register struct mbuf **mp;
1422	register struct ip *ip;
1423	register struct mbuf *m;
1424{
1425	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1426		struct bintime bt;
1427
1428		bintime(&bt);
1429		if (inp->inp_socket->so_options & SO_BINTIME) {
1430			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1431			SCM_BINTIME, SOL_SOCKET);
1432			if (*mp)
1433				mp = &(*mp)->m_next;
1434		}
1435		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1436			struct timeval tv;
1437
1438			bintime2timeval(&bt, &tv);
1439			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1440				SCM_TIMESTAMP, SOL_SOCKET);
1441			if (*mp)
1442				mp = &(*mp)->m_next;
1443		}
1444	}
1445	if (inp->inp_flags & INP_RECVDSTADDR) {
1446		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1447		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1448		if (*mp)
1449			mp = &(*mp)->m_next;
1450	}
1451	if (inp->inp_flags & INP_RECVTTL) {
1452		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1453		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1454		if (*mp)
1455			mp = &(*mp)->m_next;
1456	}
1457#ifdef notyet
1458	/* XXX
1459	 * Moving these out of udp_input() made them even more broken
1460	 * than they already were.
1461	 */
1462	/* options were tossed already */
1463	if (inp->inp_flags & INP_RECVOPTS) {
1464		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1465		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1466		if (*mp)
1467			mp = &(*mp)->m_next;
1468	}
1469	/* ip_srcroute doesn't do what we want here, need to fix */
1470	if (inp->inp_flags & INP_RECVRETOPTS) {
1471		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1472		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1473		if (*mp)
1474			mp = &(*mp)->m_next;
1475	}
1476#endif
1477	if (inp->inp_flags & INP_RECVIF) {
1478		struct ifnet *ifp;
1479		struct sdlbuf {
1480			struct sockaddr_dl sdl;
1481			u_char	pad[32];
1482		} sdlbuf;
1483		struct sockaddr_dl *sdp;
1484		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1485
1486		if (((ifp = m->m_pkthdr.rcvif))
1487		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1488			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1489			/*
1490			 * Change our mind and don't try copy.
1491			 */
1492			if ((sdp->sdl_family != AF_LINK)
1493			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1494				goto makedummy;
1495			}
1496			bcopy(sdp, sdl2, sdp->sdl_len);
1497		} else {
1498makedummy:
1499			sdl2->sdl_len
1500				= offsetof(struct sockaddr_dl, sdl_data[0]);
1501			sdl2->sdl_family = AF_LINK;
1502			sdl2->sdl_index = 0;
1503			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1504		}
1505		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1506			IP_RECVIF, IPPROTO_IP);
1507		if (*mp)
1508			mp = &(*mp)->m_next;
1509	}
1510}
1511
1512/*
1513 * XXX these routines are called from the upper part of the kernel.
1514 * They need to be locked when we remove Giant.
1515 *
1516 * They could also be moved to ip_mroute.c, since all the RSVP
1517 *  handling is done there already.
1518 */
1519static int ip_rsvp_on;
1520struct socket *ip_rsvpd;
1521int
1522ip_rsvp_init(struct socket *so)
1523{
1524	if (so->so_type != SOCK_RAW ||
1525	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1526		return EOPNOTSUPP;
1527
1528	if (ip_rsvpd != NULL)
1529		return EADDRINUSE;
1530
1531	ip_rsvpd = so;
1532	/*
1533	 * This may seem silly, but we need to be sure we don't over-increment
1534	 * the RSVP counter, in case something slips up.
1535	 */
1536	if (!ip_rsvp_on) {
1537		ip_rsvp_on = 1;
1538		rsvp_on++;
1539	}
1540
1541	return 0;
1542}
1543
1544int
1545ip_rsvp_done(void)
1546{
1547	ip_rsvpd = NULL;
1548	/*
1549	 * This may seem silly, but we need to be sure we don't over-decrement
1550	 * the RSVP counter, in case something slips up.
1551	 */
1552	if (ip_rsvp_on) {
1553		ip_rsvp_on = 0;
1554		rsvp_on--;
1555	}
1556	return 0;
1557}
1558
1559void
1560rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1561{
1562	if (rsvp_input_p) { /* call the real one if loaded */
1563		rsvp_input_p(m, off);
1564		return;
1565	}
1566
1567	/* Can still get packets with rsvp_on = 0 if there is a local member
1568	 * of the group to which the RSVP packet is addressed.  But in this
1569	 * case we want to throw the packet away.
1570	 */
1571
1572	if (!rsvp_on) {
1573		m_freem(m);
1574		return;
1575	}
1576
1577	if (ip_rsvpd != NULL) {
1578		rip_input(m, off);
1579		return;
1580	}
1581	/* Drop the packet */
1582	m_freem(m);
1583}
1584