ip_input.c revision 109843
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 109843 2003-01-26 01:44:05Z silby $
35 */
36
37#include "opt_bootp.h"
38#include "opt_ipfw.h"
39#include "opt_ipdn.h"
40#include "opt_ipdivert.h"
41#include "opt_ipfilter.h"
42#include "opt_ipstealth.h"
43#include "opt_ipsec.h"
44#include "opt_mac.h"
45#include "opt_pfil_hooks.h"
46#include "opt_random_ip_id.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mac.h>
51#include <sys/mbuf.h>
52#include <sys/malloc.h>
53#include <sys/domain.h>
54#include <sys/protosw.h>
55#include <sys/socket.h>
56#include <sys/time.h>
57#include <sys/kernel.h>
58#include <sys/syslog.h>
59#include <sys/sysctl.h>
60
61#include <net/pfil.h>
62#include <net/if.h>
63#include <net/if_types.h>
64#include <net/if_var.h>
65#include <net/if_dl.h>
66#include <net/route.h>
67#include <net/netisr.h>
68#include <net/intrq.h>
69
70#include <netinet/in.h>
71#include <netinet/in_systm.h>
72#include <netinet/in_var.h>
73#include <netinet/ip.h>
74#include <netinet/in_pcb.h>
75#include <netinet/ip_var.h>
76#include <netinet/ip_icmp.h>
77#include <machine/in_cksum.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82#include <netinet/ip_dummynet.h>
83
84#ifdef IPSEC
85#include <netinet6/ipsec.h>
86#include <netkey/key.h>
87#endif
88
89#ifdef FAST_IPSEC
90#include <netipsec/ipsec.h>
91#include <netipsec/key.h>
92#endif
93
94int rsvp_on = 0;
95
96int	ipforwarding = 0;
97SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
98    &ipforwarding, 0, "Enable IP forwarding between interfaces");
99
100static int	ipsendredirects = 1; /* XXX */
101SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
102    &ipsendredirects, 0, "Enable sending IP redirects");
103
104int	ip_defttl = IPDEFTTL;
105SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106    &ip_defttl, 0, "Maximum TTL on IP packets");
107
108static int	ip_dosourceroute = 0;
109SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
110    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
111
112static int	ip_acceptsourceroute = 0;
113SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
114    CTLFLAG_RW, &ip_acceptsourceroute, 0,
115    "Enable accepting source routed IP packets");
116
117static int	ip_keepfaith = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
119	&ip_keepfaith,	0,
120	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
121
122static int    nipq = 0;         /* total # of reass queues */
123static int    maxnipq;
124SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
125	&maxnipq, 0,
126	"Maximum number of IPv4 fragment reassembly queue entries");
127
128static int	ip_sendsourcequench = 0;
129SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
130	&ip_sendsourcequench, 0,
131	"Enable the transmission of source quench packets");
132
133/*
134 * XXX - Setting ip_checkinterface mostly implements the receive side of
135 * the Strong ES model described in RFC 1122, but since the routing table
136 * and transmit implementation do not implement the Strong ES model,
137 * setting this to 1 results in an odd hybrid.
138 *
139 * XXX - ip_checkinterface currently must be disabled if you use ipnat
140 * to translate the destination address to another local interface.
141 *
142 * XXX - ip_checkinterface must be disabled if you add IP aliases
143 * to the loopback interface instead of the interface where the
144 * packets for those addresses are received.
145 */
146static int	ip_checkinterface = 1;
147SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
148    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
149
150#ifdef DIAGNOSTIC
151static int	ipprintfs = 0;
152#endif
153
154static int	ipqmaxlen = IFQ_MAXLEN;
155
156extern	struct domain inetdomain;
157extern	struct protosw inetsw[];
158u_char	ip_protox[IPPROTO_MAX];
159struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
160struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
161u_long 	in_ifaddrhmask;				/* mask for hash table */
162
163SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
164    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
165SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
166    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
167
168struct ipstat ipstat;
169SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
170    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
171
172/* Packet reassembly stuff */
173#define IPREASS_NHASH_LOG2      6
174#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
175#define IPREASS_HMASK           (IPREASS_NHASH - 1)
176#define IPREASS_HASH(x,y) \
177	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
178
179static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
180
181#ifdef IPCTL_DEFMTU
182SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
183    &ip_mtu, 0, "Default MTU");
184#endif
185
186#ifdef IPSTEALTH
187static int	ipstealth = 0;
188SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
189    &ipstealth, 0, "");
190#endif
191
192
193/* Firewall hooks */
194ip_fw_chk_t *ip_fw_chk_ptr;
195int fw_enable = 1 ;
196int fw_one_pass = 1;
197
198/* Dummynet hooks */
199ip_dn_io_t *ip_dn_io_ptr;
200
201
202/*
203 * XXX this is ugly -- the following two global variables are
204 * used to store packet state while it travels through the stack.
205 * Note that the code even makes assumptions on the size and
206 * alignment of fields inside struct ip_srcrt so e.g. adding some
207 * fields will break the code. This needs to be fixed.
208 *
209 * We need to save the IP options in case a protocol wants to respond
210 * to an incoming packet over the same route if the packet got here
211 * using IP source routing.  This allows connection establishment and
212 * maintenance when the remote end is on a network that is not known
213 * to us.
214 */
215static int	ip_nhops = 0;
216static	struct ip_srcrt {
217	struct	in_addr dst;			/* final destination */
218	char	nop;				/* one NOP to align */
219	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
220	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
221} ip_srcrt;
222
223static void	save_rte(u_char *, struct in_addr);
224static int	ip_dooptions(struct mbuf *m, int,
225			struct sockaddr_in *next_hop);
226static void	ip_forward(struct mbuf *m, int srcrt,
227			struct sockaddr_in *next_hop);
228static void	ip_freef(struct ipqhead *, struct ipq *);
229static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
230		struct ipq *, u_int32_t *, u_int16_t *);
231static void	ipintr(void);
232
233/*
234 * IP initialization: fill in IP protocol switch table.
235 * All protocols not implemented in kernel go to raw IP protocol handler.
236 */
237void
238ip_init()
239{
240	register struct protosw *pr;
241	register int i;
242
243	TAILQ_INIT(&in_ifaddrhead);
244	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
245	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
246	if (pr == 0)
247		panic("ip_init");
248	for (i = 0; i < IPPROTO_MAX; i++)
249		ip_protox[i] = pr - inetsw;
250	for (pr = inetdomain.dom_protosw;
251	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
252		if (pr->pr_domain->dom_family == PF_INET &&
253		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
254			ip_protox[pr->pr_protocol] = pr - inetsw;
255
256	for (i = 0; i < IPREASS_NHASH; i++)
257	    TAILQ_INIT(&ipq[i]);
258
259	maxnipq = nmbclusters / 4;
260
261#ifndef RANDOM_IP_ID
262	ip_id = time_second & 0xffff;
263#endif
264	ipintrq.ifq_maxlen = ipqmaxlen;
265	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
266	ipintrq_present = 1;
267
268	register_netisr(NETISR_IP, ipintr);
269}
270
271/*
272 * XXX watch out this one. It is perhaps used as a cache for
273 * the most recently used route ? it is cleared in in_addroute()
274 * when a new route is successfully created.
275 */
276struct	route ipforward_rt;
277
278/*
279 * Ip input routine.  Checksum and byte swap header.  If fragmented
280 * try to reassemble.  Process options.  Pass to next level.
281 */
282void
283ip_input(struct mbuf *m)
284{
285	struct ip *ip;
286	struct ipq *fp;
287	struct in_ifaddr *ia = NULL;
288	struct ifaddr *ifa;
289	int    i, hlen, checkif;
290	u_short sum;
291	struct in_addr pkt_dst;
292	u_int32_t divert_info = 0;		/* packet divert/tee info */
293	struct ip_fw_args args;
294#ifdef PFIL_HOOKS
295	struct packet_filter_hook *pfh;
296	struct mbuf *m0;
297	int rv;
298#endif /* PFIL_HOOKS */
299#ifdef FAST_IPSEC
300	struct m_tag *mtag;
301	struct tdb_ident *tdbi;
302	struct secpolicy *sp;
303	int s, error;
304#endif /* FAST_IPSEC */
305
306	args.eh = NULL;
307	args.oif = NULL;
308	args.rule = NULL;
309	args.divert_rule = 0;			/* divert cookie */
310	args.next_hop = NULL;
311
312	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
313	for (; m && m->m_type == MT_TAG; m = m->m_next) {
314		switch(m->_m_tag_id) {
315		default:
316			printf("ip_input: unrecognised MT_TAG tag %d\n",
317			    m->_m_tag_id);
318			break;
319
320		case PACKET_TAG_DUMMYNET:
321			args.rule = ((struct dn_pkt *)m)->rule;
322			break;
323
324		case PACKET_TAG_DIVERT:
325			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
326			break;
327
328		case PACKET_TAG_IPFORWARD:
329			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
330			break;
331		}
332	}
333
334	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
335	    ("ip_input: no HDR"));
336
337	if (args.rule) {	/* dummynet already filtered us */
338		ip = mtod(m, struct ip *);
339		hlen = ip->ip_hl << 2;
340		goto iphack ;
341	}
342
343	ipstat.ips_total++;
344
345	if (m->m_pkthdr.len < sizeof(struct ip))
346		goto tooshort;
347
348	if (m->m_len < sizeof (struct ip) &&
349	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
350		ipstat.ips_toosmall++;
351		return;
352	}
353	ip = mtod(m, struct ip *);
354
355	if (ip->ip_v != IPVERSION) {
356		ipstat.ips_badvers++;
357		goto bad;
358	}
359
360	hlen = ip->ip_hl << 2;
361	if (hlen < sizeof(struct ip)) {	/* minimum header length */
362		ipstat.ips_badhlen++;
363		goto bad;
364	}
365	if (hlen > m->m_len) {
366		if ((m = m_pullup(m, hlen)) == 0) {
367			ipstat.ips_badhlen++;
368			return;
369		}
370		ip = mtod(m, struct ip *);
371	}
372
373	/* 127/8 must not appear on wire - RFC1122 */
374	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
375	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
376		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
377			ipstat.ips_badaddr++;
378			goto bad;
379		}
380	}
381
382	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
383		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
384	} else {
385		if (hlen == sizeof(struct ip)) {
386			sum = in_cksum_hdr(ip);
387		} else {
388			sum = in_cksum(m, hlen);
389		}
390	}
391	if (sum) {
392		ipstat.ips_badsum++;
393		goto bad;
394	}
395
396	/*
397	 * Convert fields to host representation.
398	 */
399	ip->ip_len = ntohs(ip->ip_len);
400	if (ip->ip_len < hlen) {
401		ipstat.ips_badlen++;
402		goto bad;
403	}
404	ip->ip_off = ntohs(ip->ip_off);
405
406	/*
407	 * Check that the amount of data in the buffers
408	 * is as at least much as the IP header would have us expect.
409	 * Trim mbufs if longer than we expect.
410	 * Drop packet if shorter than we expect.
411	 */
412	if (m->m_pkthdr.len < ip->ip_len) {
413tooshort:
414		ipstat.ips_tooshort++;
415		goto bad;
416	}
417	if (m->m_pkthdr.len > ip->ip_len) {
418		if (m->m_len == m->m_pkthdr.len) {
419			m->m_len = ip->ip_len;
420			m->m_pkthdr.len = ip->ip_len;
421		} else
422			m_adj(m, ip->ip_len - m->m_pkthdr.len);
423	}
424
425	/*
426	 * IpHack's section.
427	 * Right now when no processing on packet has done
428	 * and it is still fresh out of network we do our black
429	 * deals with it.
430	 * - Firewall: deny/allow/divert
431	 * - Xlate: translate packet's addr/port (NAT).
432	 * - Pipe: pass pkt through dummynet.
433	 * - Wrap: fake packet's addr/port <unimpl.>
434	 * - Encapsulate: put it in another IP and send out. <unimp.>
435 	 */
436
437iphack:
438
439#ifdef PFIL_HOOKS
440	/*
441	 * Run through list of hooks for input packets.  If there are any
442	 * filters which require that additional packets in the flow are
443	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
444	 * Note that filters must _never_ set this flag, as another filter
445	 * in the list may have previously cleared it.
446	 */
447	m0 = m;
448	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
449	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
450		if (pfh->pfil_func) {
451			rv = pfh->pfil_func(ip, hlen,
452					    m->m_pkthdr.rcvif, 0, &m0);
453			if (rv)
454				return;
455			m = m0;
456			if (m == NULL)
457				return;
458			ip = mtod(m, struct ip *);
459		}
460#endif /* PFIL_HOOKS */
461
462	if (fw_enable && IPFW_LOADED) {
463		/*
464		 * If we've been forwarded from the output side, then
465		 * skip the firewall a second time
466		 */
467		if (args.next_hop)
468			goto ours;
469
470		args.m = m;
471		i = ip_fw_chk_ptr(&args);
472		m = args.m;
473
474		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
475			if (m)
476				m_freem(m);
477			return;
478		}
479		ip = mtod(m, struct ip *); /* just in case m changed */
480		if (i == 0 && args.next_hop == NULL)	/* common case */
481			goto pass;
482                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
483			/* Send packet to the appropriate pipe */
484			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
485			return;
486		}
487#ifdef IPDIVERT
488		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
489			/* Divert or tee packet */
490			divert_info = i;
491			goto ours;
492		}
493#endif
494		if (i == 0 && args.next_hop != NULL)
495			goto pass;
496		/*
497		 * if we get here, the packet must be dropped
498		 */
499		m_freem(m);
500		return;
501	}
502pass:
503
504	/*
505	 * Process options and, if not destined for us,
506	 * ship it on.  ip_dooptions returns 1 when an
507	 * error was detected (causing an icmp message
508	 * to be sent and the original packet to be freed).
509	 */
510	ip_nhops = 0;		/* for source routed packets */
511	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
512		return;
513
514        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
515         * matter if it is destined to another node, or whether it is
516         * a multicast one, RSVP wants it! and prevents it from being forwarded
517         * anywhere else. Also checks if the rsvp daemon is running before
518	 * grabbing the packet.
519         */
520	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
521		goto ours;
522
523	/*
524	 * Check our list of addresses, to see if the packet is for us.
525	 * If we don't have any addresses, assume any unicast packet
526	 * we receive might be for us (and let the upper layers deal
527	 * with it).
528	 */
529	if (TAILQ_EMPTY(&in_ifaddrhead) &&
530	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
531		goto ours;
532
533	/*
534	 * Cache the destination address of the packet; this may be
535	 * changed by use of 'ipfw fwd'.
536	 */
537	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
538
539	/*
540	 * Enable a consistency check between the destination address
541	 * and the arrival interface for a unicast packet (the RFC 1122
542	 * strong ES model) if IP forwarding is disabled and the packet
543	 * is not locally generated and the packet is not subject to
544	 * 'ipfw fwd'.
545	 *
546	 * XXX - Checking also should be disabled if the destination
547	 * address is ipnat'ed to a different interface.
548	 *
549	 * XXX - Checking is incompatible with IP aliases added
550	 * to the loopback interface instead of the interface where
551	 * the packets are received.
552	 */
553	checkif = ip_checkinterface && (ipforwarding == 0) &&
554	    m->m_pkthdr.rcvif != NULL &&
555	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
556	    (args.next_hop == NULL);
557
558	/*
559	 * Check for exact addresses in the hash bucket.
560	 */
561	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
562		/*
563		 * If the address matches, verify that the packet
564		 * arrived via the correct interface if checking is
565		 * enabled.
566		 */
567		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
568		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
569			goto ours;
570	}
571	/*
572	 * Check for broadcast addresses.
573	 *
574	 * Only accept broadcast packets that arrive via the matching
575	 * interface.  Reception of forwarded directed broadcasts would
576	 * be handled via ip_forward() and ether_output() with the loopback
577	 * into the stack for SIMPLEX interfaces handled by ether_output().
578	 */
579	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
580	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
581			if (ifa->ifa_addr->sa_family != AF_INET)
582				continue;
583			ia = ifatoia(ifa);
584			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
585			    pkt_dst.s_addr)
586				goto ours;
587			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
588				goto ours;
589#ifdef BOOTP_COMPAT
590			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
591				goto ours;
592#endif
593		}
594	}
595	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
596		struct in_multi *inm;
597		if (ip_mrouter) {
598			/*
599			 * If we are acting as a multicast router, all
600			 * incoming multicast packets are passed to the
601			 * kernel-level multicast forwarding function.
602			 * The packet is returned (relatively) intact; if
603			 * ip_mforward() returns a non-zero value, the packet
604			 * must be discarded, else it may be accepted below.
605			 */
606			if (ip_mforward &&
607			    ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
608				ipstat.ips_cantforward++;
609				m_freem(m);
610				return;
611			}
612
613			/*
614			 * The process-level routing daemon needs to receive
615			 * all multicast IGMP packets, whether or not this
616			 * host belongs to their destination groups.
617			 */
618			if (ip->ip_p == IPPROTO_IGMP)
619				goto ours;
620			ipstat.ips_forward++;
621		}
622		/*
623		 * See if we belong to the destination multicast group on the
624		 * arrival interface.
625		 */
626		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
627		if (inm == NULL) {
628			ipstat.ips_notmember++;
629			m_freem(m);
630			return;
631		}
632		goto ours;
633	}
634	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
635		goto ours;
636	if (ip->ip_dst.s_addr == INADDR_ANY)
637		goto ours;
638
639	/*
640	 * FAITH(Firewall Aided Internet Translator)
641	 */
642	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
643		if (ip_keepfaith) {
644			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
645				goto ours;
646		}
647		m_freem(m);
648		return;
649	}
650
651	/*
652	 * Not for us; forward if possible and desirable.
653	 */
654	if (ipforwarding == 0) {
655		ipstat.ips_cantforward++;
656		m_freem(m);
657	} else {
658#ifdef IPSEC
659		/*
660		 * Enforce inbound IPsec SPD.
661		 */
662		if (ipsec4_in_reject(m, NULL)) {
663			ipsecstat.in_polvio++;
664			goto bad;
665		}
666#endif /* IPSEC */
667#ifdef FAST_IPSEC
668		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
669		s = splnet();
670		if (mtag != NULL) {
671			tdbi = (struct tdb_ident *)(mtag + 1);
672			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
673		} else {
674			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
675						   IP_FORWARDING, &error);
676		}
677		if (sp == NULL) {	/* NB: can happen if error */
678			splx(s);
679			/*XXX error stat???*/
680			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
681			goto bad;
682		}
683
684		/*
685		 * Check security policy against packet attributes.
686		 */
687		error = ipsec_in_reject(sp, m);
688		KEY_FREESP(&sp);
689		splx(s);
690		if (error) {
691			ipstat.ips_cantforward++;
692			goto bad;
693		}
694#endif /* FAST_IPSEC */
695		ip_forward(m, 0, args.next_hop);
696	}
697	return;
698
699ours:
700#ifdef IPSTEALTH
701	/*
702	 * IPSTEALTH: Process non-routing options only
703	 * if the packet is destined for us.
704	 */
705	if (ipstealth && hlen > sizeof (struct ip) &&
706	    ip_dooptions(m, 1, args.next_hop))
707		return;
708#endif /* IPSTEALTH */
709
710	/* Count the packet in the ip address stats */
711	if (ia != NULL) {
712		ia->ia_ifa.if_ipackets++;
713		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
714	}
715
716	/*
717	 * If offset or IP_MF are set, must reassemble.
718	 * Otherwise, nothing need be done.
719	 * (We could look in the reassembly queue to see
720	 * if the packet was previously fragmented,
721	 * but it's not worth the time; just let them time out.)
722	 */
723	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
724
725		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
726		/*
727		 * Look for queue of fragments
728		 * of this datagram.
729		 */
730		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
731			if (ip->ip_id == fp->ipq_id &&
732			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
733			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
734#ifdef MAC
735			    mac_fragment_match(m, fp) &&
736#endif
737			    ip->ip_p == fp->ipq_p)
738				goto found;
739
740		fp = 0;
741
742		/* check if there's a place for the new queue */
743		if (nipq > maxnipq) {
744		    /*
745		     * drop something from the tail of the current queue
746		     * before proceeding further
747		     */
748		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
749		    if (q == NULL) {   /* gak */
750			for (i = 0; i < IPREASS_NHASH; i++) {
751			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
752			    if (r) {
753				ip_freef(&ipq[i], r);
754				break;
755			    }
756			}
757		    } else
758			ip_freef(&ipq[sum], q);
759		}
760found:
761		/*
762		 * Adjust ip_len to not reflect header,
763		 * convert offset of this to bytes.
764		 */
765		ip->ip_len -= hlen;
766		if (ip->ip_off & IP_MF) {
767		        /*
768		         * Make sure that fragments have a data length
769			 * that's a non-zero multiple of 8 bytes.
770		         */
771			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
772				ipstat.ips_toosmall++; /* XXX */
773				goto bad;
774			}
775			m->m_flags |= M_FRAG;
776		} else
777			m->m_flags &= ~M_FRAG;
778		ip->ip_off <<= 3;
779
780		/*
781		 * Attempt reassembly; if it succeeds, proceed.
782		 * ip_reass() will return a different mbuf, and update
783		 * the divert info in divert_info and args.divert_rule.
784		 */
785		ipstat.ips_fragments++;
786		m->m_pkthdr.header = ip;
787		m = ip_reass(m,
788		    &ipq[sum], fp, &divert_info, &args.divert_rule);
789		if (m == 0)
790			return;
791		ipstat.ips_reassembled++;
792		ip = mtod(m, struct ip *);
793		/* Get the header length of the reassembled packet */
794		hlen = ip->ip_hl << 2;
795#ifdef IPDIVERT
796		/* Restore original checksum before diverting packet */
797		if (divert_info != 0) {
798			ip->ip_len += hlen;
799			ip->ip_len = htons(ip->ip_len);
800			ip->ip_off = htons(ip->ip_off);
801			ip->ip_sum = 0;
802			if (hlen == sizeof(struct ip))
803				ip->ip_sum = in_cksum_hdr(ip);
804			else
805				ip->ip_sum = in_cksum(m, hlen);
806			ip->ip_off = ntohs(ip->ip_off);
807			ip->ip_len = ntohs(ip->ip_len);
808			ip->ip_len -= hlen;
809		}
810#endif
811	} else
812		ip->ip_len -= hlen;
813
814#ifdef IPDIVERT
815	/*
816	 * Divert or tee packet to the divert protocol if required.
817	 */
818	if (divert_info != 0) {
819		struct mbuf *clone = NULL;
820
821		/* Clone packet if we're doing a 'tee' */
822		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
823			clone = m_dup(m, M_NOWAIT);
824
825		/* Restore packet header fields to original values */
826		ip->ip_len += hlen;
827		ip->ip_len = htons(ip->ip_len);
828		ip->ip_off = htons(ip->ip_off);
829
830		/* Deliver packet to divert input routine */
831		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
832		ipstat.ips_delivered++;
833
834		/* If 'tee', continue with original packet */
835		if (clone == NULL)
836			return;
837		m = clone;
838		ip = mtod(m, struct ip *);
839		ip->ip_len += hlen;
840		/*
841		 * Jump backwards to complete processing of the
842		 * packet. But first clear divert_info to avoid
843		 * entering this block again.
844		 * We do not need to clear args.divert_rule
845		 * or args.next_hop as they will not be used.
846		 */
847		divert_info = 0;
848		goto pass;
849	}
850#endif
851
852#ifdef IPSEC
853	/*
854	 * enforce IPsec policy checking if we are seeing last header.
855	 * note that we do not visit this with protocols with pcb layer
856	 * code - like udp/tcp/raw ip.
857	 */
858	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
859	    ipsec4_in_reject(m, NULL)) {
860		ipsecstat.in_polvio++;
861		goto bad;
862	}
863#endif
864#if FAST_IPSEC
865	/*
866	 * enforce IPsec policy checking if we are seeing last header.
867	 * note that we do not visit this with protocols with pcb layer
868	 * code - like udp/tcp/raw ip.
869	 */
870	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
871		/*
872		 * Check if the packet has already had IPsec processing
873		 * done.  If so, then just pass it along.  This tag gets
874		 * set during AH, ESP, etc. input handling, before the
875		 * packet is returned to the ip input queue for delivery.
876		 */
877		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
878		s = splnet();
879		if (mtag != NULL) {
880			tdbi = (struct tdb_ident *)(mtag + 1);
881			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
882		} else {
883			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
884						   IP_FORWARDING, &error);
885		}
886		if (sp != NULL) {
887			/*
888			 * Check security policy against packet attributes.
889			 */
890			error = ipsec_in_reject(sp, m);
891			KEY_FREESP(&sp);
892		} else {
893			/* XXX error stat??? */
894			error = EINVAL;
895DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
896			goto bad;
897		}
898		splx(s);
899		if (error)
900			goto bad;
901	}
902#endif /* FAST_IPSEC */
903
904	/*
905	 * Switch out to protocol's input routine.
906	 */
907	ipstat.ips_delivered++;
908	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
909		/* TCP needs IPFORWARD info if available */
910		struct m_hdr tag;
911
912		tag.mh_type = MT_TAG;
913		tag.mh_flags = PACKET_TAG_IPFORWARD;
914		tag.mh_data = (caddr_t)args.next_hop;
915		tag.mh_next = m;
916
917		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
918			(struct mbuf *)&tag, hlen);
919	} else
920		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
921	return;
922bad:
923	m_freem(m);
924}
925
926/*
927 * IP software interrupt routine - to go away sometime soon
928 */
929static void
930ipintr(void)
931{
932	struct mbuf *m;
933
934	while (1) {
935		IF_DEQUEUE(&ipintrq, m);
936		if (m == 0)
937			return;
938		ip_input(m);
939	}
940}
941
942/*
943 * Take incoming datagram fragment and try to reassemble it into
944 * whole datagram.  If a chain for reassembly of this datagram already
945 * exists, then it is given as fp; otherwise have to make a chain.
946 *
947 * When IPDIVERT enabled, keep additional state with each packet that
948 * tells us if we need to divert or tee the packet we're building.
949 * In particular, *divinfo includes the port and TEE flag,
950 * *divert_rule is the number of the matching rule.
951 */
952
953static struct mbuf *
954ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
955	u_int32_t *divinfo, u_int16_t *divert_rule)
956{
957	struct ip *ip = mtod(m, struct ip *);
958	register struct mbuf *p, *q, *nq;
959	struct mbuf *t;
960	int hlen = ip->ip_hl << 2;
961	int i, next;
962
963	/*
964	 * Presence of header sizes in mbufs
965	 * would confuse code below.
966	 */
967	m->m_data += hlen;
968	m->m_len -= hlen;
969
970	/*
971	 * If first fragment to arrive, create a reassembly queue.
972	 */
973	if (fp == 0) {
974		/*
975		 * Enforce upper bound on number of fragmented packets
976		 * for which we attempt reassembly;
977		 * If maxfrag is 0, never accept fragments.
978		 * If maxfrag is -1, accept all fragments without limitation.
979		 */
980		if ((t = m_get(M_NOWAIT, MT_FTABLE)) == NULL)
981			goto dropfrag;
982		fp = mtod(t, struct ipq *);
983#ifdef MAC
984		mac_init_ipq(fp);
985		mac_create_ipq(m, fp);
986#endif
987		TAILQ_INSERT_HEAD(head, fp, ipq_list);
988		nipq++;
989		fp->ipq_ttl = IPFRAGTTL;
990		fp->ipq_p = ip->ip_p;
991		fp->ipq_id = ip->ip_id;
992		fp->ipq_src = ip->ip_src;
993		fp->ipq_dst = ip->ip_dst;
994		fp->ipq_frags = m;
995		m->m_nextpkt = NULL;
996#ifdef IPDIVERT
997		fp->ipq_div_info = 0;
998		fp->ipq_div_cookie = 0;
999#endif
1000		goto inserted;
1001	} else {
1002#ifdef MAC
1003		mac_update_ipq(m, fp);
1004#endif
1005	}
1006
1007#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1008
1009	/*
1010	 * Find a segment which begins after this one does.
1011	 */
1012	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1013		if (GETIP(q)->ip_off > ip->ip_off)
1014			break;
1015
1016	/*
1017	 * If there is a preceding segment, it may provide some of
1018	 * our data already.  If so, drop the data from the incoming
1019	 * segment.  If it provides all of our data, drop us, otherwise
1020	 * stick new segment in the proper place.
1021	 *
1022	 * If some of the data is dropped from the the preceding
1023	 * segment, then it's checksum is invalidated.
1024	 */
1025	if (p) {
1026		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1027		if (i > 0) {
1028			if (i >= ip->ip_len)
1029				goto dropfrag;
1030			m_adj(m, i);
1031			m->m_pkthdr.csum_flags = 0;
1032			ip->ip_off += i;
1033			ip->ip_len -= i;
1034		}
1035		m->m_nextpkt = p->m_nextpkt;
1036		p->m_nextpkt = m;
1037	} else {
1038		m->m_nextpkt = fp->ipq_frags;
1039		fp->ipq_frags = m;
1040	}
1041
1042	/*
1043	 * While we overlap succeeding segments trim them or,
1044	 * if they are completely covered, dequeue them.
1045	 */
1046	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1047	     q = nq) {
1048		i = (ip->ip_off + ip->ip_len) -
1049		    GETIP(q)->ip_off;
1050		if (i < GETIP(q)->ip_len) {
1051			GETIP(q)->ip_len -= i;
1052			GETIP(q)->ip_off += i;
1053			m_adj(q, i);
1054			q->m_pkthdr.csum_flags = 0;
1055			break;
1056		}
1057		nq = q->m_nextpkt;
1058		m->m_nextpkt = nq;
1059		m_freem(q);
1060	}
1061
1062inserted:
1063
1064#ifdef IPDIVERT
1065	/*
1066	 * Transfer firewall instructions to the fragment structure.
1067	 * Only trust info in the fragment at offset 0.
1068	 */
1069	if (ip->ip_off == 0) {
1070		fp->ipq_div_info = *divinfo;
1071		fp->ipq_div_cookie = *divert_rule;
1072	}
1073	*divinfo = 0;
1074	*divert_rule = 0;
1075#endif
1076
1077	/*
1078	 * Check for complete reassembly.
1079	 */
1080	next = 0;
1081	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1082		if (GETIP(q)->ip_off != next)
1083			return (0);
1084		next += GETIP(q)->ip_len;
1085	}
1086	/* Make sure the last packet didn't have the IP_MF flag */
1087	if (p->m_flags & M_FRAG)
1088		return (0);
1089
1090	/*
1091	 * Reassembly is complete.  Make sure the packet is a sane size.
1092	 */
1093	q = fp->ipq_frags;
1094	ip = GETIP(q);
1095	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1096		ipstat.ips_toolong++;
1097		ip_freef(head, fp);
1098		return (0);
1099	}
1100
1101	/*
1102	 * Concatenate fragments.
1103	 */
1104	m = q;
1105	t = m->m_next;
1106	m->m_next = 0;
1107	m_cat(m, t);
1108	nq = q->m_nextpkt;
1109	q->m_nextpkt = 0;
1110	for (q = nq; q != NULL; q = nq) {
1111		nq = q->m_nextpkt;
1112		q->m_nextpkt = NULL;
1113		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1114		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1115		m_cat(m, q);
1116	}
1117#ifdef MAC
1118	mac_create_datagram_from_ipq(fp, m);
1119	mac_destroy_ipq(fp);
1120#endif
1121
1122#ifdef IPDIVERT
1123	/*
1124	 * Extract firewall instructions from the fragment structure.
1125	 */
1126	*divinfo = fp->ipq_div_info;
1127	*divert_rule = fp->ipq_div_cookie;
1128#endif
1129
1130	/*
1131	 * Create header for new ip packet by
1132	 * modifying header of first packet;
1133	 * dequeue and discard fragment reassembly header.
1134	 * Make header visible.
1135	 */
1136	ip->ip_len = next;
1137	ip->ip_src = fp->ipq_src;
1138	ip->ip_dst = fp->ipq_dst;
1139	TAILQ_REMOVE(head, fp, ipq_list);
1140	nipq--;
1141	(void) m_free(dtom(fp));
1142	m->m_len += (ip->ip_hl << 2);
1143	m->m_data -= (ip->ip_hl << 2);
1144	/* some debugging cruft by sklower, below, will go away soon */
1145	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1146		m_fixhdr(m);
1147	return (m);
1148
1149dropfrag:
1150#ifdef IPDIVERT
1151	*divinfo = 0;
1152	*divert_rule = 0;
1153#endif
1154	ipstat.ips_fragdropped++;
1155	m_freem(m);
1156	return (0);
1157
1158#undef GETIP
1159}
1160
1161/*
1162 * Free a fragment reassembly header and all
1163 * associated datagrams.
1164 */
1165static void
1166ip_freef(fhp, fp)
1167	struct ipqhead *fhp;
1168	struct ipq *fp;
1169{
1170	register struct mbuf *q;
1171
1172	while (fp->ipq_frags) {
1173		q = fp->ipq_frags;
1174		fp->ipq_frags = q->m_nextpkt;
1175		m_freem(q);
1176	}
1177	TAILQ_REMOVE(fhp, fp, ipq_list);
1178	(void) m_free(dtom(fp));
1179	nipq--;
1180}
1181
1182/*
1183 * IP timer processing;
1184 * if a timer expires on a reassembly
1185 * queue, discard it.
1186 */
1187void
1188ip_slowtimo()
1189{
1190	register struct ipq *fp;
1191	int s = splnet();
1192	int i;
1193
1194	for (i = 0; i < IPREASS_NHASH; i++) {
1195		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1196			struct ipq *fpp;
1197
1198			fpp = fp;
1199			fp = TAILQ_NEXT(fp, ipq_list);
1200			if(--fpp->ipq_ttl == 0) {
1201				ipstat.ips_fragtimeout++;
1202				ip_freef(&ipq[i], fpp);
1203			}
1204		}
1205	}
1206	/*
1207	 * If we are over the maximum number of fragments
1208	 * (due to the limit being lowered), drain off
1209	 * enough to get down to the new limit.
1210	 */
1211	for (i = 0; i < IPREASS_NHASH; i++) {
1212		if (maxnipq >= 0) {
1213			while (nipq > maxnipq &&
1214				!TAILQ_EMPTY(&ipq[i])) {
1215				ipstat.ips_fragdropped++;
1216				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1217			}
1218		}
1219	}
1220	ipflow_slowtimo();
1221	splx(s);
1222}
1223
1224/*
1225 * Drain off all datagram fragments.
1226 */
1227void
1228ip_drain()
1229{
1230	int     i;
1231
1232	for (i = 0; i < IPREASS_NHASH; i++) {
1233		while(!TAILQ_EMPTY(&ipq[i])) {
1234			ipstat.ips_fragdropped++;
1235			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1236		}
1237	}
1238	in_rtqdrain();
1239}
1240
1241/*
1242 * Do option processing on a datagram,
1243 * possibly discarding it if bad options are encountered,
1244 * or forwarding it if source-routed.
1245 * The pass argument is used when operating in the IPSTEALTH
1246 * mode to tell what options to process:
1247 * [LS]SRR (pass 0) or the others (pass 1).
1248 * The reason for as many as two passes is that when doing IPSTEALTH,
1249 * non-routing options should be processed only if the packet is for us.
1250 * Returns 1 if packet has been forwarded/freed,
1251 * 0 if the packet should be processed further.
1252 */
1253static int
1254ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1255{
1256	struct ip *ip = mtod(m, struct ip *);
1257	u_char *cp;
1258	struct in_ifaddr *ia;
1259	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1260	struct in_addr *sin, dst;
1261	n_time ntime;
1262	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1263
1264	dst = ip->ip_dst;
1265	cp = (u_char *)(ip + 1);
1266	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1267	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1268		opt = cp[IPOPT_OPTVAL];
1269		if (opt == IPOPT_EOL)
1270			break;
1271		if (opt == IPOPT_NOP)
1272			optlen = 1;
1273		else {
1274			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1275				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1276				goto bad;
1277			}
1278			optlen = cp[IPOPT_OLEN];
1279			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1280				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1281				goto bad;
1282			}
1283		}
1284		switch (opt) {
1285
1286		default:
1287			break;
1288
1289		/*
1290		 * Source routing with record.
1291		 * Find interface with current destination address.
1292		 * If none on this machine then drop if strictly routed,
1293		 * or do nothing if loosely routed.
1294		 * Record interface address and bring up next address
1295		 * component.  If strictly routed make sure next
1296		 * address is on directly accessible net.
1297		 */
1298		case IPOPT_LSRR:
1299		case IPOPT_SSRR:
1300#ifdef IPSTEALTH
1301			if (ipstealth && pass > 0)
1302				break;
1303#endif
1304			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1305				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1306				goto bad;
1307			}
1308			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1309				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1310				goto bad;
1311			}
1312			ipaddr.sin_addr = ip->ip_dst;
1313			ia = (struct in_ifaddr *)
1314				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1315			if (ia == 0) {
1316				if (opt == IPOPT_SSRR) {
1317					type = ICMP_UNREACH;
1318					code = ICMP_UNREACH_SRCFAIL;
1319					goto bad;
1320				}
1321				if (!ip_dosourceroute)
1322					goto nosourcerouting;
1323				/*
1324				 * Loose routing, and not at next destination
1325				 * yet; nothing to do except forward.
1326				 */
1327				break;
1328			}
1329			off--;			/* 0 origin */
1330			if (off > optlen - (int)sizeof(struct in_addr)) {
1331				/*
1332				 * End of source route.  Should be for us.
1333				 */
1334				if (!ip_acceptsourceroute)
1335					goto nosourcerouting;
1336				save_rte(cp, ip->ip_src);
1337				break;
1338			}
1339#ifdef IPSTEALTH
1340			if (ipstealth)
1341				goto dropit;
1342#endif
1343			if (!ip_dosourceroute) {
1344				if (ipforwarding) {
1345					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1346					/*
1347					 * Acting as a router, so generate ICMP
1348					 */
1349nosourcerouting:
1350					strcpy(buf, inet_ntoa(ip->ip_dst));
1351					log(LOG_WARNING,
1352					    "attempted source route from %s to %s\n",
1353					    inet_ntoa(ip->ip_src), buf);
1354					type = ICMP_UNREACH;
1355					code = ICMP_UNREACH_SRCFAIL;
1356					goto bad;
1357				} else {
1358					/*
1359					 * Not acting as a router, so silently drop.
1360					 */
1361#ifdef IPSTEALTH
1362dropit:
1363#endif
1364					ipstat.ips_cantforward++;
1365					m_freem(m);
1366					return (1);
1367				}
1368			}
1369
1370			/*
1371			 * locate outgoing interface
1372			 */
1373			(void)memcpy(&ipaddr.sin_addr, cp + off,
1374			    sizeof(ipaddr.sin_addr));
1375
1376			if (opt == IPOPT_SSRR) {
1377#define	INA	struct in_ifaddr *
1378#define	SA	struct sockaddr *
1379			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1380				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1381			} else
1382				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1383			if (ia == 0) {
1384				type = ICMP_UNREACH;
1385				code = ICMP_UNREACH_SRCFAIL;
1386				goto bad;
1387			}
1388			ip->ip_dst = ipaddr.sin_addr;
1389			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1390			    sizeof(struct in_addr));
1391			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1392			/*
1393			 * Let ip_intr's mcast routing check handle mcast pkts
1394			 */
1395			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1396			break;
1397
1398		case IPOPT_RR:
1399#ifdef IPSTEALTH
1400			if (ipstealth && pass == 0)
1401				break;
1402#endif
1403			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1404				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1405				goto bad;
1406			}
1407			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1408				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1409				goto bad;
1410			}
1411			/*
1412			 * If no space remains, ignore.
1413			 */
1414			off--;			/* 0 origin */
1415			if (off > optlen - (int)sizeof(struct in_addr))
1416				break;
1417			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1418			    sizeof(ipaddr.sin_addr));
1419			/*
1420			 * locate outgoing interface; if we're the destination,
1421			 * use the incoming interface (should be same).
1422			 */
1423			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1424			    (ia = ip_rtaddr(ipaddr.sin_addr,
1425			    &ipforward_rt)) == 0) {
1426				type = ICMP_UNREACH;
1427				code = ICMP_UNREACH_HOST;
1428				goto bad;
1429			}
1430			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1431			    sizeof(struct in_addr));
1432			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1433			break;
1434
1435		case IPOPT_TS:
1436#ifdef IPSTEALTH
1437			if (ipstealth && pass == 0)
1438				break;
1439#endif
1440			code = cp - (u_char *)ip;
1441			if (optlen < 4 || optlen > 40) {
1442				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1443				goto bad;
1444			}
1445			if ((off = cp[IPOPT_OFFSET]) < 5) {
1446				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1447				goto bad;
1448			}
1449			if (off > optlen - (int)sizeof(int32_t)) {
1450				cp[IPOPT_OFFSET + 1] += (1 << 4);
1451				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1452					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1453					goto bad;
1454				}
1455				break;
1456			}
1457			off--;				/* 0 origin */
1458			sin = (struct in_addr *)(cp + off);
1459			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1460
1461			case IPOPT_TS_TSONLY:
1462				break;
1463
1464			case IPOPT_TS_TSANDADDR:
1465				if (off + sizeof(n_time) +
1466				    sizeof(struct in_addr) > optlen) {
1467					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1468					goto bad;
1469				}
1470				ipaddr.sin_addr = dst;
1471				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1472							    m->m_pkthdr.rcvif);
1473				if (ia == 0)
1474					continue;
1475				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1476				    sizeof(struct in_addr));
1477				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1478				off += sizeof(struct in_addr);
1479				break;
1480
1481			case IPOPT_TS_PRESPEC:
1482				if (off + sizeof(n_time) +
1483				    sizeof(struct in_addr) > optlen) {
1484					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1485					goto bad;
1486				}
1487				(void)memcpy(&ipaddr.sin_addr, sin,
1488				    sizeof(struct in_addr));
1489				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1490					continue;
1491				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1492				off += sizeof(struct in_addr);
1493				break;
1494
1495			default:
1496				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1497				goto bad;
1498			}
1499			ntime = iptime();
1500			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1501			cp[IPOPT_OFFSET] += sizeof(n_time);
1502		}
1503	}
1504	if (forward && ipforwarding) {
1505		ip_forward(m, 1, next_hop);
1506		return (1);
1507	}
1508	return (0);
1509bad:
1510	icmp_error(m, type, code, 0, 0);
1511	ipstat.ips_badoptions++;
1512	return (1);
1513}
1514
1515/*
1516 * Given address of next destination (final or next hop),
1517 * return internet address info of interface to be used to get there.
1518 */
1519struct in_ifaddr *
1520ip_rtaddr(dst, rt)
1521	struct in_addr dst;
1522	struct route *rt;
1523{
1524	register struct sockaddr_in *sin;
1525
1526	sin = (struct sockaddr_in *)&rt->ro_dst;
1527
1528	if (rt->ro_rt == 0 ||
1529	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1530	    dst.s_addr != sin->sin_addr.s_addr) {
1531		if (rt->ro_rt) {
1532			RTFREE(rt->ro_rt);
1533			rt->ro_rt = 0;
1534		}
1535		sin->sin_family = AF_INET;
1536		sin->sin_len = sizeof(*sin);
1537		sin->sin_addr = dst;
1538
1539		rtalloc_ign(rt, RTF_PRCLONING);
1540	}
1541	if (rt->ro_rt == 0)
1542		return ((struct in_ifaddr *)0);
1543	return (ifatoia(rt->ro_rt->rt_ifa));
1544}
1545
1546/*
1547 * Save incoming source route for use in replies,
1548 * to be picked up later by ip_srcroute if the receiver is interested.
1549 */
1550static void
1551save_rte(option, dst)
1552	u_char *option;
1553	struct in_addr dst;
1554{
1555	unsigned olen;
1556
1557	olen = option[IPOPT_OLEN];
1558#ifdef DIAGNOSTIC
1559	if (ipprintfs)
1560		printf("save_rte: olen %d\n", olen);
1561#endif
1562	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1563		return;
1564	bcopy(option, ip_srcrt.srcopt, olen);
1565	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1566	ip_srcrt.dst = dst;
1567}
1568
1569/*
1570 * Retrieve incoming source route for use in replies,
1571 * in the same form used by setsockopt.
1572 * The first hop is placed before the options, will be removed later.
1573 */
1574struct mbuf *
1575ip_srcroute()
1576{
1577	register struct in_addr *p, *q;
1578	register struct mbuf *m;
1579
1580	if (ip_nhops == 0)
1581		return ((struct mbuf *)0);
1582	m = m_get(M_NOWAIT, MT_HEADER);
1583	if (m == 0)
1584		return ((struct mbuf *)0);
1585
1586#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1587
1588	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1589	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1590	    OPTSIZ;
1591#ifdef DIAGNOSTIC
1592	if (ipprintfs)
1593		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1594#endif
1595
1596	/*
1597	 * First save first hop for return route
1598	 */
1599	p = &ip_srcrt.route[ip_nhops - 1];
1600	*(mtod(m, struct in_addr *)) = *p--;
1601#ifdef DIAGNOSTIC
1602	if (ipprintfs)
1603		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1604#endif
1605
1606	/*
1607	 * Copy option fields and padding (nop) to mbuf.
1608	 */
1609	ip_srcrt.nop = IPOPT_NOP;
1610	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1611	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1612	    &ip_srcrt.nop, OPTSIZ);
1613	q = (struct in_addr *)(mtod(m, caddr_t) +
1614	    sizeof(struct in_addr) + OPTSIZ);
1615#undef OPTSIZ
1616	/*
1617	 * Record return path as an IP source route,
1618	 * reversing the path (pointers are now aligned).
1619	 */
1620	while (p >= ip_srcrt.route) {
1621#ifdef DIAGNOSTIC
1622		if (ipprintfs)
1623			printf(" %lx", (u_long)ntohl(q->s_addr));
1624#endif
1625		*q++ = *p--;
1626	}
1627	/*
1628	 * Last hop goes to final destination.
1629	 */
1630	*q = ip_srcrt.dst;
1631#ifdef DIAGNOSTIC
1632	if (ipprintfs)
1633		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1634#endif
1635	return (m);
1636}
1637
1638/*
1639 * Strip out IP options, at higher
1640 * level protocol in the kernel.
1641 * Second argument is buffer to which options
1642 * will be moved, and return value is their length.
1643 * XXX should be deleted; last arg currently ignored.
1644 */
1645void
1646ip_stripoptions(m, mopt)
1647	register struct mbuf *m;
1648	struct mbuf *mopt;
1649{
1650	register int i;
1651	struct ip *ip = mtod(m, struct ip *);
1652	register caddr_t opts;
1653	int olen;
1654
1655	olen = (ip->ip_hl << 2) - sizeof (struct ip);
1656	opts = (caddr_t)(ip + 1);
1657	i = m->m_len - (sizeof (struct ip) + olen);
1658	bcopy(opts + olen, opts, (unsigned)i);
1659	m->m_len -= olen;
1660	if (m->m_flags & M_PKTHDR)
1661		m->m_pkthdr.len -= olen;
1662	ip->ip_v = IPVERSION;
1663	ip->ip_hl = sizeof(struct ip) >> 2;
1664}
1665
1666u_char inetctlerrmap[PRC_NCMDS] = {
1667	0,		0,		0,		0,
1668	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1669	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1670	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1671	0,		0,		0,		0,
1672	ENOPROTOOPT,	ECONNREFUSED
1673};
1674
1675/*
1676 * Forward a packet.  If some error occurs return the sender
1677 * an icmp packet.  Note we can't always generate a meaningful
1678 * icmp message because icmp doesn't have a large enough repertoire
1679 * of codes and types.
1680 *
1681 * If not forwarding, just drop the packet.  This could be confusing
1682 * if ipforwarding was zero but some routing protocol was advancing
1683 * us as a gateway to somewhere.  However, we must let the routing
1684 * protocol deal with that.
1685 *
1686 * The srcrt parameter indicates whether the packet is being forwarded
1687 * via a source route.
1688 */
1689static void
1690ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1691{
1692	struct ip *ip = mtod(m, struct ip *);
1693	struct rtentry *rt;
1694	int error, type = 0, code = 0;
1695	struct mbuf *mcopy;
1696	n_long dest;
1697	struct in_addr pkt_dst;
1698	struct ifnet *destifp;
1699#if defined(IPSEC) || defined(FAST_IPSEC)
1700	struct ifnet dummyifp;
1701#endif
1702
1703	dest = 0;
1704	/*
1705	 * Cache the destination address of the packet; this may be
1706	 * changed by use of 'ipfw fwd'.
1707	 */
1708	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1709
1710#ifdef DIAGNOSTIC
1711	if (ipprintfs)
1712		printf("forward: src %lx dst %lx ttl %x\n",
1713		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1714		    ip->ip_ttl);
1715#endif
1716
1717
1718	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1719		ipstat.ips_cantforward++;
1720		m_freem(m);
1721		return;
1722	}
1723#ifdef IPSTEALTH
1724	if (!ipstealth) {
1725#endif
1726		if (ip->ip_ttl <= IPTTLDEC) {
1727			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1728			    dest, 0);
1729			return;
1730		}
1731#ifdef IPSTEALTH
1732	}
1733#endif
1734
1735	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1736		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1737		return;
1738	} else
1739		rt = ipforward_rt.ro_rt;
1740
1741	/*
1742	 * Save the IP header and at most 8 bytes of the payload,
1743	 * in case we need to generate an ICMP message to the src.
1744	 *
1745	 * XXX this can be optimized a lot by saving the data in a local
1746	 * buffer on the stack (72 bytes at most), and only allocating the
1747	 * mbuf if really necessary. The vast majority of the packets
1748	 * are forwarded without having to send an ICMP back (either
1749	 * because unnecessary, or because rate limited), so we are
1750	 * really we are wasting a lot of work here.
1751	 *
1752	 * We don't use m_copy() because it might return a reference
1753	 * to a shared cluster. Both this function and ip_output()
1754	 * assume exclusive access to the IP header in `m', so any
1755	 * data in a cluster may change before we reach icmp_error().
1756	 */
1757	MGET(mcopy, M_NOWAIT, m->m_type);
1758	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1759		/*
1760		 * It's probably ok if the pkthdr dup fails (because
1761		 * the deep copy of the tag chain failed), but for now
1762		 * be conservative and just discard the copy since
1763		 * code below may some day want the tags.
1764		 */
1765		m_free(mcopy);
1766		mcopy = NULL;
1767	}
1768	if (mcopy != NULL) {
1769		mcopy->m_len = imin((ip->ip_hl << 2) + 8,
1770		    (int)ip->ip_len);
1771		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1772#ifdef MAC
1773		/*
1774		 * XXXMAC: This will eventually become an explicit
1775		 * labeling point.
1776		 */
1777		mac_create_mbuf_from_mbuf(m, mcopy);
1778#endif
1779	}
1780
1781#ifdef IPSTEALTH
1782	if (!ipstealth) {
1783#endif
1784		ip->ip_ttl -= IPTTLDEC;
1785#ifdef IPSTEALTH
1786	}
1787#endif
1788
1789	/*
1790	 * If forwarding packet using same interface that it came in on,
1791	 * perhaps should send a redirect to sender to shortcut a hop.
1792	 * Only send redirect if source is sending directly to us,
1793	 * and if packet was not source routed (or has any options).
1794	 * Also, don't send redirect if forwarding using a default route
1795	 * or a route modified by a redirect.
1796	 */
1797	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1798	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1799	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1800	    ipsendredirects && !srcrt && !next_hop) {
1801#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1802		u_long src = ntohl(ip->ip_src.s_addr);
1803
1804		if (RTA(rt) &&
1805		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1806		    if (rt->rt_flags & RTF_GATEWAY)
1807			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1808		    else
1809			dest = pkt_dst.s_addr;
1810		    /* Router requirements says to only send host redirects */
1811		    type = ICMP_REDIRECT;
1812		    code = ICMP_REDIRECT_HOST;
1813#ifdef DIAGNOSTIC
1814		    if (ipprintfs)
1815		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1816#endif
1817		}
1818	}
1819
1820    {
1821	struct m_hdr tag;
1822
1823	if (next_hop) {
1824		/* Pass IPFORWARD info if available */
1825
1826		tag.mh_type = MT_TAG;
1827		tag.mh_flags = PACKET_TAG_IPFORWARD;
1828		tag.mh_data = (caddr_t)next_hop;
1829		tag.mh_next = m;
1830		m = (struct mbuf *)&tag;
1831	}
1832	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1833			  IP_FORWARDING, 0, NULL);
1834    }
1835	if (error)
1836		ipstat.ips_cantforward++;
1837	else {
1838		ipstat.ips_forward++;
1839		if (type)
1840			ipstat.ips_redirectsent++;
1841		else {
1842			if (mcopy) {
1843				ipflow_create(&ipforward_rt, mcopy);
1844				m_freem(mcopy);
1845			}
1846			return;
1847		}
1848	}
1849	if (mcopy == NULL)
1850		return;
1851	destifp = NULL;
1852
1853	switch (error) {
1854
1855	case 0:				/* forwarded, but need redirect */
1856		/* type, code set above */
1857		break;
1858
1859	case ENETUNREACH:		/* shouldn't happen, checked above */
1860	case EHOSTUNREACH:
1861	case ENETDOWN:
1862	case EHOSTDOWN:
1863	default:
1864		type = ICMP_UNREACH;
1865		code = ICMP_UNREACH_HOST;
1866		break;
1867
1868	case EMSGSIZE:
1869		type = ICMP_UNREACH;
1870		code = ICMP_UNREACH_NEEDFRAG;
1871#ifdef IPSEC
1872		/*
1873		 * If the packet is routed over IPsec tunnel, tell the
1874		 * originator the tunnel MTU.
1875		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1876		 * XXX quickhack!!!
1877		 */
1878		if (ipforward_rt.ro_rt) {
1879			struct secpolicy *sp = NULL;
1880			int ipsecerror;
1881			int ipsechdr;
1882			struct route *ro;
1883
1884			sp = ipsec4_getpolicybyaddr(mcopy,
1885						    IPSEC_DIR_OUTBOUND,
1886			                            IP_FORWARDING,
1887			                            &ipsecerror);
1888
1889			if (sp == NULL)
1890				destifp = ipforward_rt.ro_rt->rt_ifp;
1891			else {
1892				/* count IPsec header size */
1893				ipsechdr = ipsec4_hdrsiz(mcopy,
1894							 IPSEC_DIR_OUTBOUND,
1895							 NULL);
1896
1897				/*
1898				 * find the correct route for outer IPv4
1899				 * header, compute tunnel MTU.
1900				 *
1901				 * XXX BUG ALERT
1902				 * The "dummyifp" code relies upon the fact
1903				 * that icmp_error() touches only ifp->if_mtu.
1904				 */
1905				/*XXX*/
1906				destifp = NULL;
1907				if (sp->req != NULL
1908				 && sp->req->sav != NULL
1909				 && sp->req->sav->sah != NULL) {
1910					ro = &sp->req->sav->sah->sa_route;
1911					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1912						dummyifp.if_mtu =
1913						    ro->ro_rt->rt_ifp->if_mtu;
1914						dummyifp.if_mtu -= ipsechdr;
1915						destifp = &dummyifp;
1916					}
1917				}
1918
1919				key_freesp(sp);
1920			}
1921		}
1922#elif FAST_IPSEC
1923		/*
1924		 * If the packet is routed over IPsec tunnel, tell the
1925		 * originator the tunnel MTU.
1926		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1927		 * XXX quickhack!!!
1928		 */
1929		if (ipforward_rt.ro_rt) {
1930			struct secpolicy *sp = NULL;
1931			int ipsecerror;
1932			int ipsechdr;
1933			struct route *ro;
1934
1935			sp = ipsec_getpolicybyaddr(mcopy,
1936						   IPSEC_DIR_OUTBOUND,
1937			                           IP_FORWARDING,
1938			                           &ipsecerror);
1939
1940			if (sp == NULL)
1941				destifp = ipforward_rt.ro_rt->rt_ifp;
1942			else {
1943				/* count IPsec header size */
1944				ipsechdr = ipsec4_hdrsiz(mcopy,
1945							 IPSEC_DIR_OUTBOUND,
1946							 NULL);
1947
1948				/*
1949				 * find the correct route for outer IPv4
1950				 * header, compute tunnel MTU.
1951				 *
1952				 * XXX BUG ALERT
1953				 * The "dummyifp" code relies upon the fact
1954				 * that icmp_error() touches only ifp->if_mtu.
1955				 */
1956				/*XXX*/
1957				destifp = NULL;
1958				if (sp->req != NULL
1959				 && sp->req->sav != NULL
1960				 && sp->req->sav->sah != NULL) {
1961					ro = &sp->req->sav->sah->sa_route;
1962					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1963						dummyifp.if_mtu =
1964						    ro->ro_rt->rt_ifp->if_mtu;
1965						dummyifp.if_mtu -= ipsechdr;
1966						destifp = &dummyifp;
1967					}
1968				}
1969
1970				KEY_FREESP(&sp);
1971			}
1972		}
1973#else /* !IPSEC && !FAST_IPSEC */
1974		if (ipforward_rt.ro_rt)
1975			destifp = ipforward_rt.ro_rt->rt_ifp;
1976#endif /*IPSEC*/
1977		ipstat.ips_cantfrag++;
1978		break;
1979
1980	case ENOBUFS:
1981		/*
1982		 * A router should not generate ICMP_SOURCEQUENCH as
1983		 * required in RFC1812 Requirements for IP Version 4 Routers.
1984		 * Source quench could be a big problem under DoS attacks,
1985		 * or if the underlying interface is rate-limited.
1986		 * Those who need source quench packets may re-enable them
1987		 * via the net.inet.ip.sendsourcequench sysctl.
1988		 */
1989		if (ip_sendsourcequench == 0) {
1990			m_freem(mcopy);
1991			return;
1992		} else {
1993			type = ICMP_SOURCEQUENCH;
1994			code = 0;
1995		}
1996		break;
1997
1998	case EACCES:			/* ipfw denied packet */
1999		m_freem(mcopy);
2000		return;
2001	}
2002	icmp_error(mcopy, type, code, dest, destifp);
2003}
2004
2005void
2006ip_savecontrol(inp, mp, ip, m)
2007	register struct inpcb *inp;
2008	register struct mbuf **mp;
2009	register struct ip *ip;
2010	register struct mbuf *m;
2011{
2012	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2013		struct timeval tv;
2014
2015		microtime(&tv);
2016		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2017			SCM_TIMESTAMP, SOL_SOCKET);
2018		if (*mp)
2019			mp = &(*mp)->m_next;
2020	}
2021	if (inp->inp_flags & INP_RECVDSTADDR) {
2022		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2023		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2024		if (*mp)
2025			mp = &(*mp)->m_next;
2026	}
2027#ifdef notyet
2028	/* XXX
2029	 * Moving these out of udp_input() made them even more broken
2030	 * than they already were.
2031	 */
2032	/* options were tossed already */
2033	if (inp->inp_flags & INP_RECVOPTS) {
2034		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2035		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2036		if (*mp)
2037			mp = &(*mp)->m_next;
2038	}
2039	/* ip_srcroute doesn't do what we want here, need to fix */
2040	if (inp->inp_flags & INP_RECVRETOPTS) {
2041		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2042		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2043		if (*mp)
2044			mp = &(*mp)->m_next;
2045	}
2046#endif
2047	if (inp->inp_flags & INP_RECVIF) {
2048		struct ifnet *ifp;
2049		struct sdlbuf {
2050			struct sockaddr_dl sdl;
2051			u_char	pad[32];
2052		} sdlbuf;
2053		struct sockaddr_dl *sdp;
2054		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2055
2056		if (((ifp = m->m_pkthdr.rcvif))
2057		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2058			sdp = (struct sockaddr_dl *)
2059			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2060			/*
2061			 * Change our mind and don't try copy.
2062			 */
2063			if ((sdp->sdl_family != AF_LINK)
2064			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2065				goto makedummy;
2066			}
2067			bcopy(sdp, sdl2, sdp->sdl_len);
2068		} else {
2069makedummy:
2070			sdl2->sdl_len
2071				= offsetof(struct sockaddr_dl, sdl_data[0]);
2072			sdl2->sdl_family = AF_LINK;
2073			sdl2->sdl_index = 0;
2074			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2075		}
2076		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2077			IP_RECVIF, IPPROTO_IP);
2078		if (*mp)
2079			mp = &(*mp)->m_next;
2080	}
2081}
2082
2083/*
2084 * XXX these routines are called from the upper part of the kernel.
2085 * They need to be locked when we remove Giant.
2086 *
2087 * They could also be moved to ip_mroute.c, since all the RSVP
2088 *  handling is done there already.
2089 */
2090static int ip_rsvp_on;
2091struct socket *ip_rsvpd;
2092int
2093ip_rsvp_init(struct socket *so)
2094{
2095	if (so->so_type != SOCK_RAW ||
2096	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2097		return EOPNOTSUPP;
2098
2099	if (ip_rsvpd != NULL)
2100		return EADDRINUSE;
2101
2102	ip_rsvpd = so;
2103	/*
2104	 * This may seem silly, but we need to be sure we don't over-increment
2105	 * the RSVP counter, in case something slips up.
2106	 */
2107	if (!ip_rsvp_on) {
2108		ip_rsvp_on = 1;
2109		rsvp_on++;
2110	}
2111
2112	return 0;
2113}
2114
2115int
2116ip_rsvp_done(void)
2117{
2118	ip_rsvpd = NULL;
2119	/*
2120	 * This may seem silly, but we need to be sure we don't over-decrement
2121	 * the RSVP counter, in case something slips up.
2122	 */
2123	if (ip_rsvp_on) {
2124		ip_rsvp_on = 0;
2125		rsvp_on--;
2126	}
2127	return 0;
2128}
2129
2130void
2131rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
2132{
2133	if (rsvp_input_p) { /* call the real one if loaded */
2134		rsvp_input_p(m, off);
2135		return;
2136	}
2137
2138	/* Can still get packets with rsvp_on = 0 if there is a local member
2139	 * of the group to which the RSVP packet is addressed.  But in this
2140	 * case we want to throw the packet away.
2141	 */
2142
2143	if (!rsvp_on) {
2144		m_freem(m);
2145		return;
2146	}
2147
2148	if (ip_rsvpd != NULL) {
2149		rip_input(m, off);
2150		return;
2151	}
2152	/* Drop the packet */
2153	m_freem(m);
2154}
2155