ip_input.c revision 134383
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 134383 2004-08-27 15:16:24Z andre $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/mac.h>
42#include <sys/mbuf.h>
43#include <sys/malloc.h>
44#include <sys/domain.h>
45#include <sys/protosw.h>
46#include <sys/socket.h>
47#include <sys/time.h>
48#include <sys/kernel.h>
49#include <sys/syslog.h>
50#include <sys/sysctl.h>
51
52#include <net/pfil.h>
53#include <net/if.h>
54#include <net/if_types.h>
55#include <net/if_var.h>
56#include <net/if_dl.h>
57#include <net/route.h>
58#include <net/netisr.h>
59
60#include <netinet/in.h>
61#include <netinet/in_systm.h>
62#include <netinet/in_var.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/ip_var.h>
66#include <netinet/ip_icmp.h>
67#include <machine/in_cksum.h>
68
69#include <sys/socketvar.h>
70
71/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
72#include <netinet/ip_fw.h>
73#include <netinet/ip_dummynet.h>
74
75#ifdef IPSEC
76#include <netinet6/ipsec.h>
77#include <netkey/key.h>
78#endif
79
80#ifdef FAST_IPSEC
81#include <netipsec/ipsec.h>
82#include <netipsec/key.h>
83#endif
84
85int rsvp_on = 0;
86
87int	ipforwarding = 0;
88SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
89    &ipforwarding, 0, "Enable IP forwarding between interfaces");
90
91static int	ipsendredirects = 1; /* XXX */
92SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
93    &ipsendredirects, 0, "Enable sending IP redirects");
94
95int	ip_defttl = IPDEFTTL;
96SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
97    &ip_defttl, 0, "Maximum TTL on IP packets");
98
99static int	ip_dosourceroute = 0;
100SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
101    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
102
103static int	ip_acceptsourceroute = 0;
104SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
105    CTLFLAG_RW, &ip_acceptsourceroute, 0,
106    "Enable accepting source routed IP packets");
107
108int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
109SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
110    &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
111
112static int	ip_keepfaith = 0;
113SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
114	&ip_keepfaith,	0,
115	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
116
117static int    nipq = 0;         /* total # of reass queues */
118static int    maxnipq;
119SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
120	&maxnipq, 0,
121	"Maximum number of IPv4 fragment reassembly queue entries");
122
123static int    maxfragsperpacket;
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
125	&maxfragsperpacket, 0,
126	"Maximum number of IPv4 fragments allowed per packet");
127
128static int	ip_sendsourcequench = 0;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
130	&ip_sendsourcequench, 0,
131	"Enable the transmission of source quench packets");
132
133int	ip_do_randomid = 0;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
135	&ip_do_randomid, 0,
136	"Assign random ip_id values");
137
138/*
139 * XXX - Setting ip_checkinterface mostly implements the receive side of
140 * the Strong ES model described in RFC 1122, but since the routing table
141 * and transmit implementation do not implement the Strong ES model,
142 * setting this to 1 results in an odd hybrid.
143 *
144 * XXX - ip_checkinterface currently must be disabled if you use ipnat
145 * to translate the destination address to another local interface.
146 *
147 * XXX - ip_checkinterface must be disabled if you add IP aliases
148 * to the loopback interface instead of the interface where the
149 * packets for those addresses are received.
150 */
151static int	ip_checkinterface = 1;
152SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
153    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
154
155#ifdef DIAGNOSTIC
156static int	ipprintfs = 0;
157#endif
158
159struct pfil_head inet_pfil_hook;	/* Packet filter hooks */
160
161static struct	ifqueue ipintrq;
162static int	ipqmaxlen = IFQ_MAXLEN;
163
164extern	struct domain inetdomain;
165extern	struct protosw inetsw[];
166u_char	ip_protox[IPPROTO_MAX];
167struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
168struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
169u_long 	in_ifaddrhmask;				/* mask for hash table */
170
171SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
172    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
173SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
174    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
175
176struct ipstat ipstat;
177SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
178    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
179
180/* Packet reassembly stuff */
181#define IPREASS_NHASH_LOG2      6
182#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
183#define IPREASS_HMASK           (IPREASS_NHASH - 1)
184#define IPREASS_HASH(x,y) \
185	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
186
187static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
188struct mtx ipqlock;
189
190#define	IPQ_LOCK()	mtx_lock(&ipqlock)
191#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
192#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
193#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
194
195#ifdef IPCTL_DEFMTU
196SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
197    &ip_mtu, 0, "Default MTU");
198#endif
199
200#ifdef IPSTEALTH
201int	ipstealth = 0;
202SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
203    &ipstealth, 0, "");
204#endif
205
206/*
207 * ipfw_ether and ipfw_bridge hooks.
208 * XXX: Temporary until those are converted to pfil_hooks as well.
209 */
210ip_fw_chk_t *ip_fw_chk_ptr = NULL;
211ip_dn_io_t *ip_dn_io_ptr = NULL;
212int fw_enable = 1;
213int fw_one_pass = 1;
214
215/*
216 * XXX this is ugly -- the following two global variables are
217 * used to store packet state while it travels through the stack.
218 * Note that the code even makes assumptions on the size and
219 * alignment of fields inside struct ip_srcrt so e.g. adding some
220 * fields will break the code. This needs to be fixed.
221 *
222 * We need to save the IP options in case a protocol wants to respond
223 * to an incoming packet over the same route if the packet got here
224 * using IP source routing.  This allows connection establishment and
225 * maintenance when the remote end is on a network that is not known
226 * to us.
227 * XXX: Broken on SMP and possibly preemption!
228 */
229static int	ip_nhops = 0;
230static	struct ip_srcrt {
231	struct	in_addr dst;			/* final destination */
232	char	nop;				/* one NOP to align */
233	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
234	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
235} ip_srcrt;
236
237static void	save_rte(u_char *, struct in_addr);
238static int	ip_dooptions(struct mbuf *m, int);
239static void	ip_forward(struct mbuf *m, int srcrt);
240static void	ip_freef(struct ipqhead *, struct ipq *);
241
242/*
243 * IP initialization: fill in IP protocol switch table.
244 * All protocols not implemented in kernel go to raw IP protocol handler.
245 */
246void
247ip_init()
248{
249	register struct protosw *pr;
250	register int i;
251
252	TAILQ_INIT(&in_ifaddrhead);
253	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
254	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
255	if (pr == 0)
256		panic("ip_init");
257	for (i = 0; i < IPPROTO_MAX; i++)
258		ip_protox[i] = pr - inetsw;
259	for (pr = inetdomain.dom_protosw;
260	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
261		if (pr->pr_domain->dom_family == PF_INET &&
262		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
263			ip_protox[pr->pr_protocol] = pr - inetsw;
264
265	/* Initialize packet filter hooks. */
266	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
267	inet_pfil_hook.ph_af = AF_INET;
268	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
269		printf("%s: WARNING: unable to register pfil hook, "
270			"error %d\n", __func__, i);
271
272	IPQ_LOCK_INIT();
273	for (i = 0; i < IPREASS_NHASH; i++)
274	    TAILQ_INIT(&ipq[i]);
275
276	maxnipq = nmbclusters / 32;
277	maxfragsperpacket = 16;
278
279	ip_id = time_second & 0xffff;
280	ipintrq.ifq_maxlen = ipqmaxlen;
281	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
282	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
283}
284
285/*
286 * Ip input routine.  Checksum and byte swap header.  If fragmented
287 * try to reassemble.  Process options.  Pass to next level.
288 */
289void
290ip_input(struct mbuf *m)
291{
292	struct ip *ip = NULL;
293	struct in_ifaddr *ia = NULL;
294	struct ifaddr *ifa;
295	int    checkif, hlen = 0;
296	u_short sum;
297	int dchg = 0;				/* dest changed after fw */
298	struct in_addr odst;			/* original dst address */
299#ifdef FAST_IPSEC
300	struct m_tag *mtag;
301	struct tdb_ident *tdbi;
302	struct secpolicy *sp;
303	int s, error;
304#endif /* FAST_IPSEC */
305
306  	M_ASSERTPKTHDR(m);
307
308	if (m->m_flags & M_FASTFWD_OURS) {
309		/*
310		 * ip_fastforward firewall changed dest to local.
311		 * We expect ip_len and ip_off in host byte order.
312		 */
313		m->m_flags &= ~M_FASTFWD_OURS;	/* for reflected mbufs */
314		/* Set up some basic stuff */
315		ip = mtod(m, struct ip *);
316		hlen = ip->ip_hl << 2;
317  		goto ours;
318  	}
319
320	ipstat.ips_total++;
321
322	if (m->m_pkthdr.len < sizeof(struct ip))
323		goto tooshort;
324
325	if (m->m_len < sizeof (struct ip) &&
326	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
327		ipstat.ips_toosmall++;
328		return;
329	}
330	ip = mtod(m, struct ip *);
331
332	if (ip->ip_v != IPVERSION) {
333		ipstat.ips_badvers++;
334		goto bad;
335	}
336
337	hlen = ip->ip_hl << 2;
338	if (hlen < sizeof(struct ip)) {	/* minimum header length */
339		ipstat.ips_badhlen++;
340		goto bad;
341	}
342	if (hlen > m->m_len) {
343		if ((m = m_pullup(m, hlen)) == NULL) {
344			ipstat.ips_badhlen++;
345			return;
346		}
347		ip = mtod(m, struct ip *);
348	}
349
350	/* 127/8 must not appear on wire - RFC1122 */
351	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
352	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
353		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
354			ipstat.ips_badaddr++;
355			goto bad;
356		}
357	}
358
359	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
360		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
361	} else {
362		if (hlen == sizeof(struct ip)) {
363			sum = in_cksum_hdr(ip);
364		} else {
365			sum = in_cksum(m, hlen);
366		}
367	}
368	if (sum) {
369		ipstat.ips_badsum++;
370		goto bad;
371	}
372
373#ifdef ALTQ
374	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
375		/* packet is dropped by traffic conditioner */
376		return;
377#endif
378
379	/*
380	 * Convert fields to host representation.
381	 */
382	ip->ip_len = ntohs(ip->ip_len);
383	if (ip->ip_len < hlen) {
384		ipstat.ips_badlen++;
385		goto bad;
386	}
387	ip->ip_off = ntohs(ip->ip_off);
388
389	/*
390	 * Check that the amount of data in the buffers
391	 * is as at least much as the IP header would have us expect.
392	 * Trim mbufs if longer than we expect.
393	 * Drop packet if shorter than we expect.
394	 */
395	if (m->m_pkthdr.len < ip->ip_len) {
396tooshort:
397		ipstat.ips_tooshort++;
398		goto bad;
399	}
400	if (m->m_pkthdr.len > ip->ip_len) {
401		if (m->m_len == m->m_pkthdr.len) {
402			m->m_len = ip->ip_len;
403			m->m_pkthdr.len = ip->ip_len;
404		} else
405			m_adj(m, ip->ip_len - m->m_pkthdr.len);
406	}
407#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
408	/*
409	 * Bypass packet filtering for packets from a tunnel (gif).
410	 */
411	if (ipsec_getnhist(m))
412		goto passin;
413#endif
414#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
415	/*
416	 * Bypass packet filtering for packets from a tunnel (gif).
417	 */
418	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
419		goto passin;
420#endif
421
422	/*
423	 * Run through list of hooks for input packets.
424	 *
425	 * NB: Beware of the destination address changing (e.g.
426	 *     by NAT rewriting).  When this happens, tell
427	 *     ip_forward to do the right thing.
428	 */
429
430	/* Jump over all PFIL processing if hooks are not active. */
431	if (inet_pfil_hook.ph_busy_count == -1)
432		goto passin;
433
434	odst = ip->ip_dst;
435	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
436	    PFIL_IN) != 0)
437		return;
438	if (m == NULL)			/* consumed by filter */
439		return;
440
441	ip = mtod(m, struct ip *);
442	dchg = (odst.s_addr != ip->ip_dst.s_addr);
443
444#ifdef IPFIREWALL_FORWARD
445	if (m->m_flags & M_FASTFWD_OURS) {
446		m->m_flags &= ~M_FASTFWD_OURS;
447		goto ours;
448	}
449	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
450#endif /* IPFIREWALL_FORWARD */
451
452passin:
453	/*
454	 * Process options and, if not destined for us,
455	 * ship it on.  ip_dooptions returns 1 when an
456	 * error was detected (causing an icmp message
457	 * to be sent and the original packet to be freed).
458	 */
459	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
460		return;
461
462        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
463         * matter if it is destined to another node, or whether it is
464         * a multicast one, RSVP wants it! and prevents it from being forwarded
465         * anywhere else. Also checks if the rsvp daemon is running before
466	 * grabbing the packet.
467         */
468	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
469		goto ours;
470
471	/*
472	 * Check our list of addresses, to see if the packet is for us.
473	 * If we don't have any addresses, assume any unicast packet
474	 * we receive might be for us (and let the upper layers deal
475	 * with it).
476	 */
477	if (TAILQ_EMPTY(&in_ifaddrhead) &&
478	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
479		goto ours;
480
481	/*
482	 * Enable a consistency check between the destination address
483	 * and the arrival interface for a unicast packet (the RFC 1122
484	 * strong ES model) if IP forwarding is disabled and the packet
485	 * is not locally generated and the packet is not subject to
486	 * 'ipfw fwd'.
487	 *
488	 * XXX - Checking also should be disabled if the destination
489	 * address is ipnat'ed to a different interface.
490	 *
491	 * XXX - Checking is incompatible with IP aliases added
492	 * to the loopback interface instead of the interface where
493	 * the packets are received.
494	 */
495	checkif = ip_checkinterface && (ipforwarding == 0) &&
496	    m->m_pkthdr.rcvif != NULL &&
497	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
498	    (dchg == 0);
499
500	/*
501	 * Check for exact addresses in the hash bucket.
502	 */
503	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
504		/*
505		 * If the address matches, verify that the packet
506		 * arrived via the correct interface if checking is
507		 * enabled.
508		 */
509		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
510		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
511			goto ours;
512	}
513	/*
514	 * Check for broadcast addresses.
515	 *
516	 * Only accept broadcast packets that arrive via the matching
517	 * interface.  Reception of forwarded directed broadcasts would
518	 * be handled via ip_forward() and ether_output() with the loopback
519	 * into the stack for SIMPLEX interfaces handled by ether_output().
520	 */
521	if (m->m_pkthdr.rcvif != NULL &&
522	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
523	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
524			if (ifa->ifa_addr->sa_family != AF_INET)
525				continue;
526			ia = ifatoia(ifa);
527			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
528			    ip->ip_dst.s_addr)
529				goto ours;
530			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
531				goto ours;
532#ifdef BOOTP_COMPAT
533			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
534				goto ours;
535#endif
536		}
537	}
538	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
539		struct in_multi *inm;
540		if (ip_mrouter) {
541			/*
542			 * If we are acting as a multicast router, all
543			 * incoming multicast packets are passed to the
544			 * kernel-level multicast forwarding function.
545			 * The packet is returned (relatively) intact; if
546			 * ip_mforward() returns a non-zero value, the packet
547			 * must be discarded, else it may be accepted below.
548			 */
549			if (ip_mforward &&
550			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
551				ipstat.ips_cantforward++;
552				m_freem(m);
553				return;
554			}
555
556			/*
557			 * The process-level routing daemon needs to receive
558			 * all multicast IGMP packets, whether or not this
559			 * host belongs to their destination groups.
560			 */
561			if (ip->ip_p == IPPROTO_IGMP)
562				goto ours;
563			ipstat.ips_forward++;
564		}
565		/*
566		 * See if we belong to the destination multicast group on the
567		 * arrival interface.
568		 */
569		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
570		if (inm == NULL) {
571			ipstat.ips_notmember++;
572			m_freem(m);
573			return;
574		}
575		goto ours;
576	}
577	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
578		goto ours;
579	if (ip->ip_dst.s_addr == INADDR_ANY)
580		goto ours;
581
582	/*
583	 * FAITH(Firewall Aided Internet Translator)
584	 */
585	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
586		if (ip_keepfaith) {
587			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
588				goto ours;
589		}
590		m_freem(m);
591		return;
592	}
593
594	/*
595	 * Not for us; forward if possible and desirable.
596	 */
597	if (ipforwarding == 0) {
598		ipstat.ips_cantforward++;
599		m_freem(m);
600	} else {
601#ifdef IPSEC
602		/*
603		 * Enforce inbound IPsec SPD.
604		 */
605		if (ipsec4_in_reject(m, NULL)) {
606			ipsecstat.in_polvio++;
607			goto bad;
608		}
609#endif /* IPSEC */
610#ifdef FAST_IPSEC
611		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
612		s = splnet();
613		if (mtag != NULL) {
614			tdbi = (struct tdb_ident *)(mtag + 1);
615			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
616		} else {
617			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
618						   IP_FORWARDING, &error);
619		}
620		if (sp == NULL) {	/* NB: can happen if error */
621			splx(s);
622			/*XXX error stat???*/
623			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
624			goto bad;
625		}
626
627		/*
628		 * Check security policy against packet attributes.
629		 */
630		error = ipsec_in_reject(sp, m);
631		KEY_FREESP(&sp);
632		splx(s);
633		if (error) {
634			ipstat.ips_cantforward++;
635			goto bad;
636		}
637#endif /* FAST_IPSEC */
638		ip_forward(m, dchg);
639	}
640	return;
641
642ours:
643#ifdef IPSTEALTH
644	/*
645	 * IPSTEALTH: Process non-routing options only
646	 * if the packet is destined for us.
647	 */
648	if (ipstealth && hlen > sizeof (struct ip) &&
649	    ip_dooptions(m, 1))
650		return;
651#endif /* IPSTEALTH */
652
653	/* Count the packet in the ip address stats */
654	if (ia != NULL) {
655		ia->ia_ifa.if_ipackets++;
656		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
657	}
658
659	/*
660	 * Attempt reassembly; if it succeeds, proceed.
661	 * ip_reass() will return a different mbuf.
662	 */
663	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
664		m = ip_reass(m);
665		if (m == NULL)
666			return;
667		ip = mtod(m, struct ip *);
668		/* Get the header length of the reassembled packet */
669		hlen = ip->ip_hl << 2;
670	}
671
672	/*
673	 * Further protocols expect the packet length to be w/o the
674	 * IP header.
675	 */
676	ip->ip_len -= hlen;
677
678#ifdef IPSEC
679	/*
680	 * enforce IPsec policy checking if we are seeing last header.
681	 * note that we do not visit this with protocols with pcb layer
682	 * code - like udp/tcp/raw ip.
683	 */
684	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
685	    ipsec4_in_reject(m, NULL)) {
686		ipsecstat.in_polvio++;
687		goto bad;
688	}
689#endif
690#if FAST_IPSEC
691	/*
692	 * enforce IPsec policy checking if we are seeing last header.
693	 * note that we do not visit this with protocols with pcb layer
694	 * code - like udp/tcp/raw ip.
695	 */
696	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
697		/*
698		 * Check if the packet has already had IPsec processing
699		 * done.  If so, then just pass it along.  This tag gets
700		 * set during AH, ESP, etc. input handling, before the
701		 * packet is returned to the ip input queue for delivery.
702		 */
703		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
704		s = splnet();
705		if (mtag != NULL) {
706			tdbi = (struct tdb_ident *)(mtag + 1);
707			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
708		} else {
709			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
710						   IP_FORWARDING, &error);
711		}
712		if (sp != NULL) {
713			/*
714			 * Check security policy against packet attributes.
715			 */
716			error = ipsec_in_reject(sp, m);
717			KEY_FREESP(&sp);
718		} else {
719			/* XXX error stat??? */
720			error = EINVAL;
721DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
722			goto bad;
723		}
724		splx(s);
725		if (error)
726			goto bad;
727	}
728#endif /* FAST_IPSEC */
729
730	/*
731	 * Switch out to protocol's input routine.
732	 */
733	ipstat.ips_delivered++;
734
735	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
736	return;
737bad:
738	m_freem(m);
739}
740
741/*
742 * Take incoming datagram fragment and try to reassemble it into
743 * whole datagram.  If the argument is the first fragment or one
744 * in between the function will return NULL and store the mbuf
745 * in the fragment chain.  If the argument is the last fragment
746 * the packet will be reassembled and the pointer to the new
747 * mbuf returned for further processing.  Only m_tags attached
748 * to the first packet/fragment are preserved.
749 * The IP header is *NOT* adjusted out of iplen.
750 */
751
752struct mbuf *
753ip_reass(struct mbuf *m)
754{
755	struct ip *ip;
756	struct mbuf *p, *q, *nq, *t;
757	struct ipq *fp = NULL;
758	struct ipqhead *head;
759	int i, hlen, next;
760	u_int8_t ecn, ecn0;
761	u_short hash;
762
763	/* If maxnipq is 0, never accept fragments. */
764	if (maxnipq == 0) {
765		ipstat.ips_fragments++;
766		ipstat.ips_fragdropped++;
767		m_freem(m);
768		return (NULL);
769	}
770
771	ip = mtod(m, struct ip *);
772	hlen = ip->ip_hl << 2;
773
774	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
775	head = &ipq[hash];
776	IPQ_LOCK();
777
778	/*
779	 * Look for queue of fragments
780	 * of this datagram.
781	 */
782	TAILQ_FOREACH(fp, head, ipq_list)
783		if (ip->ip_id == fp->ipq_id &&
784		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
785		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
786#ifdef MAC
787		    mac_fragment_match(m, fp) &&
788#endif
789		    ip->ip_p == fp->ipq_p)
790			goto found;
791
792	fp = NULL;
793
794	/*
795	 * Enforce upper bound on number of fragmented packets
796	 * for which we attempt reassembly;
797	 * If maxnipq is -1, accept all fragments without limitation.
798	 */
799	if ((nipq > maxnipq) && (maxnipq > 0)) {
800		/*
801		 * drop something from the tail of the current queue
802		 * before proceeding further
803		 */
804		struct ipq *q = TAILQ_LAST(head, ipqhead);
805		if (q == NULL) {   /* gak */
806			for (i = 0; i < IPREASS_NHASH; i++) {
807				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
808				if (r) {
809					ipstat.ips_fragtimeout += r->ipq_nfrags;
810					ip_freef(&ipq[i], r);
811					break;
812				}
813			}
814		} else {
815			ipstat.ips_fragtimeout += q->ipq_nfrags;
816			ip_freef(head, q);
817		}
818	}
819
820found:
821	/*
822	 * Adjust ip_len to not reflect header,
823	 * convert offset of this to bytes.
824	 */
825	ip->ip_len -= hlen;
826	if (ip->ip_off & IP_MF) {
827		/*
828		 * Make sure that fragments have a data length
829		 * that's a non-zero multiple of 8 bytes.
830		 */
831		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
832			ipstat.ips_toosmall++; /* XXX */
833			goto dropfrag;
834		}
835		m->m_flags |= M_FRAG;
836	} else
837		m->m_flags &= ~M_FRAG;
838	ip->ip_off <<= 3;
839
840
841	/*
842	 * Attempt reassembly; if it succeeds, proceed.
843	 * ip_reass() will return a different mbuf.
844	 */
845	ipstat.ips_fragments++;
846	m->m_pkthdr.header = ip;
847
848	/* Previous ip_reass() started here. */
849	/*
850	 * Presence of header sizes in mbufs
851	 * would confuse code below.
852	 */
853	m->m_data += hlen;
854	m->m_len -= hlen;
855
856	/*
857	 * If first fragment to arrive, create a reassembly queue.
858	 */
859	if (fp == NULL) {
860		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
861			goto dropfrag;
862		fp = mtod(t, struct ipq *);
863#ifdef MAC
864		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
865			m_free(t);
866			goto dropfrag;
867		}
868		mac_create_ipq(m, fp);
869#endif
870		TAILQ_INSERT_HEAD(head, fp, ipq_list);
871		nipq++;
872		fp->ipq_nfrags = 1;
873		fp->ipq_ttl = IPFRAGTTL;
874		fp->ipq_p = ip->ip_p;
875		fp->ipq_id = ip->ip_id;
876		fp->ipq_src = ip->ip_src;
877		fp->ipq_dst = ip->ip_dst;
878		fp->ipq_frags = m;
879		m->m_nextpkt = NULL;
880		goto inserted;
881	} else {
882		fp->ipq_nfrags++;
883#ifdef MAC
884		mac_update_ipq(m, fp);
885#endif
886	}
887
888#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
889
890	/*
891	 * Handle ECN by comparing this segment with the first one;
892	 * if CE is set, do not lose CE.
893	 * drop if CE and not-ECT are mixed for the same packet.
894	 */
895	ecn = ip->ip_tos & IPTOS_ECN_MASK;
896	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
897	if (ecn == IPTOS_ECN_CE) {
898		if (ecn0 == IPTOS_ECN_NOTECT)
899			goto dropfrag;
900		if (ecn0 != IPTOS_ECN_CE)
901			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
902	}
903	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
904		goto dropfrag;
905
906	/*
907	 * Find a segment which begins after this one does.
908	 */
909	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
910		if (GETIP(q)->ip_off > ip->ip_off)
911			break;
912
913	/*
914	 * If there is a preceding segment, it may provide some of
915	 * our data already.  If so, drop the data from the incoming
916	 * segment.  If it provides all of our data, drop us, otherwise
917	 * stick new segment in the proper place.
918	 *
919	 * If some of the data is dropped from the the preceding
920	 * segment, then it's checksum is invalidated.
921	 */
922	if (p) {
923		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
924		if (i > 0) {
925			if (i >= ip->ip_len)
926				goto dropfrag;
927			m_adj(m, i);
928			m->m_pkthdr.csum_flags = 0;
929			ip->ip_off += i;
930			ip->ip_len -= i;
931		}
932		m->m_nextpkt = p->m_nextpkt;
933		p->m_nextpkt = m;
934	} else {
935		m->m_nextpkt = fp->ipq_frags;
936		fp->ipq_frags = m;
937	}
938
939	/*
940	 * While we overlap succeeding segments trim them or,
941	 * if they are completely covered, dequeue them.
942	 */
943	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
944	     q = nq) {
945		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
946		if (i < GETIP(q)->ip_len) {
947			GETIP(q)->ip_len -= i;
948			GETIP(q)->ip_off += i;
949			m_adj(q, i);
950			q->m_pkthdr.csum_flags = 0;
951			break;
952		}
953		nq = q->m_nextpkt;
954		m->m_nextpkt = nq;
955		ipstat.ips_fragdropped++;
956		fp->ipq_nfrags--;
957		m_freem(q);
958	}
959
960inserted:
961
962	/*
963	 * Check for complete reassembly and perform frag per packet
964	 * limiting.
965	 *
966	 * Frag limiting is performed here so that the nth frag has
967	 * a chance to complete the packet before we drop the packet.
968	 * As a result, n+1 frags are actually allowed per packet, but
969	 * only n will ever be stored. (n = maxfragsperpacket.)
970	 *
971	 */
972	next = 0;
973	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
974		if (GETIP(q)->ip_off != next) {
975			if (fp->ipq_nfrags > maxfragsperpacket) {
976				ipstat.ips_fragdropped += fp->ipq_nfrags;
977				ip_freef(head, fp);
978			}
979			goto done;
980		}
981		next += GETIP(q)->ip_len;
982	}
983	/* Make sure the last packet didn't have the IP_MF flag */
984	if (p->m_flags & M_FRAG) {
985		if (fp->ipq_nfrags > maxfragsperpacket) {
986			ipstat.ips_fragdropped += fp->ipq_nfrags;
987			ip_freef(head, fp);
988		}
989		goto done;
990	}
991
992	/*
993	 * Reassembly is complete.  Make sure the packet is a sane size.
994	 */
995	q = fp->ipq_frags;
996	ip = GETIP(q);
997	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
998		ipstat.ips_toolong++;
999		ipstat.ips_fragdropped += fp->ipq_nfrags;
1000		ip_freef(head, fp);
1001		goto done;
1002	}
1003
1004	/*
1005	 * Concatenate fragments.
1006	 */
1007	m = q;
1008	t = m->m_next;
1009	m->m_next = 0;
1010	m_cat(m, t);
1011	nq = q->m_nextpkt;
1012	q->m_nextpkt = 0;
1013	for (q = nq; q != NULL; q = nq) {
1014		nq = q->m_nextpkt;
1015		q->m_nextpkt = NULL;
1016		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1017		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1018		m_cat(m, q);
1019	}
1020#ifdef MAC
1021	mac_create_datagram_from_ipq(fp, m);
1022	mac_destroy_ipq(fp);
1023#endif
1024
1025	/*
1026	 * Create header for new ip packet by modifying header of first
1027	 * packet;  dequeue and discard fragment reassembly header.
1028	 * Make header visible.
1029	 */
1030	ip->ip_len = (ip->ip_hl << 2) + next;
1031	ip->ip_src = fp->ipq_src;
1032	ip->ip_dst = fp->ipq_dst;
1033	TAILQ_REMOVE(head, fp, ipq_list);
1034	nipq--;
1035	(void) m_free(dtom(fp));
1036	m->m_len += (ip->ip_hl << 2);
1037	m->m_data -= (ip->ip_hl << 2);
1038	/* some debugging cruft by sklower, below, will go away soon */
1039	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1040		m_fixhdr(m);
1041	ipstat.ips_reassembled++;
1042	IPQ_UNLOCK();
1043	return (m);
1044
1045dropfrag:
1046	ipstat.ips_fragdropped++;
1047	if (fp != NULL)
1048		fp->ipq_nfrags--;
1049	m_freem(m);
1050done:
1051	IPQ_UNLOCK();
1052	return (NULL);
1053
1054#undef GETIP
1055}
1056
1057/*
1058 * Free a fragment reassembly header and all
1059 * associated datagrams.
1060 */
1061static void
1062ip_freef(fhp, fp)
1063	struct ipqhead *fhp;
1064	struct ipq *fp;
1065{
1066	register struct mbuf *q;
1067
1068	IPQ_LOCK_ASSERT();
1069
1070	while (fp->ipq_frags) {
1071		q = fp->ipq_frags;
1072		fp->ipq_frags = q->m_nextpkt;
1073		m_freem(q);
1074	}
1075	TAILQ_REMOVE(fhp, fp, ipq_list);
1076	(void) m_free(dtom(fp));
1077	nipq--;
1078}
1079
1080/*
1081 * IP timer processing;
1082 * if a timer expires on a reassembly
1083 * queue, discard it.
1084 */
1085void
1086ip_slowtimo()
1087{
1088	register struct ipq *fp;
1089	int s = splnet();
1090	int i;
1091
1092	IPQ_LOCK();
1093	for (i = 0; i < IPREASS_NHASH; i++) {
1094		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1095			struct ipq *fpp;
1096
1097			fpp = fp;
1098			fp = TAILQ_NEXT(fp, ipq_list);
1099			if(--fpp->ipq_ttl == 0) {
1100				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1101				ip_freef(&ipq[i], fpp);
1102			}
1103		}
1104	}
1105	/*
1106	 * If we are over the maximum number of fragments
1107	 * (due to the limit being lowered), drain off
1108	 * enough to get down to the new limit.
1109	 */
1110	if (maxnipq >= 0 && nipq > maxnipq) {
1111		for (i = 0; i < IPREASS_NHASH; i++) {
1112			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1113				ipstat.ips_fragdropped +=
1114				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1115				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1116			}
1117		}
1118	}
1119	IPQ_UNLOCK();
1120	splx(s);
1121}
1122
1123/*
1124 * Drain off all datagram fragments.
1125 */
1126void
1127ip_drain()
1128{
1129	int     i;
1130
1131	IPQ_LOCK();
1132	for (i = 0; i < IPREASS_NHASH; i++) {
1133		while(!TAILQ_EMPTY(&ipq[i])) {
1134			ipstat.ips_fragdropped +=
1135			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1136			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1137		}
1138	}
1139	IPQ_UNLOCK();
1140	in_rtqdrain();
1141}
1142
1143/*
1144 * Do option processing on a datagram,
1145 * possibly discarding it if bad options are encountered,
1146 * or forwarding it if source-routed.
1147 * The pass argument is used when operating in the IPSTEALTH
1148 * mode to tell what options to process:
1149 * [LS]SRR (pass 0) or the others (pass 1).
1150 * The reason for as many as two passes is that when doing IPSTEALTH,
1151 * non-routing options should be processed only if the packet is for us.
1152 * Returns 1 if packet has been forwarded/freed,
1153 * 0 if the packet should be processed further.
1154 */
1155static int
1156ip_dooptions(struct mbuf *m, int pass)
1157{
1158	struct ip *ip = mtod(m, struct ip *);
1159	u_char *cp;
1160	struct in_ifaddr *ia;
1161	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1162	struct in_addr *sin, dst;
1163	n_time ntime;
1164	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1165
1166	/* ignore or reject packets with IP options */
1167	if (ip_doopts == 0)
1168		return 0;
1169	else if (ip_doopts == 2) {
1170		type = ICMP_UNREACH;
1171		code = ICMP_UNREACH_FILTER_PROHIB;
1172		goto bad;
1173	}
1174
1175	dst = ip->ip_dst;
1176	cp = (u_char *)(ip + 1);
1177	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1178	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1179		opt = cp[IPOPT_OPTVAL];
1180		if (opt == IPOPT_EOL)
1181			break;
1182		if (opt == IPOPT_NOP)
1183			optlen = 1;
1184		else {
1185			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1186				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1187				goto bad;
1188			}
1189			optlen = cp[IPOPT_OLEN];
1190			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1191				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1192				goto bad;
1193			}
1194		}
1195		switch (opt) {
1196
1197		default:
1198			break;
1199
1200		/*
1201		 * Source routing with record.
1202		 * Find interface with current destination address.
1203		 * If none on this machine then drop if strictly routed,
1204		 * or do nothing if loosely routed.
1205		 * Record interface address and bring up next address
1206		 * component.  If strictly routed make sure next
1207		 * address is on directly accessible net.
1208		 */
1209		case IPOPT_LSRR:
1210		case IPOPT_SSRR:
1211#ifdef IPSTEALTH
1212			if (ipstealth && pass > 0)
1213				break;
1214#endif
1215			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1216				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1217				goto bad;
1218			}
1219			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1220				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1221				goto bad;
1222			}
1223			ipaddr.sin_addr = ip->ip_dst;
1224			ia = (struct in_ifaddr *)
1225				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1226			if (ia == NULL) {
1227				if (opt == IPOPT_SSRR) {
1228					type = ICMP_UNREACH;
1229					code = ICMP_UNREACH_SRCFAIL;
1230					goto bad;
1231				}
1232				if (!ip_dosourceroute)
1233					goto nosourcerouting;
1234				/*
1235				 * Loose routing, and not at next destination
1236				 * yet; nothing to do except forward.
1237				 */
1238				break;
1239			}
1240			off--;			/* 0 origin */
1241			if (off > optlen - (int)sizeof(struct in_addr)) {
1242				/*
1243				 * End of source route.  Should be for us.
1244				 */
1245				if (!ip_acceptsourceroute)
1246					goto nosourcerouting;
1247				save_rte(cp, ip->ip_src);
1248				break;
1249			}
1250#ifdef IPSTEALTH
1251			if (ipstealth)
1252				goto dropit;
1253#endif
1254			if (!ip_dosourceroute) {
1255				if (ipforwarding) {
1256					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1257					/*
1258					 * Acting as a router, so generate ICMP
1259					 */
1260nosourcerouting:
1261					strcpy(buf, inet_ntoa(ip->ip_dst));
1262					log(LOG_WARNING,
1263					    "attempted source route from %s to %s\n",
1264					    inet_ntoa(ip->ip_src), buf);
1265					type = ICMP_UNREACH;
1266					code = ICMP_UNREACH_SRCFAIL;
1267					goto bad;
1268				} else {
1269					/*
1270					 * Not acting as a router, so silently drop.
1271					 */
1272#ifdef IPSTEALTH
1273dropit:
1274#endif
1275					ipstat.ips_cantforward++;
1276					m_freem(m);
1277					return (1);
1278				}
1279			}
1280
1281			/*
1282			 * locate outgoing interface
1283			 */
1284			(void)memcpy(&ipaddr.sin_addr, cp + off,
1285			    sizeof(ipaddr.sin_addr));
1286
1287			if (opt == IPOPT_SSRR) {
1288#define	INA	struct in_ifaddr *
1289#define	SA	struct sockaddr *
1290			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
1291				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1292			} else
1293				ia = ip_rtaddr(ipaddr.sin_addr);
1294			if (ia == NULL) {
1295				type = ICMP_UNREACH;
1296				code = ICMP_UNREACH_SRCFAIL;
1297				goto bad;
1298			}
1299			ip->ip_dst = ipaddr.sin_addr;
1300			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1301			    sizeof(struct in_addr));
1302			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1303			/*
1304			 * Let ip_intr's mcast routing check handle mcast pkts
1305			 */
1306			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1307			break;
1308
1309		case IPOPT_RR:
1310#ifdef IPSTEALTH
1311			if (ipstealth && pass == 0)
1312				break;
1313#endif
1314			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1315				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1316				goto bad;
1317			}
1318			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1319				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1320				goto bad;
1321			}
1322			/*
1323			 * If no space remains, ignore.
1324			 */
1325			off--;			/* 0 origin */
1326			if (off > optlen - (int)sizeof(struct in_addr))
1327				break;
1328			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1329			    sizeof(ipaddr.sin_addr));
1330			/*
1331			 * locate outgoing interface; if we're the destination,
1332			 * use the incoming interface (should be same).
1333			 */
1334			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1335			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1336				type = ICMP_UNREACH;
1337				code = ICMP_UNREACH_HOST;
1338				goto bad;
1339			}
1340			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1341			    sizeof(struct in_addr));
1342			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1343			break;
1344
1345		case IPOPT_TS:
1346#ifdef IPSTEALTH
1347			if (ipstealth && pass == 0)
1348				break;
1349#endif
1350			code = cp - (u_char *)ip;
1351			if (optlen < 4 || optlen > 40) {
1352				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1353				goto bad;
1354			}
1355			if ((off = cp[IPOPT_OFFSET]) < 5) {
1356				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1357				goto bad;
1358			}
1359			if (off > optlen - (int)sizeof(int32_t)) {
1360				cp[IPOPT_OFFSET + 1] += (1 << 4);
1361				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1362					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1363					goto bad;
1364				}
1365				break;
1366			}
1367			off--;				/* 0 origin */
1368			sin = (struct in_addr *)(cp + off);
1369			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1370
1371			case IPOPT_TS_TSONLY:
1372				break;
1373
1374			case IPOPT_TS_TSANDADDR:
1375				if (off + sizeof(n_time) +
1376				    sizeof(struct in_addr) > optlen) {
1377					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1378					goto bad;
1379				}
1380				ipaddr.sin_addr = dst;
1381				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1382							    m->m_pkthdr.rcvif);
1383				if (ia == NULL)
1384					continue;
1385				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1386				    sizeof(struct in_addr));
1387				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1388				off += sizeof(struct in_addr);
1389				break;
1390
1391			case IPOPT_TS_PRESPEC:
1392				if (off + sizeof(n_time) +
1393				    sizeof(struct in_addr) > optlen) {
1394					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1395					goto bad;
1396				}
1397				(void)memcpy(&ipaddr.sin_addr, sin,
1398				    sizeof(struct in_addr));
1399				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1400					continue;
1401				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1402				off += sizeof(struct in_addr);
1403				break;
1404
1405			default:
1406				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1407				goto bad;
1408			}
1409			ntime = iptime();
1410			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1411			cp[IPOPT_OFFSET] += sizeof(n_time);
1412		}
1413	}
1414	if (forward && ipforwarding) {
1415		ip_forward(m, 1);
1416		return (1);
1417	}
1418	return (0);
1419bad:
1420	icmp_error(m, type, code, 0, 0);
1421	ipstat.ips_badoptions++;
1422	return (1);
1423}
1424
1425/*
1426 * Given address of next destination (final or next hop),
1427 * return internet address info of interface to be used to get there.
1428 */
1429struct in_ifaddr *
1430ip_rtaddr(dst)
1431	struct in_addr dst;
1432{
1433	struct route sro;
1434	struct sockaddr_in *sin;
1435	struct in_ifaddr *ifa;
1436
1437	bzero(&sro, sizeof(sro));
1438	sin = (struct sockaddr_in *)&sro.ro_dst;
1439	sin->sin_family = AF_INET;
1440	sin->sin_len = sizeof(*sin);
1441	sin->sin_addr = dst;
1442	rtalloc_ign(&sro, RTF_CLONING);
1443
1444	if (sro.ro_rt == NULL)
1445		return ((struct in_ifaddr *)0);
1446
1447	ifa = ifatoia(sro.ro_rt->rt_ifa);
1448	RTFREE(sro.ro_rt);
1449	return ifa;
1450}
1451
1452/*
1453 * Save incoming source route for use in replies,
1454 * to be picked up later by ip_srcroute if the receiver is interested.
1455 */
1456static void
1457save_rte(option, dst)
1458	u_char *option;
1459	struct in_addr dst;
1460{
1461	unsigned olen;
1462
1463	olen = option[IPOPT_OLEN];
1464#ifdef DIAGNOSTIC
1465	if (ipprintfs)
1466		printf("save_rte: olen %d\n", olen);
1467#endif
1468	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1469		return;
1470	bcopy(option, ip_srcrt.srcopt, olen);
1471	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1472	ip_srcrt.dst = dst;
1473}
1474
1475/*
1476 * Retrieve incoming source route for use in replies,
1477 * in the same form used by setsockopt.
1478 * The first hop is placed before the options, will be removed later.
1479 */
1480struct mbuf *
1481ip_srcroute()
1482{
1483	register struct in_addr *p, *q;
1484	register struct mbuf *m;
1485
1486	if (ip_nhops == 0)
1487		return ((struct mbuf *)0);
1488	m = m_get(M_DONTWAIT, MT_HEADER);
1489	if (m == NULL)
1490		return ((struct mbuf *)0);
1491
1492#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1493
1494	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1495	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1496	    OPTSIZ;
1497#ifdef DIAGNOSTIC
1498	if (ipprintfs)
1499		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1500#endif
1501
1502	/*
1503	 * First save first hop for return route
1504	 */
1505	p = &ip_srcrt.route[ip_nhops - 1];
1506	*(mtod(m, struct in_addr *)) = *p--;
1507#ifdef DIAGNOSTIC
1508	if (ipprintfs)
1509		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1510#endif
1511
1512	/*
1513	 * Copy option fields and padding (nop) to mbuf.
1514	 */
1515	ip_srcrt.nop = IPOPT_NOP;
1516	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1517	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1518	    &ip_srcrt.nop, OPTSIZ);
1519	q = (struct in_addr *)(mtod(m, caddr_t) +
1520	    sizeof(struct in_addr) + OPTSIZ);
1521#undef OPTSIZ
1522	/*
1523	 * Record return path as an IP source route,
1524	 * reversing the path (pointers are now aligned).
1525	 */
1526	while (p >= ip_srcrt.route) {
1527#ifdef DIAGNOSTIC
1528		if (ipprintfs)
1529			printf(" %lx", (u_long)ntohl(q->s_addr));
1530#endif
1531		*q++ = *p--;
1532	}
1533	/*
1534	 * Last hop goes to final destination.
1535	 */
1536	*q = ip_srcrt.dst;
1537#ifdef DIAGNOSTIC
1538	if (ipprintfs)
1539		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1540#endif
1541	return (m);
1542}
1543
1544/*
1545 * Strip out IP options, at higher
1546 * level protocol in the kernel.
1547 * Second argument is buffer to which options
1548 * will be moved, and return value is their length.
1549 * XXX should be deleted; last arg currently ignored.
1550 */
1551void
1552ip_stripoptions(m, mopt)
1553	register struct mbuf *m;
1554	struct mbuf *mopt;
1555{
1556	register int i;
1557	struct ip *ip = mtod(m, struct ip *);
1558	register caddr_t opts;
1559	int olen;
1560
1561	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1562	opts = (caddr_t)(ip + 1);
1563	i = m->m_len - (sizeof (struct ip) + olen);
1564	bcopy(opts + olen, opts, (unsigned)i);
1565	m->m_len -= olen;
1566	if (m->m_flags & M_PKTHDR)
1567		m->m_pkthdr.len -= olen;
1568	ip->ip_v = IPVERSION;
1569	ip->ip_hl = sizeof(struct ip) >> 2;
1570}
1571
1572u_char inetctlerrmap[PRC_NCMDS] = {
1573	0,		0,		0,		0,
1574	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1575	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1576	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1577	0,		0,		EHOSTUNREACH,	0,
1578	ENOPROTOOPT,	ECONNREFUSED
1579};
1580
1581/*
1582 * Forward a packet.  If some error occurs return the sender
1583 * an icmp packet.  Note we can't always generate a meaningful
1584 * icmp message because icmp doesn't have a large enough repertoire
1585 * of codes and types.
1586 *
1587 * If not forwarding, just drop the packet.  This could be confusing
1588 * if ipforwarding was zero but some routing protocol was advancing
1589 * us as a gateway to somewhere.  However, we must let the routing
1590 * protocol deal with that.
1591 *
1592 * The srcrt parameter indicates whether the packet is being forwarded
1593 * via a source route.
1594 */
1595void
1596ip_forward(struct mbuf *m, int srcrt)
1597{
1598	struct ip *ip = mtod(m, struct ip *);
1599	struct in_ifaddr *ia = NULL;
1600	int error, type = 0, code = 0;
1601	struct mbuf *mcopy;
1602	struct in_addr dest;
1603	struct ifnet *destifp, dummyifp;
1604
1605#ifdef DIAGNOSTIC
1606	if (ipprintfs)
1607		printf("forward: src %lx dst %lx ttl %x\n",
1608		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1609		    ip->ip_ttl);
1610#endif
1611
1612
1613	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1614		ipstat.ips_cantforward++;
1615		m_freem(m);
1616		return;
1617	}
1618#ifdef IPSTEALTH
1619	if (!ipstealth) {
1620#endif
1621		if (ip->ip_ttl <= IPTTLDEC) {
1622			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1623			    0, 0);
1624			return;
1625		}
1626#ifdef IPSTEALTH
1627	}
1628#endif
1629
1630	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1631		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1632		return;
1633	}
1634
1635	/*
1636	 * Save the IP header and at most 8 bytes of the payload,
1637	 * in case we need to generate an ICMP message to the src.
1638	 *
1639	 * XXX this can be optimized a lot by saving the data in a local
1640	 * buffer on the stack (72 bytes at most), and only allocating the
1641	 * mbuf if really necessary. The vast majority of the packets
1642	 * are forwarded without having to send an ICMP back (either
1643	 * because unnecessary, or because rate limited), so we are
1644	 * really we are wasting a lot of work here.
1645	 *
1646	 * We don't use m_copy() because it might return a reference
1647	 * to a shared cluster. Both this function and ip_output()
1648	 * assume exclusive access to the IP header in `m', so any
1649	 * data in a cluster may change before we reach icmp_error().
1650	 */
1651	MGET(mcopy, M_DONTWAIT, m->m_type);
1652	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1653		/*
1654		 * It's probably ok if the pkthdr dup fails (because
1655		 * the deep copy of the tag chain failed), but for now
1656		 * be conservative and just discard the copy since
1657		 * code below may some day want the tags.
1658		 */
1659		m_free(mcopy);
1660		mcopy = NULL;
1661	}
1662	if (mcopy != NULL) {
1663		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1664		    (int)ip->ip_len);
1665		mcopy->m_pkthdr.len = mcopy->m_len;
1666		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1667	}
1668
1669#ifdef IPSTEALTH
1670	if (!ipstealth) {
1671#endif
1672		ip->ip_ttl -= IPTTLDEC;
1673#ifdef IPSTEALTH
1674	}
1675#endif
1676
1677	/*
1678	 * If forwarding packet using same interface that it came in on,
1679	 * perhaps should send a redirect to sender to shortcut a hop.
1680	 * Only send redirect if source is sending directly to us,
1681	 * and if packet was not source routed (or has any options).
1682	 * Also, don't send redirect if forwarding using a default route
1683	 * or a route modified by a redirect.
1684	 */
1685	dest.s_addr = 0;
1686	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1687		struct sockaddr_in *sin;
1688		struct route ro;
1689		struct rtentry *rt;
1690
1691		bzero(&ro, sizeof(ro));
1692		sin = (struct sockaddr_in *)&ro.ro_dst;
1693		sin->sin_family = AF_INET;
1694		sin->sin_len = sizeof(*sin);
1695		sin->sin_addr = ip->ip_dst;
1696		rtalloc_ign(&ro, RTF_CLONING);
1697
1698		rt = ro.ro_rt;
1699
1700		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1701		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1702#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1703			u_long src = ntohl(ip->ip_src.s_addr);
1704
1705			if (RTA(rt) &&
1706			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1707				if (rt->rt_flags & RTF_GATEWAY)
1708					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1709				else
1710					dest.s_addr = ip->ip_dst.s_addr;
1711				/* Router requirements says to only send host redirects */
1712				type = ICMP_REDIRECT;
1713				code = ICMP_REDIRECT_HOST;
1714#ifdef DIAGNOSTIC
1715				if (ipprintfs)
1716					printf("redirect (%d) to %lx\n", code, (u_long)dest.s_addr);
1717#endif
1718			}
1719		}
1720		if (rt)
1721			RTFREE(rt);
1722	}
1723
1724	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1725	if (error)
1726		ipstat.ips_cantforward++;
1727	else {
1728		ipstat.ips_forward++;
1729		if (type)
1730			ipstat.ips_redirectsent++;
1731		else {
1732			if (mcopy)
1733				m_freem(mcopy);
1734			return;
1735		}
1736	}
1737	if (mcopy == NULL)
1738		return;
1739	destifp = NULL;
1740
1741	switch (error) {
1742
1743	case 0:				/* forwarded, but need redirect */
1744		/* type, code set above */
1745		break;
1746
1747	case ENETUNREACH:		/* shouldn't happen, checked above */
1748	case EHOSTUNREACH:
1749	case ENETDOWN:
1750	case EHOSTDOWN:
1751	default:
1752		type = ICMP_UNREACH;
1753		code = ICMP_UNREACH_HOST;
1754		break;
1755
1756	case EMSGSIZE:
1757		type = ICMP_UNREACH;
1758		code = ICMP_UNREACH_NEEDFRAG;
1759#if defined(IPSEC) || defined(FAST_IPSEC)
1760		/*
1761		 * If the packet is routed over IPsec tunnel, tell the
1762		 * originator the tunnel MTU.
1763		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1764		 * XXX quickhack!!!
1765		 */
1766		{
1767			struct secpolicy *sp = NULL;
1768			int ipsecerror;
1769			int ipsechdr;
1770			struct route *ro;
1771
1772#ifdef IPSEC
1773			sp = ipsec4_getpolicybyaddr(mcopy,
1774						    IPSEC_DIR_OUTBOUND,
1775						    IP_FORWARDING,
1776						    &ipsecerror);
1777#else /* FAST_IPSEC */
1778			sp = ipsec_getpolicybyaddr(mcopy,
1779						   IPSEC_DIR_OUTBOUND,
1780						   IP_FORWARDING,
1781						   &ipsecerror);
1782#endif
1783			if (sp != NULL) {
1784				/* count IPsec header size */
1785				ipsechdr = ipsec4_hdrsiz(mcopy,
1786							 IPSEC_DIR_OUTBOUND,
1787							 NULL);
1788
1789				/*
1790				 * find the correct route for outer IPv4
1791				 * header, compute tunnel MTU.
1792				 *
1793				 * XXX BUG ALERT
1794				 * The "dummyifp" code relies upon the fact
1795				 * that icmp_error() touches only ifp->if_mtu.
1796				 */
1797				/*XXX*/
1798				destifp = NULL;
1799				if (sp->req != NULL
1800				 && sp->req->sav != NULL
1801				 && sp->req->sav->sah != NULL) {
1802					ro = &sp->req->sav->sah->sa_route;
1803					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1804						dummyifp.if_mtu =
1805						    ro->ro_rt->rt_rmx.rmx_mtu ?
1806						    ro->ro_rt->rt_rmx.rmx_mtu :
1807						    ro->ro_rt->rt_ifp->if_mtu;
1808						dummyifp.if_mtu -= ipsechdr;
1809						destifp = &dummyifp;
1810					}
1811				}
1812
1813#ifdef IPSEC
1814				key_freesp(sp);
1815#else /* FAST_IPSEC */
1816				KEY_FREESP(&sp);
1817#endif
1818				ipstat.ips_cantfrag++;
1819				break;
1820			} else
1821#endif /*IPSEC || FAST_IPSEC*/
1822		/*
1823		 * When doing source routing 'ia' can be NULL.  Fall back
1824		 * to the minimum guaranteed routeable packet size and use
1825		 * the same hack as IPSEC to setup a dummyifp for icmp.
1826		 */
1827		if (ia == NULL) {
1828			dummyifp.if_mtu = IP_MSS;
1829			destifp = &dummyifp;
1830		} else
1831			destifp = ia->ia_ifp;
1832#if defined(IPSEC) || defined(FAST_IPSEC)
1833		}
1834#endif /*IPSEC || FAST_IPSEC*/
1835		ipstat.ips_cantfrag++;
1836		break;
1837
1838	case ENOBUFS:
1839		/*
1840		 * A router should not generate ICMP_SOURCEQUENCH as
1841		 * required in RFC1812 Requirements for IP Version 4 Routers.
1842		 * Source quench could be a big problem under DoS attacks,
1843		 * or if the underlying interface is rate-limited.
1844		 * Those who need source quench packets may re-enable them
1845		 * via the net.inet.ip.sendsourcequench sysctl.
1846		 */
1847		if (ip_sendsourcequench == 0) {
1848			m_freem(mcopy);
1849			return;
1850		} else {
1851			type = ICMP_SOURCEQUENCH;
1852			code = 0;
1853		}
1854		break;
1855
1856	case EACCES:			/* ipfw denied packet */
1857		m_freem(mcopy);
1858		return;
1859	}
1860	icmp_error(mcopy, type, code, dest.s_addr, destifp);
1861}
1862
1863void
1864ip_savecontrol(inp, mp, ip, m)
1865	register struct inpcb *inp;
1866	register struct mbuf **mp;
1867	register struct ip *ip;
1868	register struct mbuf *m;
1869{
1870	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1871		struct bintime bt;
1872
1873		bintime(&bt);
1874		if (inp->inp_socket->so_options & SO_BINTIME) {
1875			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1876			SCM_BINTIME, SOL_SOCKET);
1877			if (*mp)
1878				mp = &(*mp)->m_next;
1879		}
1880		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1881			struct timeval tv;
1882
1883			bintime2timeval(&bt, &tv);
1884			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1885				SCM_TIMESTAMP, SOL_SOCKET);
1886			if (*mp)
1887				mp = &(*mp)->m_next;
1888		}
1889	}
1890	if (inp->inp_flags & INP_RECVDSTADDR) {
1891		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1892		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1893		if (*mp)
1894			mp = &(*mp)->m_next;
1895	}
1896	if (inp->inp_flags & INP_RECVTTL) {
1897		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1898		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1899		if (*mp)
1900			mp = &(*mp)->m_next;
1901	}
1902#ifdef notyet
1903	/* XXX
1904	 * Moving these out of udp_input() made them even more broken
1905	 * than they already were.
1906	 */
1907	/* options were tossed already */
1908	if (inp->inp_flags & INP_RECVOPTS) {
1909		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1910		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1911		if (*mp)
1912			mp = &(*mp)->m_next;
1913	}
1914	/* ip_srcroute doesn't do what we want here, need to fix */
1915	if (inp->inp_flags & INP_RECVRETOPTS) {
1916		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1917		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1918		if (*mp)
1919			mp = &(*mp)->m_next;
1920	}
1921#endif
1922	if (inp->inp_flags & INP_RECVIF) {
1923		struct ifnet *ifp;
1924		struct sdlbuf {
1925			struct sockaddr_dl sdl;
1926			u_char	pad[32];
1927		} sdlbuf;
1928		struct sockaddr_dl *sdp;
1929		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1930
1931		if (((ifp = m->m_pkthdr.rcvif))
1932		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1933			sdp = (struct sockaddr_dl *)
1934			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1935			/*
1936			 * Change our mind and don't try copy.
1937			 */
1938			if ((sdp->sdl_family != AF_LINK)
1939			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1940				goto makedummy;
1941			}
1942			bcopy(sdp, sdl2, sdp->sdl_len);
1943		} else {
1944makedummy:
1945			sdl2->sdl_len
1946				= offsetof(struct sockaddr_dl, sdl_data[0]);
1947			sdl2->sdl_family = AF_LINK;
1948			sdl2->sdl_index = 0;
1949			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1950		}
1951		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1952			IP_RECVIF, IPPROTO_IP);
1953		if (*mp)
1954			mp = &(*mp)->m_next;
1955	}
1956}
1957
1958/*
1959 * XXX these routines are called from the upper part of the kernel.
1960 * They need to be locked when we remove Giant.
1961 *
1962 * They could also be moved to ip_mroute.c, since all the RSVP
1963 *  handling is done there already.
1964 */
1965static int ip_rsvp_on;
1966struct socket *ip_rsvpd;
1967int
1968ip_rsvp_init(struct socket *so)
1969{
1970	if (so->so_type != SOCK_RAW ||
1971	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1972		return EOPNOTSUPP;
1973
1974	if (ip_rsvpd != NULL)
1975		return EADDRINUSE;
1976
1977	ip_rsvpd = so;
1978	/*
1979	 * This may seem silly, but we need to be sure we don't over-increment
1980	 * the RSVP counter, in case something slips up.
1981	 */
1982	if (!ip_rsvp_on) {
1983		ip_rsvp_on = 1;
1984		rsvp_on++;
1985	}
1986
1987	return 0;
1988}
1989
1990int
1991ip_rsvp_done(void)
1992{
1993	ip_rsvpd = NULL;
1994	/*
1995	 * This may seem silly, but we need to be sure we don't over-decrement
1996	 * the RSVP counter, in case something slips up.
1997	 */
1998	if (ip_rsvp_on) {
1999		ip_rsvp_on = 0;
2000		rsvp_on--;
2001	}
2002	return 0;
2003}
2004
2005void
2006rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2007{
2008	if (rsvp_input_p) { /* call the real one if loaded */
2009		rsvp_input_p(m, off);
2010		return;
2011	}
2012
2013	/* Can still get packets with rsvp_on = 0 if there is a local member
2014	 * of the group to which the RSVP packet is addressed.  But in this
2015	 * case we want to throw the packet away.
2016	 */
2017
2018	if (!rsvp_on) {
2019		m_freem(m);
2020		return;
2021	}
2022
2023	if (ip_rsvpd != NULL) {
2024		rip_input(m, off);
2025		return;
2026	}
2027	/* Drop the packet */
2028	m_freem(m);
2029}
2030