ip_input.c revision 111541
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 111541 2003-02-26 07:28:35Z silby $
35 */
36
37#include "opt_bootp.h"
38#include "opt_ipfw.h"
39#include "opt_ipdn.h"
40#include "opt_ipdivert.h"
41#include "opt_ipfilter.h"
42#include "opt_ipstealth.h"
43#include "opt_ipsec.h"
44#include "opt_mac.h"
45#include "opt_pfil_hooks.h"
46#include "opt_random_ip_id.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mac.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_types.h>
64#include <net/if_var.h>
65#include <net/if_dl.h>
66#include <net/route.h>
67#include <net/netisr.h>
68#include <net/intrq.h>
69
70#include <netinet/in.h>
71#include <netinet/in_systm.h>
72#include <netinet/in_var.h>
73#include <netinet/ip.h>
74#include <netinet/in_pcb.h>
75#include <netinet/ip_var.h>
76#include <netinet/ip_icmp.h>
77#include <machine/in_cksum.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82#include <netinet/ip_dummynet.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#include <netkey/key.h>
87#endif
88
89#ifdef FAST_IPSEC
90#include <netipsec/ipsec.h>
91#include <netipsec/key.h>
92#endif
93
94int rsvp_on = 0;
95
96int	ipforwarding = 0;
97SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98    &ipforwarding, 0, "Enable IP forwarding between interfaces");
99
100static int	ipsendredirects = 1; /* XXX */
101SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102    &ipsendredirects, 0, "Enable sending IP redirects");
103
104int	ip_defttl = IPDEFTTL;
105SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106    &ip_defttl, 0, "Maximum TTL on IP packets");
107
108static int	ip_dosourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
110    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
111
112static int	ip_acceptsourceroute = 0;
113SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
114    CTLFLAG_RW, &ip_acceptsourceroute, 0,
115    "Enable accepting source routed IP packets");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int    nipq = 0;         /* total # of reass queues */
123static int    maxnipq;
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&maxnipq, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128static int    maxfragsperpacket;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
130	&maxfragsperpacket, 0,
131	"Maximum number of IPv4 fragments allowed per packet");
132
133static int	ip_sendsourcequench = 0;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
135	&ip_sendsourcequench, 0,
136	"Enable the transmission of source quench packets");
137
138/*
139 * XXX - Setting ip_checkinterface mostly implements the receive side of
140 * the Strong ES model described in RFC 1122, but since the routing table
141 * and transmit implementation do not implement the Strong ES model,
142 * setting this to 1 results in an odd hybrid.
143 *
144 * XXX - ip_checkinterface currently must be disabled if you use ipnat
145 * to translate the destination address to another local interface.
146 *
147 * XXX - ip_checkinterface must be disabled if you add IP aliases
148 * to the loopback interface instead of the interface where the
149 * packets for those addresses are received.
150 */
151static int	ip_checkinterface = 1;
152SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
153    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
154
155#ifdef DIAGNOSTIC
156static int	ipprintfs = 0;
157#endif
158
159static int	ipqmaxlen = IFQ_MAXLEN;
160
161extern	struct domain inetdomain;
162extern	struct protosw inetsw[];
163u_char	ip_protox[IPPROTO_MAX];
164struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
165struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
166u_long 	in_ifaddrhmask;				/* mask for hash table */
167
168SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
169    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
170SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
171    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
172
173struct ipstat ipstat;
174SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
175    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
176
177/* Packet reassembly stuff */
178#define IPREASS_NHASH_LOG2      6
179#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
180#define IPREASS_HMASK           (IPREASS_NHASH - 1)
181#define IPREASS_HASH(x,y) \
182	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
183
184static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
185
186#ifdef IPCTL_DEFMTU
187SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
188    &ip_mtu, 0, "Default MTU");
189#endif
190
191#ifdef IPSTEALTH
192static int	ipstealth = 0;
193SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
194    &ipstealth, 0, "");
195#endif
196
197
198/* Firewall hooks */
199ip_fw_chk_t *ip_fw_chk_ptr;
200int fw_enable = 1 ;
201int fw_one_pass = 1;
202
203/* Dummynet hooks */
204ip_dn_io_t *ip_dn_io_ptr;
205
206
207/*
208 * XXX this is ugly -- the following two global variables are
209 * used to store packet state while it travels through the stack.
210 * Note that the code even makes assumptions on the size and
211 * alignment of fields inside struct ip_srcrt so e.g. adding some
212 * fields will break the code. This needs to be fixed.
213 *
214 * We need to save the IP options in case a protocol wants to respond
215 * to an incoming packet over the same route if the packet got here
216 * using IP source routing.  This allows connection establishment and
217 * maintenance when the remote end is on a network that is not known
218 * to us.
219 */
220static int	ip_nhops = 0;
221static	struct ip_srcrt {
222	struct	in_addr dst;			/* final destination */
223	char	nop;				/* one NOP to align */
224	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
225	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
226} ip_srcrt;
227
228static void	save_rte(u_char *, struct in_addr);
229static int	ip_dooptions(struct mbuf *m, int,
230			struct sockaddr_in *next_hop);
231static void	ip_forward(struct mbuf *m, int srcrt,
232			struct sockaddr_in *next_hop);
233static void	ip_freef(struct ipqhead *, struct ipq *);
234static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
235		struct ipq *, u_int32_t *, u_int16_t *);
236static void	ipintr(void);
237
238/*
239 * IP initialization: fill in IP protocol switch table.
240 * All protocols not implemented in kernel go to raw IP protocol handler.
241 */
242void
243ip_init()
244{
245	register struct protosw *pr;
246	register int i;
247
248	TAILQ_INIT(&in_ifaddrhead);
249	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
250	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
251	if (pr == 0)
252		panic("ip_init");
253	for (i = 0; i < IPPROTO_MAX; i++)
254		ip_protox[i] = pr - inetsw;
255	for (pr = inetdomain.dom_protosw;
256	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
257		if (pr->pr_domain->dom_family == PF_INET &&
258		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
259			ip_protox[pr->pr_protocol] = pr - inetsw;
260
261	for (i = 0; i < IPREASS_NHASH; i++)
262	    TAILQ_INIT(&ipq[i]);
263
264	maxnipq = nmbclusters / 32;
265	maxfragsperpacket = 16;
266
267#ifndef RANDOM_IP_ID
268	ip_id = time_second & 0xffff;
269#endif
270	ipintrq.ifq_maxlen = ipqmaxlen;
271	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
272	ipintrq_present = 1;
273
274	register_netisr(NETISR_IP, ipintr);
275}
276
277/*
278 * XXX watch out this one. It is perhaps used as a cache for
279 * the most recently used route ? it is cleared in in_addroute()
280 * when a new route is successfully created.
281 */
282struct	route ipforward_rt;
283
284/*
285 * Ip input routine.  Checksum and byte swap header.  If fragmented
286 * try to reassemble.  Process options.  Pass to next level.
287 */
288void
289ip_input(struct mbuf *m)
290{
291	struct ip *ip;
292	struct ipq *fp;
293	struct in_ifaddr *ia = NULL;
294	struct ifaddr *ifa;
295	int    i, hlen, checkif;
296	u_short sum;
297	struct in_addr pkt_dst;
298	u_int32_t divert_info = 0;		/* packet divert/tee info */
299	struct ip_fw_args args;
300#ifdef PFIL_HOOKS
301	struct packet_filter_hook *pfh;
302	struct mbuf *m0;
303	int rv;
304#endif /* PFIL_HOOKS */
305#ifdef FAST_IPSEC
306	struct m_tag *mtag;
307	struct tdb_ident *tdbi;
308	struct secpolicy *sp;
309	int s, error;
310#endif /* FAST_IPSEC */
311
312	args.eh = NULL;
313	args.oif = NULL;
314	args.rule = NULL;
315	args.divert_rule = 0;			/* divert cookie */
316	args.next_hop = NULL;
317
318	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
319	for (; m && m->m_type == MT_TAG; m = m->m_next) {
320		switch(m->_m_tag_id) {
321		default:
322			printf("ip_input: unrecognised MT_TAG tag %d\n",
323			    m->_m_tag_id);
324			break;
325
326		case PACKET_TAG_DUMMYNET:
327			args.rule = ((struct dn_pkt *)m)->rule;
328			break;
329
330		case PACKET_TAG_DIVERT:
331			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
332			break;
333
334		case PACKET_TAG_IPFORWARD:
335			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
336			break;
337		}
338	}
339
340	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
341	    ("ip_input: no HDR"));
342
343	if (args.rule) {	/* dummynet already filtered us */
344		ip = mtod(m, struct ip *);
345		hlen = ip->ip_hl << 2;
346		goto iphack ;
347	}
348
349	ipstat.ips_total++;
350
351	if (m->m_pkthdr.len < sizeof(struct ip))
352		goto tooshort;
353
354	if (m->m_len < sizeof (struct ip) &&
355	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
356		ipstat.ips_toosmall++;
357		return;
358	}
359	ip = mtod(m, struct ip *);
360
361	if (ip->ip_v != IPVERSION) {
362		ipstat.ips_badvers++;
363		goto bad;
364	}
365
366	hlen = ip->ip_hl << 2;
367	if (hlen < sizeof(struct ip)) {	/* minimum header length */
368		ipstat.ips_badhlen++;
369		goto bad;
370	}
371	if (hlen > m->m_len) {
372		if ((m = m_pullup(m, hlen)) == 0) {
373			ipstat.ips_badhlen++;
374			return;
375		}
376		ip = mtod(m, struct ip *);
377	}
378
379	/* 127/8 must not appear on wire - RFC1122 */
380	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
381	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
382		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
383			ipstat.ips_badaddr++;
384			goto bad;
385		}
386	}
387
388	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
389		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
390	} else {
391		if (hlen == sizeof(struct ip)) {
392			sum = in_cksum_hdr(ip);
393		} else {
394			sum = in_cksum(m, hlen);
395		}
396	}
397	if (sum) {
398		ipstat.ips_badsum++;
399		goto bad;
400	}
401
402	/*
403	 * Convert fields to host representation.
404	 */
405	ip->ip_len = ntohs(ip->ip_len);
406	if (ip->ip_len < hlen) {
407		ipstat.ips_badlen++;
408		goto bad;
409	}
410	ip->ip_off = ntohs(ip->ip_off);
411
412	/*
413	 * Check that the amount of data in the buffers
414	 * is as at least much as the IP header would have us expect.
415	 * Trim mbufs if longer than we expect.
416	 * Drop packet if shorter than we expect.
417	 */
418	if (m->m_pkthdr.len < ip->ip_len) {
419tooshort:
420		ipstat.ips_tooshort++;
421		goto bad;
422	}
423	if (m->m_pkthdr.len > ip->ip_len) {
424		if (m->m_len == m->m_pkthdr.len) {
425			m->m_len = ip->ip_len;
426			m->m_pkthdr.len = ip->ip_len;
427		} else
428			m_adj(m, ip->ip_len - m->m_pkthdr.len);
429	}
430#if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
431	/*
432	 * Bypass packet filtering for packets from a tunnel (gif).
433	 */
434	if (ipsec_gethist(m, NULL))
435		goto pass;
436#endif
437
438	/*
439	 * IpHack's section.
440	 * Right now when no processing on packet has done
441	 * and it is still fresh out of network we do our black
442	 * deals with it.
443	 * - Firewall: deny/allow/divert
444	 * - Xlate: translate packet's addr/port (NAT).
445	 * - Pipe: pass pkt through dummynet.
446	 * - Wrap: fake packet's addr/port <unimpl.>
447	 * - Encapsulate: put it in another IP and send out. <unimp.>
448 	 */
449
450iphack:
451
452#ifdef PFIL_HOOKS
453	/*
454	 * Run through list of hooks for input packets.  If there are any
455	 * filters which require that additional packets in the flow are
456	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
457	 * Note that filters must _never_ set this flag, as another filter
458	 * in the list may have previously cleared it.
459	 */
460	m0 = m;
461	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
462	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
463		if (pfh->pfil_func) {
464			rv = pfh->pfil_func(ip, hlen,
465					    m->m_pkthdr.rcvif, 0, &m0);
466			if (rv)
467				return;
468			m = m0;
469			if (m == NULL)
470				return;
471			ip = mtod(m, struct ip *);
472		}
473#endif /* PFIL_HOOKS */
474
475	if (fw_enable && IPFW_LOADED) {
476		/*
477		 * If we've been forwarded from the output side, then
478		 * skip the firewall a second time
479		 */
480		if (args.next_hop)
481			goto ours;
482
483		args.m = m;
484		i = ip_fw_chk_ptr(&args);
485		m = args.m;
486
487		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
488			if (m)
489				m_freem(m);
490			return;
491		}
492		ip = mtod(m, struct ip *); /* just in case m changed */
493		if (i == 0 && args.next_hop == NULL)	/* common case */
494			goto pass;
495                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
496			/* Send packet to the appropriate pipe */
497			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
498			return;
499		}
500#ifdef IPDIVERT
501		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
502			/* Divert or tee packet */
503			divert_info = i;
504			goto ours;
505		}
506#endif
507		if (i == 0 && args.next_hop != NULL)
508			goto pass;
509		/*
510		 * if we get here, the packet must be dropped
511		 */
512		m_freem(m);
513		return;
514	}
515pass:
516
517	/*
518	 * Process options and, if not destined for us,
519	 * ship it on.  ip_dooptions returns 1 when an
520	 * error was detected (causing an icmp message
521	 * to be sent and the original packet to be freed).
522	 */
523	ip_nhops = 0;		/* for source routed packets */
524	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
525		return;
526
527        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
528         * matter if it is destined to another node, or whether it is
529         * a multicast one, RSVP wants it! and prevents it from being forwarded
530         * anywhere else. Also checks if the rsvp daemon is running before
531	 * grabbing the packet.
532         */
533	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
534		goto ours;
535
536	/*
537	 * Check our list of addresses, to see if the packet is for us.
538	 * If we don't have any addresses, assume any unicast packet
539	 * we receive might be for us (and let the upper layers deal
540	 * with it).
541	 */
542	if (TAILQ_EMPTY(&in_ifaddrhead) &&
543	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
544		goto ours;
545
546	/*
547	 * Cache the destination address of the packet; this may be
548	 * changed by use of 'ipfw fwd'.
549	 */
550	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
551
552	/*
553	 * Enable a consistency check between the destination address
554	 * and the arrival interface for a unicast packet (the RFC 1122
555	 * strong ES model) if IP forwarding is disabled and the packet
556	 * is not locally generated and the packet is not subject to
557	 * 'ipfw fwd'.
558	 *
559	 * XXX - Checking also should be disabled if the destination
560	 * address is ipnat'ed to a different interface.
561	 *
562	 * XXX - Checking is incompatible with IP aliases added
563	 * to the loopback interface instead of the interface where
564	 * the packets are received.
565	 */
566	checkif = ip_checkinterface && (ipforwarding == 0) &&
567	    m->m_pkthdr.rcvif != NULL &&
568	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
569	    (args.next_hop == NULL);
570
571	/*
572	 * Check for exact addresses in the hash bucket.
573	 */
574	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
575		/*
576		 * If the address matches, verify that the packet
577		 * arrived via the correct interface if checking is
578		 * enabled.
579		 */
580		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
581		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
582			goto ours;
583	}
584	/*
585	 * Check for broadcast addresses.
586	 *
587	 * Only accept broadcast packets that arrive via the matching
588	 * interface.  Reception of forwarded directed broadcasts would
589	 * be handled via ip_forward() and ether_output() with the loopback
590	 * into the stack for SIMPLEX interfaces handled by ether_output().
591	 */
592	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
593	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
594			if (ifa->ifa_addr->sa_family != AF_INET)
595				continue;
596			ia = ifatoia(ifa);
597			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
598			    pkt_dst.s_addr)
599				goto ours;
600			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
601				goto ours;
602#ifdef BOOTP_COMPAT
603			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
604				goto ours;
605#endif
606		}
607	}
608	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
609		struct in_multi *inm;
610		if (ip_mrouter) {
611			/*
612			 * If we are acting as a multicast router, all
613			 * incoming multicast packets are passed to the
614			 * kernel-level multicast forwarding function.
615			 * The packet is returned (relatively) intact; if
616			 * ip_mforward() returns a non-zero value, the packet
617			 * must be discarded, else it may be accepted below.
618			 */
619			if (ip_mforward &&
620			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
621				ipstat.ips_cantforward++;
622				m_freem(m);
623				return;
624			}
625
626			/*
627			 * The process-level routing daemon needs to receive
628			 * all multicast IGMP packets, whether or not this
629			 * host belongs to their destination groups.
630			 */
631			if (ip->ip_p == IPPROTO_IGMP)
632				goto ours;
633			ipstat.ips_forward++;
634		}
635		/*
636		 * See if we belong to the destination multicast group on the
637		 * arrival interface.
638		 */
639		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
640		if (inm == NULL) {
641			ipstat.ips_notmember++;
642			m_freem(m);
643			return;
644		}
645		goto ours;
646	}
647	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
648		goto ours;
649	if (ip->ip_dst.s_addr == INADDR_ANY)
650		goto ours;
651
652	/*
653	 * FAITH(Firewall Aided Internet Translator)
654	 */
655	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
656		if (ip_keepfaith) {
657			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
658				goto ours;
659		}
660		m_freem(m);
661		return;
662	}
663
664	/*
665	 * Not for us; forward if possible and desirable.
666	 */
667	if (ipforwarding == 0) {
668		ipstat.ips_cantforward++;
669		m_freem(m);
670	} else {
671#ifdef IPSEC
672		/*
673		 * Enforce inbound IPsec SPD.
674		 */
675		if (ipsec4_in_reject(m, NULL)) {
676			ipsecstat.in_polvio++;
677			goto bad;
678		}
679#endif /* IPSEC */
680#ifdef FAST_IPSEC
681		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
682		s = splnet();
683		if (mtag != NULL) {
684			tdbi = (struct tdb_ident *)(mtag + 1);
685			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
686		} else {
687			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
688						   IP_FORWARDING, &error);
689		}
690		if (sp == NULL) {	/* NB: can happen if error */
691			splx(s);
692			/*XXX error stat???*/
693			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
694			goto bad;
695		}
696
697		/*
698		 * Check security policy against packet attributes.
699		 */
700		error = ipsec_in_reject(sp, m);
701		KEY_FREESP(&sp);
702		splx(s);
703		if (error) {
704			ipstat.ips_cantforward++;
705			goto bad;
706		}
707#endif /* FAST_IPSEC */
708		ip_forward(m, 0, args.next_hop);
709	}
710	return;
711
712ours:
713#ifdef IPSTEALTH
714	/*
715	 * IPSTEALTH: Process non-routing options only
716	 * if the packet is destined for us.
717	 */
718	if (ipstealth && hlen > sizeof (struct ip) &&
719	    ip_dooptions(m, 1, args.next_hop))
720		return;
721#endif /* IPSTEALTH */
722
723	/* Count the packet in the ip address stats */
724	if (ia != NULL) {
725		ia->ia_ifa.if_ipackets++;
726		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
727	}
728
729	/*
730	 * If offset or IP_MF are set, must reassemble.
731	 * Otherwise, nothing need be done.
732	 * (We could look in the reassembly queue to see
733	 * if the packet was previously fragmented,
734	 * but it's not worth the time; just let them time out.)
735	 */
736	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
737
738		/* If maxnipq is 0, never accept fragments. */
739		if (maxnipq == 0) {
740                	ipstat.ips_fragments++;
741			ipstat.ips_fragdropped++;
742			goto bad;
743		}
744
745		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
746		/*
747		 * Look for queue of fragments
748		 * of this datagram.
749		 */
750		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
751			if (ip->ip_id == fp->ipq_id &&
752			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
753			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
754#ifdef MAC
755			    mac_fragment_match(m, fp) &&
756#endif
757			    ip->ip_p == fp->ipq_p)
758				goto found;
759
760		fp = 0;
761
762		/*
763		 * Enforce upper bound on number of fragmented packets
764		 * for which we attempt reassembly;
765		 * If maxnipq is -1, accept all fragments without limitation.
766		 */
767		if ((nipq > maxnipq) && (maxnipq > 0)) {
768		    /*
769		     * drop something from the tail of the current queue
770		     * before proceeding further
771		     */
772		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
773		    if (q == NULL) {   /* gak */
774			for (i = 0; i < IPREASS_NHASH; i++) {
775			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
776			    if (r) {
777				ipstat.ips_fragtimeout += r->ipq_nfrags;
778				ip_freef(&ipq[i], r);
779				break;
780			    }
781			}
782		    } else {
783			ipstat.ips_fragtimeout += q->ipq_nfrags;
784			ip_freef(&ipq[sum], q);
785		    }
786		}
787found:
788		/*
789		 * Adjust ip_len to not reflect header,
790		 * convert offset of this to bytes.
791		 */
792		ip->ip_len -= hlen;
793		if (ip->ip_off & IP_MF) {
794		        /*
795		         * Make sure that fragments have a data length
796			 * that's a non-zero multiple of 8 bytes.
797		         */
798			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
799				ipstat.ips_toosmall++; /* XXX */
800				goto bad;
801			}
802			m->m_flags |= M_FRAG;
803		} else
804			m->m_flags &= ~M_FRAG;
805		ip->ip_off <<= 3;
806
807		/*
808		 * Attempt reassembly; if it succeeds, proceed.
809		 * ip_reass() will return a different mbuf, and update
810		 * the divert info in divert_info and args.divert_rule.
811		 */
812		ipstat.ips_fragments++;
813		m->m_pkthdr.header = ip;
814		m = ip_reass(m,
815		    &ipq[sum], fp, &divert_info, &args.divert_rule);
816		if (m == 0)
817			return;
818		ipstat.ips_reassembled++;
819		ip = mtod(m, struct ip *);
820		/* Get the header length of the reassembled packet */
821		hlen = ip->ip_hl << 2;
822#ifdef IPDIVERT
823		/* Restore original checksum before diverting packet */
824		if (divert_info != 0) {
825			ip->ip_len += hlen;
826			ip->ip_len = htons(ip->ip_len);
827			ip->ip_off = htons(ip->ip_off);
828			ip->ip_sum = 0;
829			if (hlen == sizeof(struct ip))
830				ip->ip_sum = in_cksum_hdr(ip);
831			else
832				ip->ip_sum = in_cksum(m, hlen);
833			ip->ip_off = ntohs(ip->ip_off);
834			ip->ip_len = ntohs(ip->ip_len);
835			ip->ip_len -= hlen;
836		}
837#endif
838	} else
839		ip->ip_len -= hlen;
840
841#ifdef IPDIVERT
842	/*
843	 * Divert or tee packet to the divert protocol if required.
844	 */
845	if (divert_info != 0) {
846		struct mbuf *clone = NULL;
847
848		/* Clone packet if we're doing a 'tee' */
849		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
850			clone = m_dup(m, M_DONTWAIT);
851
852		/* Restore packet header fields to original values */
853		ip->ip_len += hlen;
854		ip->ip_len = htons(ip->ip_len);
855		ip->ip_off = htons(ip->ip_off);
856
857		/* Deliver packet to divert input routine */
858		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
859		ipstat.ips_delivered++;
860
861		/* If 'tee', continue with original packet */
862		if (clone == NULL)
863			return;
864		m = clone;
865		ip = mtod(m, struct ip *);
866		ip->ip_len += hlen;
867		/*
868		 * Jump backwards to complete processing of the
869		 * packet. But first clear divert_info to avoid
870		 * entering this block again.
871		 * We do not need to clear args.divert_rule
872		 * or args.next_hop as they will not be used.
873		 */
874		divert_info = 0;
875		goto pass;
876	}
877#endif
878
879#ifdef IPSEC
880	/*
881	 * enforce IPsec policy checking if we are seeing last header.
882	 * note that we do not visit this with protocols with pcb layer
883	 * code - like udp/tcp/raw ip.
884	 */
885	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
886	    ipsec4_in_reject(m, NULL)) {
887		ipsecstat.in_polvio++;
888		goto bad;
889	}
890#endif
891#if FAST_IPSEC
892	/*
893	 * enforce IPsec policy checking if we are seeing last header.
894	 * note that we do not visit this with protocols with pcb layer
895	 * code - like udp/tcp/raw ip.
896	 */
897	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
898		/*
899		 * Check if the packet has already had IPsec processing
900		 * done.  If so, then just pass it along.  This tag gets
901		 * set during AH, ESP, etc. input handling, before the
902		 * packet is returned to the ip input queue for delivery.
903		 */
904		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
905		s = splnet();
906		if (mtag != NULL) {
907			tdbi = (struct tdb_ident *)(mtag + 1);
908			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
909		} else {
910			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
911						   IP_FORWARDING, &error);
912		}
913		if (sp != NULL) {
914			/*
915			 * Check security policy against packet attributes.
916			 */
917			error = ipsec_in_reject(sp, m);
918			KEY_FREESP(&sp);
919		} else {
920			/* XXX error stat??? */
921			error = EINVAL;
922DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
923			goto bad;
924		}
925		splx(s);
926		if (error)
927			goto bad;
928	}
929#endif /* FAST_IPSEC */
930
931	/*
932	 * Switch out to protocol's input routine.
933	 */
934	ipstat.ips_delivered++;
935	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
936		/* TCP needs IPFORWARD info if available */
937		struct m_hdr tag;
938
939		tag.mh_type = MT_TAG;
940		tag.mh_flags = PACKET_TAG_IPFORWARD;
941		tag.mh_data = (caddr_t)args.next_hop;
942		tag.mh_next = m;
943
944		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
945			(struct mbuf *)&tag, hlen);
946	} else
947		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
948	return;
949bad:
950	m_freem(m);
951}
952
953/*
954 * IP software interrupt routine - to go away sometime soon
955 */
956static void
957ipintr(void)
958{
959	struct mbuf *m;
960
961	while (1) {
962		IF_DEQUEUE(&ipintrq, m);
963		if (m == 0)
964			return;
965		ip_input(m);
966	}
967}
968
969/*
970 * Take incoming datagram fragment and try to reassemble it into
971 * whole datagram.  If a chain for reassembly of this datagram already
972 * exists, then it is given as fp; otherwise have to make a chain.
973 *
974 * When IPDIVERT enabled, keep additional state with each packet that
975 * tells us if we need to divert or tee the packet we're building.
976 * In particular, *divinfo includes the port and TEE flag,
977 * *divert_rule is the number of the matching rule.
978 */
979
980static struct mbuf *
981ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
982	u_int32_t *divinfo, u_int16_t *divert_rule)
983{
984	struct ip *ip = mtod(m, struct ip *);
985	register struct mbuf *p, *q, *nq;
986	struct mbuf *t;
987	int hlen = ip->ip_hl << 2;
988	int i, next;
989
990	/*
991	 * Presence of header sizes in mbufs
992	 * would confuse code below.
993	 */
994	m->m_data += hlen;
995	m->m_len -= hlen;
996
997	/*
998	 * If first fragment to arrive, create a reassembly queue.
999	 */
1000	if (fp == 0) {
1001		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
1002			goto dropfrag;
1003		fp = mtod(t, struct ipq *);
1004#ifdef MAC
1005		mac_init_ipq(fp);
1006		mac_create_ipq(m, fp);
1007#endif
1008		TAILQ_INSERT_HEAD(head, fp, ipq_list);
1009		nipq++;
1010		fp->ipq_nfrags = 1;
1011		fp->ipq_ttl = IPFRAGTTL;
1012		fp->ipq_p = ip->ip_p;
1013		fp->ipq_id = ip->ip_id;
1014		fp->ipq_src = ip->ip_src;
1015		fp->ipq_dst = ip->ip_dst;
1016		fp->ipq_frags = m;
1017		m->m_nextpkt = NULL;
1018#ifdef IPDIVERT
1019		fp->ipq_div_info = 0;
1020		fp->ipq_div_cookie = 0;
1021#endif
1022		goto inserted;
1023	} else {
1024		fp->ipq_nfrags++;
1025#ifdef MAC
1026		mac_update_ipq(m, fp);
1027#endif
1028	}
1029
1030#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1031
1032	/*
1033	 * Find a segment which begins after this one does.
1034	 */
1035	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1036		if (GETIP(q)->ip_off > ip->ip_off)
1037			break;
1038
1039	/*
1040	 * If there is a preceding segment, it may provide some of
1041	 * our data already.  If so, drop the data from the incoming
1042	 * segment.  If it provides all of our data, drop us, otherwise
1043	 * stick new segment in the proper place.
1044	 *
1045	 * If some of the data is dropped from the the preceding
1046	 * segment, then it's checksum is invalidated.
1047	 */
1048	if (p) {
1049		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1050		if (i > 0) {
1051			if (i >= ip->ip_len)
1052				goto dropfrag;
1053			m_adj(m, i);
1054			m->m_pkthdr.csum_flags = 0;
1055			ip->ip_off += i;
1056			ip->ip_len -= i;
1057		}
1058		m->m_nextpkt = p->m_nextpkt;
1059		p->m_nextpkt = m;
1060	} else {
1061		m->m_nextpkt = fp->ipq_frags;
1062		fp->ipq_frags = m;
1063	}
1064
1065	/*
1066	 * While we overlap succeeding segments trim them or,
1067	 * if they are completely covered, dequeue them.
1068	 */
1069	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1070	     q = nq) {
1071		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1072		if (i < GETIP(q)->ip_len) {
1073			GETIP(q)->ip_len -= i;
1074			GETIP(q)->ip_off += i;
1075			m_adj(q, i);
1076			q->m_pkthdr.csum_flags = 0;
1077			break;
1078		}
1079		nq = q->m_nextpkt;
1080		m->m_nextpkt = nq;
1081		ipstat.ips_fragdropped++;
1082		fp->ipq_nfrags--;
1083		m_freem(q);
1084	}
1085
1086inserted:
1087
1088#ifdef IPDIVERT
1089	/*
1090	 * Transfer firewall instructions to the fragment structure.
1091	 * Only trust info in the fragment at offset 0.
1092	 */
1093	if (ip->ip_off == 0) {
1094		fp->ipq_div_info = *divinfo;
1095		fp->ipq_div_cookie = *divert_rule;
1096	}
1097	*divinfo = 0;
1098	*divert_rule = 0;
1099#endif
1100
1101	/*
1102	 * Check for complete reassembly and perform frag per packet
1103	 * limiting.
1104	 *
1105	 * Frag limiting is performed here so that the nth frag has
1106	 * a chance to complete the packet before we drop the packet.
1107	 * As a result, n+1 frags are actually allowed per packet, but
1108	 * only n will ever be stored. (n = maxfragsperpacket.)
1109	 *
1110	 */
1111	next = 0;
1112	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1113		if (GETIP(q)->ip_off != next) {
1114			if (fp->ipq_nfrags > maxfragsperpacket) {
1115				ipstat.ips_fragdropped += fp->ipq_nfrags;
1116				ip_freef(head, fp);
1117			}
1118			return (0);
1119		}
1120		next += GETIP(q)->ip_len;
1121	}
1122	/* Make sure the last packet didn't have the IP_MF flag */
1123	if (p->m_flags & M_FRAG) {
1124		if (fp->ipq_nfrags > maxfragsperpacket) {
1125			ipstat.ips_fragdropped += fp->ipq_nfrags;
1126			ip_freef(head, fp);
1127		}
1128		return (0);
1129	}
1130
1131	/*
1132	 * Reassembly is complete.  Make sure the packet is a sane size.
1133	 */
1134	q = fp->ipq_frags;
1135	ip = GETIP(q);
1136	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1137		ipstat.ips_toolong++;
1138		ipstat.ips_fragdropped += fp->ipq_nfrags;
1139		ip_freef(head, fp);
1140		return (0);
1141	}
1142
1143	/*
1144	 * Concatenate fragments.
1145	 */
1146	m = q;
1147	t = m->m_next;
1148	m->m_next = 0;
1149	m_cat(m, t);
1150	nq = q->m_nextpkt;
1151	q->m_nextpkt = 0;
1152	for (q = nq; q != NULL; q = nq) {
1153		nq = q->m_nextpkt;
1154		q->m_nextpkt = NULL;
1155		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1156		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1157		m_cat(m, q);
1158	}
1159#ifdef MAC
1160	mac_create_datagram_from_ipq(fp, m);
1161	mac_destroy_ipq(fp);
1162#endif
1163
1164#ifdef IPDIVERT
1165	/*
1166	 * Extract firewall instructions from the fragment structure.
1167	 */
1168	*divinfo = fp->ipq_div_info;
1169	*divert_rule = fp->ipq_div_cookie;
1170#endif
1171
1172	/*
1173	 * Create header for new ip packet by
1174	 * modifying header of first packet;
1175	 * dequeue and discard fragment reassembly header.
1176	 * Make header visible.
1177	 */
1178	ip->ip_len = next;
1179	ip->ip_src = fp->ipq_src;
1180	ip->ip_dst = fp->ipq_dst;
1181	TAILQ_REMOVE(head, fp, ipq_list);
1182	nipq--;
1183	(void) m_free(dtom(fp));
1184	m->m_len += (ip->ip_hl << 2);
1185	m->m_data -= (ip->ip_hl << 2);
1186	/* some debugging cruft by sklower, below, will go away soon */
1187	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1188		m_fixhdr(m);
1189	return (m);
1190
1191dropfrag:
1192#ifdef IPDIVERT
1193	*divinfo = 0;
1194	*divert_rule = 0;
1195#endif
1196	ipstat.ips_fragdropped++;
1197	if (fp != 0)
1198		fp->ipq_nfrags--;
1199	m_freem(m);
1200	return (0);
1201
1202#undef GETIP
1203}
1204
1205/*
1206 * Free a fragment reassembly header and all
1207 * associated datagrams.
1208 */
1209static void
1210ip_freef(fhp, fp)
1211	struct ipqhead *fhp;
1212	struct ipq *fp;
1213{
1214	register struct mbuf *q;
1215
1216	while (fp->ipq_frags) {
1217		q = fp->ipq_frags;
1218		fp->ipq_frags = q->m_nextpkt;
1219		m_freem(q);
1220	}
1221	TAILQ_REMOVE(fhp, fp, ipq_list);
1222	(void) m_free(dtom(fp));
1223	nipq--;
1224}
1225
1226/*
1227 * IP timer processing;
1228 * if a timer expires on a reassembly
1229 * queue, discard it.
1230 */
1231void
1232ip_slowtimo()
1233{
1234	register struct ipq *fp;
1235	int s = splnet();
1236	int i;
1237
1238	for (i = 0; i < IPREASS_NHASH; i++) {
1239		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1240			struct ipq *fpp;
1241
1242			fpp = fp;
1243			fp = TAILQ_NEXT(fp, ipq_list);
1244			if(--fpp->ipq_ttl == 0) {
1245				ipstat.ips_fragtimeout += fpp->ipq_nfrags;
1246				ip_freef(&ipq[i], fpp);
1247			}
1248		}
1249	}
1250	/*
1251	 * If we are over the maximum number of fragments
1252	 * (due to the limit being lowered), drain off
1253	 * enough to get down to the new limit.
1254	 */
1255	if (maxnipq >= 0 && nipq > maxnipq) {
1256		for (i = 0; i < IPREASS_NHASH; i++) {
1257			while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
1258				ipstat.ips_fragdropped +=
1259				    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1260				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1261			}
1262		}
1263	}
1264	ipflow_slowtimo();
1265	splx(s);
1266}
1267
1268/*
1269 * Drain off all datagram fragments.
1270 */
1271void
1272ip_drain()
1273{
1274	int     i;
1275
1276	for (i = 0; i < IPREASS_NHASH; i++) {
1277		while(!TAILQ_EMPTY(&ipq[i])) {
1278			ipstat.ips_fragdropped +=
1279			    TAILQ_FIRST(&ipq[i])->ipq_nfrags;
1280			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1281		}
1282	}
1283	in_rtqdrain();
1284}
1285
1286/*
1287 * Do option processing on a datagram,
1288 * possibly discarding it if bad options are encountered,
1289 * or forwarding it if source-routed.
1290 * The pass argument is used when operating in the IPSTEALTH
1291 * mode to tell what options to process:
1292 * [LS]SRR (pass 0) or the others (pass 1).
1293 * The reason for as many as two passes is that when doing IPSTEALTH,
1294 * non-routing options should be processed only if the packet is for us.
1295 * Returns 1 if packet has been forwarded/freed,
1296 * 0 if the packet should be processed further.
1297 */
1298static int
1299ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1300{
1301	struct ip *ip = mtod(m, struct ip *);
1302	u_char *cp;
1303	struct in_ifaddr *ia;
1304	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1305	struct in_addr *sin, dst;
1306	n_time ntime;
1307	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1308
1309	dst = ip->ip_dst;
1310	cp = (u_char *)(ip + 1);
1311	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1312	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1313		opt = cp[IPOPT_OPTVAL];
1314		if (opt == IPOPT_EOL)
1315			break;
1316		if (opt == IPOPT_NOP)
1317			optlen = 1;
1318		else {
1319			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1320				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1321				goto bad;
1322			}
1323			optlen = cp[IPOPT_OLEN];
1324			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1325				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1326				goto bad;
1327			}
1328		}
1329		switch (opt) {
1330
1331		default:
1332			break;
1333
1334		/*
1335		 * Source routing with record.
1336		 * Find interface with current destination address.
1337		 * If none on this machine then drop if strictly routed,
1338		 * or do nothing if loosely routed.
1339		 * Record interface address and bring up next address
1340		 * component.  If strictly routed make sure next
1341		 * address is on directly accessible net.
1342		 */
1343		case IPOPT_LSRR:
1344		case IPOPT_SSRR:
1345#ifdef IPSTEALTH
1346			if (ipstealth && pass > 0)
1347				break;
1348#endif
1349			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1350				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1351				goto bad;
1352			}
1353			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1354				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1355				goto bad;
1356			}
1357			ipaddr.sin_addr = ip->ip_dst;
1358			ia = (struct in_ifaddr *)
1359				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1360			if (ia == 0) {
1361				if (opt == IPOPT_SSRR) {
1362					type = ICMP_UNREACH;
1363					code = ICMP_UNREACH_SRCFAIL;
1364					goto bad;
1365				}
1366				if (!ip_dosourceroute)
1367					goto nosourcerouting;
1368				/*
1369				 * Loose routing, and not at next destination
1370				 * yet; nothing to do except forward.
1371				 */
1372				break;
1373			}
1374			off--;			/* 0 origin */
1375			if (off > optlen - (int)sizeof(struct in_addr)) {
1376				/*
1377				 * End of source route.  Should be for us.
1378				 */
1379				if (!ip_acceptsourceroute)
1380					goto nosourcerouting;
1381				save_rte(cp, ip->ip_src);
1382				break;
1383			}
1384#ifdef IPSTEALTH
1385			if (ipstealth)
1386				goto dropit;
1387#endif
1388			if (!ip_dosourceroute) {
1389				if (ipforwarding) {
1390					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1391					/*
1392					 * Acting as a router, so generate ICMP
1393					 */
1394nosourcerouting:
1395					strcpy(buf, inet_ntoa(ip->ip_dst));
1396					log(LOG_WARNING,
1397					    "attempted source route from %s to %s\n",
1398					    inet_ntoa(ip->ip_src), buf);
1399					type = ICMP_UNREACH;
1400					code = ICMP_UNREACH_SRCFAIL;
1401					goto bad;
1402				} else {
1403					/*
1404					 * Not acting as a router, so silently drop.
1405					 */
1406#ifdef IPSTEALTH
1407dropit:
1408#endif
1409					ipstat.ips_cantforward++;
1410					m_freem(m);
1411					return (1);
1412				}
1413			}
1414
1415			/*
1416			 * locate outgoing interface
1417			 */
1418			(void)memcpy(&ipaddr.sin_addr, cp + off,
1419			    sizeof(ipaddr.sin_addr));
1420
1421			if (opt == IPOPT_SSRR) {
1422#define	INA	struct in_ifaddr *
1423#define	SA	struct sockaddr *
1424			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1425				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1426			} else
1427				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1428			if (ia == 0) {
1429				type = ICMP_UNREACH;
1430				code = ICMP_UNREACH_SRCFAIL;
1431				goto bad;
1432			}
1433			ip->ip_dst = ipaddr.sin_addr;
1434			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1435			    sizeof(struct in_addr));
1436			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1437			/*
1438			 * Let ip_intr's mcast routing check handle mcast pkts
1439			 */
1440			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1441			break;
1442
1443		case IPOPT_RR:
1444#ifdef IPSTEALTH
1445			if (ipstealth && pass == 0)
1446				break;
1447#endif
1448			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1449				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1450				goto bad;
1451			}
1452			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1453				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1454				goto bad;
1455			}
1456			/*
1457			 * If no space remains, ignore.
1458			 */
1459			off--;			/* 0 origin */
1460			if (off > optlen - (int)sizeof(struct in_addr))
1461				break;
1462			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1463			    sizeof(ipaddr.sin_addr));
1464			/*
1465			 * locate outgoing interface; if we're the destination,
1466			 * use the incoming interface (should be same).
1467			 */
1468			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1469			    (ia = ip_rtaddr(ipaddr.sin_addr,
1470			    &ipforward_rt)) == 0) {
1471				type = ICMP_UNREACH;
1472				code = ICMP_UNREACH_HOST;
1473				goto bad;
1474			}
1475			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1476			    sizeof(struct in_addr));
1477			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1478			break;
1479
1480		case IPOPT_TS:
1481#ifdef IPSTEALTH
1482			if (ipstealth && pass == 0)
1483				break;
1484#endif
1485			code = cp - (u_char *)ip;
1486			if (optlen < 4 || optlen > 40) {
1487				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1488				goto bad;
1489			}
1490			if ((off = cp[IPOPT_OFFSET]) < 5) {
1491				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1492				goto bad;
1493			}
1494			if (off > optlen - (int)sizeof(int32_t)) {
1495				cp[IPOPT_OFFSET + 1] += (1 << 4);
1496				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1497					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1498					goto bad;
1499				}
1500				break;
1501			}
1502			off--;				/* 0 origin */
1503			sin = (struct in_addr *)(cp + off);
1504			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1505
1506			case IPOPT_TS_TSONLY:
1507				break;
1508
1509			case IPOPT_TS_TSANDADDR:
1510				if (off + sizeof(n_time) +
1511				    sizeof(struct in_addr) > optlen) {
1512					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1513					goto bad;
1514				}
1515				ipaddr.sin_addr = dst;
1516				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1517							    m->m_pkthdr.rcvif);
1518				if (ia == 0)
1519					continue;
1520				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1521				    sizeof(struct in_addr));
1522				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1523				off += sizeof(struct in_addr);
1524				break;
1525
1526			case IPOPT_TS_PRESPEC:
1527				if (off + sizeof(n_time) +
1528				    sizeof(struct in_addr) > optlen) {
1529					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1530					goto bad;
1531				}
1532				(void)memcpy(&ipaddr.sin_addr, sin,
1533				    sizeof(struct in_addr));
1534				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1535					continue;
1536				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1537				off += sizeof(struct in_addr);
1538				break;
1539
1540			default:
1541				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1542				goto bad;
1543			}
1544			ntime = iptime();
1545			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1546			cp[IPOPT_OFFSET] += sizeof(n_time);
1547		}
1548	}
1549	if (forward && ipforwarding) {
1550		ip_forward(m, 1, next_hop);
1551		return (1);
1552	}
1553	return (0);
1554bad:
1555	icmp_error(m, type, code, 0, 0);
1556	ipstat.ips_badoptions++;
1557	return (1);
1558}
1559
1560/*
1561 * Given address of next destination (final or next hop),
1562 * return internet address info of interface to be used to get there.
1563 */
1564struct in_ifaddr *
1565ip_rtaddr(dst, rt)
1566	struct in_addr dst;
1567	struct route *rt;
1568{
1569	register struct sockaddr_in *sin;
1570
1571	sin = (struct sockaddr_in *)&rt->ro_dst;
1572
1573	if (rt->ro_rt == 0 ||
1574	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1575	    dst.s_addr != sin->sin_addr.s_addr) {
1576		if (rt->ro_rt) {
1577			RTFREE(rt->ro_rt);
1578			rt->ro_rt = 0;
1579		}
1580		sin->sin_family = AF_INET;
1581		sin->sin_len = sizeof(*sin);
1582		sin->sin_addr = dst;
1583
1584		rtalloc_ign(rt, RTF_PRCLONING);
1585	}
1586	if (rt->ro_rt == 0)
1587		return ((struct in_ifaddr *)0);
1588	return (ifatoia(rt->ro_rt->rt_ifa));
1589}
1590
1591/*
1592 * Save incoming source route for use in replies,
1593 * to be picked up later by ip_srcroute if the receiver is interested.
1594 */
1595static void
1596save_rte(option, dst)
1597	u_char *option;
1598	struct in_addr dst;
1599{
1600	unsigned olen;
1601
1602	olen = option[IPOPT_OLEN];
1603#ifdef DIAGNOSTIC
1604	if (ipprintfs)
1605		printf("save_rte: olen %d\n", olen);
1606#endif
1607	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1608		return;
1609	bcopy(option, ip_srcrt.srcopt, olen);
1610	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1611	ip_srcrt.dst = dst;
1612}
1613
1614/*
1615 * Retrieve incoming source route for use in replies,
1616 * in the same form used by setsockopt.
1617 * The first hop is placed before the options, will be removed later.
1618 */
1619struct mbuf *
1620ip_srcroute()
1621{
1622	register struct in_addr *p, *q;
1623	register struct mbuf *m;
1624
1625	if (ip_nhops == 0)
1626		return ((struct mbuf *)0);
1627	m = m_get(M_DONTWAIT, MT_HEADER);
1628	if (m == 0)
1629		return ((struct mbuf *)0);
1630
1631#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1632
1633	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1634	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1635	    OPTSIZ;
1636#ifdef DIAGNOSTIC
1637	if (ipprintfs)
1638		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1639#endif
1640
1641	/*
1642	 * First save first hop for return route
1643	 */
1644	p = &ip_srcrt.route[ip_nhops - 1];
1645	*(mtod(m, struct in_addr *)) = *p--;
1646#ifdef DIAGNOSTIC
1647	if (ipprintfs)
1648		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1649#endif
1650
1651	/*
1652	 * Copy option fields and padding (nop) to mbuf.
1653	 */
1654	ip_srcrt.nop = IPOPT_NOP;
1655	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1656	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1657	    &ip_srcrt.nop, OPTSIZ);
1658	q = (struct in_addr *)(mtod(m, caddr_t) +
1659	    sizeof(struct in_addr) + OPTSIZ);
1660#undef OPTSIZ
1661	/*
1662	 * Record return path as an IP source route,
1663	 * reversing the path (pointers are now aligned).
1664	 */
1665	while (p >= ip_srcrt.route) {
1666#ifdef DIAGNOSTIC
1667		if (ipprintfs)
1668			printf(" %lx", (u_long)ntohl(q->s_addr));
1669#endif
1670		*q++ = *p--;
1671	}
1672	/*
1673	 * Last hop goes to final destination.
1674	 */
1675	*q = ip_srcrt.dst;
1676#ifdef DIAGNOSTIC
1677	if (ipprintfs)
1678		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1679#endif
1680	return (m);
1681}
1682
1683/*
1684 * Strip out IP options, at higher
1685 * level protocol in the kernel.
1686 * Second argument is buffer to which options
1687 * will be moved, and return value is their length.
1688 * XXX should be deleted; last arg currently ignored.
1689 */
1690void
1691ip_stripoptions(m, mopt)
1692	register struct mbuf *m;
1693	struct mbuf *mopt;
1694{
1695	register int i;
1696	struct ip *ip = mtod(m, struct ip *);
1697	register caddr_t opts;
1698	int olen;
1699
1700	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1701	opts = (caddr_t)(ip + 1);
1702	i = m->m_len - (sizeof (struct ip) + olen);
1703	bcopy(opts + olen, opts, (unsigned)i);
1704	m->m_len -= olen;
1705	if (m->m_flags & M_PKTHDR)
1706		m->m_pkthdr.len -= olen;
1707	ip->ip_v = IPVERSION;
1708	ip->ip_hl = sizeof(struct ip) >> 2;
1709}
1710
1711u_char inetctlerrmap[PRC_NCMDS] = {
1712	0,		0,		0,		0,
1713	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1714	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1715	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1716	0,		0,		0,		0,
1717	ENOPROTOOPT,	ECONNREFUSED
1718};
1719
1720/*
1721 * Forward a packet.  If some error occurs return the sender
1722 * an icmp packet.  Note we can't always generate a meaningful
1723 * icmp message because icmp doesn't have a large enough repertoire
1724 * of codes and types.
1725 *
1726 * If not forwarding, just drop the packet.  This could be confusing
1727 * if ipforwarding was zero but some routing protocol was advancing
1728 * us as a gateway to somewhere.  However, we must let the routing
1729 * protocol deal with that.
1730 *
1731 * The srcrt parameter indicates whether the packet is being forwarded
1732 * via a source route.
1733 */
1734static void
1735ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1736{
1737	struct ip *ip = mtod(m, struct ip *);
1738	struct rtentry *rt;
1739	int error, type = 0, code = 0;
1740	struct mbuf *mcopy;
1741	n_long dest;
1742	struct in_addr pkt_dst;
1743	struct ifnet *destifp;
1744#if defined(IPSEC) || defined(FAST_IPSEC)
1745	struct ifnet dummyifp;
1746#endif
1747
1748	dest = 0;
1749	/*
1750	 * Cache the destination address of the packet; this may be
1751	 * changed by use of 'ipfw fwd'.
1752	 */
1753	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1754
1755#ifdef DIAGNOSTIC
1756	if (ipprintfs)
1757		printf("forward: src %lx dst %lx ttl %x\n",
1758		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1759		    ip->ip_ttl);
1760#endif
1761
1762
1763	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1764		ipstat.ips_cantforward++;
1765		m_freem(m);
1766		return;
1767	}
1768#ifdef IPSTEALTH
1769	if (!ipstealth) {
1770#endif
1771		if (ip->ip_ttl <= IPTTLDEC) {
1772			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1773			    dest, 0);
1774			return;
1775		}
1776#ifdef IPSTEALTH
1777	}
1778#endif
1779
1780	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1781		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1782		return;
1783	} else
1784		rt = ipforward_rt.ro_rt;
1785
1786	/*
1787	 * Save the IP header and at most 8 bytes of the payload,
1788	 * in case we need to generate an ICMP message to the src.
1789	 *
1790	 * XXX this can be optimized a lot by saving the data in a local
1791	 * buffer on the stack (72 bytes at most), and only allocating the
1792	 * mbuf if really necessary. The vast majority of the packets
1793	 * are forwarded without having to send an ICMP back (either
1794	 * because unnecessary, or because rate limited), so we are
1795	 * really we are wasting a lot of work here.
1796	 *
1797	 * We don't use m_copy() because it might return a reference
1798	 * to a shared cluster. Both this function and ip_output()
1799	 * assume exclusive access to the IP header in `m', so any
1800	 * data in a cluster may change before we reach icmp_error().
1801	 */
1802	MGET(mcopy, M_DONTWAIT, m->m_type);
1803	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1804		/*
1805		 * It's probably ok if the pkthdr dup fails (because
1806		 * the deep copy of the tag chain failed), but for now
1807		 * be conservative and just discard the copy since
1808		 * code below may some day want the tags.
1809		 */
1810		m_free(mcopy);
1811		mcopy = NULL;
1812	}
1813	if (mcopy != NULL) {
1814		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1815		    (int)ip->ip_len);
1816		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1817#ifdef MAC
1818		/*
1819		 * XXXMAC: This will eventually become an explicit
1820		 * labeling point.
1821		 */
1822		mac_create_mbuf_from_mbuf(m, mcopy);
1823#endif
1824	}
1825
1826#ifdef IPSTEALTH
1827	if (!ipstealth) {
1828#endif
1829		ip->ip_ttl -= IPTTLDEC;
1830#ifdef IPSTEALTH
1831	}
1832#endif
1833
1834	/*
1835	 * If forwarding packet using same interface that it came in on,
1836	 * perhaps should send a redirect to sender to shortcut a hop.
1837	 * Only send redirect if source is sending directly to us,
1838	 * and if packet was not source routed (or has any options).
1839	 * Also, don't send redirect if forwarding using a default route
1840	 * or a route modified by a redirect.
1841	 */
1842	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1843	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1844	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1845	    ipsendredirects && !srcrt && !next_hop) {
1846#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1847		u_long src = ntohl(ip->ip_src.s_addr);
1848
1849		if (RTA(rt) &&
1850		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1851		    if (rt->rt_flags & RTF_GATEWAY)
1852			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1853		    else
1854			dest = pkt_dst.s_addr;
1855		    /* Router requirements says to only send host redirects */
1856		    type = ICMP_REDIRECT;
1857		    code = ICMP_REDIRECT_HOST;
1858#ifdef DIAGNOSTIC
1859		    if (ipprintfs)
1860		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1861#endif
1862		}
1863	}
1864
1865    {
1866	struct m_hdr tag;
1867
1868	if (next_hop) {
1869		/* Pass IPFORWARD info if available */
1870
1871		tag.mh_type = MT_TAG;
1872		tag.mh_flags = PACKET_TAG_IPFORWARD;
1873		tag.mh_data = (caddr_t)next_hop;
1874		tag.mh_next = m;
1875		m = (struct mbuf *)&tag;
1876	}
1877	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1878			  IP_FORWARDING, 0, NULL);
1879    }
1880	if (error)
1881		ipstat.ips_cantforward++;
1882	else {
1883		ipstat.ips_forward++;
1884		if (type)
1885			ipstat.ips_redirectsent++;
1886		else {
1887			if (mcopy) {
1888				ipflow_create(&ipforward_rt, mcopy);
1889				m_freem(mcopy);
1890			}
1891			return;
1892		}
1893	}
1894	if (mcopy == NULL)
1895		return;
1896	destifp = NULL;
1897
1898	switch (error) {
1899
1900	case 0:				/* forwarded, but need redirect */
1901		/* type, code set above */
1902		break;
1903
1904	case ENETUNREACH:		/* shouldn't happen, checked above */
1905	case EHOSTUNREACH:
1906	case ENETDOWN:
1907	case EHOSTDOWN:
1908	default:
1909		type = ICMP_UNREACH;
1910		code = ICMP_UNREACH_HOST;
1911		break;
1912
1913	case EMSGSIZE:
1914		type = ICMP_UNREACH;
1915		code = ICMP_UNREACH_NEEDFRAG;
1916#ifdef IPSEC
1917		/*
1918		 * If the packet is routed over IPsec tunnel, tell the
1919		 * originator the tunnel MTU.
1920		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1921		 * XXX quickhack!!!
1922		 */
1923		if (ipforward_rt.ro_rt) {
1924			struct secpolicy *sp = NULL;
1925			int ipsecerror;
1926			int ipsechdr;
1927			struct route *ro;
1928
1929			sp = ipsec4_getpolicybyaddr(mcopy,
1930						    IPSEC_DIR_OUTBOUND,
1931			                            IP_FORWARDING,
1932			                            &ipsecerror);
1933
1934			if (sp == NULL)
1935				destifp = ipforward_rt.ro_rt->rt_ifp;
1936			else {
1937				/* count IPsec header size */
1938				ipsechdr = ipsec4_hdrsiz(mcopy,
1939							 IPSEC_DIR_OUTBOUND,
1940							 NULL);
1941
1942				/*
1943				 * find the correct route for outer IPv4
1944				 * header, compute tunnel MTU.
1945				 *
1946				 * XXX BUG ALERT
1947				 * The "dummyifp" code relies upon the fact
1948				 * that icmp_error() touches only ifp->if_mtu.
1949				 */
1950				/*XXX*/
1951				destifp = NULL;
1952				if (sp->req != NULL
1953				 && sp->req->sav != NULL
1954				 && sp->req->sav->sah != NULL) {
1955					ro = &sp->req->sav->sah->sa_route;
1956					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1957						dummyifp.if_mtu =
1958						    ro->ro_rt->rt_ifp->if_mtu;
1959						dummyifp.if_mtu -= ipsechdr;
1960						destifp = &dummyifp;
1961					}
1962				}
1963
1964				key_freesp(sp);
1965			}
1966		}
1967#elif FAST_IPSEC
1968		/*
1969		 * If the packet is routed over IPsec tunnel, tell the
1970		 * originator the tunnel MTU.
1971		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1972		 * XXX quickhack!!!
1973		 */
1974		if (ipforward_rt.ro_rt) {
1975			struct secpolicy *sp = NULL;
1976			int ipsecerror;
1977			int ipsechdr;
1978			struct route *ro;
1979
1980			sp = ipsec_getpolicybyaddr(mcopy,
1981						   IPSEC_DIR_OUTBOUND,
1982			                           IP_FORWARDING,
1983			                           &ipsecerror);
1984
1985			if (sp == NULL)
1986				destifp = ipforward_rt.ro_rt->rt_ifp;
1987			else {
1988				/* count IPsec header size */
1989				ipsechdr = ipsec4_hdrsiz(mcopy,
1990							 IPSEC_DIR_OUTBOUND,
1991							 NULL);
1992
1993				/*
1994				 * find the correct route for outer IPv4
1995				 * header, compute tunnel MTU.
1996				 *
1997				 * XXX BUG ALERT
1998				 * The "dummyifp" code relies upon the fact
1999				 * that icmp_error() touches only ifp->if_mtu.
2000				 */
2001				/*XXX*/
2002				destifp = NULL;
2003				if (sp->req != NULL
2004				 && sp->req->sav != NULL
2005				 && sp->req->sav->sah != NULL) {
2006					ro = &sp->req->sav->sah->sa_route;
2007					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
2008						dummyifp.if_mtu =
2009						    ro->ro_rt->rt_ifp->if_mtu;
2010						dummyifp.if_mtu -= ipsechdr;
2011						destifp = &dummyifp;
2012					}
2013				}
2014
2015				KEY_FREESP(&sp);
2016			}
2017		}
2018#else /* !IPSEC && !FAST_IPSEC */
2019		if (ipforward_rt.ro_rt)
2020			destifp = ipforward_rt.ro_rt->rt_ifp;
2021#endif /*IPSEC*/
2022		ipstat.ips_cantfrag++;
2023		break;
2024
2025	case ENOBUFS:
2026		/*
2027		 * A router should not generate ICMP_SOURCEQUENCH as
2028		 * required in RFC1812 Requirements for IP Version 4 Routers.
2029		 * Source quench could be a big problem under DoS attacks,
2030		 * or if the underlying interface is rate-limited.
2031		 * Those who need source quench packets may re-enable them
2032		 * via the net.inet.ip.sendsourcequench sysctl.
2033		 */
2034		if (ip_sendsourcequench == 0) {
2035			m_freem(mcopy);
2036			return;
2037		} else {
2038			type = ICMP_SOURCEQUENCH;
2039			code = 0;
2040		}
2041		break;
2042
2043	case EACCES:			/* ipfw denied packet */
2044		m_freem(mcopy);
2045		return;
2046	}
2047	icmp_error(mcopy, type, code, dest, destifp);
2048}
2049
2050void
2051ip_savecontrol(inp, mp, ip, m)
2052	register struct inpcb *inp;
2053	register struct mbuf **mp;
2054	register struct ip *ip;
2055	register struct mbuf *m;
2056{
2057	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2058		struct timeval tv;
2059
2060		microtime(&tv);
2061		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2062			SCM_TIMESTAMP, SOL_SOCKET);
2063		if (*mp)
2064			mp = &(*mp)->m_next;
2065	}
2066	if (inp->inp_flags & INP_RECVDSTADDR) {
2067		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2068		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2069		if (*mp)
2070			mp = &(*mp)->m_next;
2071	}
2072#ifdef notyet
2073	/* XXX
2074	 * Moving these out of udp_input() made them even more broken
2075	 * than they already were.
2076	 */
2077	/* options were tossed already */
2078	if (inp->inp_flags & INP_RECVOPTS) {
2079		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2080		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2081		if (*mp)
2082			mp = &(*mp)->m_next;
2083	}
2084	/* ip_srcroute doesn't do what we want here, need to fix */
2085	if (inp->inp_flags & INP_RECVRETOPTS) {
2086		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2087		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2088		if (*mp)
2089			mp = &(*mp)->m_next;
2090	}
2091#endif
2092	if (inp->inp_flags & INP_RECVIF) {
2093		struct ifnet *ifp;
2094		struct sdlbuf {
2095			struct sockaddr_dl sdl;
2096			u_char	pad[32];
2097		} sdlbuf;
2098		struct sockaddr_dl *sdp;
2099		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2100
2101		if (((ifp = m->m_pkthdr.rcvif))
2102		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2103			sdp = (struct sockaddr_dl *)
2104			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2105			/*
2106			 * Change our mind and don't try copy.
2107			 */
2108			if ((sdp->sdl_family != AF_LINK)
2109			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2110				goto makedummy;
2111			}
2112			bcopy(sdp, sdl2, sdp->sdl_len);
2113		} else {
2114makedummy:
2115			sdl2->sdl_len
2116				= offsetof(struct sockaddr_dl, sdl_data[0]);
2117			sdl2->sdl_family = AF_LINK;
2118			sdl2->sdl_index = 0;
2119			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2120		}
2121		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2122			IP_RECVIF, IPPROTO_IP);
2123		if (*mp)
2124			mp = &(*mp)->m_next;
2125	}
2126}
2127
2128/*
2129 * XXX these routines are called from the upper part of the kernel.
2130 * They need to be locked when we remove Giant.
2131 *
2132 * They could also be moved to ip_mroute.c, since all the RSVP
2133 *  handling is done there already.
2134 */
2135static int ip_rsvp_on;
2136struct socket *ip_rsvpd;
2137int
2138ip_rsvp_init(struct socket *so)
2139{
2140	if (so->so_type != SOCK_RAW ||
2141	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2142		return EOPNOTSUPP;
2143
2144	if (ip_rsvpd != NULL)
2145		return EADDRINUSE;
2146
2147	ip_rsvpd = so;
2148	/*
2149	 * This may seem silly, but we need to be sure we don't over-increment
2150	 * the RSVP counter, in case something slips up.
2151	 */
2152	if (!ip_rsvp_on) {
2153		ip_rsvp_on = 1;
2154		rsvp_on++;
2155	}
2156
2157	return 0;
2158}
2159
2160int
2161ip_rsvp_done(void)
2162{
2163	ip_rsvpd = NULL;
2164	/*
2165	 * This may seem silly, but we need to be sure we don't over-decrement
2166	 * the RSVP counter, in case something slips up.
2167	 */
2168	if (ip_rsvp_on) {
2169		ip_rsvp_on = 0;
2170		rsvp_on--;
2171	}
2172	return 0;
2173}
2174
2175void
2176rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2177{
2178	if (rsvp_input_p) { /* call the real one if loaded */
2179		rsvp_input_p(m, off);
2180		return;
2181	}
2182
2183	/* Can still get packets with rsvp_on = 0 if there is a local member
2184	 * of the group to which the RSVP packet is addressed.  But in this
2185	 * case we want to throw the packet away.
2186	 */
2187
2188	if (!rsvp_on) {
2189		m_freem(m);
2190		return;
2191	}
2192
2193	if (ip_rsvpd != NULL) {
2194		rip_input(m, off);
2195		return;
2196	}
2197	/* Drop the packet */
2198	m_freem(m);
2199}
2200