ip_input.c revision 158303
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 158302 2006-05-05 06:24:34Z pjd $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_carp.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mac.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/syslog.h>
52#include <sys/sysctl.h>
53
54#include <net/pfil.h>
55#include <net/if.h>
56#include <net/if_types.h>
57#include <net/if_var.h>
58#include <net/if_dl.h>
59#include <net/route.h>
60#include <net/netisr.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/in_var.h>
65#include <netinet/ip.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_icmp.h>
69#include <netinet/ip_options.h>
70#include <machine/in_cksum.h>
71#ifdef DEV_CARP
72#include <netinet/ip_carp.h>
73#endif
74#if defined(IPSEC) || defined(FAST_IPSEC)
75#include <netinet/ip_ipsec.h>
76#endif /* IPSEC */
77
78#include <sys/socketvar.h>
79
80/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
81#include <netinet/ip_fw.h>
82#include <netinet/ip_dummynet.h>
83
84int rsvp_on = 0;
85
86int	ipforwarding = 0;
87SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
88    &ipforwarding, 0, "Enable IP forwarding between interfaces");
89
90static int	ipsendredirects = 1; /* XXX */
91SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
92    &ipsendredirects, 0, "Enable sending IP redirects");
93
94int	ip_defttl = IPDEFTTL;
95SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
96    &ip_defttl, 0, "Maximum TTL on IP packets");
97
98static int	ip_keepfaith = 0;
99SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
100	&ip_keepfaith,	0,
101	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
102
103static int	ip_sendsourcequench = 0;
104SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
105	&ip_sendsourcequench, 0,
106	"Enable the transmission of source quench packets");
107
108int	ip_do_randomid = 0;
109SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
110	&ip_do_randomid, 0,
111	"Assign random ip_id values");
112
113/*
114 * XXX - Setting ip_checkinterface mostly implements the receive side of
115 * the Strong ES model described in RFC 1122, but since the routing table
116 * and transmit implementation do not implement the Strong ES model,
117 * setting this to 1 results in an odd hybrid.
118 *
119 * XXX - ip_checkinterface currently must be disabled if you use ipnat
120 * to translate the destination address to another local interface.
121 *
122 * XXX - ip_checkinterface must be disabled if you add IP aliases
123 * to the loopback interface instead of the interface where the
124 * packets for those addresses are received.
125 */
126static int	ip_checkinterface = 0;
127SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
128    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
129
130struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
131
132static struct	ifqueue ipintrq;
133static int	ipqmaxlen = IFQ_MAXLEN;
134
135extern	struct domain inetdomain;
136extern	struct protosw inetsw[];
137u_char	ip_protox[IPPROTO_MAX];
138struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
139struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
140u_long 	in_ifaddrhmask;				/* mask for hash table */
141
142SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
143    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
144SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
145    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
146
147struct ipstat ipstat;
148SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
149    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
150
151/*
152 * IP datagram reassembly.
153 */
154#define IPREASS_NHASH_LOG2      6
155#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
156#define IPREASS_HMASK           (IPREASS_NHASH - 1)
157#define IPREASS_HASH(x,y) \
158	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
159
160static uma_zone_t ipq_zone;
161static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
162static struct mtx ipqlock;
163
164#define	IPQ_LOCK()	mtx_lock(&ipqlock)
165#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
166#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
167#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
168
169static void	maxnipq_update(void);
170static void	ipq_zone_change(void *);
171
172static int	maxnipq;	/* Administrative limit on # reass queues. */
173static int	nipq = 0;	/* Total # of reass queues */
174SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD, &nipq, 0,
175	"Current number of IPv4 fragment reassembly queue entries");
176
177static int	maxfragsperpacket;
178SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
179	&maxfragsperpacket, 0,
180	"Maximum number of IPv4 fragments allowed per packet");
181
182struct callout	ipport_tick_callout;
183
184#ifdef IPCTL_DEFMTU
185SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
186    &ip_mtu, 0, "Default MTU");
187#endif
188
189#ifdef IPSTEALTH
190int	ipstealth = 0;
191SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
192    &ipstealth, 0, "");
193#endif
194
195/*
196 * ipfw_ether and ipfw_bridge hooks.
197 * XXX: Temporary until those are converted to pfil_hooks as well.
198 */
199ip_fw_chk_t *ip_fw_chk_ptr = NULL;
200ip_dn_io_t *ip_dn_io_ptr = NULL;
201int fw_enable = 1;
202int fw_one_pass = 1;
203
204static void	ip_freef(struct ipqhead *, struct ipq *);
205
206/*
207 * IP initialization: fill in IP protocol switch table.
208 * All protocols not implemented in kernel go to raw IP protocol handler.
209 */
210void
211ip_init()
212{
213	register struct protosw *pr;
214	register int i;
215
216	TAILQ_INIT(&in_ifaddrhead);
217	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
218	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
219	if (pr == NULL)
220		panic("ip_init: PF_INET not found");
221
222	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
223	for (i = 0; i < IPPROTO_MAX; i++)
224		ip_protox[i] = pr - inetsw;
225	/*
226	 * Cycle through IP protocols and put them into the appropriate place
227	 * in ip_protox[].
228	 */
229	for (pr = inetdomain.dom_protosw;
230	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
231		if (pr->pr_domain->dom_family == PF_INET &&
232		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
233			/* Be careful to only index valid IP protocols. */
234			if (pr->pr_protocol < IPPROTO_MAX)
235				ip_protox[pr->pr_protocol] = pr - inetsw;
236		}
237
238	/* Initialize packet filter hooks. */
239	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
240	inet_pfil_hook.ph_af = AF_INET;
241	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
242		printf("%s: WARNING: unable to register pfil hook, "
243			"error %d\n", __func__, i);
244
245	/* Initialize IP reassembly queue. */
246	IPQ_LOCK_INIT();
247	for (i = 0; i < IPREASS_NHASH; i++)
248	    TAILQ_INIT(&ipq[i]);
249	maxnipq = nmbclusters / 32;
250	maxfragsperpacket = 16;
251	ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
252	    NULL, UMA_ALIGN_PTR, 0);
253	maxnipq_update();
254
255	/* Start ipport_tick. */
256	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
257	ipport_tick(NULL);
258	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
259		SHUTDOWN_PRI_DEFAULT);
260	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
261		NULL, EVENTHANDLER_PRI_ANY);
262
263	/* Initialize various other remaining things. */
264	ip_id = time_second & 0xffff;
265	ipintrq.ifq_maxlen = ipqmaxlen;
266	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
267	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
268}
269
270void ip_fini(xtp)
271	void *xtp;
272{
273	callout_stop(&ipport_tick_callout);
274}
275
276/*
277 * Ip input routine.  Checksum and byte swap header.  If fragmented
278 * try to reassemble.  Process options.  Pass to next level.
279 */
280void
281ip_input(struct mbuf *m)
282{
283	struct ip *ip = NULL;
284	struct in_ifaddr *ia = NULL;
285	struct ifaddr *ifa;
286	int    checkif, hlen = 0;
287	u_short sum;
288	int dchg = 0;				/* dest changed after fw */
289	struct in_addr odst;			/* original dst address */
290
291  	M_ASSERTPKTHDR(m);
292
293	if (m->m_flags & M_FASTFWD_OURS) {
294		/*
295		 * Firewall or NAT changed destination to local.
296		 * We expect ip_len and ip_off to be in host byte order.
297		 */
298		m->m_flags &= ~M_FASTFWD_OURS;
299		/* Set up some basics that will be used later. */
300		ip = mtod(m, struct ip *);
301		hlen = ip->ip_hl << 2;
302  		goto ours;
303  	}
304
305	ipstat.ips_total++;
306
307	if (m->m_pkthdr.len < sizeof(struct ip))
308		goto tooshort;
309
310	if (m->m_len < sizeof (struct ip) &&
311	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
312		ipstat.ips_toosmall++;
313		return;
314	}
315	ip = mtod(m, struct ip *);
316
317	if (ip->ip_v != IPVERSION) {
318		ipstat.ips_badvers++;
319		goto bad;
320	}
321
322	hlen = ip->ip_hl << 2;
323	if (hlen < sizeof(struct ip)) {	/* minimum header length */
324		ipstat.ips_badhlen++;
325		goto bad;
326	}
327	if (hlen > m->m_len) {
328		if ((m = m_pullup(m, hlen)) == NULL) {
329			ipstat.ips_badhlen++;
330			return;
331		}
332		ip = mtod(m, struct ip *);
333	}
334
335	/* 127/8 must not appear on wire - RFC1122 */
336	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
337	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
338		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
339			ipstat.ips_badaddr++;
340			goto bad;
341		}
342	}
343
344	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
345		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
346	} else {
347		if (hlen == sizeof(struct ip)) {
348			sum = in_cksum_hdr(ip);
349		} else {
350			sum = in_cksum(m, hlen);
351		}
352	}
353	if (sum) {
354		ipstat.ips_badsum++;
355		goto bad;
356	}
357
358#ifdef ALTQ
359	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
360		/* packet is dropped by traffic conditioner */
361		return;
362#endif
363
364	/*
365	 * Convert fields to host representation.
366	 */
367	ip->ip_len = ntohs(ip->ip_len);
368	if (ip->ip_len < hlen) {
369		ipstat.ips_badlen++;
370		goto bad;
371	}
372	ip->ip_off = ntohs(ip->ip_off);
373
374	/*
375	 * Check that the amount of data in the buffers
376	 * is as at least much as the IP header would have us expect.
377	 * Trim mbufs if longer than we expect.
378	 * Drop packet if shorter than we expect.
379	 */
380	if (m->m_pkthdr.len < ip->ip_len) {
381tooshort:
382		ipstat.ips_tooshort++;
383		goto bad;
384	}
385	if (m->m_pkthdr.len > ip->ip_len) {
386		if (m->m_len == m->m_pkthdr.len) {
387			m->m_len = ip->ip_len;
388			m->m_pkthdr.len = ip->ip_len;
389		} else
390			m_adj(m, ip->ip_len - m->m_pkthdr.len);
391	}
392#if defined(IPSEC) || defined(FAST_IPSEC)
393	/*
394	 * Bypass packet filtering for packets from a tunnel (gif).
395	 */
396	if (ip_ipsec_filtergif(m))
397		goto passin;
398#endif /* IPSEC */
399
400	/*
401	 * Run through list of hooks for input packets.
402	 *
403	 * NB: Beware of the destination address changing (e.g.
404	 *     by NAT rewriting).  When this happens, tell
405	 *     ip_forward to do the right thing.
406	 */
407
408	/* Jump over all PFIL processing if hooks are not active. */
409	if (!PFIL_HOOKED(&inet_pfil_hook))
410		goto passin;
411
412	odst = ip->ip_dst;
413	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
414	    PFIL_IN, NULL) != 0)
415		return;
416	if (m == NULL)			/* consumed by filter */
417		return;
418
419	ip = mtod(m, struct ip *);
420	dchg = (odst.s_addr != ip->ip_dst.s_addr);
421
422#ifdef IPFIREWALL_FORWARD
423	if (m->m_flags & M_FASTFWD_OURS) {
424		m->m_flags &= ~M_FASTFWD_OURS;
425		goto ours;
426	}
427#ifndef IPFIREWALL_FORWARD_EXTENDED
428	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
429#else
430	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
431		/*
432		 * Directly ship on the packet.  This allows to forward packets
433		 * that were destined for us to some other directly connected
434		 * host.
435		 */
436		ip_forward(m, dchg);
437		return;
438	}
439#endif /* IPFIREWALL_FORWARD_EXTENDED */
440#endif /* IPFIREWALL_FORWARD */
441
442passin:
443	/*
444	 * Process options and, if not destined for us,
445	 * ship it on.  ip_dooptions returns 1 when an
446	 * error was detected (causing an icmp message
447	 * to be sent and the original packet to be freed).
448	 */
449	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
450		return;
451
452        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
453         * matter if it is destined to another node, or whether it is
454         * a multicast one, RSVP wants it! and prevents it from being forwarded
455         * anywhere else. Also checks if the rsvp daemon is running before
456	 * grabbing the packet.
457         */
458	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
459		goto ours;
460
461	/*
462	 * Check our list of addresses, to see if the packet is for us.
463	 * If we don't have any addresses, assume any unicast packet
464	 * we receive might be for us (and let the upper layers deal
465	 * with it).
466	 */
467	if (TAILQ_EMPTY(&in_ifaddrhead) &&
468	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
469		goto ours;
470
471	/*
472	 * Enable a consistency check between the destination address
473	 * and the arrival interface for a unicast packet (the RFC 1122
474	 * strong ES model) if IP forwarding is disabled and the packet
475	 * is not locally generated and the packet is not subject to
476	 * 'ipfw fwd'.
477	 *
478	 * XXX - Checking also should be disabled if the destination
479	 * address is ipnat'ed to a different interface.
480	 *
481	 * XXX - Checking is incompatible with IP aliases added
482	 * to the loopback interface instead of the interface where
483	 * the packets are received.
484	 *
485	 * XXX - This is the case for carp vhost IPs as well so we
486	 * insert a workaround. If the packet got here, we already
487	 * checked with carp_iamatch() and carp_forus().
488	 */
489	checkif = ip_checkinterface && (ipforwarding == 0) &&
490	    m->m_pkthdr.rcvif != NULL &&
491	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
492#ifdef DEV_CARP
493	    !m->m_pkthdr.rcvif->if_carp &&
494#endif
495	    (dchg == 0);
496
497	/*
498	 * Check for exact addresses in the hash bucket.
499	 */
500	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
501		/*
502		 * If the address matches, verify that the packet
503		 * arrived via the correct interface if checking is
504		 * enabled.
505		 */
506		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
507		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
508			goto ours;
509	}
510	/*
511	 * Check for broadcast addresses.
512	 *
513	 * Only accept broadcast packets that arrive via the matching
514	 * interface.  Reception of forwarded directed broadcasts would
515	 * be handled via ip_forward() and ether_output() with the loopback
516	 * into the stack for SIMPLEX interfaces handled by ether_output().
517	 */
518	if (m->m_pkthdr.rcvif != NULL &&
519	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
520	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
521			if (ifa->ifa_addr->sa_family != AF_INET)
522				continue;
523			ia = ifatoia(ifa);
524			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
525			    ip->ip_dst.s_addr)
526				goto ours;
527			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
528				goto ours;
529#ifdef BOOTP_COMPAT
530			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
531				goto ours;
532#endif
533		}
534	}
535	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
536		struct in_multi *inm;
537		if (ip_mrouter) {
538			/*
539			 * If we are acting as a multicast router, all
540			 * incoming multicast packets are passed to the
541			 * kernel-level multicast forwarding function.
542			 * The packet is returned (relatively) intact; if
543			 * ip_mforward() returns a non-zero value, the packet
544			 * must be discarded, else it may be accepted below.
545			 */
546			if (ip_mforward &&
547			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
548				ipstat.ips_cantforward++;
549				m_freem(m);
550				return;
551			}
552
553			/*
554			 * The process-level routing daemon needs to receive
555			 * all multicast IGMP packets, whether or not this
556			 * host belongs to their destination groups.
557			 */
558			if (ip->ip_p == IPPROTO_IGMP)
559				goto ours;
560			ipstat.ips_forward++;
561		}
562		/*
563		 * See if we belong to the destination multicast group on the
564		 * arrival interface.
565		 */
566		IN_MULTI_LOCK();
567		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
568		IN_MULTI_UNLOCK();
569		if (inm == NULL) {
570			ipstat.ips_notmember++;
571			m_freem(m);
572			return;
573		}
574		goto ours;
575	}
576	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
577		goto ours;
578	if (ip->ip_dst.s_addr == INADDR_ANY)
579		goto ours;
580
581	/*
582	 * FAITH(Firewall Aided Internet Translator)
583	 */
584	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
585		if (ip_keepfaith) {
586			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
587				goto ours;
588		}
589		m_freem(m);
590		return;
591	}
592
593	/*
594	 * Not for us; forward if possible and desirable.
595	 */
596	if (ipforwarding == 0) {
597		ipstat.ips_cantforward++;
598		m_freem(m);
599	} else {
600#if defined(IPSEC) || defined(FAST_IPSEC)
601		if (ip_ipsec_fwd(m))
602			goto bad;
603#endif /* IPSEC */
604		ip_forward(m, dchg);
605	}
606	return;
607
608ours:
609#ifdef IPSTEALTH
610	/*
611	 * IPSTEALTH: Process non-routing options only
612	 * if the packet is destined for us.
613	 */
614	if (ipstealth && hlen > sizeof (struct ip) &&
615	    ip_dooptions(m, 1))
616		return;
617#endif /* IPSTEALTH */
618
619	/* Count the packet in the ip address stats */
620	if (ia != NULL) {
621		ia->ia_ifa.if_ipackets++;
622		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
623	}
624
625	/*
626	 * Attempt reassembly; if it succeeds, proceed.
627	 * ip_reass() will return a different mbuf.
628	 */
629	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
630		m = ip_reass(m);
631		if (m == NULL)
632			return;
633		ip = mtod(m, struct ip *);
634		/* Get the header length of the reassembled packet */
635		hlen = ip->ip_hl << 2;
636	}
637
638	/*
639	 * Further protocols expect the packet length to be w/o the
640	 * IP header.
641	 */
642	ip->ip_len -= hlen;
643
644#if defined(IPSEC) || defined(FAST_IPSEC)
645	/*
646	 * enforce IPsec policy checking if we are seeing last header.
647	 * note that we do not visit this with protocols with pcb layer
648	 * code - like udp/tcp/raw ip.
649	 */
650	if (ip_ipsec_input(m))
651		goto bad;
652#endif /* IPSEC */
653
654	/*
655	 * Switch out to protocol's input routine.
656	 */
657	ipstat.ips_delivered++;
658
659	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
660	return;
661bad:
662	m_freem(m);
663}
664
665/*
666 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
667 * max has slightly different semantics than the sysctl, for historical
668 * reasons.
669 */
670static void
671maxnipq_update(void)
672{
673
674	/*
675	 * -1 for unlimited allocation.
676	 */
677	if (maxnipq < 0)
678		uma_zone_set_max(ipq_zone, 0);
679	/*
680	 * Positive number for specific bound.
681	 */
682	if (maxnipq > 0)
683		uma_zone_set_max(ipq_zone, maxnipq);
684	/*
685	 * Zero specifies no further fragment queue allocation -- set the
686	 * bound very low, but rely on implementation elsewhere to actually
687	 * prevent allocation and reclaim current queues.
688	 */
689	if (maxnipq == 0)
690		uma_zone_set_max(ipq_zone, 1);
691}
692
693static void
694ipq_zone_change(void *tag)
695{
696
697	if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
698		maxnipq = nmbclusters / 32;
699		maxnipq_update();
700	}
701}
702
703static int
704sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
705{
706	int error, i;
707
708	i = maxnipq;
709	error = sysctl_handle_int(oidp, &i, 0, req);
710	if (error || !req->newptr)
711		return (error);
712
713	/*
714	 * XXXRW: Might be a good idea to sanity check the argument and place
715	 * an extreme upper bound.
716	 */
717	if (i < -1)
718		return (EINVAL);
719	maxnipq = i;
720	maxnipq_update();
721	return (0);
722}
723
724SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
725    NULL, 0, sysctl_maxnipq, "I",
726    "Maximum number of IPv4 fragment reassembly queue entries");
727
728/*
729 * Take incoming datagram fragment and try to reassemble it into
730 * whole datagram.  If the argument is the first fragment or one
731 * in between the function will return NULL and store the mbuf
732 * in the fragment chain.  If the argument is the last fragment
733 * the packet will be reassembled and the pointer to the new
734 * mbuf returned for further processing.  Only m_tags attached
735 * to the first packet/fragment are preserved.
736 * The IP header is *NOT* adjusted out of iplen.
737 */
738
739struct mbuf *
740ip_reass(struct mbuf *m)
741{
742	struct ip *ip;
743	struct mbuf *p, *q, *nq, *t;
744	struct ipq *fp = NULL;
745	struct ipqhead *head;
746	int i, hlen, next;
747	u_int8_t ecn, ecn0;
748	u_short hash;
749
750	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
751	if (maxnipq == 0 || maxfragsperpacket == 0) {
752		ipstat.ips_fragments++;
753		ipstat.ips_fragdropped++;
754		m_freem(m);
755		return (NULL);
756	}
757
758	ip = mtod(m, struct ip *);
759	hlen = ip->ip_hl << 2;
760
761	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
762	head = &ipq[hash];
763	IPQ_LOCK();
764
765	/*
766	 * Look for queue of fragments
767	 * of this datagram.
768	 */
769	TAILQ_FOREACH(fp, head, ipq_list)
770		if (ip->ip_id == fp->ipq_id &&
771		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
772		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
773#ifdef MAC
774		    mac_fragment_match(m, fp) &&
775#endif
776		    ip->ip_p == fp->ipq_p)
777			goto found;
778
779	fp = NULL;
780
781	/*
782	 * Attempt to trim the number of allocated fragment queues if it
783	 * exceeds the administrative limit.
784	 */
785	if ((nipq > maxnipq) && (maxnipq > 0)) {
786		/*
787		 * drop something from the tail of the current queue
788		 * before proceeding further
789		 */
790		struct ipq *q = TAILQ_LAST(head, ipqhead);
791		if (q == NULL) {   /* gak */
792			for (i = 0; i < IPREASS_NHASH; i++) {
793				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
794				if (r) {
795					ipstat.ips_fragtimeout += r->ipq_nfrags;
796					ip_freef(&ipq[i], r);
797					break;
798				}
799			}
800		} else {
801			ipstat.ips_fragtimeout += q->ipq_nfrags;
802			ip_freef(head, q);
803		}
804	}
805
806found:
807	/*
808	 * Adjust ip_len to not reflect header,
809	 * convert offset of this to bytes.
810	 */
811	ip->ip_len -= hlen;
812	if (ip->ip_off & IP_MF) {
813		/*
814		 * Make sure that fragments have a data length
815		 * that's a non-zero multiple of 8 bytes.
816		 */
817		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
818			ipstat.ips_toosmall++; /* XXX */
819			goto dropfrag;
820		}
821		m->m_flags |= M_FRAG;
822	} else
823		m->m_flags &= ~M_FRAG;
824	ip->ip_off <<= 3;
825
826
827	/*
828	 * Attempt reassembly; if it succeeds, proceed.
829	 * ip_reass() will return a different mbuf.
830	 */
831	ipstat.ips_fragments++;
832	m->m_pkthdr.header = ip;
833
834	/* Previous ip_reass() started here. */
835	/*
836	 * Presence of header sizes in mbufs
837	 * would confuse code below.
838	 */
839	m->m_data += hlen;
840	m->m_len -= hlen;
841
842	/*
843	 * If first fragment to arrive, create a reassembly queue.
844	 */
845	if (fp == NULL) {
846		fp = uma_zalloc(ipq_zone, M_NOWAIT);
847		if (fp == NULL)
848			goto dropfrag;
849#ifdef MAC
850		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
851			uma_zfree(ipq_zone, fp);
852			fp = NULL;
853			goto dropfrag;
854		}
855		mac_create_ipq(m, fp);
856#endif
857		TAILQ_INSERT_HEAD(head, fp, ipq_list);
858		nipq++;
859		fp->ipq_nfrags = 1;
860		fp->ipq_ttl = IPFRAGTTL;
861		fp->ipq_p = ip->ip_p;
862		fp->ipq_id = ip->ip_id;
863		fp->ipq_src = ip->ip_src;
864		fp->ipq_dst = ip->ip_dst;
865		fp->ipq_frags = m;
866		m->m_nextpkt = NULL;
867		goto done;
868	} else {
869		fp->ipq_nfrags++;
870#ifdef MAC
871		mac_update_ipq(m, fp);
872#endif
873	}
874
875#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
876
877	/*
878	 * Handle ECN by comparing this segment with the first one;
879	 * if CE is set, do not lose CE.
880	 * drop if CE and not-ECT are mixed for the same packet.
881	 */
882	ecn = ip->ip_tos & IPTOS_ECN_MASK;
883	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
884	if (ecn == IPTOS_ECN_CE) {
885		if (ecn0 == IPTOS_ECN_NOTECT)
886			goto dropfrag;
887		if (ecn0 != IPTOS_ECN_CE)
888			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
889	}
890	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
891		goto dropfrag;
892
893	/*
894	 * Find a segment which begins after this one does.
895	 */
896	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
897		if (GETIP(q)->ip_off > ip->ip_off)
898			break;
899
900	/*
901	 * If there is a preceding segment, it may provide some of
902	 * our data already.  If so, drop the data from the incoming
903	 * segment.  If it provides all of our data, drop us, otherwise
904	 * stick new segment in the proper place.
905	 *
906	 * If some of the data is dropped from the the preceding
907	 * segment, then it's checksum is invalidated.
908	 */
909	if (p) {
910		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
911		if (i > 0) {
912			if (i >= ip->ip_len)
913				goto dropfrag;
914			m_adj(m, i);
915			m->m_pkthdr.csum_flags = 0;
916			ip->ip_off += i;
917			ip->ip_len -= i;
918		}
919		m->m_nextpkt = p->m_nextpkt;
920		p->m_nextpkt = m;
921	} else {
922		m->m_nextpkt = fp->ipq_frags;
923		fp->ipq_frags = m;
924	}
925
926	/*
927	 * While we overlap succeeding segments trim them or,
928	 * if they are completely covered, dequeue them.
929	 */
930	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
931	     q = nq) {
932		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
933		if (i < GETIP(q)->ip_len) {
934			GETIP(q)->ip_len -= i;
935			GETIP(q)->ip_off += i;
936			m_adj(q, i);
937			q->m_pkthdr.csum_flags = 0;
938			break;
939		}
940		nq = q->m_nextpkt;
941		m->m_nextpkt = nq;
942		ipstat.ips_fragdropped++;
943		fp->ipq_nfrags--;
944		m_freem(q);
945	}
946
947	/*
948	 * Check for complete reassembly and perform frag per packet
949	 * limiting.
950	 *
951	 * Frag limiting is performed here so that the nth frag has
952	 * a chance to complete the packet before we drop the packet.
953	 * As a result, n+1 frags are actually allowed per packet, but
954	 * only n will ever be stored. (n = maxfragsperpacket.)
955	 *
956	 */
957	next = 0;
958	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
959		if (GETIP(q)->ip_off != next) {
960			if (fp->ipq_nfrags > maxfragsperpacket) {
961				ipstat.ips_fragdropped += fp->ipq_nfrags;
962				ip_freef(head, fp);
963			}
964			goto done;
965		}
966		next += GETIP(q)->ip_len;
967	}
968	/* Make sure the last packet didn't have the IP_MF flag */
969	if (p->m_flags & M_FRAG) {
970		if (fp->ipq_nfrags > maxfragsperpacket) {
971			ipstat.ips_fragdropped += fp->ipq_nfrags;
972			ip_freef(head, fp);
973		}
974		goto done;
975	}
976
977	/*
978	 * Reassembly is complete.  Make sure the packet is a sane size.
979	 */
980	q = fp->ipq_frags;
981	ip = GETIP(q);
982	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
983		ipstat.ips_toolong++;
984		ipstat.ips_fragdropped += fp->ipq_nfrags;
985		ip_freef(head, fp);
986		goto done;
987	}
988
989	/*
990	 * Concatenate fragments.
991	 */
992	m = q;
993	t = m->m_next;
994	m->m_next = NULL;
995	m_cat(m, t);
996	nq = q->m_nextpkt;
997	q->m_nextpkt = NULL;
998	for (q = nq; q != NULL; q = nq) {
999		nq = q->m_nextpkt;
1000		q->m_nextpkt = NULL;
1001		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1002		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1003		m_cat(m, q);
1004	}
1005	/*
1006	 * In order to do checksumming faster we do 'end-around carry' here
1007	 * (and not in for{} loop), though it implies we are not going to
1008	 * reassemble more than 64k fragments.
1009	 */
1010	m->m_pkthdr.csum_data =
1011	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1012#ifdef MAC
1013	mac_create_datagram_from_ipq(fp, m);
1014	mac_destroy_ipq(fp);
1015#endif
1016
1017	/*
1018	 * Create header for new ip packet by modifying header of first
1019	 * packet;  dequeue and discard fragment reassembly header.
1020	 * Make header visible.
1021	 */
1022	ip->ip_len = (ip->ip_hl << 2) + next;
1023	ip->ip_src = fp->ipq_src;
1024	ip->ip_dst = fp->ipq_dst;
1025	TAILQ_REMOVE(head, fp, ipq_list);
1026	nipq--;
1027	uma_zfree(ipq_zone, fp);
1028	m->m_len += (ip->ip_hl << 2);
1029	m->m_data -= (ip->ip_hl << 2);
1030	/* some debugging cruft by sklower, below, will go away soon */
1031	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1032		m_fixhdr(m);
1033	ipstat.ips_reassembled++;
1034	IPQ_UNLOCK();
1035	return (m);
1036
1037dropfrag:
1038	ipstat.ips_fragdropped++;
1039	if (fp != NULL)
1040		fp->ipq_nfrags--;
1041	m_freem(m);
1042done:
1043	IPQ_UNLOCK();
1044	return (NULL);
1045
1046#undef GETIP
1047}
1048
1049/*
1050 * Free a fragment reassembly header and all
1051 * associated datagrams.
1052 */
1053static void
1054ip_freef(fhp, fp)
1055	struct ipqhead *fhp;
1056	struct ipq *fp;
1057{
1058	register struct mbuf *q;
1059
1060	IPQ_LOCK_ASSERT();
1061
1062	while (fp->ipq_frags) {
1063		q = fp->ipq_frags;
1064		fp->ipq_frags = q->m_nextpkt;
1065		m_freem(q);
1066	}
1067	TAILQ_REMOVE(fhp, fp, ipq_list);
1068	uma_zfree(ipq_zone, fp);
1069	nipq--;
1070}
1071
1072/*
1073 * IP timer processing;
1074 * if a timer expires on a reassembly
1075 * queue, discard it.
1076 */
1077void
1078ip_slowtimo()
1079{
1080	register struct ipq *fp;
1081	int i;
1082
1083	IPQ_LOCK();
1084	for (i = 0; i < IPREASS_NHASH; i++) {
1085		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1086			struct ipq *fpp;
1087
1088			fpp = fp;
1089			fp = TAILQ_NEXT(fp, ipq_list);
1090			if(--fpp->ipq_ttl == 0) {
1091				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1092				ip_freef(&ipq[i], fpp);
1093			}
1094		}
1095	}
1096	/*
1097	 * If we are over the maximum number of fragments
1098	 * (due to the limit being lowered), drain off
1099	 * enough to get down to the new limit.
1100	 */
1101	if (maxnipq >= 0 && nipq > maxnipq) {
1102		for (i = 0; i < IPREASS_NHASH; i++) {
1103			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1104				ipstat.ips_fragdropped +=
1105				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1106				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1107			}
1108		}
1109	}
1110	IPQ_UNLOCK();
1111}
1112
1113/*
1114 * Drain off all datagram fragments.
1115 */
1116void
1117ip_drain()
1118{
1119	int     i;
1120
1121	IPQ_LOCK();
1122	for (i = 0; i < IPREASS_NHASH; i++) {
1123		while(!TAILQ_EMPTY(&ipq[i])) {
1124			ipstat.ips_fragdropped +=
1125			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1126			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1127		}
1128	}
1129	IPQ_UNLOCK();
1130	in_rtqdrain();
1131}
1132
1133/*
1134 * The protocol to be inserted into ip_protox[] must be already registered
1135 * in inetsw[], either statically or through pf_proto_register().
1136 */
1137int
1138ipproto_register(u_char ipproto)
1139{
1140	struct protosw *pr;
1141
1142	/* Sanity checks. */
1143	if (ipproto == 0)
1144		return (EPROTONOSUPPORT);
1145
1146	/*
1147	 * The protocol slot must not be occupied by another protocol
1148	 * already.  An index pointing to IPPROTO_RAW is unused.
1149	 */
1150	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1151	if (pr == NULL)
1152		return (EPFNOSUPPORT);
1153	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1154		return (EEXIST);
1155
1156	/* Find the protocol position in inetsw[] and set the index. */
1157	for (pr = inetdomain.dom_protosw;
1158	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1159		if (pr->pr_domain->dom_family == PF_INET &&
1160		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1161			/* Be careful to only index valid IP protocols. */
1162			if (pr->pr_protocol < IPPROTO_MAX) {
1163				ip_protox[pr->pr_protocol] = pr - inetsw;
1164				return (0);
1165			} else
1166				return (EINVAL);
1167		}
1168	}
1169	return (EPROTONOSUPPORT);
1170}
1171
1172int
1173ipproto_unregister(u_char ipproto)
1174{
1175	struct protosw *pr;
1176
1177	/* Sanity checks. */
1178	if (ipproto == 0)
1179		return (EPROTONOSUPPORT);
1180
1181	/* Check if the protocol was indeed registered. */
1182	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1183	if (pr == NULL)
1184		return (EPFNOSUPPORT);
1185	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1186		return (ENOENT);
1187
1188	/* Reset the protocol slot to IPPROTO_RAW. */
1189	ip_protox[ipproto] = pr - inetsw;
1190	return (0);
1191}
1192
1193/*
1194 * Given address of next destination (final or next hop),
1195 * return internet address info of interface to be used to get there.
1196 */
1197struct in_ifaddr *
1198ip_rtaddr(dst)
1199	struct in_addr dst;
1200{
1201	struct route sro;
1202	struct sockaddr_in *sin;
1203	struct in_ifaddr *ifa;
1204
1205	bzero(&sro, sizeof(sro));
1206	sin = (struct sockaddr_in *)&sro.ro_dst;
1207	sin->sin_family = AF_INET;
1208	sin->sin_len = sizeof(*sin);
1209	sin->sin_addr = dst;
1210	rtalloc_ign(&sro, RTF_CLONING);
1211
1212	if (sro.ro_rt == NULL)
1213		return (NULL);
1214
1215	ifa = ifatoia(sro.ro_rt->rt_ifa);
1216	RTFREE(sro.ro_rt);
1217	return (ifa);
1218}
1219
1220u_char inetctlerrmap[PRC_NCMDS] = {
1221	0,		0,		0,		0,
1222	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1223	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1224	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1225	0,		0,		EHOSTUNREACH,	0,
1226	ENOPROTOOPT,	ECONNREFUSED
1227};
1228
1229/*
1230 * Forward a packet.  If some error occurs return the sender
1231 * an icmp packet.  Note we can't always generate a meaningful
1232 * icmp message because icmp doesn't have a large enough repertoire
1233 * of codes and types.
1234 *
1235 * If not forwarding, just drop the packet.  This could be confusing
1236 * if ipforwarding was zero but some routing protocol was advancing
1237 * us as a gateway to somewhere.  However, we must let the routing
1238 * protocol deal with that.
1239 *
1240 * The srcrt parameter indicates whether the packet is being forwarded
1241 * via a source route.
1242 */
1243void
1244ip_forward(struct mbuf *m, int srcrt)
1245{
1246	struct ip *ip = mtod(m, struct ip *);
1247	struct in_ifaddr *ia = NULL;
1248	struct mbuf *mcopy;
1249	struct in_addr dest;
1250	int error, type = 0, code = 0, mtu = 0;
1251
1252	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1253		ipstat.ips_cantforward++;
1254		m_freem(m);
1255		return;
1256	}
1257#ifdef IPSTEALTH
1258	if (!ipstealth) {
1259#endif
1260		if (ip->ip_ttl <= IPTTLDEC) {
1261			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1262			    0, 0);
1263			return;
1264		}
1265#ifdef IPSTEALTH
1266	}
1267#endif
1268
1269	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1270		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1271		return;
1272	}
1273
1274	/*
1275	 * Save the IP header and at most 8 bytes of the payload,
1276	 * in case we need to generate an ICMP message to the src.
1277	 *
1278	 * XXX this can be optimized a lot by saving the data in a local
1279	 * buffer on the stack (72 bytes at most), and only allocating the
1280	 * mbuf if really necessary. The vast majority of the packets
1281	 * are forwarded without having to send an ICMP back (either
1282	 * because unnecessary, or because rate limited), so we are
1283	 * really we are wasting a lot of work here.
1284	 *
1285	 * We don't use m_copy() because it might return a reference
1286	 * to a shared cluster. Both this function and ip_output()
1287	 * assume exclusive access to the IP header in `m', so any
1288	 * data in a cluster may change before we reach icmp_error().
1289	 */
1290	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1291	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1292		/*
1293		 * It's probably ok if the pkthdr dup fails (because
1294		 * the deep copy of the tag chain failed), but for now
1295		 * be conservative and just discard the copy since
1296		 * code below may some day want the tags.
1297		 */
1298		m_free(mcopy);
1299		mcopy = NULL;
1300	}
1301	if (mcopy != NULL) {
1302		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1303		mcopy->m_pkthdr.len = mcopy->m_len;
1304		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1305	}
1306
1307#ifdef IPSTEALTH
1308	if (!ipstealth) {
1309#endif
1310		ip->ip_ttl -= IPTTLDEC;
1311#ifdef IPSTEALTH
1312	}
1313#endif
1314
1315	/*
1316	 * If forwarding packet using same interface that it came in on,
1317	 * perhaps should send a redirect to sender to shortcut a hop.
1318	 * Only send redirect if source is sending directly to us,
1319	 * and if packet was not source routed (or has any options).
1320	 * Also, don't send redirect if forwarding using a default route
1321	 * or a route modified by a redirect.
1322	 */
1323	dest.s_addr = 0;
1324	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1325		struct sockaddr_in *sin;
1326		struct route ro;
1327		struct rtentry *rt;
1328
1329		bzero(&ro, sizeof(ro));
1330		sin = (struct sockaddr_in *)&ro.ro_dst;
1331		sin->sin_family = AF_INET;
1332		sin->sin_len = sizeof(*sin);
1333		sin->sin_addr = ip->ip_dst;
1334		rtalloc_ign(&ro, RTF_CLONING);
1335
1336		rt = ro.ro_rt;
1337
1338		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1339		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1340#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1341			u_long src = ntohl(ip->ip_src.s_addr);
1342
1343			if (RTA(rt) &&
1344			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1345				if (rt->rt_flags & RTF_GATEWAY)
1346					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1347				else
1348					dest.s_addr = ip->ip_dst.s_addr;
1349				/* Router requirements says to only send host redirects */
1350				type = ICMP_REDIRECT;
1351				code = ICMP_REDIRECT_HOST;
1352			}
1353		}
1354		if (rt)
1355			RTFREE(rt);
1356	}
1357
1358	error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
1359	if (error)
1360		ipstat.ips_cantforward++;
1361	else {
1362		ipstat.ips_forward++;
1363		if (type)
1364			ipstat.ips_redirectsent++;
1365		else {
1366			if (mcopy)
1367				m_freem(mcopy);
1368			return;
1369		}
1370	}
1371	if (mcopy == NULL)
1372		return;
1373
1374	switch (error) {
1375
1376	case 0:				/* forwarded, but need redirect */
1377		/* type, code set above */
1378		break;
1379
1380	case ENETUNREACH:		/* shouldn't happen, checked above */
1381	case EHOSTUNREACH:
1382	case ENETDOWN:
1383	case EHOSTDOWN:
1384	default:
1385		type = ICMP_UNREACH;
1386		code = ICMP_UNREACH_HOST;
1387		break;
1388
1389	case EMSGSIZE:
1390		type = ICMP_UNREACH;
1391		code = ICMP_UNREACH_NEEDFRAG;
1392
1393#if defined(IPSEC) || defined(FAST_IPSEC)
1394		mtu = ip_ipsec_mtu(m);
1395#endif /* IPSEC */
1396		/*
1397		 * If the MTU wasn't set before use the interface mtu or
1398		 * fall back to the next smaller mtu step compared to the
1399		 * current packet size.
1400		 */
1401		if (mtu == 0) {
1402			if (ia != NULL)
1403				mtu = ia->ia_ifp->if_mtu;
1404			else
1405				mtu = ip_next_mtu(ip->ip_len, 0);
1406		}
1407		ipstat.ips_cantfrag++;
1408		break;
1409
1410	case ENOBUFS:
1411		/*
1412		 * A router should not generate ICMP_SOURCEQUENCH as
1413		 * required in RFC1812 Requirements for IP Version 4 Routers.
1414		 * Source quench could be a big problem under DoS attacks,
1415		 * or if the underlying interface is rate-limited.
1416		 * Those who need source quench packets may re-enable them
1417		 * via the net.inet.ip.sendsourcequench sysctl.
1418		 */
1419		if (ip_sendsourcequench == 0) {
1420			m_freem(mcopy);
1421			return;
1422		} else {
1423			type = ICMP_SOURCEQUENCH;
1424			code = 0;
1425		}
1426		break;
1427
1428	case EACCES:			/* ipfw denied packet */
1429		m_freem(mcopy);
1430		return;
1431	}
1432	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1433}
1434
1435void
1436ip_savecontrol(inp, mp, ip, m)
1437	register struct inpcb *inp;
1438	register struct mbuf **mp;
1439	register struct ip *ip;
1440	register struct mbuf *m;
1441{
1442	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1443		struct bintime bt;
1444
1445		bintime(&bt);
1446		if (inp->inp_socket->so_options & SO_BINTIME) {
1447			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1448			SCM_BINTIME, SOL_SOCKET);
1449			if (*mp)
1450				mp = &(*mp)->m_next;
1451		}
1452		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1453			struct timeval tv;
1454
1455			bintime2timeval(&bt, &tv);
1456			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1457				SCM_TIMESTAMP, SOL_SOCKET);
1458			if (*mp)
1459				mp = &(*mp)->m_next;
1460		}
1461	}
1462	if (inp->inp_flags & INP_RECVDSTADDR) {
1463		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1464		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1465		if (*mp)
1466			mp = &(*mp)->m_next;
1467	}
1468	if (inp->inp_flags & INP_RECVTTL) {
1469		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1470		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1471		if (*mp)
1472			mp = &(*mp)->m_next;
1473	}
1474#ifdef notyet
1475	/* XXX
1476	 * Moving these out of udp_input() made them even more broken
1477	 * than they already were.
1478	 */
1479	/* options were tossed already */
1480	if (inp->inp_flags & INP_RECVOPTS) {
1481		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1482		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1483		if (*mp)
1484			mp = &(*mp)->m_next;
1485	}
1486	/* ip_srcroute doesn't do what we want here, need to fix */
1487	if (inp->inp_flags & INP_RECVRETOPTS) {
1488		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1489		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1490		if (*mp)
1491			mp = &(*mp)->m_next;
1492	}
1493#endif
1494	if (inp->inp_flags & INP_RECVIF) {
1495		struct ifnet *ifp;
1496		struct sdlbuf {
1497			struct sockaddr_dl sdl;
1498			u_char	pad[32];
1499		} sdlbuf;
1500		struct sockaddr_dl *sdp;
1501		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1502
1503		if (((ifp = m->m_pkthdr.rcvif))
1504		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1505			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1506			/*
1507			 * Change our mind and don't try copy.
1508			 */
1509			if ((sdp->sdl_family != AF_LINK)
1510			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1511				goto makedummy;
1512			}
1513			bcopy(sdp, sdl2, sdp->sdl_len);
1514		} else {
1515makedummy:
1516			sdl2->sdl_len
1517				= offsetof(struct sockaddr_dl, sdl_data[0]);
1518			sdl2->sdl_family = AF_LINK;
1519			sdl2->sdl_index = 0;
1520			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1521		}
1522		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1523			IP_RECVIF, IPPROTO_IP);
1524		if (*mp)
1525			mp = &(*mp)->m_next;
1526	}
1527}
1528
1529/*
1530 * XXX these routines are called from the upper part of the kernel.
1531 * They need to be locked when we remove Giant.
1532 *
1533 * They could also be moved to ip_mroute.c, since all the RSVP
1534 *  handling is done there already.
1535 */
1536static int ip_rsvp_on;
1537struct socket *ip_rsvpd;
1538int
1539ip_rsvp_init(struct socket *so)
1540{
1541	if (so->so_type != SOCK_RAW ||
1542	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1543		return EOPNOTSUPP;
1544
1545	if (ip_rsvpd != NULL)
1546		return EADDRINUSE;
1547
1548	ip_rsvpd = so;
1549	/*
1550	 * This may seem silly, but we need to be sure we don't over-increment
1551	 * the RSVP counter, in case something slips up.
1552	 */
1553	if (!ip_rsvp_on) {
1554		ip_rsvp_on = 1;
1555		rsvp_on++;
1556	}
1557
1558	return 0;
1559}
1560
1561int
1562ip_rsvp_done(void)
1563{
1564	ip_rsvpd = NULL;
1565	/*
1566	 * This may seem silly, but we need to be sure we don't over-decrement
1567	 * the RSVP counter, in case something slips up.
1568	 */
1569	if (ip_rsvp_on) {
1570		ip_rsvp_on = 0;
1571		rsvp_on--;
1572	}
1573	return 0;
1574}
1575
1576void
1577rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1578{
1579	if (rsvp_input_p) { /* call the real one if loaded */
1580		rsvp_input_p(m, off);
1581		return;
1582	}
1583
1584	/* Can still get packets with rsvp_on = 0 if there is a local member
1585	 * of the group to which the RSVP packet is addressed.  But in this
1586	 * case we want to throw the packet away.
1587	 */
1588
1589	if (!rsvp_on) {
1590		m_freem(m);
1591		return;
1592	}
1593
1594	if (ip_rsvpd != NULL) {
1595		rip_input(m, off);
1596		return;
1597	}
1598	/* Drop the packet */
1599	m_freem(m);
1600}
1601