in_mcast.c revision 254629
1/*-
2 * Copyright (c) 2007-2009 Bruce Simpson.
3 * Copyright (c) 2005 Robert N. M. Watson.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote
15 *    products derived from this software without specific prior written
16 *    permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31/*
32 * IPv4 multicast socket, group, and socket option processing module.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/netinet/in_mcast.c 254629 2013-08-22 00:51:37Z delphij $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/protosw.h>
44#include <sys/socket.h>
45#include <sys/socketvar.h>
46#include <sys/protosw.h>
47#include <sys/sysctl.h>
48#include <sys/ktr.h>
49#include <sys/taskqueue.h>
50#include <sys/tree.h>
51
52#include <net/if.h>
53#include <net/if_dl.h>
54#include <net/route.h>
55#include <net/vnet.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/in_pcb.h>
60#include <netinet/in_var.h>
61#include <netinet/ip_var.h>
62#include <netinet/igmp_var.h>
63
64#ifndef KTR_IGMPV3
65#define KTR_IGMPV3 KTR_INET
66#endif
67
68#ifndef __SOCKUNION_DECLARED
69union sockunion {
70	struct sockaddr_storage	ss;
71	struct sockaddr		sa;
72	struct sockaddr_dl	sdl;
73	struct sockaddr_in	sin;
74};
75typedef union sockunion sockunion_t;
76#define __SOCKUNION_DECLARED
77#endif /* __SOCKUNION_DECLARED */
78
79static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
80    "IPv4 multicast PCB-layer source filter");
81static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
82static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
83static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
84    "IPv4 multicast IGMP-layer source filter");
85
86/*
87 * Locking:
88 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
89 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
90 *   it can be taken by code in net/if.c also.
91 * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
92 *
93 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
94 * any need for in_multi itself to be virtualized -- it is bound to an ifp
95 * anyway no matter what happens.
96 */
97struct mtx in_multi_mtx;
98MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
99
100/*
101 * Functions with non-static linkage defined in this file should be
102 * declared in in_var.h:
103 *  imo_multi_filter()
104 *  in_addmulti()
105 *  in_delmulti()
106 *  in_joingroup()
107 *  in_joingroup_locked()
108 *  in_leavegroup()
109 *  in_leavegroup_locked()
110 * and ip_var.h:
111 *  inp_freemoptions()
112 *  inp_getmoptions()
113 *  inp_setmoptions()
114 *
115 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
116 * and in_delmulti().
117 */
118static void	imf_commit(struct in_mfilter *);
119static int	imf_get_source(struct in_mfilter *imf,
120		    const struct sockaddr_in *psin,
121		    struct in_msource **);
122static struct in_msource *
123		imf_graft(struct in_mfilter *, const uint8_t,
124		    const struct sockaddr_in *);
125static void	imf_leave(struct in_mfilter *);
126static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
127static void	imf_purge(struct in_mfilter *);
128static void	imf_rollback(struct in_mfilter *);
129static void	imf_reap(struct in_mfilter *);
130static int	imo_grow(struct ip_moptions *);
131static size_t	imo_match_group(const struct ip_moptions *,
132		    const struct ifnet *, const struct sockaddr *);
133static struct in_msource *
134		imo_match_source(const struct ip_moptions *, const size_t,
135		    const struct sockaddr *);
136static void	ims_merge(struct ip_msource *ims,
137		    const struct in_msource *lims, const int rollback);
138static int	in_getmulti(struct ifnet *, const struct in_addr *,
139		    struct in_multi **);
140static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
141		    const int noalloc, struct ip_msource **pims);
142static int	inm_is_ifp_detached(const struct in_multi *);
143static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
144static void	inm_purge(struct in_multi *);
145static void	inm_reap(struct in_multi *);
146static struct ip_moptions *
147		inp_findmoptions(struct inpcb *);
148static void	inp_freemoptions_internal(struct ip_moptions *);
149static void	inp_gcmoptions(void *, int);
150static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
151static int	inp_join_group(struct inpcb *, struct sockopt *);
152static int	inp_leave_group(struct inpcb *, struct sockopt *);
153static struct ifnet *
154		inp_lookup_mcast_ifp(const struct inpcb *,
155		    const struct sockaddr_in *, const struct in_addr);
156static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
157static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
158static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
159static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
160
161static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0,
162    "IPv4 multicast");
163
164static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
165SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
166    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
167    "Max source filters per group");
168TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
169
170static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
171SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
172    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
173    "Max source filters per socket");
174TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
175
176int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
177SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
178    &in_mcast_loop, 0, "Loopback multicast datagrams by default");
179TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
180
181static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
182    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
183    "Per-interface stack-wide source filters");
184
185static STAILQ_HEAD(, ip_moptions) imo_gc_list =
186    STAILQ_HEAD_INITIALIZER(imo_gc_list);
187static struct task imo_gc_task = TASK_INITIALIZER(0, inp_gcmoptions, NULL);
188
189/*
190 * Inline function which wraps assertions for a valid ifp.
191 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
192 * is detached.
193 */
194static int __inline
195inm_is_ifp_detached(const struct in_multi *inm)
196{
197	struct ifnet *ifp;
198
199	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
200	ifp = inm->inm_ifma->ifma_ifp;
201	if (ifp != NULL) {
202		/*
203		 * Sanity check that netinet's notion of ifp is the
204		 * same as net's.
205		 */
206		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
207	}
208
209	return (ifp == NULL);
210}
211
212/*
213 * Initialize an in_mfilter structure to a known state at t0, t1
214 * with an empty source filter list.
215 */
216static __inline void
217imf_init(struct in_mfilter *imf, const int st0, const int st1)
218{
219	memset(imf, 0, sizeof(struct in_mfilter));
220	RB_INIT(&imf->imf_sources);
221	imf->imf_st[0] = st0;
222	imf->imf_st[1] = st1;
223}
224
225/*
226 * Resize the ip_moptions vector to the next power-of-two minus 1.
227 * May be called with locks held; do not sleep.
228 */
229static int
230imo_grow(struct ip_moptions *imo)
231{
232	struct in_multi		**nmships;
233	struct in_multi		**omships;
234	struct in_mfilter	 *nmfilters;
235	struct in_mfilter	 *omfilters;
236	size_t			  idx;
237	size_t			  newmax;
238	size_t			  oldmax;
239
240	nmships = NULL;
241	nmfilters = NULL;
242	omships = imo->imo_membership;
243	omfilters = imo->imo_mfilters;
244	oldmax = imo->imo_max_memberships;
245	newmax = ((oldmax + 1) * 2) - 1;
246
247	if (newmax <= IP_MAX_MEMBERSHIPS) {
248		nmships = (struct in_multi **)realloc(omships,
249		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
250		nmfilters = (struct in_mfilter *)realloc(omfilters,
251		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
252		if (nmships != NULL && nmfilters != NULL) {
253			/* Initialize newly allocated source filter heads. */
254			for (idx = oldmax; idx < newmax; idx++) {
255				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
256				    MCAST_EXCLUDE);
257			}
258			imo->imo_max_memberships = newmax;
259			imo->imo_membership = nmships;
260			imo->imo_mfilters = nmfilters;
261		}
262	}
263
264	if (nmships == NULL || nmfilters == NULL) {
265		if (nmships != NULL)
266			free(nmships, M_IPMOPTS);
267		if (nmfilters != NULL)
268			free(nmfilters, M_INMFILTER);
269		return (ETOOMANYREFS);
270	}
271
272	return (0);
273}
274
275/*
276 * Find an IPv4 multicast group entry for this ip_moptions instance
277 * which matches the specified group, and optionally an interface.
278 * Return its index into the array, or -1 if not found.
279 */
280static size_t
281imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
282    const struct sockaddr *group)
283{
284	const struct sockaddr_in *gsin;
285	struct in_multi	**pinm;
286	int		  idx;
287	int		  nmships;
288
289	gsin = (const struct sockaddr_in *)group;
290
291	/* The imo_membership array may be lazy allocated. */
292	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
293		return (-1);
294
295	nmships = imo->imo_num_memberships;
296	pinm = &imo->imo_membership[0];
297	for (idx = 0; idx < nmships; idx++, pinm++) {
298		if (*pinm == NULL)
299			continue;
300		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
301		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
302			break;
303		}
304	}
305	if (idx >= nmships)
306		idx = -1;
307
308	return (idx);
309}
310
311/*
312 * Find an IPv4 multicast source entry for this imo which matches
313 * the given group index for this socket, and source address.
314 *
315 * NOTE: This does not check if the entry is in-mode, merely if
316 * it exists, which may not be the desired behaviour.
317 */
318static struct in_msource *
319imo_match_source(const struct ip_moptions *imo, const size_t gidx,
320    const struct sockaddr *src)
321{
322	struct ip_msource	 find;
323	struct in_mfilter	*imf;
324	struct ip_msource	*ims;
325	const sockunion_t	*psa;
326
327	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
328	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
329	    ("%s: invalid index %d\n", __func__, (int)gidx));
330
331	/* The imo_mfilters array may be lazy allocated. */
332	if (imo->imo_mfilters == NULL)
333		return (NULL);
334	imf = &imo->imo_mfilters[gidx];
335
336	/* Source trees are keyed in host byte order. */
337	psa = (const sockunion_t *)src;
338	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
339	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
340
341	return ((struct in_msource *)ims);
342}
343
344/*
345 * Perform filtering for multicast datagrams on a socket by group and source.
346 *
347 * Returns 0 if a datagram should be allowed through, or various error codes
348 * if the socket was not a member of the group, or the source was muted, etc.
349 */
350int
351imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
352    const struct sockaddr *group, const struct sockaddr *src)
353{
354	size_t gidx;
355	struct in_msource *ims;
356	int mode;
357
358	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
359
360	gidx = imo_match_group(imo, ifp, group);
361	if (gidx == -1)
362		return (MCAST_NOTGMEMBER);
363
364	/*
365	 * Check if the source was included in an (S,G) join.
366	 * Allow reception on exclusive memberships by default,
367	 * reject reception on inclusive memberships by default.
368	 * Exclude source only if an in-mode exclude filter exists.
369	 * Include source only if an in-mode include filter exists.
370	 * NOTE: We are comparing group state here at IGMP t1 (now)
371	 * with socket-layer t0 (since last downcall).
372	 */
373	mode = imo->imo_mfilters[gidx].imf_st[1];
374	ims = imo_match_source(imo, gidx, src);
375
376	if ((ims == NULL && mode == MCAST_INCLUDE) ||
377	    (ims != NULL && ims->imsl_st[0] != mode))
378		return (MCAST_NOTSMEMBER);
379
380	return (MCAST_PASS);
381}
382
383/*
384 * Find and return a reference to an in_multi record for (ifp, group),
385 * and bump its reference count.
386 * If one does not exist, try to allocate it, and update link-layer multicast
387 * filters on ifp to listen for group.
388 * Assumes the IN_MULTI lock is held across the call.
389 * Return 0 if successful, otherwise return an appropriate error code.
390 */
391static int
392in_getmulti(struct ifnet *ifp, const struct in_addr *group,
393    struct in_multi **pinm)
394{
395	struct sockaddr_in	 gsin;
396	struct ifmultiaddr	*ifma;
397	struct in_ifinfo	*ii;
398	struct in_multi		*inm;
399	int error;
400
401	IN_MULTI_LOCK_ASSERT();
402
403	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
404
405	inm = inm_lookup(ifp, *group);
406	if (inm != NULL) {
407		/*
408		 * If we already joined this group, just bump the
409		 * refcount and return it.
410		 */
411		KASSERT(inm->inm_refcount >= 1,
412		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
413		++inm->inm_refcount;
414		*pinm = inm;
415		return (0);
416	}
417
418	memset(&gsin, 0, sizeof(gsin));
419	gsin.sin_family = AF_INET;
420	gsin.sin_len = sizeof(struct sockaddr_in);
421	gsin.sin_addr = *group;
422
423	/*
424	 * Check if a link-layer group is already associated
425	 * with this network-layer group on the given ifnet.
426	 */
427	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
428	if (error != 0)
429		return (error);
430
431	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
432	IF_ADDR_WLOCK(ifp);
433
434	/*
435	 * If something other than netinet is occupying the link-layer
436	 * group, print a meaningful error message and back out of
437	 * the allocation.
438	 * Otherwise, bump the refcount on the existing network-layer
439	 * group association and return it.
440	 */
441	if (ifma->ifma_protospec != NULL) {
442		inm = (struct in_multi *)ifma->ifma_protospec;
443#ifdef INVARIANTS
444		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
445		    __func__));
446		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
447		    ("%s: ifma not AF_INET", __func__));
448		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
449		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
450		    !in_hosteq(inm->inm_addr, *group))
451			panic("%s: ifma %p is inconsistent with %p (%s)",
452			    __func__, ifma, inm, inet_ntoa(*group));
453#endif
454		++inm->inm_refcount;
455		*pinm = inm;
456		IF_ADDR_WUNLOCK(ifp);
457		return (0);
458	}
459
460	IF_ADDR_WLOCK_ASSERT(ifp);
461
462	/*
463	 * A new in_multi record is needed; allocate and initialize it.
464	 * We DO NOT perform an IGMP join as the in_ layer may need to
465	 * push an initial source list down to IGMP to support SSM.
466	 *
467	 * The initial source filter state is INCLUDE, {} as per the RFC.
468	 */
469	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
470	if (inm == NULL) {
471		if_delmulti_ifma(ifma);
472		IF_ADDR_WUNLOCK(ifp);
473		return (ENOMEM);
474	}
475	inm->inm_addr = *group;
476	inm->inm_ifp = ifp;
477	inm->inm_igi = ii->ii_igmp;
478	inm->inm_ifma = ifma;
479	inm->inm_refcount = 1;
480	inm->inm_state = IGMP_NOT_MEMBER;
481
482	/*
483	 * Pending state-changes per group are subject to a bounds check.
484	 */
485	IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
486
487	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
488	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
489	RB_INIT(&inm->inm_srcs);
490
491	ifma->ifma_protospec = inm;
492
493	*pinm = inm;
494
495	IF_ADDR_WUNLOCK(ifp);
496	return (0);
497}
498
499/*
500 * Drop a reference to an in_multi record.
501 *
502 * If the refcount drops to 0, free the in_multi record and
503 * delete the underlying link-layer membership.
504 */
505void
506inm_release_locked(struct in_multi *inm)
507{
508	struct ifmultiaddr *ifma;
509
510	IN_MULTI_LOCK_ASSERT();
511
512	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
513
514	if (--inm->inm_refcount > 0) {
515		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
516		    inm->inm_refcount);
517		return;
518	}
519
520	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
521
522	ifma = inm->inm_ifma;
523
524	/* XXX this access is not covered by IF_ADDR_LOCK */
525	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
526	KASSERT(ifma->ifma_protospec == inm,
527	    ("%s: ifma_protospec != inm", __func__));
528	ifma->ifma_protospec = NULL;
529
530	inm_purge(inm);
531
532	free(inm, M_IPMADDR);
533
534	if_delmulti_ifma(ifma);
535}
536
537/*
538 * Clear recorded source entries for a group.
539 * Used by the IGMP code. Caller must hold the IN_MULTI lock.
540 * FIXME: Should reap.
541 */
542void
543inm_clear_recorded(struct in_multi *inm)
544{
545	struct ip_msource	*ims;
546
547	IN_MULTI_LOCK_ASSERT();
548
549	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
550		if (ims->ims_stp) {
551			ims->ims_stp = 0;
552			--inm->inm_st[1].iss_rec;
553		}
554	}
555	KASSERT(inm->inm_st[1].iss_rec == 0,
556	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
557}
558
559/*
560 * Record a source as pending for a Source-Group IGMPv3 query.
561 * This lives here as it modifies the shared tree.
562 *
563 * inm is the group descriptor.
564 * naddr is the address of the source to record in network-byte order.
565 *
566 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
567 * lazy-allocate a source node in response to an SG query.
568 * Otherwise, no allocation is performed. This saves some memory
569 * with the trade-off that the source will not be reported to the
570 * router if joined in the window between the query response and
571 * the group actually being joined on the local host.
572 *
573 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
574 * This turns off the allocation of a recorded source entry if
575 * the group has not been joined.
576 *
577 * Return 0 if the source didn't exist or was already marked as recorded.
578 * Return 1 if the source was marked as recorded by this function.
579 * Return <0 if any error occured (negated errno code).
580 */
581int
582inm_record_source(struct in_multi *inm, const in_addr_t naddr)
583{
584	struct ip_msource	 find;
585	struct ip_msource	*ims, *nims;
586
587	IN_MULTI_LOCK_ASSERT();
588
589	find.ims_haddr = ntohl(naddr);
590	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
591	if (ims && ims->ims_stp)
592		return (0);
593	if (ims == NULL) {
594		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
595			return (-ENOSPC);
596		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
597		    M_NOWAIT | M_ZERO);
598		if (nims == NULL)
599			return (-ENOMEM);
600		nims->ims_haddr = find.ims_haddr;
601		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
602		++inm->inm_nsrc;
603		ims = nims;
604	}
605
606	/*
607	 * Mark the source as recorded and update the recorded
608	 * source count.
609	 */
610	++ims->ims_stp;
611	++inm->inm_st[1].iss_rec;
612
613	return (1);
614}
615
616/*
617 * Return a pointer to an in_msource owned by an in_mfilter,
618 * given its source address.
619 * Lazy-allocate if needed. If this is a new entry its filter state is
620 * undefined at t0.
621 *
622 * imf is the filter set being modified.
623 * haddr is the source address in *host* byte-order.
624 *
625 * SMPng: May be called with locks held; malloc must not block.
626 */
627static int
628imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
629    struct in_msource **plims)
630{
631	struct ip_msource	 find;
632	struct ip_msource	*ims, *nims;
633	struct in_msource	*lims;
634	int			 error;
635
636	error = 0;
637	ims = NULL;
638	lims = NULL;
639
640	/* key is host byte order */
641	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
642	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
643	lims = (struct in_msource *)ims;
644	if (lims == NULL) {
645		if (imf->imf_nsrc == in_mcast_maxsocksrc)
646			return (ENOSPC);
647		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
648		    M_NOWAIT | M_ZERO);
649		if (nims == NULL)
650			return (ENOMEM);
651		lims = (struct in_msource *)nims;
652		lims->ims_haddr = find.ims_haddr;
653		lims->imsl_st[0] = MCAST_UNDEFINED;
654		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
655		++imf->imf_nsrc;
656	}
657
658	*plims = lims;
659
660	return (error);
661}
662
663/*
664 * Graft a source entry into an existing socket-layer filter set,
665 * maintaining any required invariants and checking allocations.
666 *
667 * The source is marked as being in the new filter mode at t1.
668 *
669 * Return the pointer to the new node, otherwise return NULL.
670 */
671static struct in_msource *
672imf_graft(struct in_mfilter *imf, const uint8_t st1,
673    const struct sockaddr_in *psin)
674{
675	struct ip_msource	*nims;
676	struct in_msource	*lims;
677
678	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
679	    M_NOWAIT | M_ZERO);
680	if (nims == NULL)
681		return (NULL);
682	lims = (struct in_msource *)nims;
683	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
684	lims->imsl_st[0] = MCAST_UNDEFINED;
685	lims->imsl_st[1] = st1;
686	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
687	++imf->imf_nsrc;
688
689	return (lims);
690}
691
692/*
693 * Prune a source entry from an existing socket-layer filter set,
694 * maintaining any required invariants and checking allocations.
695 *
696 * The source is marked as being left at t1, it is not freed.
697 *
698 * Return 0 if no error occurred, otherwise return an errno value.
699 */
700static int
701imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
702{
703	struct ip_msource	 find;
704	struct ip_msource	*ims;
705	struct in_msource	*lims;
706
707	/* key is host byte order */
708	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
709	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
710	if (ims == NULL)
711		return (ENOENT);
712	lims = (struct in_msource *)ims;
713	lims->imsl_st[1] = MCAST_UNDEFINED;
714	return (0);
715}
716
717/*
718 * Revert socket-layer filter set deltas at t1 to t0 state.
719 */
720static void
721imf_rollback(struct in_mfilter *imf)
722{
723	struct ip_msource	*ims, *tims;
724	struct in_msource	*lims;
725
726	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
727		lims = (struct in_msource *)ims;
728		if (lims->imsl_st[0] == lims->imsl_st[1]) {
729			/* no change at t1 */
730			continue;
731		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
732			/* revert change to existing source at t1 */
733			lims->imsl_st[1] = lims->imsl_st[0];
734		} else {
735			/* revert source added t1 */
736			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
737			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
738			free(ims, M_INMFILTER);
739			imf->imf_nsrc--;
740		}
741	}
742	imf->imf_st[1] = imf->imf_st[0];
743}
744
745/*
746 * Mark socket-layer filter set as INCLUDE {} at t1.
747 */
748static void
749imf_leave(struct in_mfilter *imf)
750{
751	struct ip_msource	*ims;
752	struct in_msource	*lims;
753
754	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
755		lims = (struct in_msource *)ims;
756		lims->imsl_st[1] = MCAST_UNDEFINED;
757	}
758	imf->imf_st[1] = MCAST_INCLUDE;
759}
760
761/*
762 * Mark socket-layer filter set deltas as committed.
763 */
764static void
765imf_commit(struct in_mfilter *imf)
766{
767	struct ip_msource	*ims;
768	struct in_msource	*lims;
769
770	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
771		lims = (struct in_msource *)ims;
772		lims->imsl_st[0] = lims->imsl_st[1];
773	}
774	imf->imf_st[0] = imf->imf_st[1];
775}
776
777/*
778 * Reap unreferenced sources from socket-layer filter set.
779 */
780static void
781imf_reap(struct in_mfilter *imf)
782{
783	struct ip_msource	*ims, *tims;
784	struct in_msource	*lims;
785
786	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
787		lims = (struct in_msource *)ims;
788		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
789		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
790			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
791			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
792			free(ims, M_INMFILTER);
793			imf->imf_nsrc--;
794		}
795	}
796}
797
798/*
799 * Purge socket-layer filter set.
800 */
801static void
802imf_purge(struct in_mfilter *imf)
803{
804	struct ip_msource	*ims, *tims;
805
806	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
807		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
808		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
809		free(ims, M_INMFILTER);
810		imf->imf_nsrc--;
811	}
812	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
813	KASSERT(RB_EMPTY(&imf->imf_sources),
814	    ("%s: imf_sources not empty", __func__));
815}
816
817/*
818 * Look up a source filter entry for a multicast group.
819 *
820 * inm is the group descriptor to work with.
821 * haddr is the host-byte-order IPv4 address to look up.
822 * noalloc may be non-zero to suppress allocation of sources.
823 * *pims will be set to the address of the retrieved or allocated source.
824 *
825 * SMPng: NOTE: may be called with locks held.
826 * Return 0 if successful, otherwise return a non-zero error code.
827 */
828static int
829inm_get_source(struct in_multi *inm, const in_addr_t haddr,
830    const int noalloc, struct ip_msource **pims)
831{
832	struct ip_msource	 find;
833	struct ip_msource	*ims, *nims;
834#ifdef KTR
835	struct in_addr ia;
836#endif
837
838	find.ims_haddr = haddr;
839	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
840	if (ims == NULL && !noalloc) {
841		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
842			return (ENOSPC);
843		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
844		    M_NOWAIT | M_ZERO);
845		if (nims == NULL)
846			return (ENOMEM);
847		nims->ims_haddr = haddr;
848		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
849		++inm->inm_nsrc;
850		ims = nims;
851#ifdef KTR
852		ia.s_addr = htonl(haddr);
853		CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
854		    inet_ntoa(ia), ims);
855#endif
856	}
857
858	*pims = ims;
859	return (0);
860}
861
862/*
863 * Merge socket-layer source into IGMP-layer source.
864 * If rollback is non-zero, perform the inverse of the merge.
865 */
866static void
867ims_merge(struct ip_msource *ims, const struct in_msource *lims,
868    const int rollback)
869{
870	int n = rollback ? -1 : 1;
871#ifdef KTR
872	struct in_addr ia;
873
874	ia.s_addr = htonl(ims->ims_haddr);
875#endif
876
877	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
878		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
879		    __func__, n, inet_ntoa(ia));
880		ims->ims_st[1].ex -= n;
881	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
882		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
883		    __func__, n, inet_ntoa(ia));
884		ims->ims_st[1].in -= n;
885	}
886
887	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
888		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
889		    __func__, n, inet_ntoa(ia));
890		ims->ims_st[1].ex += n;
891	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
892		CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
893		    __func__, n, inet_ntoa(ia));
894		ims->ims_st[1].in += n;
895	}
896}
897
898/*
899 * Atomically update the global in_multi state, when a membership's
900 * filter list is being updated in any way.
901 *
902 * imf is the per-inpcb-membership group filter pointer.
903 * A fake imf may be passed for in-kernel consumers.
904 *
905 * XXX This is a candidate for a set-symmetric-difference style loop
906 * which would eliminate the repeated lookup from root of ims nodes,
907 * as they share the same key space.
908 *
909 * If any error occurred this function will back out of refcounts
910 * and return a non-zero value.
911 */
912static int
913inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
914{
915	struct ip_msource	*ims, *nims;
916	struct in_msource	*lims;
917	int			 schanged, error;
918	int			 nsrc0, nsrc1;
919
920	schanged = 0;
921	error = 0;
922	nsrc1 = nsrc0 = 0;
923
924	/*
925	 * Update the source filters first, as this may fail.
926	 * Maintain count of in-mode filters at t0, t1. These are
927	 * used to work out if we transition into ASM mode or not.
928	 * Maintain a count of source filters whose state was
929	 * actually modified by this operation.
930	 */
931	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
932		lims = (struct in_msource *)ims;
933		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
934		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
935		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
936		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
937		++schanged;
938		if (error)
939			break;
940		ims_merge(nims, lims, 0);
941	}
942	if (error) {
943		struct ip_msource *bims;
944
945		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
946			lims = (struct in_msource *)ims;
947			if (lims->imsl_st[0] == lims->imsl_st[1])
948				continue;
949			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
950			if (bims == NULL)
951				continue;
952			ims_merge(bims, lims, 1);
953		}
954		goto out_reap;
955	}
956
957	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
958	    __func__, nsrc0, nsrc1);
959
960	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
961	if (imf->imf_st[0] == imf->imf_st[1] &&
962	    imf->imf_st[1] == MCAST_INCLUDE) {
963		if (nsrc1 == 0) {
964			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
965			--inm->inm_st[1].iss_in;
966		}
967	}
968
969	/* Handle filter mode transition on socket. */
970	if (imf->imf_st[0] != imf->imf_st[1]) {
971		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
972		    __func__, imf->imf_st[0], imf->imf_st[1]);
973
974		if (imf->imf_st[0] == MCAST_EXCLUDE) {
975			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
976			--inm->inm_st[1].iss_ex;
977		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
978			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
979			--inm->inm_st[1].iss_in;
980		}
981
982		if (imf->imf_st[1] == MCAST_EXCLUDE) {
983			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
984			inm->inm_st[1].iss_ex++;
985		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
986			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
987			inm->inm_st[1].iss_in++;
988		}
989	}
990
991	/*
992	 * Track inm filter state in terms of listener counts.
993	 * If there are any exclusive listeners, stack-wide
994	 * membership is exclusive.
995	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
996	 * If no listeners remain, state is undefined at t1,
997	 * and the IGMP lifecycle for this group should finish.
998	 */
999	if (inm->inm_st[1].iss_ex > 0) {
1000		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
1001		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1002	} else if (inm->inm_st[1].iss_in > 0) {
1003		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
1004		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1005	} else {
1006		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
1007		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1008	}
1009
1010	/* Decrement ASM listener count on transition out of ASM mode. */
1011	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1012		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1013		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1014			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1015			--inm->inm_st[1].iss_asm;
1016	}
1017
1018	/* Increment ASM listener count on transition to ASM mode. */
1019	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1020		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1021		inm->inm_st[1].iss_asm++;
1022	}
1023
1024	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1025	inm_print(inm);
1026
1027out_reap:
1028	if (schanged > 0) {
1029		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1030		inm_reap(inm);
1031	}
1032	return (error);
1033}
1034
1035/*
1036 * Mark an in_multi's filter set deltas as committed.
1037 * Called by IGMP after a state change has been enqueued.
1038 */
1039void
1040inm_commit(struct in_multi *inm)
1041{
1042	struct ip_msource	*ims;
1043
1044	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1045	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1046	inm_print(inm);
1047
1048	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1049		ims->ims_st[0] = ims->ims_st[1];
1050	}
1051	inm->inm_st[0] = inm->inm_st[1];
1052}
1053
1054/*
1055 * Reap unreferenced nodes from an in_multi's filter set.
1056 */
1057static void
1058inm_reap(struct in_multi *inm)
1059{
1060	struct ip_msource	*ims, *tims;
1061
1062	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1063		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1064		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1065		    ims->ims_stp != 0)
1066			continue;
1067		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1068		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1069		free(ims, M_IPMSOURCE);
1070		inm->inm_nsrc--;
1071	}
1072}
1073
1074/*
1075 * Purge all source nodes from an in_multi's filter set.
1076 */
1077static void
1078inm_purge(struct in_multi *inm)
1079{
1080	struct ip_msource	*ims, *tims;
1081
1082	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1083		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1084		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1085		free(ims, M_IPMSOURCE);
1086		inm->inm_nsrc--;
1087	}
1088}
1089
1090/*
1091 * Join a multicast group; unlocked entry point.
1092 *
1093 * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1094 * is not held. Fortunately, ifp is unlikely to have been detached
1095 * at this point, so we assume it's OK to recurse.
1096 */
1097int
1098in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1099    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1100{
1101	int error;
1102
1103	IN_MULTI_LOCK();
1104	error = in_joingroup_locked(ifp, gina, imf, pinm);
1105	IN_MULTI_UNLOCK();
1106
1107	return (error);
1108}
1109
1110/*
1111 * Join a multicast group; real entry point.
1112 *
1113 * Only preserves atomicity at inm level.
1114 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1115 *
1116 * If the IGMP downcall fails, the group is not joined, and an error
1117 * code is returned.
1118 */
1119int
1120in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1121    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1122{
1123	struct in_mfilter	 timf;
1124	struct in_multi		*inm;
1125	int			 error;
1126
1127	IN_MULTI_LOCK_ASSERT();
1128
1129	CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
1130	    inet_ntoa(*gina), ifp, ifp->if_xname);
1131
1132	error = 0;
1133	inm = NULL;
1134
1135	/*
1136	 * If no imf was specified (i.e. kernel consumer),
1137	 * fake one up and assume it is an ASM join.
1138	 */
1139	if (imf == NULL) {
1140		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1141		imf = &timf;
1142	}
1143
1144	error = in_getmulti(ifp, gina, &inm);
1145	if (error) {
1146		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1147		return (error);
1148	}
1149
1150	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1151	error = inm_merge(inm, imf);
1152	if (error) {
1153		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1154		goto out_inm_release;
1155	}
1156
1157	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1158	error = igmp_change_state(inm);
1159	if (error) {
1160		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1161		goto out_inm_release;
1162	}
1163
1164out_inm_release:
1165	if (error) {
1166		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1167		inm_release_locked(inm);
1168	} else {
1169		*pinm = inm;
1170	}
1171
1172	return (error);
1173}
1174
1175/*
1176 * Leave a multicast group; unlocked entry point.
1177 */
1178int
1179in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1180{
1181	int error;
1182
1183	IN_MULTI_LOCK();
1184	error = in_leavegroup_locked(inm, imf);
1185	IN_MULTI_UNLOCK();
1186
1187	return (error);
1188}
1189
1190/*
1191 * Leave a multicast group; real entry point.
1192 * All source filters will be expunged.
1193 *
1194 * Only preserves atomicity at inm level.
1195 *
1196 * Holding the write lock for the INP which contains imf
1197 * is highly advisable. We can't assert for it as imf does not
1198 * contain a back-pointer to the owning inp.
1199 *
1200 * Note: This is not the same as inm_release(*) as this function also
1201 * makes a state change downcall into IGMP.
1202 */
1203int
1204in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1205{
1206	struct in_mfilter	 timf;
1207	int			 error;
1208
1209	error = 0;
1210
1211	IN_MULTI_LOCK_ASSERT();
1212
1213	CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
1214	    inm, inet_ntoa(inm->inm_addr),
1215	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1216	    imf);
1217
1218	/*
1219	 * If no imf was specified (i.e. kernel consumer),
1220	 * fake one up and assume it is an ASM join.
1221	 */
1222	if (imf == NULL) {
1223		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1224		imf = &timf;
1225	}
1226
1227	/*
1228	 * Begin state merge transaction at IGMP layer.
1229	 *
1230	 * As this particular invocation should not cause any memory
1231	 * to be allocated, and there is no opportunity to roll back
1232	 * the transaction, it MUST NOT fail.
1233	 */
1234	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1235	error = inm_merge(inm, imf);
1236	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1237
1238	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1239	CURVNET_SET(inm->inm_ifp->if_vnet);
1240	error = igmp_change_state(inm);
1241	CURVNET_RESTORE();
1242	if (error)
1243		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1244
1245	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1246	inm_release_locked(inm);
1247
1248	return (error);
1249}
1250
1251/*#ifndef BURN_BRIDGES*/
1252/*
1253 * Join an IPv4 multicast group in (*,G) exclusive mode.
1254 * The group must be a 224.0.0.0/24 link-scope group.
1255 * This KPI is for legacy kernel consumers only.
1256 */
1257struct in_multi *
1258in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1259{
1260	struct in_multi *pinm;
1261	int error;
1262
1263	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1264	    ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
1265
1266	error = in_joingroup(ifp, ap, NULL, &pinm);
1267	if (error != 0)
1268		pinm = NULL;
1269
1270	return (pinm);
1271}
1272
1273/*
1274 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1275 * This KPI is for legacy kernel consumers only.
1276 */
1277void
1278in_delmulti(struct in_multi *inm)
1279{
1280
1281	(void)in_leavegroup(inm, NULL);
1282}
1283/*#endif*/
1284
1285/*
1286 * Block or unblock an ASM multicast source on an inpcb.
1287 * This implements the delta-based API described in RFC 3678.
1288 *
1289 * The delta-based API applies only to exclusive-mode memberships.
1290 * An IGMP downcall will be performed.
1291 *
1292 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1293 *
1294 * Return 0 if successful, otherwise return an appropriate error code.
1295 */
1296static int
1297inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1298{
1299	struct group_source_req		 gsr;
1300	sockunion_t			*gsa, *ssa;
1301	struct ifnet			*ifp;
1302	struct in_mfilter		*imf;
1303	struct ip_moptions		*imo;
1304	struct in_msource		*ims;
1305	struct in_multi			*inm;
1306	size_t				 idx;
1307	uint16_t			 fmode;
1308	int				 error, doblock;
1309
1310	ifp = NULL;
1311	error = 0;
1312	doblock = 0;
1313
1314	memset(&gsr, 0, sizeof(struct group_source_req));
1315	gsa = (sockunion_t *)&gsr.gsr_group;
1316	ssa = (sockunion_t *)&gsr.gsr_source;
1317
1318	switch (sopt->sopt_name) {
1319	case IP_BLOCK_SOURCE:
1320	case IP_UNBLOCK_SOURCE: {
1321		struct ip_mreq_source	 mreqs;
1322
1323		error = sooptcopyin(sopt, &mreqs,
1324		    sizeof(struct ip_mreq_source),
1325		    sizeof(struct ip_mreq_source));
1326		if (error)
1327			return (error);
1328
1329		gsa->sin.sin_family = AF_INET;
1330		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1331		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1332
1333		ssa->sin.sin_family = AF_INET;
1334		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1335		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1336
1337		if (!in_nullhost(mreqs.imr_interface))
1338			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1339
1340		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1341			doblock = 1;
1342
1343		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1344		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1345		break;
1346	    }
1347
1348	case MCAST_BLOCK_SOURCE:
1349	case MCAST_UNBLOCK_SOURCE:
1350		error = sooptcopyin(sopt, &gsr,
1351		    sizeof(struct group_source_req),
1352		    sizeof(struct group_source_req));
1353		if (error)
1354			return (error);
1355
1356		if (gsa->sin.sin_family != AF_INET ||
1357		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1358			return (EINVAL);
1359
1360		if (ssa->sin.sin_family != AF_INET ||
1361		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1362			return (EINVAL);
1363
1364		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1365			return (EADDRNOTAVAIL);
1366
1367		ifp = ifnet_byindex(gsr.gsr_interface);
1368
1369		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1370			doblock = 1;
1371		break;
1372
1373	default:
1374		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1375		    __func__, sopt->sopt_name);
1376		return (EOPNOTSUPP);
1377		break;
1378	}
1379
1380	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1381		return (EINVAL);
1382
1383	/*
1384	 * Check if we are actually a member of this group.
1385	 */
1386	imo = inp_findmoptions(inp);
1387	idx = imo_match_group(imo, ifp, &gsa->sa);
1388	if (idx == -1 || imo->imo_mfilters == NULL) {
1389		error = EADDRNOTAVAIL;
1390		goto out_inp_locked;
1391	}
1392
1393	KASSERT(imo->imo_mfilters != NULL,
1394	    ("%s: imo_mfilters not allocated", __func__));
1395	imf = &imo->imo_mfilters[idx];
1396	inm = imo->imo_membership[idx];
1397
1398	/*
1399	 * Attempting to use the delta-based API on an
1400	 * non exclusive-mode membership is an error.
1401	 */
1402	fmode = imf->imf_st[0];
1403	if (fmode != MCAST_EXCLUDE) {
1404		error = EINVAL;
1405		goto out_inp_locked;
1406	}
1407
1408	/*
1409	 * Deal with error cases up-front:
1410	 *  Asked to block, but already blocked; or
1411	 *  Asked to unblock, but nothing to unblock.
1412	 * If adding a new block entry, allocate it.
1413	 */
1414	ims = imo_match_source(imo, idx, &ssa->sa);
1415	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1416		CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
1417		    inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
1418		error = EADDRNOTAVAIL;
1419		goto out_inp_locked;
1420	}
1421
1422	INP_WLOCK_ASSERT(inp);
1423
1424	/*
1425	 * Begin state merge transaction at socket layer.
1426	 */
1427	if (doblock) {
1428		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1429		ims = imf_graft(imf, fmode, &ssa->sin);
1430		if (ims == NULL)
1431			error = ENOMEM;
1432	} else {
1433		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1434		error = imf_prune(imf, &ssa->sin);
1435	}
1436
1437	if (error) {
1438		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1439		goto out_imf_rollback;
1440	}
1441
1442	/*
1443	 * Begin state merge transaction at IGMP layer.
1444	 */
1445	IN_MULTI_LOCK();
1446
1447	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1448	error = inm_merge(inm, imf);
1449	if (error) {
1450		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1451		goto out_imf_rollback;
1452	}
1453
1454	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1455	error = igmp_change_state(inm);
1456	if (error)
1457		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1458
1459	IN_MULTI_UNLOCK();
1460
1461out_imf_rollback:
1462	if (error)
1463		imf_rollback(imf);
1464	else
1465		imf_commit(imf);
1466
1467	imf_reap(imf);
1468
1469out_inp_locked:
1470	INP_WUNLOCK(inp);
1471	return (error);
1472}
1473
1474/*
1475 * Given an inpcb, return its multicast options structure pointer.  Accepts
1476 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1477 *
1478 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1479 * SMPng: NOTE: Returns with the INP write lock held.
1480 */
1481static struct ip_moptions *
1482inp_findmoptions(struct inpcb *inp)
1483{
1484	struct ip_moptions	 *imo;
1485	struct in_multi		**immp;
1486	struct in_mfilter	 *imfp;
1487	size_t			  idx;
1488
1489	INP_WLOCK(inp);
1490	if (inp->inp_moptions != NULL)
1491		return (inp->inp_moptions);
1492
1493	INP_WUNLOCK(inp);
1494
1495	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1496	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1497	    M_WAITOK | M_ZERO);
1498	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1499	    M_INMFILTER, M_WAITOK);
1500
1501	imo->imo_multicast_ifp = NULL;
1502	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1503	imo->imo_multicast_vif = -1;
1504	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1505	imo->imo_multicast_loop = in_mcast_loop;
1506	imo->imo_num_memberships = 0;
1507	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1508	imo->imo_membership = immp;
1509
1510	/* Initialize per-group source filters. */
1511	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1512		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1513	imo->imo_mfilters = imfp;
1514
1515	INP_WLOCK(inp);
1516	if (inp->inp_moptions != NULL) {
1517		free(imfp, M_INMFILTER);
1518		free(immp, M_IPMOPTS);
1519		free(imo, M_IPMOPTS);
1520		return (inp->inp_moptions);
1521	}
1522	inp->inp_moptions = imo;
1523	return (imo);
1524}
1525
1526/*
1527 * Discard the IP multicast options (and source filters).  To minimize
1528 * the amount of work done while holding locks such as the INP's
1529 * pcbinfo lock (which is used in the receive path), the free
1530 * operation is performed asynchronously in a separate task.
1531 *
1532 * SMPng: NOTE: assumes INP write lock is held.
1533 */
1534void
1535inp_freemoptions(struct ip_moptions *imo)
1536{
1537
1538	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1539	IN_MULTI_LOCK();
1540	STAILQ_INSERT_TAIL(&imo_gc_list, imo, imo_link);
1541	IN_MULTI_UNLOCK();
1542	taskqueue_enqueue(taskqueue_thread, &imo_gc_task);
1543}
1544
1545static void
1546inp_freemoptions_internal(struct ip_moptions *imo)
1547{
1548	struct in_mfilter	*imf;
1549	size_t			 idx, nmships;
1550
1551	nmships = imo->imo_num_memberships;
1552	for (idx = 0; idx < nmships; ++idx) {
1553		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1554		if (imf)
1555			imf_leave(imf);
1556		(void)in_leavegroup(imo->imo_membership[idx], imf);
1557		if (imf)
1558			imf_purge(imf);
1559	}
1560
1561	if (imo->imo_mfilters)
1562		free(imo->imo_mfilters, M_INMFILTER);
1563	free(imo->imo_membership, M_IPMOPTS);
1564	free(imo, M_IPMOPTS);
1565}
1566
1567static void
1568inp_gcmoptions(void *context, int pending)
1569{
1570	struct ip_moptions *imo;
1571
1572	IN_MULTI_LOCK();
1573	while (!STAILQ_EMPTY(&imo_gc_list)) {
1574		imo = STAILQ_FIRST(&imo_gc_list);
1575		STAILQ_REMOVE_HEAD(&imo_gc_list, imo_link);
1576		IN_MULTI_UNLOCK();
1577		inp_freemoptions_internal(imo);
1578		IN_MULTI_LOCK();
1579	}
1580	IN_MULTI_UNLOCK();
1581}
1582
1583/*
1584 * Atomically get source filters on a socket for an IPv4 multicast group.
1585 * Called with INP lock held; returns with lock released.
1586 */
1587static int
1588inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1589{
1590	struct __msfilterreq	 msfr;
1591	sockunion_t		*gsa;
1592	struct ifnet		*ifp;
1593	struct ip_moptions	*imo;
1594	struct in_mfilter	*imf;
1595	struct ip_msource	*ims;
1596	struct in_msource	*lims;
1597	struct sockaddr_in	*psin;
1598	struct sockaddr_storage	*ptss;
1599	struct sockaddr_storage	*tss;
1600	int			 error;
1601	size_t			 idx, nsrcs, ncsrcs;
1602
1603	INP_WLOCK_ASSERT(inp);
1604
1605	imo = inp->inp_moptions;
1606	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1607
1608	INP_WUNLOCK(inp);
1609
1610	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1611	    sizeof(struct __msfilterreq));
1612	if (error)
1613		return (error);
1614
1615	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1616		return (EINVAL);
1617
1618	ifp = ifnet_byindex(msfr.msfr_ifindex);
1619	if (ifp == NULL)
1620		return (EINVAL);
1621
1622	INP_WLOCK(inp);
1623
1624	/*
1625	 * Lookup group on the socket.
1626	 */
1627	gsa = (sockunion_t *)&msfr.msfr_group;
1628	idx = imo_match_group(imo, ifp, &gsa->sa);
1629	if (idx == -1 || imo->imo_mfilters == NULL) {
1630		INP_WUNLOCK(inp);
1631		return (EADDRNOTAVAIL);
1632	}
1633	imf = &imo->imo_mfilters[idx];
1634
1635	/*
1636	 * Ignore memberships which are in limbo.
1637	 */
1638	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1639		INP_WUNLOCK(inp);
1640		return (EAGAIN);
1641	}
1642	msfr.msfr_fmode = imf->imf_st[1];
1643
1644	/*
1645	 * If the user specified a buffer, copy out the source filter
1646	 * entries to userland gracefully.
1647	 * We only copy out the number of entries which userland
1648	 * has asked for, but we always tell userland how big the
1649	 * buffer really needs to be.
1650	 */
1651	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1652		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1653	tss = NULL;
1654	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1655		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1656		    M_TEMP, M_NOWAIT | M_ZERO);
1657		if (tss == NULL) {
1658			INP_WUNLOCK(inp);
1659			return (ENOBUFS);
1660		}
1661	}
1662
1663	/*
1664	 * Count number of sources in-mode at t0.
1665	 * If buffer space exists and remains, copy out source entries.
1666	 */
1667	nsrcs = msfr.msfr_nsrcs;
1668	ncsrcs = 0;
1669	ptss = tss;
1670	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1671		lims = (struct in_msource *)ims;
1672		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1673		    lims->imsl_st[0] != imf->imf_st[0])
1674			continue;
1675		++ncsrcs;
1676		if (tss != NULL && nsrcs > 0) {
1677			psin = (struct sockaddr_in *)ptss;
1678			psin->sin_family = AF_INET;
1679			psin->sin_len = sizeof(struct sockaddr_in);
1680			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1681			psin->sin_port = 0;
1682			++ptss;
1683			--nsrcs;
1684		}
1685	}
1686
1687	INP_WUNLOCK(inp);
1688
1689	if (tss != NULL) {
1690		error = copyout(tss, msfr.msfr_srcs,
1691		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1692		free(tss, M_TEMP);
1693		if (error)
1694			return (error);
1695	}
1696
1697	msfr.msfr_nsrcs = ncsrcs;
1698	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1699
1700	return (error);
1701}
1702
1703/*
1704 * Return the IP multicast options in response to user getsockopt().
1705 */
1706int
1707inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1708{
1709	struct ip_mreqn		 mreqn;
1710	struct ip_moptions	*imo;
1711	struct ifnet		*ifp;
1712	struct in_ifaddr	*ia;
1713	int			 error, optval;
1714	u_char			 coptval;
1715
1716	INP_WLOCK(inp);
1717	imo = inp->inp_moptions;
1718	/*
1719	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1720	 * or is a divert socket, reject it.
1721	 */
1722	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1723	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1724	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1725		INP_WUNLOCK(inp);
1726		return (EOPNOTSUPP);
1727	}
1728
1729	error = 0;
1730	switch (sopt->sopt_name) {
1731	case IP_MULTICAST_VIF:
1732		if (imo != NULL)
1733			optval = imo->imo_multicast_vif;
1734		else
1735			optval = -1;
1736		INP_WUNLOCK(inp);
1737		error = sooptcopyout(sopt, &optval, sizeof(int));
1738		break;
1739
1740	case IP_MULTICAST_IF:
1741		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1742		if (imo != NULL) {
1743			ifp = imo->imo_multicast_ifp;
1744			if (!in_nullhost(imo->imo_multicast_addr)) {
1745				mreqn.imr_address = imo->imo_multicast_addr;
1746			} else if (ifp != NULL) {
1747				mreqn.imr_ifindex = ifp->if_index;
1748				IFP_TO_IA(ifp, ia);
1749				if (ia != NULL) {
1750					mreqn.imr_address =
1751					    IA_SIN(ia)->sin_addr;
1752					ifa_free(&ia->ia_ifa);
1753				}
1754			}
1755		}
1756		INP_WUNLOCK(inp);
1757		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1758			error = sooptcopyout(sopt, &mreqn,
1759			    sizeof(struct ip_mreqn));
1760		} else {
1761			error = sooptcopyout(sopt, &mreqn.imr_address,
1762			    sizeof(struct in_addr));
1763		}
1764		break;
1765
1766	case IP_MULTICAST_TTL:
1767		if (imo == 0)
1768			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1769		else
1770			optval = coptval = imo->imo_multicast_ttl;
1771		INP_WUNLOCK(inp);
1772		if (sopt->sopt_valsize == sizeof(u_char))
1773			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1774		else
1775			error = sooptcopyout(sopt, &optval, sizeof(int));
1776		break;
1777
1778	case IP_MULTICAST_LOOP:
1779		if (imo == 0)
1780			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1781		else
1782			optval = coptval = imo->imo_multicast_loop;
1783		INP_WUNLOCK(inp);
1784		if (sopt->sopt_valsize == sizeof(u_char))
1785			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1786		else
1787			error = sooptcopyout(sopt, &optval, sizeof(int));
1788		break;
1789
1790	case IP_MSFILTER:
1791		if (imo == NULL) {
1792			error = EADDRNOTAVAIL;
1793			INP_WUNLOCK(inp);
1794		} else {
1795			error = inp_get_source_filters(inp, sopt);
1796		}
1797		break;
1798
1799	default:
1800		INP_WUNLOCK(inp);
1801		error = ENOPROTOOPT;
1802		break;
1803	}
1804
1805	INP_UNLOCK_ASSERT(inp);
1806
1807	return (error);
1808}
1809
1810/*
1811 * Look up the ifnet to use for a multicast group membership,
1812 * given the IPv4 address of an interface, and the IPv4 group address.
1813 *
1814 * This routine exists to support legacy multicast applications
1815 * which do not understand that multicast memberships are scoped to
1816 * specific physical links in the networking stack, or which need
1817 * to join link-scope groups before IPv4 addresses are configured.
1818 *
1819 * If inp is non-NULL, use this socket's current FIB number for any
1820 * required FIB lookup.
1821 * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1822 * and use its ifp; usually, this points to the default next-hop.
1823 *
1824 * If the FIB lookup fails, attempt to use the first non-loopback
1825 * interface with multicast capability in the system as a
1826 * last resort. The legacy IPv4 ASM API requires that we do
1827 * this in order to allow groups to be joined when the routing
1828 * table has not yet been populated during boot.
1829 *
1830 * Returns NULL if no ifp could be found.
1831 *
1832 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1833 * FUTURE: Implement IPv4 source-address selection.
1834 */
1835static struct ifnet *
1836inp_lookup_mcast_ifp(const struct inpcb *inp,
1837    const struct sockaddr_in *gsin, const struct in_addr ina)
1838{
1839	struct ifnet *ifp;
1840
1841	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1842	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1843	    ("%s: not multicast", __func__));
1844
1845	ifp = NULL;
1846	if (!in_nullhost(ina)) {
1847		INADDR_TO_IFP(ina, ifp);
1848	} else {
1849		struct route ro;
1850
1851		ro.ro_rt = NULL;
1852		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
1853		in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1854		if (ro.ro_rt != NULL) {
1855			ifp = ro.ro_rt->rt_ifp;
1856			KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1857			RTFREE(ro.ro_rt);
1858		} else {
1859			struct in_ifaddr *ia;
1860			struct ifnet *mifp;
1861
1862			mifp = NULL;
1863			IN_IFADDR_RLOCK();
1864			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1865				mifp = ia->ia_ifp;
1866				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1867				     (mifp->if_flags & IFF_MULTICAST)) {
1868					ifp = mifp;
1869					break;
1870				}
1871			}
1872			IN_IFADDR_RUNLOCK();
1873		}
1874	}
1875
1876	return (ifp);
1877}
1878
1879/*
1880 * Join an IPv4 multicast group, possibly with a source.
1881 */
1882static int
1883inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1884{
1885	struct group_source_req		 gsr;
1886	sockunion_t			*gsa, *ssa;
1887	struct ifnet			*ifp;
1888	struct in_mfilter		*imf;
1889	struct ip_moptions		*imo;
1890	struct in_multi			*inm;
1891	struct in_msource		*lims;
1892	size_t				 idx;
1893	int				 error, is_new;
1894
1895	ifp = NULL;
1896	imf = NULL;
1897	lims = NULL;
1898	error = 0;
1899	is_new = 0;
1900
1901	memset(&gsr, 0, sizeof(struct group_source_req));
1902	gsa = (sockunion_t *)&gsr.gsr_group;
1903	gsa->ss.ss_family = AF_UNSPEC;
1904	ssa = (sockunion_t *)&gsr.gsr_source;
1905	ssa->ss.ss_family = AF_UNSPEC;
1906
1907	switch (sopt->sopt_name) {
1908	case IP_ADD_MEMBERSHIP:
1909	case IP_ADD_SOURCE_MEMBERSHIP: {
1910		struct ip_mreq_source	 mreqs;
1911
1912		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1913			error = sooptcopyin(sopt, &mreqs,
1914			    sizeof(struct ip_mreq),
1915			    sizeof(struct ip_mreq));
1916			/*
1917			 * Do argument switcharoo from ip_mreq into
1918			 * ip_mreq_source to avoid using two instances.
1919			 */
1920			mreqs.imr_interface = mreqs.imr_sourceaddr;
1921			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1922		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1923			error = sooptcopyin(sopt, &mreqs,
1924			    sizeof(struct ip_mreq_source),
1925			    sizeof(struct ip_mreq_source));
1926		}
1927		if (error)
1928			return (error);
1929
1930		gsa->sin.sin_family = AF_INET;
1931		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1932		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1933
1934		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1935			ssa->sin.sin_family = AF_INET;
1936			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1937			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1938		}
1939
1940		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1941			return (EINVAL);
1942
1943		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1944		    mreqs.imr_interface);
1945		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1946		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1947		break;
1948	}
1949
1950	case MCAST_JOIN_GROUP:
1951	case MCAST_JOIN_SOURCE_GROUP:
1952		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1953			error = sooptcopyin(sopt, &gsr,
1954			    sizeof(struct group_req),
1955			    sizeof(struct group_req));
1956		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1957			error = sooptcopyin(sopt, &gsr,
1958			    sizeof(struct group_source_req),
1959			    sizeof(struct group_source_req));
1960		}
1961		if (error)
1962			return (error);
1963
1964		if (gsa->sin.sin_family != AF_INET ||
1965		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1966			return (EINVAL);
1967
1968		/*
1969		 * Overwrite the port field if present, as the sockaddr
1970		 * being copied in may be matched with a binary comparison.
1971		 */
1972		gsa->sin.sin_port = 0;
1973		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1974			if (ssa->sin.sin_family != AF_INET ||
1975			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1976				return (EINVAL);
1977			ssa->sin.sin_port = 0;
1978		}
1979
1980		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1981			return (EINVAL);
1982
1983		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1984			return (EADDRNOTAVAIL);
1985		ifp = ifnet_byindex(gsr.gsr_interface);
1986		break;
1987
1988	default:
1989		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1990		    __func__, sopt->sopt_name);
1991		return (EOPNOTSUPP);
1992		break;
1993	}
1994
1995	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1996		return (EADDRNOTAVAIL);
1997
1998	imo = inp_findmoptions(inp);
1999	idx = imo_match_group(imo, ifp, &gsa->sa);
2000	if (idx == -1) {
2001		is_new = 1;
2002	} else {
2003		inm = imo->imo_membership[idx];
2004		imf = &imo->imo_mfilters[idx];
2005		if (ssa->ss.ss_family != AF_UNSPEC) {
2006			/*
2007			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2008			 * is an error. On an existing inclusive membership,
2009			 * it just adds the source to the filter list.
2010			 */
2011			if (imf->imf_st[1] != MCAST_INCLUDE) {
2012				error = EINVAL;
2013				goto out_inp_locked;
2014			}
2015			/*
2016			 * Throw out duplicates.
2017			 *
2018			 * XXX FIXME: This makes a naive assumption that
2019			 * even if entries exist for *ssa in this imf,
2020			 * they will be rejected as dupes, even if they
2021			 * are not valid in the current mode (in-mode).
2022			 *
2023			 * in_msource is transactioned just as for anything
2024			 * else in SSM -- but note naive use of inm_graft()
2025			 * below for allocating new filter entries.
2026			 *
2027			 * This is only an issue if someone mixes the
2028			 * full-state SSM API with the delta-based API,
2029			 * which is discouraged in the relevant RFCs.
2030			 */
2031			lims = imo_match_source(imo, idx, &ssa->sa);
2032			if (lims != NULL /*&&
2033			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2034				error = EADDRNOTAVAIL;
2035				goto out_inp_locked;
2036			}
2037		} else {
2038			/*
2039			 * MCAST_JOIN_GROUP on an existing exclusive
2040			 * membership is an error; return EADDRINUSE
2041			 * to preserve 4.4BSD API idempotence, and
2042			 * avoid tedious detour to code below.
2043			 * NOTE: This is bending RFC 3678 a bit.
2044			 *
2045			 * On an existing inclusive membership, this is also
2046			 * an error; if you want to change filter mode,
2047			 * you must use the userland API setsourcefilter().
2048			 * XXX We don't reject this for imf in UNDEFINED
2049			 * state at t1, because allocation of a filter
2050			 * is atomic with allocation of a membership.
2051			 */
2052			error = EINVAL;
2053			if (imf->imf_st[1] == MCAST_EXCLUDE)
2054				error = EADDRINUSE;
2055			goto out_inp_locked;
2056		}
2057	}
2058
2059	/*
2060	 * Begin state merge transaction at socket layer.
2061	 */
2062	INP_WLOCK_ASSERT(inp);
2063
2064	if (is_new) {
2065		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2066			error = imo_grow(imo);
2067			if (error)
2068				goto out_inp_locked;
2069		}
2070		/*
2071		 * Allocate the new slot upfront so we can deal with
2072		 * grafting the new source filter in same code path
2073		 * as for join-source on existing membership.
2074		 */
2075		idx = imo->imo_num_memberships;
2076		imo->imo_membership[idx] = NULL;
2077		imo->imo_num_memberships++;
2078		KASSERT(imo->imo_mfilters != NULL,
2079		    ("%s: imf_mfilters vector was not allocated", __func__));
2080		imf = &imo->imo_mfilters[idx];
2081		KASSERT(RB_EMPTY(&imf->imf_sources),
2082		    ("%s: imf_sources not empty", __func__));
2083	}
2084
2085	/*
2086	 * Graft new source into filter list for this inpcb's
2087	 * membership of the group. The in_multi may not have
2088	 * been allocated yet if this is a new membership, however,
2089	 * the in_mfilter slot will be allocated and must be initialized.
2090	 *
2091	 * Note: Grafting of exclusive mode filters doesn't happen
2092	 * in this path.
2093	 * XXX: Should check for non-NULL lims (node exists but may
2094	 * not be in-mode) for interop with full-state API.
2095	 */
2096	if (ssa->ss.ss_family != AF_UNSPEC) {
2097		/* Membership starts in IN mode */
2098		if (is_new) {
2099			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2100			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2101		} else {
2102			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2103		}
2104		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2105		if (lims == NULL) {
2106			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2107			    __func__);
2108			error = ENOMEM;
2109			goto out_imo_free;
2110		}
2111	} else {
2112		/* No address specified; Membership starts in EX mode */
2113		if (is_new) {
2114			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2115			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2116		}
2117	}
2118
2119	/*
2120	 * Begin state merge transaction at IGMP layer.
2121	 */
2122	IN_MULTI_LOCK();
2123
2124	if (is_new) {
2125		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2126		    &inm);
2127		if (error)
2128			goto out_imo_free;
2129		imo->imo_membership[idx] = inm;
2130	} else {
2131		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2132		error = inm_merge(inm, imf);
2133		if (error) {
2134			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2135			    __func__);
2136			goto out_imf_rollback;
2137		}
2138		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2139		error = igmp_change_state(inm);
2140		if (error) {
2141			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2142			    __func__);
2143			goto out_imf_rollback;
2144		}
2145	}
2146
2147	IN_MULTI_UNLOCK();
2148
2149out_imf_rollback:
2150	INP_WLOCK_ASSERT(inp);
2151	if (error) {
2152		imf_rollback(imf);
2153		if (is_new)
2154			imf_purge(imf);
2155		else
2156			imf_reap(imf);
2157	} else {
2158		imf_commit(imf);
2159	}
2160
2161out_imo_free:
2162	if (error && is_new) {
2163		imo->imo_membership[idx] = NULL;
2164		--imo->imo_num_memberships;
2165	}
2166
2167out_inp_locked:
2168	INP_WUNLOCK(inp);
2169	return (error);
2170}
2171
2172/*
2173 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2174 */
2175static int
2176inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2177{
2178	struct group_source_req		 gsr;
2179	struct ip_mreq_source		 mreqs;
2180	sockunion_t			*gsa, *ssa;
2181	struct ifnet			*ifp;
2182	struct in_mfilter		*imf;
2183	struct ip_moptions		*imo;
2184	struct in_msource		*ims;
2185	struct in_multi			*inm;
2186	size_t				 idx;
2187	int				 error, is_final;
2188
2189	ifp = NULL;
2190	error = 0;
2191	is_final = 1;
2192
2193	memset(&gsr, 0, sizeof(struct group_source_req));
2194	gsa = (sockunion_t *)&gsr.gsr_group;
2195	gsa->ss.ss_family = AF_UNSPEC;
2196	ssa = (sockunion_t *)&gsr.gsr_source;
2197	ssa->ss.ss_family = AF_UNSPEC;
2198
2199	switch (sopt->sopt_name) {
2200	case IP_DROP_MEMBERSHIP:
2201	case IP_DROP_SOURCE_MEMBERSHIP:
2202		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2203			error = sooptcopyin(sopt, &mreqs,
2204			    sizeof(struct ip_mreq),
2205			    sizeof(struct ip_mreq));
2206			/*
2207			 * Swap interface and sourceaddr arguments,
2208			 * as ip_mreq and ip_mreq_source are laid
2209			 * out differently.
2210			 */
2211			mreqs.imr_interface = mreqs.imr_sourceaddr;
2212			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2213		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2214			error = sooptcopyin(sopt, &mreqs,
2215			    sizeof(struct ip_mreq_source),
2216			    sizeof(struct ip_mreq_source));
2217		}
2218		if (error)
2219			return (error);
2220
2221		gsa->sin.sin_family = AF_INET;
2222		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2223		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2224
2225		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2226			ssa->sin.sin_family = AF_INET;
2227			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2228			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2229		}
2230
2231		/*
2232		 * Attempt to look up hinted ifp from interface address.
2233		 * Fallthrough with null ifp iff lookup fails, to
2234		 * preserve 4.4BSD mcast API idempotence.
2235		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2236		 * using an IPv4 address as a key is racy.
2237		 */
2238		if (!in_nullhost(mreqs.imr_interface))
2239			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2240
2241		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
2242		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
2243
2244		break;
2245
2246	case MCAST_LEAVE_GROUP:
2247	case MCAST_LEAVE_SOURCE_GROUP:
2248		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2249			error = sooptcopyin(sopt, &gsr,
2250			    sizeof(struct group_req),
2251			    sizeof(struct group_req));
2252		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2253			error = sooptcopyin(sopt, &gsr,
2254			    sizeof(struct group_source_req),
2255			    sizeof(struct group_source_req));
2256		}
2257		if (error)
2258			return (error);
2259
2260		if (gsa->sin.sin_family != AF_INET ||
2261		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2262			return (EINVAL);
2263
2264		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2265			if (ssa->sin.sin_family != AF_INET ||
2266			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2267				return (EINVAL);
2268		}
2269
2270		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2271			return (EADDRNOTAVAIL);
2272
2273		ifp = ifnet_byindex(gsr.gsr_interface);
2274
2275		if (ifp == NULL)
2276			return (EADDRNOTAVAIL);
2277		break;
2278
2279	default:
2280		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2281		    __func__, sopt->sopt_name);
2282		return (EOPNOTSUPP);
2283		break;
2284	}
2285
2286	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2287		return (EINVAL);
2288
2289	/*
2290	 * Find the membership in the membership array.
2291	 */
2292	imo = inp_findmoptions(inp);
2293	idx = imo_match_group(imo, ifp, &gsa->sa);
2294	if (idx == -1) {
2295		error = EADDRNOTAVAIL;
2296		goto out_inp_locked;
2297	}
2298	inm = imo->imo_membership[idx];
2299	imf = &imo->imo_mfilters[idx];
2300
2301	if (ssa->ss.ss_family != AF_UNSPEC)
2302		is_final = 0;
2303
2304	/*
2305	 * Begin state merge transaction at socket layer.
2306	 */
2307	INP_WLOCK_ASSERT(inp);
2308
2309	/*
2310	 * If we were instructed only to leave a given source, do so.
2311	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2312	 */
2313	if (is_final) {
2314		imf_leave(imf);
2315	} else {
2316		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2317			error = EADDRNOTAVAIL;
2318			goto out_inp_locked;
2319		}
2320		ims = imo_match_source(imo, idx, &ssa->sa);
2321		if (ims == NULL) {
2322			CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
2323			    inet_ntoa(ssa->sin.sin_addr), "not ");
2324			error = EADDRNOTAVAIL;
2325			goto out_inp_locked;
2326		}
2327		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2328		error = imf_prune(imf, &ssa->sin);
2329		if (error) {
2330			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2331			    __func__);
2332			goto out_inp_locked;
2333		}
2334	}
2335
2336	/*
2337	 * Begin state merge transaction at IGMP layer.
2338	 */
2339	IN_MULTI_LOCK();
2340
2341	if (is_final) {
2342		/*
2343		 * Give up the multicast address record to which
2344		 * the membership points.
2345		 */
2346		(void)in_leavegroup_locked(inm, imf);
2347	} else {
2348		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2349		error = inm_merge(inm, imf);
2350		if (error) {
2351			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2352			    __func__);
2353			goto out_imf_rollback;
2354		}
2355
2356		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2357		error = igmp_change_state(inm);
2358		if (error) {
2359			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2360			    __func__);
2361		}
2362	}
2363
2364	IN_MULTI_UNLOCK();
2365
2366out_imf_rollback:
2367	if (error)
2368		imf_rollback(imf);
2369	else
2370		imf_commit(imf);
2371
2372	imf_reap(imf);
2373
2374	if (is_final) {
2375		/* Remove the gap in the membership and filter array. */
2376		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2377			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2378			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2379		}
2380		imo->imo_num_memberships--;
2381	}
2382
2383out_inp_locked:
2384	INP_WUNLOCK(inp);
2385	return (error);
2386}
2387
2388/*
2389 * Select the interface for transmitting IPv4 multicast datagrams.
2390 *
2391 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2392 * may be passed to this socket option. An address of INADDR_ANY or an
2393 * interface index of 0 is used to remove a previous selection.
2394 * When no interface is selected, one is chosen for every send.
2395 */
2396static int
2397inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2398{
2399	struct in_addr		 addr;
2400	struct ip_mreqn		 mreqn;
2401	struct ifnet		*ifp;
2402	struct ip_moptions	*imo;
2403	int			 error;
2404
2405	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2406		/*
2407		 * An interface index was specified using the
2408		 * Linux-derived ip_mreqn structure.
2409		 */
2410		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2411		    sizeof(struct ip_mreqn));
2412		if (error)
2413			return (error);
2414
2415		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2416			return (EINVAL);
2417
2418		if (mreqn.imr_ifindex == 0) {
2419			ifp = NULL;
2420		} else {
2421			ifp = ifnet_byindex(mreqn.imr_ifindex);
2422			if (ifp == NULL)
2423				return (EADDRNOTAVAIL);
2424		}
2425	} else {
2426		/*
2427		 * An interface was specified by IPv4 address.
2428		 * This is the traditional BSD usage.
2429		 */
2430		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2431		    sizeof(struct in_addr));
2432		if (error)
2433			return (error);
2434		if (in_nullhost(addr)) {
2435			ifp = NULL;
2436		} else {
2437			INADDR_TO_IFP(addr, ifp);
2438			if (ifp == NULL)
2439				return (EADDRNOTAVAIL);
2440		}
2441		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
2442		    inet_ntoa(addr));
2443	}
2444
2445	/* Reject interfaces which do not support multicast. */
2446	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2447		return (EOPNOTSUPP);
2448
2449	imo = inp_findmoptions(inp);
2450	imo->imo_multicast_ifp = ifp;
2451	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2452	INP_WUNLOCK(inp);
2453
2454	return (0);
2455}
2456
2457/*
2458 * Atomically set source filters on a socket for an IPv4 multicast group.
2459 *
2460 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2461 */
2462static int
2463inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2464{
2465	struct __msfilterreq	 msfr;
2466	sockunion_t		*gsa;
2467	struct ifnet		*ifp;
2468	struct in_mfilter	*imf;
2469	struct ip_moptions	*imo;
2470	struct in_multi		*inm;
2471	size_t			 idx;
2472	int			 error;
2473
2474	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2475	    sizeof(struct __msfilterreq));
2476	if (error)
2477		return (error);
2478
2479	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2480		return (ENOBUFS);
2481
2482	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2483	     msfr.msfr_fmode != MCAST_INCLUDE))
2484		return (EINVAL);
2485
2486	if (msfr.msfr_group.ss_family != AF_INET ||
2487	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2488		return (EINVAL);
2489
2490	gsa = (sockunion_t *)&msfr.msfr_group;
2491	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2492		return (EINVAL);
2493
2494	gsa->sin.sin_port = 0;	/* ignore port */
2495
2496	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2497		return (EADDRNOTAVAIL);
2498
2499	ifp = ifnet_byindex(msfr.msfr_ifindex);
2500	if (ifp == NULL)
2501		return (EADDRNOTAVAIL);
2502
2503	/*
2504	 * Take the INP write lock.
2505	 * Check if this socket is a member of this group.
2506	 */
2507	imo = inp_findmoptions(inp);
2508	idx = imo_match_group(imo, ifp, &gsa->sa);
2509	if (idx == -1 || imo->imo_mfilters == NULL) {
2510		error = EADDRNOTAVAIL;
2511		goto out_inp_locked;
2512	}
2513	inm = imo->imo_membership[idx];
2514	imf = &imo->imo_mfilters[idx];
2515
2516	/*
2517	 * Begin state merge transaction at socket layer.
2518	 */
2519	INP_WLOCK_ASSERT(inp);
2520
2521	imf->imf_st[1] = msfr.msfr_fmode;
2522
2523	/*
2524	 * Apply any new source filters, if present.
2525	 * Make a copy of the user-space source vector so
2526	 * that we may copy them with a single copyin. This
2527	 * allows us to deal with page faults up-front.
2528	 */
2529	if (msfr.msfr_nsrcs > 0) {
2530		struct in_msource	*lims;
2531		struct sockaddr_in	*psin;
2532		struct sockaddr_storage	*kss, *pkss;
2533		int			 i;
2534
2535		INP_WUNLOCK(inp);
2536
2537		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2538		    __func__, (unsigned long)msfr.msfr_nsrcs);
2539		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2540		    M_TEMP, M_WAITOK);
2541		error = copyin(msfr.msfr_srcs, kss,
2542		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2543		if (error) {
2544			free(kss, M_TEMP);
2545			return (error);
2546		}
2547
2548		INP_WLOCK(inp);
2549
2550		/*
2551		 * Mark all source filters as UNDEFINED at t1.
2552		 * Restore new group filter mode, as imf_leave()
2553		 * will set it to INCLUDE.
2554		 */
2555		imf_leave(imf);
2556		imf->imf_st[1] = msfr.msfr_fmode;
2557
2558		/*
2559		 * Update socket layer filters at t1, lazy-allocating
2560		 * new entries. This saves a bunch of memory at the
2561		 * cost of one RB_FIND() per source entry; duplicate
2562		 * entries in the msfr_nsrcs vector are ignored.
2563		 * If we encounter an error, rollback transaction.
2564		 *
2565		 * XXX This too could be replaced with a set-symmetric
2566		 * difference like loop to avoid walking from root
2567		 * every time, as the key space is common.
2568		 */
2569		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2570			psin = (struct sockaddr_in *)pkss;
2571			if (psin->sin_family != AF_INET) {
2572				error = EAFNOSUPPORT;
2573				break;
2574			}
2575			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2576				error = EINVAL;
2577				break;
2578			}
2579			error = imf_get_source(imf, psin, &lims);
2580			if (error)
2581				break;
2582			lims->imsl_st[1] = imf->imf_st[1];
2583		}
2584		free(kss, M_TEMP);
2585	}
2586
2587	if (error)
2588		goto out_imf_rollback;
2589
2590	INP_WLOCK_ASSERT(inp);
2591	IN_MULTI_LOCK();
2592
2593	/*
2594	 * Begin state merge transaction at IGMP layer.
2595	 */
2596	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2597	error = inm_merge(inm, imf);
2598	if (error) {
2599		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2600		goto out_imf_rollback;
2601	}
2602
2603	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2604	error = igmp_change_state(inm);
2605	if (error)
2606		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2607
2608	IN_MULTI_UNLOCK();
2609
2610out_imf_rollback:
2611	if (error)
2612		imf_rollback(imf);
2613	else
2614		imf_commit(imf);
2615
2616	imf_reap(imf);
2617
2618out_inp_locked:
2619	INP_WUNLOCK(inp);
2620	return (error);
2621}
2622
2623/*
2624 * Set the IP multicast options in response to user setsockopt().
2625 *
2626 * Many of the socket options handled in this function duplicate the
2627 * functionality of socket options in the regular unicast API. However,
2628 * it is not possible to merge the duplicate code, because the idempotence
2629 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2630 * the effects of these options must be treated as separate and distinct.
2631 *
2632 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2633 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2634 * is refactored to no longer use vifs.
2635 */
2636int
2637inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2638{
2639	struct ip_moptions	*imo;
2640	int			 error;
2641
2642	error = 0;
2643
2644	/*
2645	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2646	 * or is a divert socket, reject it.
2647	 */
2648	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2649	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2650	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2651		return (EOPNOTSUPP);
2652
2653	switch (sopt->sopt_name) {
2654	case IP_MULTICAST_VIF: {
2655		int vifi;
2656		/*
2657		 * Select a multicast VIF for transmission.
2658		 * Only useful if multicast forwarding is active.
2659		 */
2660		if (legal_vif_num == NULL) {
2661			error = EOPNOTSUPP;
2662			break;
2663		}
2664		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2665		if (error)
2666			break;
2667		if (!legal_vif_num(vifi) && (vifi != -1)) {
2668			error = EINVAL;
2669			break;
2670		}
2671		imo = inp_findmoptions(inp);
2672		imo->imo_multicast_vif = vifi;
2673		INP_WUNLOCK(inp);
2674		break;
2675	}
2676
2677	case IP_MULTICAST_IF:
2678		error = inp_set_multicast_if(inp, sopt);
2679		break;
2680
2681	case IP_MULTICAST_TTL: {
2682		u_char ttl;
2683
2684		/*
2685		 * Set the IP time-to-live for outgoing multicast packets.
2686		 * The original multicast API required a char argument,
2687		 * which is inconsistent with the rest of the socket API.
2688		 * We allow either a char or an int.
2689		 */
2690		if (sopt->sopt_valsize == sizeof(u_char)) {
2691			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2692			    sizeof(u_char));
2693			if (error)
2694				break;
2695		} else {
2696			u_int ittl;
2697
2698			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2699			    sizeof(u_int));
2700			if (error)
2701				break;
2702			if (ittl > 255) {
2703				error = EINVAL;
2704				break;
2705			}
2706			ttl = (u_char)ittl;
2707		}
2708		imo = inp_findmoptions(inp);
2709		imo->imo_multicast_ttl = ttl;
2710		INP_WUNLOCK(inp);
2711		break;
2712	}
2713
2714	case IP_MULTICAST_LOOP: {
2715		u_char loop;
2716
2717		/*
2718		 * Set the loopback flag for outgoing multicast packets.
2719		 * Must be zero or one.  The original multicast API required a
2720		 * char argument, which is inconsistent with the rest
2721		 * of the socket API.  We allow either a char or an int.
2722		 */
2723		if (sopt->sopt_valsize == sizeof(u_char)) {
2724			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2725			    sizeof(u_char));
2726			if (error)
2727				break;
2728		} else {
2729			u_int iloop;
2730
2731			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2732					    sizeof(u_int));
2733			if (error)
2734				break;
2735			loop = (u_char)iloop;
2736		}
2737		imo = inp_findmoptions(inp);
2738		imo->imo_multicast_loop = !!loop;
2739		INP_WUNLOCK(inp);
2740		break;
2741	}
2742
2743	case IP_ADD_MEMBERSHIP:
2744	case IP_ADD_SOURCE_MEMBERSHIP:
2745	case MCAST_JOIN_GROUP:
2746	case MCAST_JOIN_SOURCE_GROUP:
2747		error = inp_join_group(inp, sopt);
2748		break;
2749
2750	case IP_DROP_MEMBERSHIP:
2751	case IP_DROP_SOURCE_MEMBERSHIP:
2752	case MCAST_LEAVE_GROUP:
2753	case MCAST_LEAVE_SOURCE_GROUP:
2754		error = inp_leave_group(inp, sopt);
2755		break;
2756
2757	case IP_BLOCK_SOURCE:
2758	case IP_UNBLOCK_SOURCE:
2759	case MCAST_BLOCK_SOURCE:
2760	case MCAST_UNBLOCK_SOURCE:
2761		error = inp_block_unblock_source(inp, sopt);
2762		break;
2763
2764	case IP_MSFILTER:
2765		error = inp_set_source_filters(inp, sopt);
2766		break;
2767
2768	default:
2769		error = EOPNOTSUPP;
2770		break;
2771	}
2772
2773	INP_UNLOCK_ASSERT(inp);
2774
2775	return (error);
2776}
2777
2778/*
2779 * Expose IGMP's multicast filter mode and source list(s) to userland,
2780 * keyed by (ifindex, group).
2781 * The filter mode is written out as a uint32_t, followed by
2782 * 0..n of struct in_addr.
2783 * For use by ifmcstat(8).
2784 * SMPng: NOTE: unlocked read of ifindex space.
2785 */
2786static int
2787sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2788{
2789	struct in_addr			 src, group;
2790	struct ifnet			*ifp;
2791	struct ifmultiaddr		*ifma;
2792	struct in_multi			*inm;
2793	struct ip_msource		*ims;
2794	int				*name;
2795	int				 retval;
2796	u_int				 namelen;
2797	uint32_t			 fmode, ifindex;
2798
2799	name = (int *)arg1;
2800	namelen = arg2;
2801
2802	if (req->newptr != NULL)
2803		return (EPERM);
2804
2805	if (namelen != 2)
2806		return (EINVAL);
2807
2808	ifindex = name[0];
2809	if (ifindex <= 0 || ifindex > V_if_index) {
2810		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2811		    __func__, ifindex);
2812		return (ENOENT);
2813	}
2814
2815	group.s_addr = name[1];
2816	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2817		CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
2818		    __func__, inet_ntoa(group));
2819		return (EINVAL);
2820	}
2821
2822	ifp = ifnet_byindex(ifindex);
2823	if (ifp == NULL) {
2824		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2825		    __func__, ifindex);
2826		return (ENOENT);
2827	}
2828
2829	retval = sysctl_wire_old_buffer(req,
2830	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2831	if (retval)
2832		return (retval);
2833
2834	IN_MULTI_LOCK();
2835
2836	IF_ADDR_RLOCK(ifp);
2837	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2838		if (ifma->ifma_addr->sa_family != AF_INET ||
2839		    ifma->ifma_protospec == NULL)
2840			continue;
2841		inm = (struct in_multi *)ifma->ifma_protospec;
2842		if (!in_hosteq(inm->inm_addr, group))
2843			continue;
2844		fmode = inm->inm_st[1].iss_fmode;
2845		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2846		if (retval != 0)
2847			break;
2848		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2849#ifdef KTR
2850			struct in_addr ina;
2851			ina.s_addr = htonl(ims->ims_haddr);
2852			CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
2853			    inet_ntoa(ina));
2854#endif
2855			/*
2856			 * Only copy-out sources which are in-mode.
2857			 */
2858			if (fmode != ims_get_mode(inm, ims, 1)) {
2859				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2860				    __func__);
2861				continue;
2862			}
2863			src.s_addr = htonl(ims->ims_haddr);
2864			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2865			if (retval != 0)
2866				break;
2867		}
2868	}
2869	IF_ADDR_RUNLOCK(ifp);
2870
2871	IN_MULTI_UNLOCK();
2872
2873	return (retval);
2874}
2875
2876#ifdef KTR
2877
2878static const char *inm_modestrs[] = { "un", "in", "ex" };
2879
2880static const char *
2881inm_mode_str(const int mode)
2882{
2883
2884	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2885		return (inm_modestrs[mode]);
2886	return ("??");
2887}
2888
2889static const char *inm_statestrs[] = {
2890	"not-member",
2891	"silent",
2892	"idle",
2893	"lazy",
2894	"sleeping",
2895	"awakening",
2896	"query-pending",
2897	"sg-query-pending",
2898	"leaving"
2899};
2900
2901static const char *
2902inm_state_str(const int state)
2903{
2904
2905	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2906		return (inm_statestrs[state]);
2907	return ("??");
2908}
2909
2910/*
2911 * Dump an in_multi structure to the console.
2912 */
2913void
2914inm_print(const struct in_multi *inm)
2915{
2916	int t;
2917
2918	if ((ktr_mask & KTR_IGMPV3) == 0)
2919		return;
2920
2921	printf("%s: --- begin inm %p ---\n", __func__, inm);
2922	printf("addr %s ifp %p(%s) ifma %p\n",
2923	    inet_ntoa(inm->inm_addr),
2924	    inm->inm_ifp,
2925	    inm->inm_ifp->if_xname,
2926	    inm->inm_ifma);
2927	printf("timer %u state %s refcount %u scq.len %u\n",
2928	    inm->inm_timer,
2929	    inm_state_str(inm->inm_state),
2930	    inm->inm_refcount,
2931	    inm->inm_scq.ifq_len);
2932	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2933	    inm->inm_igi,
2934	    inm->inm_nsrc,
2935	    inm->inm_sctimer,
2936	    inm->inm_scrv);
2937	for (t = 0; t < 2; t++) {
2938		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2939		    inm_mode_str(inm->inm_st[t].iss_fmode),
2940		    inm->inm_st[t].iss_asm,
2941		    inm->inm_st[t].iss_ex,
2942		    inm->inm_st[t].iss_in,
2943		    inm->inm_st[t].iss_rec);
2944	}
2945	printf("%s: --- end inm %p ---\n", __func__, inm);
2946}
2947
2948#else /* !KTR */
2949
2950void
2951inm_print(const struct in_multi *inm)
2952{
2953
2954}
2955
2956#endif /* KTR */
2957
2958RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
2959