ip_input.c revision 133923
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 * $FreeBSD: head/sys/netinet/ip_input.c 133923 2004-08-18 03:11:04Z rwatson $
31 */
32
33#include "opt_bootp.h"
34#include "opt_ipfw.h"
35#include "opt_ipstealth.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_pfil_hooks.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/mac.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/syslog.h>
51#include <sys/sysctl.h>
52
53#include <net/pfil.h>
54#include <net/if.h>
55#include <net/if_types.h>
56#include <net/if_var.h>
57#include <net/if_dl.h>
58#include <net/route.h>
59#include <net/netisr.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/ip.h>
65#include <netinet/in_pcb.h>
66#include <netinet/ip_var.h>
67#include <netinet/ip_icmp.h>
68#include <machine/in_cksum.h>
69
70#include <sys/socketvar.h>
71
72/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
73#include <netinet/ip_fw.h>
74#include <netinet/ip_dummynet.h>
75
76#ifdef IPSEC
77#include <netinet6/ipsec.h>
78#include <netkey/key.h>
79#endif
80
81#ifdef FAST_IPSEC
82#include <netipsec/ipsec.h>
83#include <netipsec/key.h>
84#endif
85
86int rsvp_on = 0;
87
88int	ipforwarding = 0;
89SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
90    &ipforwarding, 0, "Enable IP forwarding between interfaces");
91
92static int	ipsendredirects = 1; /* XXX */
93SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
94    &ipsendredirects, 0, "Enable sending IP redirects");
95
96int	ip_defttl = IPDEFTTL;
97SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
98    &ip_defttl, 0, "Maximum TTL on IP packets");
99
100static int	ip_dosourceroute = 0;
101SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
102    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
103
104static int	ip_acceptsourceroute = 0;
105SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
106    CTLFLAG_RW, &ip_acceptsourceroute, 0,
107    "Enable accepting source routed IP packets");
108
109int		ip_doopts = 1;	/* 0 = ignore, 1 = process, 2 = reject */
110SYSCTL_INT(_net_inet_ip, OID_AUTO, process_options, CTLFLAG_RW,
111    &ip_doopts, 0, "Enable IP options processing ([LS]SRR, RR, TS)");
112
113static int	ip_keepfaith = 0;
114SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
115	&ip_keepfaith,	0,
116	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
117
118static int    nipq = 0;         /* total # of reass queues */
119static int    maxnipq;
120SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
121	&maxnipq, 0,
122	"Maximum number of IPv4 fragment reassembly queue entries");
123
124static int    maxfragsperpacket;
125SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
126	&maxfragsperpacket, 0,
127	"Maximum number of IPv4 fragments allowed per packet");
128
129static int	ip_sendsourcequench = 0;
130SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
131	&ip_sendsourcequench, 0,
132	"Enable the transmission of source quench packets");
133
134int	ip_do_randomid = 0;
135SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
136	&ip_do_randomid, 0,
137	"Assign random ip_id values");
138
139/*
140 * XXX - Setting ip_checkinterface mostly implements the receive side of
141 * the Strong ES model described in RFC 1122, but since the routing table
142 * and transmit implementation do not implement the Strong ES model,
143 * setting this to 1 results in an odd hybrid.
144 *
145 * XXX - ip_checkinterface currently must be disabled if you use ipnat
146 * to translate the destination address to another local interface.
147 *
148 * XXX - ip_checkinterface must be disabled if you add IP aliases
149 * to the loopback interface instead of the interface where the
150 * packets for those addresses are received.
151 */
152static int	ip_checkinterface = 1;
153SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
154    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
155
156#ifdef DIAGNOSTIC
157static int	ipprintfs = 0;
158#endif
159#ifdef PFIL_HOOKS
160struct pfil_head inet_pfil_hook;
161#endif
162
163static struct	ifqueue ipintrq;
164static int	ipqmaxlen = IFQ_MAXLEN;
165
166extern	struct domain inetdomain;
167extern	struct protosw inetsw[];
168u_char	ip_protox[IPPROTO_MAX];
169struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
170struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
171u_long 	in_ifaddrhmask;				/* mask for hash table */
172
173SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
174    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
175SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
176    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
177
178struct ipstat ipstat;
179SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
180    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
181
182/* Packet reassembly stuff */
183#define IPREASS_NHASH_LOG2      6
184#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
185#define IPREASS_HMASK           (IPREASS_NHASH - 1)
186#define IPREASS_HASH(x,y) \
187	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
188
189static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
190struct mtx ipqlock;
191
192#define	IPQ_LOCK()	mtx_lock(&ipqlock)
193#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
194#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
195#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
196
197#ifdef IPCTL_DEFMTU
198SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
199    &ip_mtu, 0, "Default MTU");
200#endif
201
202#ifdef IPSTEALTH
203int	ipstealth = 0;
204SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
205    &ipstealth, 0, "");
206#endif
207
208/*
209 * ipfw_ether and ipfw_bridge hooks.
210 * XXX: Temporary until those are converted to pfil_hooks as well.
211 */
212ip_fw_chk_t *ip_fw_chk_ptr = NULL;
213ip_dn_io_t *ip_dn_io_ptr = NULL;
214int fw_one_pass = 1;
215
216/*
217 * XXX this is ugly -- the following two global variables are
218 * used to store packet state while it travels through the stack.
219 * Note that the code even makes assumptions on the size and
220 * alignment of fields inside struct ip_srcrt so e.g. adding some
221 * fields will break the code. This needs to be fixed.
222 *
223 * We need to save the IP options in case a protocol wants to respond
224 * to an incoming packet over the same route if the packet got here
225 * using IP source routing.  This allows connection establishment and
226 * maintenance when the remote end is on a network that is not known
227 * to us.
228 * XXX: Broken on SMP and possibly preemption!
229 */
230static int	ip_nhops = 0;
231static	struct ip_srcrt {
232	struct	in_addr dst;			/* final destination */
233	char	nop;				/* one NOP to align */
234	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
235	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
236} ip_srcrt;
237
238static void	save_rte(u_char *, struct in_addr);
239static int	ip_dooptions(struct mbuf *m, int);
240static void	ip_forward(struct mbuf *m, int srcrt);
241static void	ip_freef(struct ipqhead *, struct ipq *);
242
243/*
244 * IP initialization: fill in IP protocol switch table.
245 * All protocols not implemented in kernel go to raw IP protocol handler.
246 */
247void
248ip_init()
249{
250	register struct protosw *pr;
251	register int i;
252
253	TAILQ_INIT(&in_ifaddrhead);
254	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
255	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
256	if (pr == 0)
257		panic("ip_init");
258	for (i = 0; i < IPPROTO_MAX; i++)
259		ip_protox[i] = pr - inetsw;
260	for (pr = inetdomain.dom_protosw;
261	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
262		if (pr->pr_domain->dom_family == PF_INET &&
263		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
264			ip_protox[pr->pr_protocol] = pr - inetsw;
265
266#ifdef PFIL_HOOKS
267	inet_pfil_hook.ph_type = PFIL_TYPE_AF;
268	inet_pfil_hook.ph_af = AF_INET;
269	if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
270		printf("%s: WARNING: unable to register pfil hook, "
271			"error %d\n", __func__, i);
272#endif /* PFIL_HOOKS */
273
274	IPQ_LOCK_INIT();
275	for (i = 0; i < IPREASS_NHASH; i++)
276	    TAILQ_INIT(&ipq[i]);
277
278	maxnipq = nmbclusters / 32;
279	maxfragsperpacket = 16;
280
281	ip_id = time_second & 0xffff;
282	ipintrq.ifq_maxlen = ipqmaxlen;
283	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
284	netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
285}
286
287/*
288 * Ip input routine.  Checksum and byte swap header.  If fragmented
289 * try to reassemble.  Process options.  Pass to next level.
290 */
291void
292ip_input(struct mbuf *m)
293{
294	struct ip *ip = NULL;
295	struct in_ifaddr *ia = NULL;
296	struct ifaddr *ifa;
297	int    checkif, hlen = 0;
298	u_short sum;
299	int dchg = 0;				/* dest changed after fw */
300#ifdef PFIL_HOOKS
301	struct in_addr odst;			/* original dst address */
302#endif
303#ifdef FAST_IPSEC
304	struct m_tag *mtag;
305	struct tdb_ident *tdbi;
306	struct secpolicy *sp;
307	int s, error;
308#endif /* FAST_IPSEC */
309
310  	M_ASSERTPKTHDR(m);
311
312	if (m->m_flags & M_FASTFWD_OURS) {
313		/*
314		 * ip_fastforward firewall changed dest to local.
315		 * We expect ip_len and ip_off in host byte order.
316		 */
317		m->m_flags &= ~M_FASTFWD_OURS;	/* for reflected mbufs */
318		/* Set up some basic stuff */
319		ip = mtod(m, struct ip *);
320		hlen = ip->ip_hl << 2;
321  		goto ours;
322  	}
323
324	ipstat.ips_total++;
325
326	if (m->m_pkthdr.len < sizeof(struct ip))
327		goto tooshort;
328
329	if (m->m_len < sizeof (struct ip) &&
330	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
331		ipstat.ips_toosmall++;
332		return;
333	}
334	ip = mtod(m, struct ip *);
335
336	if (ip->ip_v != IPVERSION) {
337		ipstat.ips_badvers++;
338		goto bad;
339	}
340
341	hlen = ip->ip_hl << 2;
342	if (hlen < sizeof(struct ip)) {	/* minimum header length */
343		ipstat.ips_badhlen++;
344		goto bad;
345	}
346	if (hlen > m->m_len) {
347		if ((m = m_pullup(m, hlen)) == NULL) {
348			ipstat.ips_badhlen++;
349			return;
350		}
351		ip = mtod(m, struct ip *);
352	}
353
354	/* 127/8 must not appear on wire - RFC1122 */
355	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
356	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
357		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
358			ipstat.ips_badaddr++;
359			goto bad;
360		}
361	}
362
363	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
364		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
365	} else {
366		if (hlen == sizeof(struct ip)) {
367			sum = in_cksum_hdr(ip);
368		} else {
369			sum = in_cksum(m, hlen);
370		}
371	}
372	if (sum) {
373		ipstat.ips_badsum++;
374		goto bad;
375	}
376
377#ifdef ALTQ
378	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
379		/* packet is dropped by traffic conditioner */
380		return;
381#endif
382
383	/*
384	 * Convert fields to host representation.
385	 */
386	ip->ip_len = ntohs(ip->ip_len);
387	if (ip->ip_len < hlen) {
388		ipstat.ips_badlen++;
389		goto bad;
390	}
391	ip->ip_off = ntohs(ip->ip_off);
392
393	/*
394	 * Check that the amount of data in the buffers
395	 * is as at least much as the IP header would have us expect.
396	 * Trim mbufs if longer than we expect.
397	 * Drop packet if shorter than we expect.
398	 */
399	if (m->m_pkthdr.len < ip->ip_len) {
400tooshort:
401		ipstat.ips_tooshort++;
402		goto bad;
403	}
404	if (m->m_pkthdr.len > ip->ip_len) {
405		if (m->m_len == m->m_pkthdr.len) {
406			m->m_len = ip->ip_len;
407			m->m_pkthdr.len = ip->ip_len;
408		} else
409			m_adj(m, ip->ip_len - m->m_pkthdr.len);
410	}
411#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
412	/*
413	 * Bypass packet filtering for packets from a tunnel (gif).
414	 */
415	if (ipsec_getnhist(m))
416		goto pass;
417#endif
418#if defined(FAST_IPSEC) && !defined(IPSEC_FILTERGIF)
419	/*
420	 * Bypass packet filtering for packets from a tunnel (gif).
421	 */
422	if (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL)
423		goto pass;
424#endif
425
426#ifdef PFIL_HOOKS
427	/*
428	 * Run through list of hooks for input packets.
429	 *
430	 * NB: Beware of the destination address changing (e.g.
431	 *     by NAT rewriting).  When this happens, tell
432	 *     ip_forward to do the right thing.
433	 */
434	odst = ip->ip_dst;
435	if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
436	    PFIL_IN) != 0)
437		return;
438	if (m == NULL)			/* consumed by filter */
439		return;
440
441	ip = mtod(m, struct ip *);
442	dchg = (odst.s_addr != ip->ip_dst.s_addr);
443
444#ifdef IPFIREWALL_FORWARD
445	if (m->m_flags & M_FASTFWD_OURS) {
446		m->m_flags &= ~M_FASTFWD_OURS;
447		goto ours;
448	}
449	dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
450#endif /* IPFIREWALL_FORWARD */
451
452#endif /* PFIL_HOOKS */
453
454#if (defined(FAST_IPSEC) || defined(IPSEC)) && !defined(IPSEC_FILTERGIF)
455pass:
456#endif
457
458	/*
459	 * Process options and, if not destined for us,
460	 * ship it on.  ip_dooptions returns 1 when an
461	 * error was detected (causing an icmp message
462	 * to be sent and the original packet to be freed).
463	 */
464	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
465		return;
466
467        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
468         * matter if it is destined to another node, or whether it is
469         * a multicast one, RSVP wants it! and prevents it from being forwarded
470         * anywhere else. Also checks if the rsvp daemon is running before
471	 * grabbing the packet.
472         */
473	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
474		goto ours;
475
476	/*
477	 * Check our list of addresses, to see if the packet is for us.
478	 * If we don't have any addresses, assume any unicast packet
479	 * we receive might be for us (and let the upper layers deal
480	 * with it).
481	 */
482	if (TAILQ_EMPTY(&in_ifaddrhead) &&
483	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
484		goto ours;
485
486	/*
487	 * Enable a consistency check between the destination address
488	 * and the arrival interface for a unicast packet (the RFC 1122
489	 * strong ES model) if IP forwarding is disabled and the packet
490	 * is not locally generated and the packet is not subject to
491	 * 'ipfw fwd'.
492	 *
493	 * XXX - Checking also should be disabled if the destination
494	 * address is ipnat'ed to a different interface.
495	 *
496	 * XXX - Checking is incompatible with IP aliases added
497	 * to the loopback interface instead of the interface where
498	 * the packets are received.
499	 */
500	checkif = ip_checkinterface && (ipforwarding == 0) &&
501	    m->m_pkthdr.rcvif != NULL &&
502	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
503	    (dchg == 0);
504
505	/*
506	 * Check for exact addresses in the hash bucket.
507	 */
508	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
509		/*
510		 * If the address matches, verify that the packet
511		 * arrived via the correct interface if checking is
512		 * enabled.
513		 */
514		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
515		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
516			goto ours;
517	}
518	/*
519	 * Check for broadcast addresses.
520	 *
521	 * Only accept broadcast packets that arrive via the matching
522	 * interface.  Reception of forwarded directed broadcasts would
523	 * be handled via ip_forward() and ether_output() with the loopback
524	 * into the stack for SIMPLEX interfaces handled by ether_output().
525	 */
526	if (m->m_pkthdr.rcvif != NULL &&
527	    m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
528	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
529			if (ifa->ifa_addr->sa_family != AF_INET)
530				continue;
531			ia = ifatoia(ifa);
532			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
533			    ip->ip_dst.s_addr)
534				goto ours;
535			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
536				goto ours;
537#ifdef BOOTP_COMPAT
538			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
539				goto ours;
540#endif
541		}
542	}
543	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
544		struct in_multi *inm;
545		if (ip_mrouter) {
546			/*
547			 * If we are acting as a multicast router, all
548			 * incoming multicast packets are passed to the
549			 * kernel-level multicast forwarding function.
550			 * The packet is returned (relatively) intact; if
551			 * ip_mforward() returns a non-zero value, the packet
552			 * must be discarded, else it may be accepted below.
553			 */
554			if (ip_mforward &&
555			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
556				ipstat.ips_cantforward++;
557				m_freem(m);
558				return;
559			}
560
561			/*
562			 * The process-level routing daemon needs to receive
563			 * all multicast IGMP packets, whether or not this
564			 * host belongs to their destination groups.
565			 */
566			if (ip->ip_p == IPPROTO_IGMP)
567				goto ours;
568			ipstat.ips_forward++;
569		}
570		/*
571		 * See if we belong to the destination multicast group on the
572		 * arrival interface.
573		 */
574		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
575		if (inm == NULL) {
576			ipstat.ips_notmember++;
577			m_freem(m);
578			return;
579		}
580		goto ours;
581	}
582	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
583		goto ours;
584	if (ip->ip_dst.s_addr == INADDR_ANY)
585		goto ours;
586
587	/*
588	 * FAITH(Firewall Aided Internet Translator)
589	 */
590	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
591		if (ip_keepfaith) {
592			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
593				goto ours;
594		}
595		m_freem(m);
596		return;
597	}
598
599	/*
600	 * Not for us; forward if possible and desirable.
601	 */
602	if (ipforwarding == 0) {
603		ipstat.ips_cantforward++;
604		m_freem(m);
605	} else {
606#ifdef IPSEC
607		/*
608		 * Enforce inbound IPsec SPD.
609		 */
610		if (ipsec4_in_reject(m, NULL)) {
611			ipsecstat.in_polvio++;
612			goto bad;
613		}
614#endif /* IPSEC */
615#ifdef FAST_IPSEC
616		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
617		s = splnet();
618		if (mtag != NULL) {
619			tdbi = (struct tdb_ident *)(mtag + 1);
620			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
621		} else {
622			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
623						   IP_FORWARDING, &error);
624		}
625		if (sp == NULL) {	/* NB: can happen if error */
626			splx(s);
627			/*XXX error stat???*/
628			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
629			goto bad;
630		}
631
632		/*
633		 * Check security policy against packet attributes.
634		 */
635		error = ipsec_in_reject(sp, m);
636		KEY_FREESP(&sp);
637		splx(s);
638		if (error) {
639			ipstat.ips_cantforward++;
640			goto bad;
641		}
642#endif /* FAST_IPSEC */
643		ip_forward(m, dchg);
644	}
645	return;
646
647ours:
648#ifdef IPSTEALTH
649	/*
650	 * IPSTEALTH: Process non-routing options only
651	 * if the packet is destined for us.
652	 */
653	if (ipstealth && hlen > sizeof (struct ip) &&
654	    ip_dooptions(m, 1))
655		return;
656#endif /* IPSTEALTH */
657
658	/* Count the packet in the ip address stats */
659	if (ia != NULL) {
660		ia->ia_ifa.if_ipackets++;
661		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
662	}
663
664	/*
665	 * Attempt reassembly; if it succeeds, proceed.
666	 * ip_reass() will return a different mbuf.
667	 */
668	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
669		m = ip_reass(m);
670		if (m == NULL)
671			return;
672		ip = mtod(m, struct ip *);
673		/* Get the header length of the reassembled packet */
674		hlen = ip->ip_hl << 2;
675	}
676
677	/*
678	 * Further protocols expect the packet length to be w/o the
679	 * IP header.
680	 */
681	ip->ip_len -= hlen;
682
683#ifdef IPSEC
684	/*
685	 * enforce IPsec policy checking if we are seeing last header.
686	 * note that we do not visit this with protocols with pcb layer
687	 * code - like udp/tcp/raw ip.
688	 */
689	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
690	    ipsec4_in_reject(m, NULL)) {
691		ipsecstat.in_polvio++;
692		goto bad;
693	}
694#endif
695#if FAST_IPSEC
696	/*
697	 * enforce IPsec policy checking if we are seeing last header.
698	 * note that we do not visit this with protocols with pcb layer
699	 * code - like udp/tcp/raw ip.
700	 */
701	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
702		/*
703		 * Check if the packet has already had IPsec processing
704		 * done.  If so, then just pass it along.  This tag gets
705		 * set during AH, ESP, etc. input handling, before the
706		 * packet is returned to the ip input queue for delivery.
707		 */
708		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
709		s = splnet();
710		if (mtag != NULL) {
711			tdbi = (struct tdb_ident *)(mtag + 1);
712			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
713		} else {
714			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
715						   IP_FORWARDING, &error);
716		}
717		if (sp != NULL) {
718			/*
719			 * Check security policy against packet attributes.
720			 */
721			error = ipsec_in_reject(sp, m);
722			KEY_FREESP(&sp);
723		} else {
724			/* XXX error stat??? */
725			error = EINVAL;
726DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
727			goto bad;
728		}
729		splx(s);
730		if (error)
731			goto bad;
732	}
733#endif /* FAST_IPSEC */
734
735	/*
736	 * Switch out to protocol's input routine.
737	 */
738	ipstat.ips_delivered++;
739
740	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
741	return;
742bad:
743	m_freem(m);
744}
745
746/*
747 * Take incoming datagram fragment and try to reassemble it into
748 * whole datagram.  If the argument is the first fragment or one
749 * in between the function will return NULL and store the mbuf
750 * in the fragment chain.  If the argument is the last fragment
751 * the packet will be reassembled and the pointer to the new
752 * mbuf returned for further processing.  Only m_tags attached
753 * to the first packet/fragment are preserved.
754 * The IP header is *NOT* adjusted out of iplen.
755 */
756
757struct mbuf *
758ip_reass(struct mbuf *m)
759{
760	struct ip *ip;
761	struct mbuf *p, *q, *nq, *t;
762	struct ipq *fp = NULL;
763	struct ipqhead *head;
764	int i, hlen, next;
765	u_int8_t ecn, ecn0;
766	u_short hash;
767
768	/* If maxnipq is 0, never accept fragments. */
769	if (maxnipq == 0) {
770		ipstat.ips_fragments++;
771		ipstat.ips_fragdropped++;
772		m_freem(m);
773		return (NULL);
774	}
775
776	ip = mtod(m, struct ip *);
777	hlen = ip->ip_hl << 2;
778
779	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
780	head = &ipq[hash];
781	IPQ_LOCK();
782
783	/*
784	 * Look for queue of fragments
785	 * of this datagram.
786	 */
787	TAILQ_FOREACH(fp, head, ipq_list)
788		if (ip->ip_id == fp->ipq_id &&
789		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
790		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
791#ifdef MAC
792		    mac_fragment_match(m, fp) &&
793#endif
794		    ip->ip_p == fp->ipq_p)
795			goto found;
796
797	fp = NULL;
798
799	/*
800	 * Enforce upper bound on number of fragmented packets
801	 * for which we attempt reassembly;
802	 * If maxnipq is -1, accept all fragments without limitation.
803	 */
804	if ((nipq > maxnipq) && (maxnipq > 0)) {
805		/*
806		 * drop something from the tail of the current queue
807		 * before proceeding further
808		 */
809		struct ipq *q = TAILQ_LAST(head, ipqhead);
810		if (q == NULL) {   /* gak */
811			for (i = 0; i < IPREASS_NHASH; i++) {
812				struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
813				if (r) {
814					ipstat.ips_fragtimeout += r->ipq_nfrags;
815					ip_freef(&ipq[i], r);
816					break;
817				}
818			}
819		} else {
820			ipstat.ips_fragtimeout += q->ipq_nfrags;
821			ip_freef(head, q);
822		}
823	}
824
825found:
826	/*
827	 * Adjust ip_len to not reflect header,
828	 * convert offset of this to bytes.
829	 */
830	ip->ip_len -= hlen;
831	if (ip->ip_off & IP_MF) {
832		/*
833		 * Make sure that fragments have a data length
834		 * that's a non-zero multiple of 8 bytes.
835		 */
836		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
837			ipstat.ips_toosmall++; /* XXX */
838			goto dropfrag;
839		}
840		m->m_flags |= M_FRAG;
841	} else
842		m->m_flags &= ~M_FRAG;
843	ip->ip_off <<= 3;
844
845
846	/*
847	 * Attempt reassembly; if it succeeds, proceed.
848	 * ip_reass() will return a different mbuf.
849	 */
850	ipstat.ips_fragments++;
851	m->m_pkthdr.header = ip;
852
853	/* Previous ip_reass() started here. */
854	/*
855	 * Presence of header sizes in mbufs
856	 * would confuse code below.
857	 */
858	m->m_data += hlen;
859	m->m_len -= hlen;
860
861	/*
862	 * If first fragment to arrive, create a reassembly queue.
863	 */
864	if (fp == NULL) {
865		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
866			goto dropfrag;
867		fp = mtod(t, struct ipq *);
868#ifdef MAC
869		if (mac_init_ipq(fp, M_NOWAIT) != 0) {
870			m_free(t);
871			goto dropfrag;
872		}
873		mac_create_ipq(m, fp);
874#endif
875		TAILQ_INSERT_HEAD(head, fp, ipq_list);
876		nipq++;
877		fp->ipq_nfrags = 1;
878		fp->ipq_ttl = IPFRAGTTL;
879		fp->ipq_p = ip->ip_p;
880		fp->ipq_id = ip->ip_id;
881		fp->ipq_src = ip->ip_src;
882		fp->ipq_dst = ip->ip_dst;
883		fp->ipq_frags = m;
884		m->m_nextpkt = NULL;
885		goto inserted;
886	} else {
887		fp->ipq_nfrags++;
888#ifdef MAC
889		mac_update_ipq(m, fp);
890#endif
891	}
892
893#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
894
895	/*
896	 * Handle ECN by comparing this segment with the first one;
897	 * if CE is set, do not lose CE.
898	 * drop if CE and not-ECT are mixed for the same packet.
899	 */
900	ecn = ip->ip_tos & IPTOS_ECN_MASK;
901	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
902	if (ecn == IPTOS_ECN_CE) {
903		if (ecn0 == IPTOS_ECN_NOTECT)
904			goto dropfrag;
905		if (ecn0 != IPTOS_ECN_CE)
906			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
907	}
908	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
909		goto dropfrag;
910
911	/*
912	 * Find a segment which begins after this one does.
913	 */
914	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
915		if (GETIP(q)->ip_off > ip->ip_off)
916			break;
917
918	/*
919	 * If there is a preceding segment, it may provide some of
920	 * our data already.  If so, drop the data from the incoming
921	 * segment.  If it provides all of our data, drop us, otherwise
922	 * stick new segment in the proper place.
923	 *
924	 * If some of the data is dropped from the the preceding
925	 * segment, then it's checksum is invalidated.
926	 */
927	if (p) {
928		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
929		if (i > 0) {
930			if (i >= ip->ip_len)
931				goto dropfrag;
932			m_adj(m, i);
933			m->m_pkthdr.csum_flags = 0;
934			ip->ip_off += i;
935			ip->ip_len -= i;
936		}
937		m->m_nextpkt = p->m_nextpkt;
938		p->m_nextpkt = m;
939	} else {
940		m->m_nextpkt = fp->ipq_frags;
941		fp->ipq_frags = m;
942	}
943
944	/*
945	 * While we overlap succeeding segments trim them or,
946	 * if they are completely covered, dequeue them.
947	 */
948	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
949	     q = nq) {
950		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
951		if (i < GETIP(q)->ip_len) {
952			GETIP(q)->ip_len -= i;
953			GETIP(q)->ip_off += i;
954			m_adj(q, i);
955			q->m_pkthdr.csum_flags = 0;
956			break;
957		}
958		nq = q->m_nextpkt;
959		m->m_nextpkt = nq;
960		ipstat.ips_fragdropped++;
961		fp->ipq_nfrags--;
962		m_freem(q);
963	}
964
965inserted:
966
967	/*
968	 * Check for complete reassembly and perform frag per packet
969	 * limiting.
970	 *
971	 * Frag limiting is performed here so that the nth frag has
972	 * a chance to complete the packet before we drop the packet.
973	 * As a result, n+1 frags are actually allowed per packet, but
974	 * only n will ever be stored. (n = maxfragsperpacket.)
975	 *
976	 */
977	next = 0;
978	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
979		if (GETIP(q)->ip_off != next) {
980			if (fp->ipq_nfrags > maxfragsperpacket) {
981				ipstat.ips_fragdropped += fp->ipq_nfrags;
982				ip_freef(head, fp);
983			}
984			goto done;
985		}
986		next += GETIP(q)->ip_len;
987	}
988	/* Make sure the last packet didn't have the IP_MF flag */
989	if (p->m_flags & M_FRAG) {
990		if (fp->ipq_nfrags > maxfragsperpacket) {
991			ipstat.ips_fragdropped += fp->ipq_nfrags;
992			ip_freef(head, fp);
993		}
994		goto done;
995	}
996
997	/*
998	 * Reassembly is complete.  Make sure the packet is a sane size.
999	 */
1000	q = fp->ipq_frags;
1001	ip = GETIP(q);
1002	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1003		ipstat.ips_toolong++;
1004		ipstat.ips_fragdropped += fp->ipq_nfrags;
1005		ip_freef(head, fp);
1006		goto done;
1007	}
1008
1009	/*
1010	 * Concatenate fragments.
1011	 */
1012	m = q;
1013	t = m->m_next;
1014	m->m_next = 0;
1015	m_cat(m, t);
1016	nq = q->m_nextpkt;
1017	q->m_nextpkt = 0;
1018	for (q = nq; q != NULL; q = nq) {
1019		nq = q->m_nextpkt;
1020		q->m_nextpkt = NULL;
1021		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1022		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1023		m_cat(m, q);
1024	}
1025#ifdef MAC
1026	mac_create_datagram_from_ipq(fp, m);
1027	mac_destroy_ipq(fp);
1028#endif
1029
1030	/*
1031	 * Create header for new ip packet by modifying header of first
1032	 * packet;  dequeue and discard fragment reassembly header.
1033	 * Make header visible.
1034	 */
1035	ip->ip_len = (ip->ip_hl << 2) + next;
1036	ip->ip_src = fp->ipq_src;
1037	ip->ip_dst = fp->ipq_dst;
1038	TAILQ_REMOVE(head, fp, ipq_list);
1039	nipq--;
1040	(void) m_free(dtom(fp));
1041	m->m_len += (ip->ip_hl << 2);
1042	m->m_data -= (ip->ip_hl << 2);
1043	/* some debugging cruft by sklower, below, will go away soon */
1044	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1045		m_fixhdr(m);
1046	ipstat.ips_reassembled++;
1047	IPQ_UNLOCK();
1048	return (m);
1049
1050dropfrag:
1051	ipstat.ips_fragdropped++;
1052	if (fp != NULL)
1053		fp->ipq_nfrags--;
1054	m_freem(m);
1055done:
1056	IPQ_UNLOCK();
1057	return (NULL);
1058
1059#undef GETIP
1060}
1061
1062/*
1063 * Free a fragment reassembly header and all
1064 * associated datagrams.
1065 */
1066static void
1067ip_freef(fhp, fp)
1068	struct ipqhead *fhp;
1069	struct ipq *fp;
1070{
1071	register struct mbuf *q;
1072
1073	IPQ_LOCK_ASSERT();
1074
1075	while (fp->ipq_frags) {
1076		q = fp->ipq_frags;
1077		fp->ipq_frags = q->m_nextpkt;
1078		m_freem(q);
1079	}
1080	TAILQ_REMOVE(fhp, fp, ipq_list);
1081	(void) m_free(dtom(fp));
1082	nipq--;
1083}
1084
1085/*
1086 * IP timer processing;
1087 * if a timer expires on a reassembly
1088 * queue, discard it.
1089 */
1090void
1091ip_slowtimo()
1092{
1093	register struct ipq *fp;
1094	int s = splnet();
1095	int i;
1096
1097	IPQ_LOCK();
1098	for (i = 0; i < IPREASS_NHASH; i++) {
1099		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1100			struct ipq *fpp;
1101
1102			fpp = fp;
1103			fp = TAILQ_NEXT(fp, ipq_list);
1104			if(--fpp->ipq_ttl == 0) {
1105				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1106				ip_freef(&ipq[i], fpp);
1107			}
1108		}
1109	}
1110	/*
1111	 * If we are over the maximum number of fragments
1112	 * (due to the limit being lowered), drain off
1113	 * enough to get down to the new limit.
1114	 */
1115	if (maxnipq >= 0 && nipq > maxnipq) {
1116		for (i = 0; i < IPREASS_NHASH; i++) {
1117			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1118				ipstat.ips_fragdropped +=
1119				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1120				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1121			}
1122		}
1123	}
1124	IPQ_UNLOCK();
1125	splx(s);
1126}
1127
1128/*
1129 * Drain off all datagram fragments.
1130 */
1131void
1132ip_drain()
1133{
1134	int     i;
1135
1136	IPQ_LOCK();
1137	for (i = 0; i < IPREASS_NHASH; i++) {
1138		while(!TAILQ_EMPTY(&ipq[i])) {
1139			ipstat.ips_fragdropped +=
1140			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1141			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1142		}
1143	}
1144	IPQ_UNLOCK();
1145	in_rtqdrain();
1146}
1147
1148/*
1149 * Do option processing on a datagram,
1150 * possibly discarding it if bad options are encountered,
1151 * or forwarding it if source-routed.
1152 * The pass argument is used when operating in the IPSTEALTH
1153 * mode to tell what options to process:
1154 * [LS]SRR (pass 0) or the others (pass 1).
1155 * The reason for as many as two passes is that when doing IPSTEALTH,
1156 * non-routing options should be processed only if the packet is for us.
1157 * Returns 1 if packet has been forwarded/freed,
1158 * 0 if the packet should be processed further.
1159 */
1160static int
1161ip_dooptions(struct mbuf *m, int pass)
1162{
1163	struct ip *ip = mtod(m, struct ip *);
1164	u_char *cp;
1165	struct in_ifaddr *ia;
1166	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1167	struct in_addr *sin, dst;
1168	n_time ntime;
1169	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1170
1171	/* ignore or reject packets with IP options */
1172	if (ip_doopts == 0)
1173		return 0;
1174	else if (ip_doopts == 2) {
1175		type = ICMP_UNREACH;
1176		code = ICMP_UNREACH_FILTER_PROHIB;
1177		goto bad;
1178	}
1179
1180	dst = ip->ip_dst;
1181	cp = (u_char *)(ip + 1);
1182	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1183	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1184		opt = cp[IPOPT_OPTVAL];
1185		if (opt == IPOPT_EOL)
1186			break;
1187		if (opt == IPOPT_NOP)
1188			optlen = 1;
1189		else {
1190			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1191				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1192				goto bad;
1193			}
1194			optlen = cp[IPOPT_OLEN];
1195			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1196				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1197				goto bad;
1198			}
1199		}
1200		switch (opt) {
1201
1202		default:
1203			break;
1204
1205		/*
1206		 * Source routing with record.
1207		 * Find interface with current destination address.
1208		 * If none on this machine then drop if strictly routed,
1209		 * or do nothing if loosely routed.
1210		 * Record interface address and bring up next address
1211		 * component.  If strictly routed make sure next
1212		 * address is on directly accessible net.
1213		 */
1214		case IPOPT_LSRR:
1215		case IPOPT_SSRR:
1216#ifdef IPSTEALTH
1217			if (ipstealth && pass > 0)
1218				break;
1219#endif
1220			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1221				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1222				goto bad;
1223			}
1224			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1225				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1226				goto bad;
1227			}
1228			ipaddr.sin_addr = ip->ip_dst;
1229			ia = (struct in_ifaddr *)
1230				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1231			if (ia == NULL) {
1232				if (opt == IPOPT_SSRR) {
1233					type = ICMP_UNREACH;
1234					code = ICMP_UNREACH_SRCFAIL;
1235					goto bad;
1236				}
1237				if (!ip_dosourceroute)
1238					goto nosourcerouting;
1239				/*
1240				 * Loose routing, and not at next destination
1241				 * yet; nothing to do except forward.
1242				 */
1243				break;
1244			}
1245			off--;			/* 0 origin */
1246			if (off > optlen - (int)sizeof(struct in_addr)) {
1247				/*
1248				 * End of source route.  Should be for us.
1249				 */
1250				if (!ip_acceptsourceroute)
1251					goto nosourcerouting;
1252				save_rte(cp, ip->ip_src);
1253				break;
1254			}
1255#ifdef IPSTEALTH
1256			if (ipstealth)
1257				goto dropit;
1258#endif
1259			if (!ip_dosourceroute) {
1260				if (ipforwarding) {
1261					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1262					/*
1263					 * Acting as a router, so generate ICMP
1264					 */
1265nosourcerouting:
1266					strcpy(buf, inet_ntoa(ip->ip_dst));
1267					log(LOG_WARNING,
1268					    "attempted source route from %s to %s\n",
1269					    inet_ntoa(ip->ip_src), buf);
1270					type = ICMP_UNREACH;
1271					code = ICMP_UNREACH_SRCFAIL;
1272					goto bad;
1273				} else {
1274					/*
1275					 * Not acting as a router, so silently drop.
1276					 */
1277#ifdef IPSTEALTH
1278dropit:
1279#endif
1280					ipstat.ips_cantforward++;
1281					m_freem(m);
1282					return (1);
1283				}
1284			}
1285
1286			/*
1287			 * locate outgoing interface
1288			 */
1289			(void)memcpy(&ipaddr.sin_addr, cp + off,
1290			    sizeof(ipaddr.sin_addr));
1291
1292			if (opt == IPOPT_SSRR) {
1293#define	INA	struct in_ifaddr *
1294#define	SA	struct sockaddr *
1295			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == NULL)
1296				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1297			} else
1298				ia = ip_rtaddr(ipaddr.sin_addr);
1299			if (ia == NULL) {
1300				type = ICMP_UNREACH;
1301				code = ICMP_UNREACH_SRCFAIL;
1302				goto bad;
1303			}
1304			ip->ip_dst = ipaddr.sin_addr;
1305			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1306			    sizeof(struct in_addr));
1307			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1308			/*
1309			 * Let ip_intr's mcast routing check handle mcast pkts
1310			 */
1311			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1312			break;
1313
1314		case IPOPT_RR:
1315#ifdef IPSTEALTH
1316			if (ipstealth && pass == 0)
1317				break;
1318#endif
1319			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1320				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1321				goto bad;
1322			}
1323			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1324				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1325				goto bad;
1326			}
1327			/*
1328			 * If no space remains, ignore.
1329			 */
1330			off--;			/* 0 origin */
1331			if (off > optlen - (int)sizeof(struct in_addr))
1332				break;
1333			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1334			    sizeof(ipaddr.sin_addr));
1335			/*
1336			 * locate outgoing interface; if we're the destination,
1337			 * use the incoming interface (should be same).
1338			 */
1339			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1340			    (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) {
1341				type = ICMP_UNREACH;
1342				code = ICMP_UNREACH_HOST;
1343				goto bad;
1344			}
1345			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1346			    sizeof(struct in_addr));
1347			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1348			break;
1349
1350		case IPOPT_TS:
1351#ifdef IPSTEALTH
1352			if (ipstealth && pass == 0)
1353				break;
1354#endif
1355			code = cp - (u_char *)ip;
1356			if (optlen < 4 || optlen > 40) {
1357				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1358				goto bad;
1359			}
1360			if ((off = cp[IPOPT_OFFSET]) < 5) {
1361				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1362				goto bad;
1363			}
1364			if (off > optlen - (int)sizeof(int32_t)) {
1365				cp[IPOPT_OFFSET + 1] += (1 << 4);
1366				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1367					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1368					goto bad;
1369				}
1370				break;
1371			}
1372			off--;				/* 0 origin */
1373			sin = (struct in_addr *)(cp + off);
1374			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1375
1376			case IPOPT_TS_TSONLY:
1377				break;
1378
1379			case IPOPT_TS_TSANDADDR:
1380				if (off + sizeof(n_time) +
1381				    sizeof(struct in_addr) > optlen) {
1382					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1383					goto bad;
1384				}
1385				ipaddr.sin_addr = dst;
1386				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1387							    m->m_pkthdr.rcvif);
1388				if (ia == NULL)
1389					continue;
1390				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1391				    sizeof(struct in_addr));
1392				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1393				off += sizeof(struct in_addr);
1394				break;
1395
1396			case IPOPT_TS_PRESPEC:
1397				if (off + sizeof(n_time) +
1398				    sizeof(struct in_addr) > optlen) {
1399					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1400					goto bad;
1401				}
1402				(void)memcpy(&ipaddr.sin_addr, sin,
1403				    sizeof(struct in_addr));
1404				if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1405					continue;
1406				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1407				off += sizeof(struct in_addr);
1408				break;
1409
1410			default:
1411				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1412				goto bad;
1413			}
1414			ntime = iptime();
1415			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1416			cp[IPOPT_OFFSET] += sizeof(n_time);
1417		}
1418	}
1419	if (forward && ipforwarding) {
1420		ip_forward(m, 1);
1421		return (1);
1422	}
1423	return (0);
1424bad:
1425	icmp_error(m, type, code, 0, 0);
1426	ipstat.ips_badoptions++;
1427	return (1);
1428}
1429
1430/*
1431 * Given address of next destination (final or next hop),
1432 * return internet address info of interface to be used to get there.
1433 */
1434struct in_ifaddr *
1435ip_rtaddr(dst)
1436	struct in_addr dst;
1437{
1438	struct route sro;
1439	struct sockaddr_in *sin;
1440	struct in_ifaddr *ifa;
1441
1442	bzero(&sro, sizeof(sro));
1443	sin = (struct sockaddr_in *)&sro.ro_dst;
1444	sin->sin_family = AF_INET;
1445	sin->sin_len = sizeof(*sin);
1446	sin->sin_addr = dst;
1447	rtalloc_ign(&sro, RTF_CLONING);
1448
1449	if (sro.ro_rt == NULL)
1450		return ((struct in_ifaddr *)0);
1451
1452	ifa = ifatoia(sro.ro_rt->rt_ifa);
1453	RTFREE(sro.ro_rt);
1454	return ifa;
1455}
1456
1457/*
1458 * Save incoming source route for use in replies,
1459 * to be picked up later by ip_srcroute if the receiver is interested.
1460 */
1461static void
1462save_rte(option, dst)
1463	u_char *option;
1464	struct in_addr dst;
1465{
1466	unsigned olen;
1467
1468	olen = option[IPOPT_OLEN];
1469#ifdef DIAGNOSTIC
1470	if (ipprintfs)
1471		printf("save_rte: olen %d\n", olen);
1472#endif
1473	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1474		return;
1475	bcopy(option, ip_srcrt.srcopt, olen);
1476	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1477	ip_srcrt.dst = dst;
1478}
1479
1480/*
1481 * Retrieve incoming source route for use in replies,
1482 * in the same form used by setsockopt.
1483 * The first hop is placed before the options, will be removed later.
1484 */
1485struct mbuf *
1486ip_srcroute()
1487{
1488	register struct in_addr *p, *q;
1489	register struct mbuf *m;
1490
1491	if (ip_nhops == 0)
1492		return ((struct mbuf *)0);
1493	m = m_get(M_DONTWAIT, MT_HEADER);
1494	if (m == NULL)
1495		return ((struct mbuf *)0);
1496
1497#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1498
1499	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1500	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1501	    OPTSIZ;
1502#ifdef DIAGNOSTIC
1503	if (ipprintfs)
1504		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1505#endif
1506
1507	/*
1508	 * First save first hop for return route
1509	 */
1510	p = &ip_srcrt.route[ip_nhops - 1];
1511	*(mtod(m, struct in_addr *)) = *p--;
1512#ifdef DIAGNOSTIC
1513	if (ipprintfs)
1514		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1515#endif
1516
1517	/*
1518	 * Copy option fields and padding (nop) to mbuf.
1519	 */
1520	ip_srcrt.nop = IPOPT_NOP;
1521	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1522	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1523	    &ip_srcrt.nop, OPTSIZ);
1524	q = (struct in_addr *)(mtod(m, caddr_t) +
1525	    sizeof(struct in_addr) + OPTSIZ);
1526#undef OPTSIZ
1527	/*
1528	 * Record return path as an IP source route,
1529	 * reversing the path (pointers are now aligned).
1530	 */
1531	while (p >= ip_srcrt.route) {
1532#ifdef DIAGNOSTIC
1533		if (ipprintfs)
1534			printf(" %lx", (u_long)ntohl(q->s_addr));
1535#endif
1536		*q++ = *p--;
1537	}
1538	/*
1539	 * Last hop goes to final destination.
1540	 */
1541	*q = ip_srcrt.dst;
1542#ifdef DIAGNOSTIC
1543	if (ipprintfs)
1544		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1545#endif
1546	return (m);
1547}
1548
1549/*
1550 * Strip out IP options, at higher
1551 * level protocol in the kernel.
1552 * Second argument is buffer to which options
1553 * will be moved, and return value is their length.
1554 * XXX should be deleted; last arg currently ignored.
1555 */
1556void
1557ip_stripoptions(m, mopt)
1558	register struct mbuf *m;
1559	struct mbuf *mopt;
1560{
1561	register int i;
1562	struct ip *ip = mtod(m, struct ip *);
1563	register caddr_t opts;
1564	int olen;
1565
1566	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1567	opts = (caddr_t)(ip + 1);
1568	i = m->m_len - (sizeof (struct ip) + olen);
1569	bcopy(opts + olen, opts, (unsigned)i);
1570	m->m_len -= olen;
1571	if (m->m_flags & M_PKTHDR)
1572		m->m_pkthdr.len -= olen;
1573	ip->ip_v = IPVERSION;
1574	ip->ip_hl = sizeof(struct ip) >> 2;
1575}
1576
1577u_char inetctlerrmap[PRC_NCMDS] = {
1578	0,		0,		0,		0,
1579	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1580	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1581	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1582	0,		0,		EHOSTUNREACH,	0,
1583	ENOPROTOOPT,	ECONNREFUSED
1584};
1585
1586/*
1587 * Forward a packet.  If some error occurs return the sender
1588 * an icmp packet.  Note we can't always generate a meaningful
1589 * icmp message because icmp doesn't have a large enough repertoire
1590 * of codes and types.
1591 *
1592 * If not forwarding, just drop the packet.  This could be confusing
1593 * if ipforwarding was zero but some routing protocol was advancing
1594 * us as a gateway to somewhere.  However, we must let the routing
1595 * protocol deal with that.
1596 *
1597 * The srcrt parameter indicates whether the packet is being forwarded
1598 * via a source route.
1599 */
1600void
1601ip_forward(struct mbuf *m, int srcrt)
1602{
1603	struct ip *ip = mtod(m, struct ip *);
1604	struct in_ifaddr *ia = NULL;
1605	int error, type = 0, code = 0;
1606	struct mbuf *mcopy;
1607	struct in_addr dest;
1608	struct ifnet *destifp, dummyifp;
1609
1610#ifdef DIAGNOSTIC
1611	if (ipprintfs)
1612		printf("forward: src %lx dst %lx ttl %x\n",
1613		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1614		    ip->ip_ttl);
1615#endif
1616
1617
1618	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1619		ipstat.ips_cantforward++;
1620		m_freem(m);
1621		return;
1622	}
1623#ifdef IPSTEALTH
1624	if (!ipstealth) {
1625#endif
1626		if (ip->ip_ttl <= IPTTLDEC) {
1627			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1628			    0, 0);
1629			return;
1630		}
1631#ifdef IPSTEALTH
1632	}
1633#endif
1634
1635	if (!srcrt && (ia = ip_rtaddr(ip->ip_dst)) == NULL) {
1636		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1637		return;
1638	}
1639
1640	/*
1641	 * Save the IP header and at most 8 bytes of the payload,
1642	 * in case we need to generate an ICMP message to the src.
1643	 *
1644	 * XXX this can be optimized a lot by saving the data in a local
1645	 * buffer on the stack (72 bytes at most), and only allocating the
1646	 * mbuf if really necessary. The vast majority of the packets
1647	 * are forwarded without having to send an ICMP back (either
1648	 * because unnecessary, or because rate limited), so we are
1649	 * really we are wasting a lot of work here.
1650	 *
1651	 * We don't use m_copy() because it might return a reference
1652	 * to a shared cluster. Both this function and ip_output()
1653	 * assume exclusive access to the IP header in `m', so any
1654	 * data in a cluster may change before we reach icmp_error().
1655	 */
1656	MGET(mcopy, M_DONTWAIT, m->m_type);
1657	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1658		/*
1659		 * It's probably ok if the pkthdr dup fails (because
1660		 * the deep copy of the tag chain failed), but for now
1661		 * be conservative and just discard the copy since
1662		 * code below may some day want the tags.
1663		 */
1664		m_free(mcopy);
1665		mcopy = NULL;
1666	}
1667	if (mcopy != NULL) {
1668		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1669		    (int)ip->ip_len);
1670		mcopy->m_pkthdr.len = mcopy->m_len;
1671		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1672	}
1673
1674#ifdef IPSTEALTH
1675	if (!ipstealth) {
1676#endif
1677		ip->ip_ttl -= IPTTLDEC;
1678#ifdef IPSTEALTH
1679	}
1680#endif
1681
1682	/*
1683	 * If forwarding packet using same interface that it came in on,
1684	 * perhaps should send a redirect to sender to shortcut a hop.
1685	 * Only send redirect if source is sending directly to us,
1686	 * and if packet was not source routed (or has any options).
1687	 * Also, don't send redirect if forwarding using a default route
1688	 * or a route modified by a redirect.
1689	 */
1690	dest.s_addr = 0;
1691	if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
1692		struct sockaddr_in *sin;
1693		struct route ro;
1694		struct rtentry *rt;
1695
1696		bzero(&ro, sizeof(ro));
1697		sin = (struct sockaddr_in *)&ro.ro_dst;
1698		sin->sin_family = AF_INET;
1699		sin->sin_len = sizeof(*sin);
1700		sin->sin_addr = ip->ip_dst;
1701		rtalloc_ign(&ro, RTF_CLONING);
1702
1703		rt = ro.ro_rt;
1704
1705		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1706		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1707#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1708			u_long src = ntohl(ip->ip_src.s_addr);
1709
1710			if (RTA(rt) &&
1711			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1712				if (rt->rt_flags & RTF_GATEWAY)
1713					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1714				else
1715					dest.s_addr = ip->ip_dst.s_addr;
1716				/* Router requirements says to only send host redirects */
1717				type = ICMP_REDIRECT;
1718				code = ICMP_REDIRECT_HOST;
1719#ifdef DIAGNOSTIC
1720				if (ipprintfs)
1721					printf("redirect (%d) to %lx\n", code, (u_long)dest.s_addr);
1722#endif
1723			}
1724		}
1725		if (rt)
1726			RTFREE(rt);
1727	}
1728
1729	error = ip_output(m, (struct mbuf *)0, NULL, IP_FORWARDING, 0, NULL);
1730	if (error)
1731		ipstat.ips_cantforward++;
1732	else {
1733		ipstat.ips_forward++;
1734		if (type)
1735			ipstat.ips_redirectsent++;
1736		else {
1737			if (mcopy)
1738				m_freem(mcopy);
1739			return;
1740		}
1741	}
1742	if (mcopy == NULL)
1743		return;
1744	destifp = NULL;
1745
1746	switch (error) {
1747
1748	case 0:				/* forwarded, but need redirect */
1749		/* type, code set above */
1750		break;
1751
1752	case ENETUNREACH:		/* shouldn't happen, checked above */
1753	case EHOSTUNREACH:
1754	case ENETDOWN:
1755	case EHOSTDOWN:
1756	default:
1757		type = ICMP_UNREACH;
1758		code = ICMP_UNREACH_HOST;
1759		break;
1760
1761	case EMSGSIZE:
1762		type = ICMP_UNREACH;
1763		code = ICMP_UNREACH_NEEDFRAG;
1764#if defined(IPSEC) || defined(FAST_IPSEC)
1765		/*
1766		 * If the packet is routed over IPsec tunnel, tell the
1767		 * originator the tunnel MTU.
1768		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1769		 * XXX quickhack!!!
1770		 */
1771		{
1772			struct secpolicy *sp = NULL;
1773			int ipsecerror;
1774			int ipsechdr;
1775			struct route *ro;
1776
1777#ifdef IPSEC
1778			sp = ipsec4_getpolicybyaddr(mcopy,
1779						    IPSEC_DIR_OUTBOUND,
1780						    IP_FORWARDING,
1781						    &ipsecerror);
1782#else /* FAST_IPSEC */
1783			sp = ipsec_getpolicybyaddr(mcopy,
1784						   IPSEC_DIR_OUTBOUND,
1785						   IP_FORWARDING,
1786						   &ipsecerror);
1787#endif
1788			if (sp != NULL) {
1789				/* count IPsec header size */
1790				ipsechdr = ipsec4_hdrsiz(mcopy,
1791							 IPSEC_DIR_OUTBOUND,
1792							 NULL);
1793
1794				/*
1795				 * find the correct route for outer IPv4
1796				 * header, compute tunnel MTU.
1797				 *
1798				 * XXX BUG ALERT
1799				 * The "dummyifp" code relies upon the fact
1800				 * that icmp_error() touches only ifp->if_mtu.
1801				 */
1802				/*XXX*/
1803				destifp = NULL;
1804				if (sp->req != NULL
1805				 && sp->req->sav != NULL
1806				 && sp->req->sav->sah != NULL) {
1807					ro = &sp->req->sav->sah->sa_route;
1808					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1809						dummyifp.if_mtu =
1810						    ro->ro_rt->rt_rmx.rmx_mtu ?
1811						    ro->ro_rt->rt_rmx.rmx_mtu :
1812						    ro->ro_rt->rt_ifp->if_mtu;
1813						dummyifp.if_mtu -= ipsechdr;
1814						destifp = &dummyifp;
1815					}
1816				}
1817
1818#ifdef IPSEC
1819				key_freesp(sp);
1820#else /* FAST_IPSEC */
1821				KEY_FREESP(&sp);
1822#endif
1823				ipstat.ips_cantfrag++;
1824				break;
1825			} else
1826#endif /*IPSEC || FAST_IPSEC*/
1827		/*
1828		 * When doing source routing 'ia' can be NULL.  Fall back
1829		 * to the minimum guaranteed routeable packet size and use
1830		 * the same hack as IPSEC to setup a dummyifp for icmp.
1831		 */
1832		if (ia == NULL) {
1833			dummyifp.if_mtu = IP_MSS;
1834			destifp = &dummyifp;
1835		} else
1836			destifp = ia->ia_ifp;
1837#if defined(IPSEC) || defined(FAST_IPSEC)
1838		}
1839#endif /*IPSEC || FAST_IPSEC*/
1840		ipstat.ips_cantfrag++;
1841		break;
1842
1843	case ENOBUFS:
1844		/*
1845		 * A router should not generate ICMP_SOURCEQUENCH as
1846		 * required in RFC1812 Requirements for IP Version 4 Routers.
1847		 * Source quench could be a big problem under DoS attacks,
1848		 * or if the underlying interface is rate-limited.
1849		 * Those who need source quench packets may re-enable them
1850		 * via the net.inet.ip.sendsourcequench sysctl.
1851		 */
1852		if (ip_sendsourcequench == 0) {
1853			m_freem(mcopy);
1854			return;
1855		} else {
1856			type = ICMP_SOURCEQUENCH;
1857			code = 0;
1858		}
1859		break;
1860
1861	case EACCES:			/* ipfw denied packet */
1862		m_freem(mcopy);
1863		return;
1864	}
1865	icmp_error(mcopy, type, code, dest.s_addr, destifp);
1866}
1867
1868void
1869ip_savecontrol(inp, mp, ip, m)
1870	register struct inpcb *inp;
1871	register struct mbuf **mp;
1872	register struct ip *ip;
1873	register struct mbuf *m;
1874{
1875	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1876		struct bintime bt;
1877
1878		bintime(&bt);
1879		if (inp->inp_socket->so_options & SO_BINTIME) {
1880			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1881			SCM_BINTIME, SOL_SOCKET);
1882			if (*mp)
1883				mp = &(*mp)->m_next;
1884		}
1885		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1886			struct timeval tv;
1887
1888			bintime2timeval(&bt, &tv);
1889			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1890				SCM_TIMESTAMP, SOL_SOCKET);
1891			if (*mp)
1892				mp = &(*mp)->m_next;
1893		}
1894	}
1895	if (inp->inp_flags & INP_RECVDSTADDR) {
1896		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1897		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1898		if (*mp)
1899			mp = &(*mp)->m_next;
1900	}
1901	if (inp->inp_flags & INP_RECVTTL) {
1902		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1903		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1904		if (*mp)
1905			mp = &(*mp)->m_next;
1906	}
1907#ifdef notyet
1908	/* XXX
1909	 * Moving these out of udp_input() made them even more broken
1910	 * than they already were.
1911	 */
1912	/* options were tossed already */
1913	if (inp->inp_flags & INP_RECVOPTS) {
1914		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1915		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1916		if (*mp)
1917			mp = &(*mp)->m_next;
1918	}
1919	/* ip_srcroute doesn't do what we want here, need to fix */
1920	if (inp->inp_flags & INP_RECVRETOPTS) {
1921		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1922		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1923		if (*mp)
1924			mp = &(*mp)->m_next;
1925	}
1926#endif
1927	if (inp->inp_flags & INP_RECVIF) {
1928		struct ifnet *ifp;
1929		struct sdlbuf {
1930			struct sockaddr_dl sdl;
1931			u_char	pad[32];
1932		} sdlbuf;
1933		struct sockaddr_dl *sdp;
1934		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1935
1936		if (((ifp = m->m_pkthdr.rcvif))
1937		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1938			sdp = (struct sockaddr_dl *)
1939			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
1940			/*
1941			 * Change our mind and don't try copy.
1942			 */
1943			if ((sdp->sdl_family != AF_LINK)
1944			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1945				goto makedummy;
1946			}
1947			bcopy(sdp, sdl2, sdp->sdl_len);
1948		} else {
1949makedummy:
1950			sdl2->sdl_len
1951				= offsetof(struct sockaddr_dl, sdl_data[0]);
1952			sdl2->sdl_family = AF_LINK;
1953			sdl2->sdl_index = 0;
1954			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1955		}
1956		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1957			IP_RECVIF, IPPROTO_IP);
1958		if (*mp)
1959			mp = &(*mp)->m_next;
1960	}
1961}
1962
1963/*
1964 * XXX these routines are called from the upper part of the kernel.
1965 * They need to be locked when we remove Giant.
1966 *
1967 * They could also be moved to ip_mroute.c, since all the RSVP
1968 *  handling is done there already.
1969 */
1970static int ip_rsvp_on;
1971struct socket *ip_rsvpd;
1972int
1973ip_rsvp_init(struct socket *so)
1974{
1975	if (so->so_type != SOCK_RAW ||
1976	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1977		return EOPNOTSUPP;
1978
1979	if (ip_rsvpd != NULL)
1980		return EADDRINUSE;
1981
1982	ip_rsvpd = so;
1983	/*
1984	 * This may seem silly, but we need to be sure we don't over-increment
1985	 * the RSVP counter, in case something slips up.
1986	 */
1987	if (!ip_rsvp_on) {
1988		ip_rsvp_on = 1;
1989		rsvp_on++;
1990	}
1991
1992	return 0;
1993}
1994
1995int
1996ip_rsvp_done(void)
1997{
1998	ip_rsvpd = NULL;
1999	/*
2000	 * This may seem silly, but we need to be sure we don't over-decrement
2001	 * the RSVP counter, in case something slips up.
2002	 */
2003	if (ip_rsvp_on) {
2004		ip_rsvp_on = 0;
2005		rsvp_on--;
2006	}
2007	return 0;
2008}
2009
2010void
2011rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2012{
2013	if (rsvp_input_p) { /* call the real one if loaded */
2014		rsvp_input_p(m, off);
2015		return;
2016	}
2017
2018	/* Can still get packets with rsvp_on = 0 if there is a local member
2019	 * of the group to which the RSVP packet is addressed.  But in this
2020	 * case we want to throw the packet away.
2021	 */
2022
2023	if (!rsvp_on) {
2024		m_freem(m);
2025		return;
2026	}
2027
2028	if (ip_rsvpd != NULL) {
2029		rip_input(m, off);
2030		return;
2031	}
2032	/* Drop the packet */
2033	m_freem(m);
2034}
2035