in_mcast.c revision 197314
1/*-
2 * Copyright (c) 2007-2009 Bruce Simpson.
3 * Copyright (c) 2005 Robert N. M. Watson.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote
15 *    products derived from this software without specific prior written
16 *    permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31/*
32 * IPv4 multicast socket, group, and socket option processing module.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/netinet/in_mcast.c 197314 2009-09-18 15:12:31Z bms $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/protosw.h>
44#include <sys/socket.h>
45#include <sys/socketvar.h>
46#include <sys/protosw.h>
47#include <sys/sysctl.h>
48#include <sys/ktr.h>
49#include <sys/tree.h>
50
51#include <net/if.h>
52#include <net/if_dl.h>
53#include <net/route.h>
54#include <net/vnet.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/in_pcb.h>
59#include <netinet/in_var.h>
60#include <netinet/ip_var.h>
61#include <netinet/igmp_var.h>
62
63#ifndef KTR_IGMPV3
64#define KTR_IGMPV3 KTR_INET
65#endif
66
67#ifndef __SOCKUNION_DECLARED
68union sockunion {
69	struct sockaddr_storage	ss;
70	struct sockaddr		sa;
71	struct sockaddr_dl	sdl;
72	struct sockaddr_in	sin;
73};
74typedef union sockunion sockunion_t;
75#define __SOCKUNION_DECLARED
76#endif /* __SOCKUNION_DECLARED */
77
78static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
79    "IPv4 multicast PCB-layer source filter");
80static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
81static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
82static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
83    "IPv4 multicast IGMP-layer source filter");
84
85/*
86 * Locking:
87 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
88 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
89 *   it can be taken by code in net/if.c also.
90 * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
91 *
92 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
93 * any need for in_multi itself to be virtualized -- it is bound to an ifp
94 * anyway no matter what happens.
95 */
96struct mtx in_multi_mtx;
97MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
98
99/*
100 * Functions with non-static linkage defined in this file should be
101 * declared in in_var.h:
102 *  imo_multi_filter()
103 *  in_addmulti()
104 *  in_delmulti()
105 *  in_joingroup()
106 *  in_joingroup_locked()
107 *  in_leavegroup()
108 *  in_leavegroup_locked()
109 * and ip_var.h:
110 *  inp_freemoptions()
111 *  inp_getmoptions()
112 *  inp_setmoptions()
113 *
114 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
115 * and in_delmulti().
116 */
117static void	imf_commit(struct in_mfilter *);
118static int	imf_get_source(struct in_mfilter *imf,
119		    const struct sockaddr_in *psin,
120		    struct in_msource **);
121static struct in_msource *
122		imf_graft(struct in_mfilter *, const uint8_t,
123		    const struct sockaddr_in *);
124static void	imf_leave(struct in_mfilter *);
125static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
126static void	imf_purge(struct in_mfilter *);
127static void	imf_rollback(struct in_mfilter *);
128static void	imf_reap(struct in_mfilter *);
129static int	imo_grow(struct ip_moptions *);
130static size_t	imo_match_group(const struct ip_moptions *,
131		    const struct ifnet *, const struct sockaddr *);
132static struct in_msource *
133		imo_match_source(const struct ip_moptions *, const size_t,
134		    const struct sockaddr *);
135static void	ims_merge(struct ip_msource *ims,
136		    const struct in_msource *lims, const int rollback);
137static int	in_getmulti(struct ifnet *, const struct in_addr *,
138		    struct in_multi **);
139static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
140		    const int noalloc, struct ip_msource **pims);
141static int	inm_is_ifp_detached(const struct in_multi *);
142static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
143static void	inm_purge(struct in_multi *);
144static void	inm_reap(struct in_multi *);
145static struct ip_moptions *
146		inp_findmoptions(struct inpcb *);
147static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
148static int	inp_join_group(struct inpcb *, struct sockopt *);
149static int	inp_leave_group(struct inpcb *, struct sockopt *);
150static struct ifnet *
151		inp_lookup_mcast_ifp(const struct inpcb *,
152		    const struct sockaddr_in *, const struct in_addr);
153static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
154static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
155static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
156static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
157
158SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv4 multicast");
159
160static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
161SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
162    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
163    "Max source filters per group");
164TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
165
166static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
167SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
168    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
169    "Max source filters per socket");
170TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
171
172int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
173SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
174    &in_mcast_loop, 0, "Loopback multicast datagrams by default");
175TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
176
177SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
178    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
179    "Per-interface stack-wide source filters");
180
181/*
182 * Inline function which wraps assertions for a valid ifp.
183 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
184 * is detached.
185 */
186static int __inline
187inm_is_ifp_detached(const struct in_multi *inm)
188{
189	struct ifnet *ifp;
190
191	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
192	ifp = inm->inm_ifma->ifma_ifp;
193	if (ifp != NULL) {
194		/*
195		 * Sanity check that netinet's notion of ifp is the
196		 * same as net's.
197		 */
198		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
199	}
200
201	return (ifp == NULL);
202}
203
204/*
205 * Initialize an in_mfilter structure to a known state at t0, t1
206 * with an empty source filter list.
207 */
208static __inline void
209imf_init(struct in_mfilter *imf, const int st0, const int st1)
210{
211	memset(imf, 0, sizeof(struct in_mfilter));
212	RB_INIT(&imf->imf_sources);
213	imf->imf_st[0] = st0;
214	imf->imf_st[1] = st1;
215}
216
217/*
218 * Resize the ip_moptions vector to the next power-of-two minus 1.
219 * May be called with locks held; do not sleep.
220 */
221static int
222imo_grow(struct ip_moptions *imo)
223{
224	struct in_multi		**nmships;
225	struct in_multi		**omships;
226	struct in_mfilter	 *nmfilters;
227	struct in_mfilter	 *omfilters;
228	size_t			  idx;
229	size_t			  newmax;
230	size_t			  oldmax;
231
232	nmships = NULL;
233	nmfilters = NULL;
234	omships = imo->imo_membership;
235	omfilters = imo->imo_mfilters;
236	oldmax = imo->imo_max_memberships;
237	newmax = ((oldmax + 1) * 2) - 1;
238
239	if (newmax <= IP_MAX_MEMBERSHIPS) {
240		nmships = (struct in_multi **)realloc(omships,
241		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
242		nmfilters = (struct in_mfilter *)realloc(omfilters,
243		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
244		if (nmships != NULL && nmfilters != NULL) {
245			/* Initialize newly allocated source filter heads. */
246			for (idx = oldmax; idx < newmax; idx++) {
247				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
248				    MCAST_EXCLUDE);
249			}
250			imo->imo_max_memberships = newmax;
251			imo->imo_membership = nmships;
252			imo->imo_mfilters = nmfilters;
253		}
254	}
255
256	if (nmships == NULL || nmfilters == NULL) {
257		if (nmships != NULL)
258			free(nmships, M_IPMOPTS);
259		if (nmfilters != NULL)
260			free(nmfilters, M_INMFILTER);
261		return (ETOOMANYREFS);
262	}
263
264	return (0);
265}
266
267/*
268 * Find an IPv4 multicast group entry for this ip_moptions instance
269 * which matches the specified group, and optionally an interface.
270 * Return its index into the array, or -1 if not found.
271 */
272static size_t
273imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
274    const struct sockaddr *group)
275{
276	const struct sockaddr_in *gsin;
277	struct in_multi	**pinm;
278	int		  idx;
279	int		  nmships;
280
281	gsin = (const struct sockaddr_in *)group;
282
283	/* The imo_membership array may be lazy allocated. */
284	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
285		return (-1);
286
287	nmships = imo->imo_num_memberships;
288	pinm = &imo->imo_membership[0];
289	for (idx = 0; idx < nmships; idx++, pinm++) {
290		if (*pinm == NULL)
291			continue;
292		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
293		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
294			break;
295		}
296	}
297	if (idx >= nmships)
298		idx = -1;
299
300	return (idx);
301}
302
303/*
304 * Find an IPv4 multicast source entry for this imo which matches
305 * the given group index for this socket, and source address.
306 *
307 * NOTE: This does not check if the entry is in-mode, merely if
308 * it exists, which may not be the desired behaviour.
309 */
310static struct in_msource *
311imo_match_source(const struct ip_moptions *imo, const size_t gidx,
312    const struct sockaddr *src)
313{
314	struct ip_msource	 find;
315	struct in_mfilter	*imf;
316	struct ip_msource	*ims;
317	const sockunion_t	*psa;
318
319	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
320	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
321	    ("%s: invalid index %d\n", __func__, (int)gidx));
322
323	/* The imo_mfilters array may be lazy allocated. */
324	if (imo->imo_mfilters == NULL)
325		return (NULL);
326	imf = &imo->imo_mfilters[gidx];
327
328	/* Source trees are keyed in host byte order. */
329	psa = (const sockunion_t *)src;
330	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
331	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
332
333	return ((struct in_msource *)ims);
334}
335
336/*
337 * Perform filtering for multicast datagrams on a socket by group and source.
338 *
339 * Returns 0 if a datagram should be allowed through, or various error codes
340 * if the socket was not a member of the group, or the source was muted, etc.
341 */
342int
343imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
344    const struct sockaddr *group, const struct sockaddr *src)
345{
346	size_t gidx;
347	struct in_msource *ims;
348	int mode;
349
350	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
351
352	gidx = imo_match_group(imo, ifp, group);
353	if (gidx == -1)
354		return (MCAST_NOTGMEMBER);
355
356	/*
357	 * Check if the source was included in an (S,G) join.
358	 * Allow reception on exclusive memberships by default,
359	 * reject reception on inclusive memberships by default.
360	 * Exclude source only if an in-mode exclude filter exists.
361	 * Include source only if an in-mode include filter exists.
362	 * NOTE: We are comparing group state here at IGMP t1 (now)
363	 * with socket-layer t0 (since last downcall).
364	 */
365	mode = imo->imo_mfilters[gidx].imf_st[1];
366	ims = imo_match_source(imo, gidx, src);
367
368	if ((ims == NULL && mode == MCAST_INCLUDE) ||
369	    (ims != NULL && ims->imsl_st[0] != mode))
370		return (MCAST_NOTSMEMBER);
371
372	return (MCAST_PASS);
373}
374
375/*
376 * Find and return a reference to an in_multi record for (ifp, group),
377 * and bump its reference count.
378 * If one does not exist, try to allocate it, and update link-layer multicast
379 * filters on ifp to listen for group.
380 * Assumes the IN_MULTI lock is held across the call.
381 * Return 0 if successful, otherwise return an appropriate error code.
382 */
383static int
384in_getmulti(struct ifnet *ifp, const struct in_addr *group,
385    struct in_multi **pinm)
386{
387	struct sockaddr_in	 gsin;
388	struct ifmultiaddr	*ifma;
389	struct in_ifinfo	*ii;
390	struct in_multi		*inm;
391	int error;
392
393	IN_MULTI_LOCK_ASSERT();
394
395	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
396
397	inm = inm_lookup(ifp, *group);
398	if (inm != NULL) {
399		/*
400		 * If we already joined this group, just bump the
401		 * refcount and return it.
402		 */
403		KASSERT(inm->inm_refcount >= 1,
404		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
405		++inm->inm_refcount;
406		*pinm = inm;
407		return (0);
408	}
409
410	memset(&gsin, 0, sizeof(gsin));
411	gsin.sin_family = AF_INET;
412	gsin.sin_len = sizeof(struct sockaddr_in);
413	gsin.sin_addr = *group;
414
415	/*
416	 * Check if a link-layer group is already associated
417	 * with this network-layer group on the given ifnet.
418	 */
419	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
420	if (error != 0)
421		return (error);
422
423	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
424	IF_ADDR_LOCK(ifp);
425
426	/*
427	 * If something other than netinet is occupying the link-layer
428	 * group, print a meaningful error message and back out of
429	 * the allocation.
430	 * Otherwise, bump the refcount on the existing network-layer
431	 * group association and return it.
432	 */
433	if (ifma->ifma_protospec != NULL) {
434		inm = (struct in_multi *)ifma->ifma_protospec;
435#ifdef INVARIANTS
436		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
437		    __func__));
438		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
439		    ("%s: ifma not AF_INET", __func__));
440		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
441		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
442		    !in_hosteq(inm->inm_addr, *group))
443			panic("%s: ifma %p is inconsistent with %p (%s)",
444			    __func__, ifma, inm, inet_ntoa(*group));
445#endif
446		++inm->inm_refcount;
447		*pinm = inm;
448		IF_ADDR_UNLOCK(ifp);
449		return (0);
450	}
451
452	IF_ADDR_LOCK_ASSERT(ifp);
453
454	/*
455	 * A new in_multi record is needed; allocate and initialize it.
456	 * We DO NOT perform an IGMP join as the in_ layer may need to
457	 * push an initial source list down to IGMP to support SSM.
458	 *
459	 * The initial source filter state is INCLUDE, {} as per the RFC.
460	 */
461	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
462	if (inm == NULL) {
463		if_delmulti_ifma(ifma);
464		IF_ADDR_UNLOCK(ifp);
465		return (ENOMEM);
466	}
467	inm->inm_addr = *group;
468	inm->inm_ifp = ifp;
469	inm->inm_igi = ii->ii_igmp;
470	inm->inm_ifma = ifma;
471	inm->inm_refcount = 1;
472	inm->inm_state = IGMP_NOT_MEMBER;
473
474	/*
475	 * Pending state-changes per group are subject to a bounds check.
476	 */
477	IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
478
479	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
480	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
481	RB_INIT(&inm->inm_srcs);
482
483	ifma->ifma_protospec = inm;
484
485	*pinm = inm;
486
487	IF_ADDR_UNLOCK(ifp);
488	return (0);
489}
490
491/*
492 * Drop a reference to an in_multi record.
493 *
494 * If the refcount drops to 0, free the in_multi record and
495 * delete the underlying link-layer membership.
496 */
497void
498inm_release_locked(struct in_multi *inm)
499{
500	struct ifmultiaddr *ifma;
501
502	IN_MULTI_LOCK_ASSERT();
503
504	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
505
506	if (--inm->inm_refcount > 0) {
507		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
508		    inm->inm_refcount);
509		return;
510	}
511
512	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
513
514	ifma = inm->inm_ifma;
515
516	/* XXX this access is not covered by IF_ADDR_LOCK */
517	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
518	KASSERT(ifma->ifma_protospec == inm,
519	    ("%s: ifma_protospec != inm", __func__));
520	ifma->ifma_protospec = NULL;
521
522	inm_purge(inm);
523
524	free(inm, M_IPMADDR);
525
526	if_delmulti_ifma(ifma);
527}
528
529/*
530 * Clear recorded source entries for a group.
531 * Used by the IGMP code. Caller must hold the IN_MULTI lock.
532 * FIXME: Should reap.
533 */
534void
535inm_clear_recorded(struct in_multi *inm)
536{
537	struct ip_msource	*ims;
538
539	IN_MULTI_LOCK_ASSERT();
540
541	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
542		if (ims->ims_stp) {
543			ims->ims_stp = 0;
544			--inm->inm_st[1].iss_rec;
545		}
546	}
547	KASSERT(inm->inm_st[1].iss_rec == 0,
548	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
549}
550
551/*
552 * Record a source as pending for a Source-Group IGMPv3 query.
553 * This lives here as it modifies the shared tree.
554 *
555 * inm is the group descriptor.
556 * naddr is the address of the source to record in network-byte order.
557 *
558 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
559 * lazy-allocate a source node in response to an SG query.
560 * Otherwise, no allocation is performed. This saves some memory
561 * with the trade-off that the source will not be reported to the
562 * router if joined in the window between the query response and
563 * the group actually being joined on the local host.
564 *
565 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
566 * This turns off the allocation of a recorded source entry if
567 * the group has not been joined.
568 *
569 * Return 0 if the source didn't exist or was already marked as recorded.
570 * Return 1 if the source was marked as recorded by this function.
571 * Return <0 if any error occured (negated errno code).
572 */
573int
574inm_record_source(struct in_multi *inm, const in_addr_t naddr)
575{
576	struct ip_msource	 find;
577	struct ip_msource	*ims, *nims;
578
579	IN_MULTI_LOCK_ASSERT();
580
581	find.ims_haddr = ntohl(naddr);
582	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
583	if (ims && ims->ims_stp)
584		return (0);
585	if (ims == NULL) {
586		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
587			return (-ENOSPC);
588		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
589		    M_NOWAIT | M_ZERO);
590		if (nims == NULL)
591			return (-ENOMEM);
592		nims->ims_haddr = find.ims_haddr;
593		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
594		++inm->inm_nsrc;
595		ims = nims;
596	}
597
598	/*
599	 * Mark the source as recorded and update the recorded
600	 * source count.
601	 */
602	++ims->ims_stp;
603	++inm->inm_st[1].iss_rec;
604
605	return (1);
606}
607
608/*
609 * Return a pointer to an in_msource owned by an in_mfilter,
610 * given its source address.
611 * Lazy-allocate if needed. If this is a new entry its filter state is
612 * undefined at t0.
613 *
614 * imf is the filter set being modified.
615 * haddr is the source address in *host* byte-order.
616 *
617 * SMPng: May be called with locks held; malloc must not block.
618 */
619static int
620imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
621    struct in_msource **plims)
622{
623	struct ip_msource	 find;
624	struct ip_msource	*ims, *nims;
625	struct in_msource	*lims;
626	int			 error;
627
628	error = 0;
629	ims = NULL;
630	lims = NULL;
631
632	/* key is host byte order */
633	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
634	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
635	lims = (struct in_msource *)ims;
636	if (lims == NULL) {
637		if (imf->imf_nsrc == in_mcast_maxsocksrc)
638			return (ENOSPC);
639		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
640		    M_NOWAIT | M_ZERO);
641		if (nims == NULL)
642			return (ENOMEM);
643		lims = (struct in_msource *)nims;
644		lims->ims_haddr = find.ims_haddr;
645		lims->imsl_st[0] = MCAST_UNDEFINED;
646		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
647		++imf->imf_nsrc;
648	}
649
650	*plims = lims;
651
652	return (error);
653}
654
655/*
656 * Graft a source entry into an existing socket-layer filter set,
657 * maintaining any required invariants and checking allocations.
658 *
659 * The source is marked as being in the new filter mode at t1.
660 *
661 * Return the pointer to the new node, otherwise return NULL.
662 */
663static struct in_msource *
664imf_graft(struct in_mfilter *imf, const uint8_t st1,
665    const struct sockaddr_in *psin)
666{
667	struct ip_msource	*nims;
668	struct in_msource	*lims;
669
670	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
671	    M_NOWAIT | M_ZERO);
672	if (nims == NULL)
673		return (NULL);
674	lims = (struct in_msource *)nims;
675	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
676	lims->imsl_st[0] = MCAST_UNDEFINED;
677	lims->imsl_st[1] = st1;
678	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
679	++imf->imf_nsrc;
680
681	return (lims);
682}
683
684/*
685 * Prune a source entry from an existing socket-layer filter set,
686 * maintaining any required invariants and checking allocations.
687 *
688 * The source is marked as being left at t1, it is not freed.
689 *
690 * Return 0 if no error occurred, otherwise return an errno value.
691 */
692static int
693imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
694{
695	struct ip_msource	 find;
696	struct ip_msource	*ims;
697	struct in_msource	*lims;
698
699	/* key is host byte order */
700	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
701	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
702	if (ims == NULL)
703		return (ENOENT);
704	lims = (struct in_msource *)ims;
705	lims->imsl_st[1] = MCAST_UNDEFINED;
706	return (0);
707}
708
709/*
710 * Revert socket-layer filter set deltas at t1 to t0 state.
711 */
712static void
713imf_rollback(struct in_mfilter *imf)
714{
715	struct ip_msource	*ims, *tims;
716	struct in_msource	*lims;
717
718	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
719		lims = (struct in_msource *)ims;
720		if (lims->imsl_st[0] == lims->imsl_st[1]) {
721			/* no change at t1 */
722			continue;
723		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
724			/* revert change to existing source at t1 */
725			lims->imsl_st[1] = lims->imsl_st[0];
726		} else {
727			/* revert source added t1 */
728			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
729			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
730			free(ims, M_INMFILTER);
731			imf->imf_nsrc--;
732		}
733	}
734	imf->imf_st[1] = imf->imf_st[0];
735}
736
737/*
738 * Mark socket-layer filter set as INCLUDE {} at t1.
739 */
740static void
741imf_leave(struct in_mfilter *imf)
742{
743	struct ip_msource	*ims;
744	struct in_msource	*lims;
745
746	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
747		lims = (struct in_msource *)ims;
748		lims->imsl_st[1] = MCAST_UNDEFINED;
749	}
750	imf->imf_st[1] = MCAST_INCLUDE;
751}
752
753/*
754 * Mark socket-layer filter set deltas as committed.
755 */
756static void
757imf_commit(struct in_mfilter *imf)
758{
759	struct ip_msource	*ims;
760	struct in_msource	*lims;
761
762	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
763		lims = (struct in_msource *)ims;
764		lims->imsl_st[0] = lims->imsl_st[1];
765	}
766	imf->imf_st[0] = imf->imf_st[1];
767}
768
769/*
770 * Reap unreferenced sources from socket-layer filter set.
771 */
772static void
773imf_reap(struct in_mfilter *imf)
774{
775	struct ip_msource	*ims, *tims;
776	struct in_msource	*lims;
777
778	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
779		lims = (struct in_msource *)ims;
780		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
781		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
782			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
783			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
784			free(ims, M_INMFILTER);
785			imf->imf_nsrc--;
786		}
787	}
788}
789
790/*
791 * Purge socket-layer filter set.
792 */
793static void
794imf_purge(struct in_mfilter *imf)
795{
796	struct ip_msource	*ims, *tims;
797
798	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
799		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
800		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
801		free(ims, M_INMFILTER);
802		imf->imf_nsrc--;
803	}
804	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
805	KASSERT(RB_EMPTY(&imf->imf_sources),
806	    ("%s: imf_sources not empty", __func__));
807}
808
809/*
810 * Look up a source filter entry for a multicast group.
811 *
812 * inm is the group descriptor to work with.
813 * haddr is the host-byte-order IPv4 address to look up.
814 * noalloc may be non-zero to suppress allocation of sources.
815 * *pims will be set to the address of the retrieved or allocated source.
816 *
817 * SMPng: NOTE: may be called with locks held.
818 * Return 0 if successful, otherwise return a non-zero error code.
819 */
820static int
821inm_get_source(struct in_multi *inm, const in_addr_t haddr,
822    const int noalloc, struct ip_msource **pims)
823{
824	struct ip_msource	 find;
825	struct ip_msource	*ims, *nims;
826#ifdef KTR
827	struct in_addr ia;
828#endif
829
830	find.ims_haddr = haddr;
831	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
832	if (ims == NULL && !noalloc) {
833		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
834			return (ENOSPC);
835		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
836		    M_NOWAIT | M_ZERO);
837		if (nims == NULL)
838			return (ENOMEM);
839		nims->ims_haddr = haddr;
840		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
841		++inm->inm_nsrc;
842		ims = nims;
843#ifdef KTR
844		ia.s_addr = htonl(haddr);
845		CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
846		    inet_ntoa(ia), ims);
847#endif
848	}
849
850	*pims = ims;
851	return (0);
852}
853
854/*
855 * Merge socket-layer source into IGMP-layer source.
856 * If rollback is non-zero, perform the inverse of the merge.
857 */
858static void
859ims_merge(struct ip_msource *ims, const struct in_msource *lims,
860    const int rollback)
861{
862	int n = rollback ? -1 : 1;
863#ifdef KTR
864	struct in_addr ia;
865
866	ia.s_addr = htonl(ims->ims_haddr);
867#endif
868
869	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
870		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
871		    __func__, n, inet_ntoa(ia));
872		ims->ims_st[1].ex -= n;
873	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
874		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
875		    __func__, n, inet_ntoa(ia));
876		ims->ims_st[1].in -= n;
877	}
878
879	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
880		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
881		    __func__, n, inet_ntoa(ia));
882		ims->ims_st[1].ex += n;
883	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
884		CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
885		    __func__, n, inet_ntoa(ia));
886		ims->ims_st[1].in += n;
887	}
888}
889
890/*
891 * Atomically update the global in_multi state, when a membership's
892 * filter list is being updated in any way.
893 *
894 * imf is the per-inpcb-membership group filter pointer.
895 * A fake imf may be passed for in-kernel consumers.
896 *
897 * XXX This is a candidate for a set-symmetric-difference style loop
898 * which would eliminate the repeated lookup from root of ims nodes,
899 * as they share the same key space.
900 *
901 * If any error occurred this function will back out of refcounts
902 * and return a non-zero value.
903 */
904static int
905inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
906{
907	struct ip_msource	*ims, *nims;
908	struct in_msource	*lims;
909	int			 schanged, error;
910	int			 nsrc0, nsrc1;
911
912	schanged = 0;
913	error = 0;
914	nsrc1 = nsrc0 = 0;
915
916	/*
917	 * Update the source filters first, as this may fail.
918	 * Maintain count of in-mode filters at t0, t1. These are
919	 * used to work out if we transition into ASM mode or not.
920	 * Maintain a count of source filters whose state was
921	 * actually modified by this operation.
922	 */
923	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
924		lims = (struct in_msource *)ims;
925		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
926		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
927		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
928		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
929		++schanged;
930		if (error)
931			break;
932		ims_merge(nims, lims, 0);
933	}
934	if (error) {
935		struct ip_msource *bims;
936
937		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
938			lims = (struct in_msource *)ims;
939			if (lims->imsl_st[0] == lims->imsl_st[1])
940				continue;
941			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
942			if (bims == NULL)
943				continue;
944			ims_merge(bims, lims, 1);
945		}
946		goto out_reap;
947	}
948
949	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
950	    __func__, nsrc0, nsrc1);
951
952	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
953	if (imf->imf_st[0] == imf->imf_st[1] &&
954	    imf->imf_st[1] == MCAST_INCLUDE) {
955		if (nsrc1 == 0) {
956			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
957			--inm->inm_st[1].iss_in;
958		}
959	}
960
961	/* Handle filter mode transition on socket. */
962	if (imf->imf_st[0] != imf->imf_st[1]) {
963		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
964		    __func__, imf->imf_st[0], imf->imf_st[1]);
965
966		if (imf->imf_st[0] == MCAST_EXCLUDE) {
967			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
968			--inm->inm_st[1].iss_ex;
969		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
970			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
971			--inm->inm_st[1].iss_in;
972		}
973
974		if (imf->imf_st[1] == MCAST_EXCLUDE) {
975			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
976			inm->inm_st[1].iss_ex++;
977		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
978			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
979			inm->inm_st[1].iss_in++;
980		}
981	}
982
983	/*
984	 * Track inm filter state in terms of listener counts.
985	 * If there are any exclusive listeners, stack-wide
986	 * membership is exclusive.
987	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
988	 * If no listeners remain, state is undefined at t1,
989	 * and the IGMP lifecycle for this group should finish.
990	 */
991	if (inm->inm_st[1].iss_ex > 0) {
992		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
993		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
994	} else if (inm->inm_st[1].iss_in > 0) {
995		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
996		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
997	} else {
998		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
999		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1000	}
1001
1002	/* Decrement ASM listener count on transition out of ASM mode. */
1003	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1004		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1005		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1006			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1007			--inm->inm_st[1].iss_asm;
1008	}
1009
1010	/* Increment ASM listener count on transition to ASM mode. */
1011	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1012		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1013		inm->inm_st[1].iss_asm++;
1014	}
1015
1016	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1017	inm_print(inm);
1018
1019out_reap:
1020	if (schanged > 0) {
1021		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1022		inm_reap(inm);
1023	}
1024	return (error);
1025}
1026
1027/*
1028 * Mark an in_multi's filter set deltas as committed.
1029 * Called by IGMP after a state change has been enqueued.
1030 */
1031void
1032inm_commit(struct in_multi *inm)
1033{
1034	struct ip_msource	*ims;
1035
1036	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1037	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1038	inm_print(inm);
1039
1040	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1041		ims->ims_st[0] = ims->ims_st[1];
1042	}
1043	inm->inm_st[0] = inm->inm_st[1];
1044}
1045
1046/*
1047 * Reap unreferenced nodes from an in_multi's filter set.
1048 */
1049static void
1050inm_reap(struct in_multi *inm)
1051{
1052	struct ip_msource	*ims, *tims;
1053
1054	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1055		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1056		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1057		    ims->ims_stp != 0)
1058			continue;
1059		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1060		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1061		free(ims, M_IPMSOURCE);
1062		inm->inm_nsrc--;
1063	}
1064}
1065
1066/*
1067 * Purge all source nodes from an in_multi's filter set.
1068 */
1069static void
1070inm_purge(struct in_multi *inm)
1071{
1072	struct ip_msource	*ims, *tims;
1073
1074	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1075		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1076		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1077		free(ims, M_IPMSOURCE);
1078		inm->inm_nsrc--;
1079	}
1080}
1081
1082/*
1083 * Join a multicast group; unlocked entry point.
1084 *
1085 * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1086 * is not held. Fortunately, ifp is unlikely to have been detached
1087 * at this point, so we assume it's OK to recurse.
1088 */
1089int
1090in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1091    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1092{
1093	int error;
1094
1095	IN_MULTI_LOCK();
1096	error = in_joingroup_locked(ifp, gina, imf, pinm);
1097	IN_MULTI_UNLOCK();
1098
1099	return (error);
1100}
1101
1102/*
1103 * Join a multicast group; real entry point.
1104 *
1105 * Only preserves atomicity at inm level.
1106 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1107 *
1108 * If the IGMP downcall fails, the group is not joined, and an error
1109 * code is returned.
1110 */
1111int
1112in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1113    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1114{
1115	struct in_mfilter	 timf;
1116	struct in_multi		*inm;
1117	int			 error;
1118
1119	IN_MULTI_LOCK_ASSERT();
1120
1121	CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
1122	    inet_ntoa(*gina), ifp, ifp->if_xname);
1123
1124	error = 0;
1125	inm = NULL;
1126
1127	/*
1128	 * If no imf was specified (i.e. kernel consumer),
1129	 * fake one up and assume it is an ASM join.
1130	 */
1131	if (imf == NULL) {
1132		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1133		imf = &timf;
1134	}
1135
1136	error = in_getmulti(ifp, gina, &inm);
1137	if (error) {
1138		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1139		return (error);
1140	}
1141
1142	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1143	error = inm_merge(inm, imf);
1144	if (error) {
1145		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1146		goto out_inm_release;
1147	}
1148
1149	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1150	error = igmp_change_state(inm);
1151	if (error) {
1152		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1153		goto out_inm_release;
1154	}
1155
1156out_inm_release:
1157	if (error) {
1158		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1159		inm_release_locked(inm);
1160	} else {
1161		*pinm = inm;
1162	}
1163
1164	return (error);
1165}
1166
1167/*
1168 * Leave a multicast group; unlocked entry point.
1169 */
1170int
1171in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1172{
1173	struct ifnet *ifp;
1174	int error;
1175
1176	ifp = inm->inm_ifp;
1177
1178	IN_MULTI_LOCK();
1179	error = in_leavegroup_locked(inm, imf);
1180	IN_MULTI_UNLOCK();
1181
1182	return (error);
1183}
1184
1185/*
1186 * Leave a multicast group; real entry point.
1187 * All source filters will be expunged.
1188 *
1189 * Only preserves atomicity at inm level.
1190 *
1191 * Holding the write lock for the INP which contains imf
1192 * is highly advisable. We can't assert for it as imf does not
1193 * contain a back-pointer to the owning inp.
1194 *
1195 * Note: This is not the same as inm_release(*) as this function also
1196 * makes a state change downcall into IGMP.
1197 */
1198int
1199in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1200{
1201	struct in_mfilter	 timf;
1202	int			 error;
1203
1204	error = 0;
1205
1206	IN_MULTI_LOCK_ASSERT();
1207
1208	CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
1209	    inm, inet_ntoa(inm->inm_addr),
1210	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1211	    imf);
1212
1213	/*
1214	 * If no imf was specified (i.e. kernel consumer),
1215	 * fake one up and assume it is an ASM join.
1216	 */
1217	if (imf == NULL) {
1218		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1219		imf = &timf;
1220	}
1221
1222	/*
1223	 * Begin state merge transaction at IGMP layer.
1224	 *
1225	 * As this particular invocation should not cause any memory
1226	 * to be allocated, and there is no opportunity to roll back
1227	 * the transaction, it MUST NOT fail.
1228	 */
1229	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1230	error = inm_merge(inm, imf);
1231	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1232
1233	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1234	error = igmp_change_state(inm);
1235	if (error)
1236		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1237
1238	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1239	inm_release_locked(inm);
1240
1241	return (error);
1242}
1243
1244/*#ifndef BURN_BRIDGES*/
1245/*
1246 * Join an IPv4 multicast group in (*,G) exclusive mode.
1247 * The group must be a 224.0.0.0/24 link-scope group.
1248 * This KPI is for legacy kernel consumers only.
1249 */
1250struct in_multi *
1251in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1252{
1253	struct in_multi *pinm;
1254	int error;
1255
1256	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1257	    ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
1258
1259	error = in_joingroup(ifp, ap, NULL, &pinm);
1260	if (error != 0)
1261		pinm = NULL;
1262
1263	return (pinm);
1264}
1265
1266/*
1267 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1268 * This KPI is for legacy kernel consumers only.
1269 */
1270void
1271in_delmulti(struct in_multi *inm)
1272{
1273
1274	(void)in_leavegroup(inm, NULL);
1275}
1276/*#endif*/
1277
1278/*
1279 * Block or unblock an ASM multicast source on an inpcb.
1280 * This implements the delta-based API described in RFC 3678.
1281 *
1282 * The delta-based API applies only to exclusive-mode memberships.
1283 * An IGMP downcall will be performed.
1284 *
1285 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1286 *
1287 * Return 0 if successful, otherwise return an appropriate error code.
1288 */
1289static int
1290inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1291{
1292	struct group_source_req		 gsr;
1293	sockunion_t			*gsa, *ssa;
1294	struct ifnet			*ifp;
1295	struct in_mfilter		*imf;
1296	struct ip_moptions		*imo;
1297	struct in_msource		*ims;
1298	struct in_multi			*inm;
1299	size_t				 idx;
1300	uint16_t			 fmode;
1301	int				 error, doblock;
1302
1303	ifp = NULL;
1304	error = 0;
1305	doblock = 0;
1306
1307	memset(&gsr, 0, sizeof(struct group_source_req));
1308	gsa = (sockunion_t *)&gsr.gsr_group;
1309	ssa = (sockunion_t *)&gsr.gsr_source;
1310
1311	switch (sopt->sopt_name) {
1312	case IP_BLOCK_SOURCE:
1313	case IP_UNBLOCK_SOURCE: {
1314		struct ip_mreq_source	 mreqs;
1315
1316		error = sooptcopyin(sopt, &mreqs,
1317		    sizeof(struct ip_mreq_source),
1318		    sizeof(struct ip_mreq_source));
1319		if (error)
1320			return (error);
1321
1322		gsa->sin.sin_family = AF_INET;
1323		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1324		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1325
1326		ssa->sin.sin_family = AF_INET;
1327		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1328		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1329
1330		if (!in_nullhost(mreqs.imr_interface))
1331			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1332
1333		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1334			doblock = 1;
1335
1336		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1337		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1338		break;
1339	    }
1340
1341	case MCAST_BLOCK_SOURCE:
1342	case MCAST_UNBLOCK_SOURCE:
1343		error = sooptcopyin(sopt, &gsr,
1344		    sizeof(struct group_source_req),
1345		    sizeof(struct group_source_req));
1346		if (error)
1347			return (error);
1348
1349		if (gsa->sin.sin_family != AF_INET ||
1350		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1351			return (EINVAL);
1352
1353		if (ssa->sin.sin_family != AF_INET ||
1354		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1355			return (EINVAL);
1356
1357		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1358			return (EADDRNOTAVAIL);
1359
1360		ifp = ifnet_byindex(gsr.gsr_interface);
1361
1362		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1363			doblock = 1;
1364		break;
1365
1366	default:
1367		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1368		    __func__, sopt->sopt_name);
1369		return (EOPNOTSUPP);
1370		break;
1371	}
1372
1373	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1374		return (EINVAL);
1375
1376	/*
1377	 * Check if we are actually a member of this group.
1378	 */
1379	imo = inp_findmoptions(inp);
1380	idx = imo_match_group(imo, ifp, &gsa->sa);
1381	if (idx == -1 || imo->imo_mfilters == NULL) {
1382		error = EADDRNOTAVAIL;
1383		goto out_inp_locked;
1384	}
1385
1386	KASSERT(imo->imo_mfilters != NULL,
1387	    ("%s: imo_mfilters not allocated", __func__));
1388	imf = &imo->imo_mfilters[idx];
1389	inm = imo->imo_membership[idx];
1390
1391	/*
1392	 * Attempting to use the delta-based API on an
1393	 * non exclusive-mode membership is an error.
1394	 */
1395	fmode = imf->imf_st[0];
1396	if (fmode != MCAST_EXCLUDE) {
1397		error = EINVAL;
1398		goto out_inp_locked;
1399	}
1400
1401	/*
1402	 * Deal with error cases up-front:
1403	 *  Asked to block, but already blocked; or
1404	 *  Asked to unblock, but nothing to unblock.
1405	 * If adding a new block entry, allocate it.
1406	 */
1407	ims = imo_match_source(imo, idx, &ssa->sa);
1408	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1409		CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
1410		    inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
1411		error = EADDRNOTAVAIL;
1412		goto out_inp_locked;
1413	}
1414
1415	INP_WLOCK_ASSERT(inp);
1416
1417	/*
1418	 * Begin state merge transaction at socket layer.
1419	 */
1420	if (doblock) {
1421		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1422		ims = imf_graft(imf, fmode, &ssa->sin);
1423		if (ims == NULL)
1424			error = ENOMEM;
1425	} else {
1426		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1427		error = imf_prune(imf, &ssa->sin);
1428	}
1429
1430	if (error) {
1431		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1432		goto out_imf_rollback;
1433	}
1434
1435	/*
1436	 * Begin state merge transaction at IGMP layer.
1437	 */
1438	IN_MULTI_LOCK();
1439
1440	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1441	error = inm_merge(inm, imf);
1442	if (error) {
1443		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1444		goto out_imf_rollback;
1445	}
1446
1447	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1448	error = igmp_change_state(inm);
1449	if (error)
1450		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1451
1452	IN_MULTI_UNLOCK();
1453
1454out_imf_rollback:
1455	if (error)
1456		imf_rollback(imf);
1457	else
1458		imf_commit(imf);
1459
1460	imf_reap(imf);
1461
1462out_inp_locked:
1463	INP_WUNLOCK(inp);
1464	return (error);
1465}
1466
1467/*
1468 * Given an inpcb, return its multicast options structure pointer.  Accepts
1469 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1470 *
1471 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1472 * SMPng: NOTE: Returns with the INP write lock held.
1473 */
1474static struct ip_moptions *
1475inp_findmoptions(struct inpcb *inp)
1476{
1477	struct ip_moptions	 *imo;
1478	struct in_multi		**immp;
1479	struct in_mfilter	 *imfp;
1480	size_t			  idx;
1481
1482	INP_WLOCK(inp);
1483	if (inp->inp_moptions != NULL)
1484		return (inp->inp_moptions);
1485
1486	INP_WUNLOCK(inp);
1487
1488	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1489	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1490	    M_WAITOK | M_ZERO);
1491	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1492	    M_INMFILTER, M_WAITOK);
1493
1494	imo->imo_multicast_ifp = NULL;
1495	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1496	imo->imo_multicast_vif = -1;
1497	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1498	imo->imo_multicast_loop = in_mcast_loop;
1499	imo->imo_num_memberships = 0;
1500	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1501	imo->imo_membership = immp;
1502
1503	/* Initialize per-group source filters. */
1504	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1505		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1506	imo->imo_mfilters = imfp;
1507
1508	INP_WLOCK(inp);
1509	if (inp->inp_moptions != NULL) {
1510		free(imfp, M_INMFILTER);
1511		free(immp, M_IPMOPTS);
1512		free(imo, M_IPMOPTS);
1513		return (inp->inp_moptions);
1514	}
1515	inp->inp_moptions = imo;
1516	return (imo);
1517}
1518
1519/*
1520 * Discard the IP multicast options (and source filters).
1521 *
1522 * SMPng: NOTE: assumes INP write lock is held.
1523 */
1524void
1525inp_freemoptions(struct ip_moptions *imo)
1526{
1527	struct in_mfilter	*imf;
1528	size_t			 idx, nmships;
1529
1530	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1531
1532	nmships = imo->imo_num_memberships;
1533	for (idx = 0; idx < nmships; ++idx) {
1534		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1535		if (imf)
1536			imf_leave(imf);
1537		(void)in_leavegroup(imo->imo_membership[idx], imf);
1538		if (imf)
1539			imf_purge(imf);
1540	}
1541
1542	if (imo->imo_mfilters)
1543		free(imo->imo_mfilters, M_INMFILTER);
1544	free(imo->imo_membership, M_IPMOPTS);
1545	free(imo, M_IPMOPTS);
1546}
1547
1548/*
1549 * Atomically get source filters on a socket for an IPv4 multicast group.
1550 * Called with INP lock held; returns with lock released.
1551 */
1552static int
1553inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1554{
1555	struct __msfilterreq	 msfr;
1556	sockunion_t		*gsa;
1557	struct ifnet		*ifp;
1558	struct ip_moptions	*imo;
1559	struct in_mfilter	*imf;
1560	struct ip_msource	*ims;
1561	struct in_msource	*lims;
1562	struct sockaddr_in	*psin;
1563	struct sockaddr_storage	*ptss;
1564	struct sockaddr_storage	*tss;
1565	int			 error;
1566	size_t			 idx, nsrcs, ncsrcs;
1567
1568	INP_WLOCK_ASSERT(inp);
1569
1570	imo = inp->inp_moptions;
1571	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1572
1573	INP_WUNLOCK(inp);
1574
1575	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1576	    sizeof(struct __msfilterreq));
1577	if (error)
1578		return (error);
1579
1580	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1581		return (EINVAL);
1582
1583	ifp = ifnet_byindex(msfr.msfr_ifindex);
1584	if (ifp == NULL)
1585		return (EINVAL);
1586
1587	INP_WLOCK(inp);
1588
1589	/*
1590	 * Lookup group on the socket.
1591	 */
1592	gsa = (sockunion_t *)&msfr.msfr_group;
1593	idx = imo_match_group(imo, ifp, &gsa->sa);
1594	if (idx == -1 || imo->imo_mfilters == NULL) {
1595		INP_WUNLOCK(inp);
1596		return (EADDRNOTAVAIL);
1597	}
1598	imf = &imo->imo_mfilters[idx];
1599
1600	/*
1601	 * Ignore memberships which are in limbo.
1602	 */
1603	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1604		INP_WUNLOCK(inp);
1605		return (EAGAIN);
1606	}
1607	msfr.msfr_fmode = imf->imf_st[1];
1608
1609	/*
1610	 * If the user specified a buffer, copy out the source filter
1611	 * entries to userland gracefully.
1612	 * We only copy out the number of entries which userland
1613	 * has asked for, but we always tell userland how big the
1614	 * buffer really needs to be.
1615	 */
1616	tss = NULL;
1617	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1618		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1619		    M_TEMP, M_NOWAIT | M_ZERO);
1620		if (tss == NULL) {
1621			INP_WUNLOCK(inp);
1622			return (ENOBUFS);
1623		}
1624	}
1625
1626	/*
1627	 * Count number of sources in-mode at t0.
1628	 * If buffer space exists and remains, copy out source entries.
1629	 */
1630	nsrcs = msfr.msfr_nsrcs;
1631	ncsrcs = 0;
1632	ptss = tss;
1633	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1634		lims = (struct in_msource *)ims;
1635		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1636		    lims->imsl_st[0] != imf->imf_st[0])
1637			continue;
1638		++ncsrcs;
1639		if (tss != NULL && nsrcs > 0) {
1640			psin = (struct sockaddr_in *)ptss;
1641			psin->sin_family = AF_INET;
1642			psin->sin_len = sizeof(struct sockaddr_in);
1643			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1644			psin->sin_port = 0;
1645			++ptss;
1646			--nsrcs;
1647		}
1648	}
1649
1650	INP_WUNLOCK(inp);
1651
1652	if (tss != NULL) {
1653		error = copyout(tss, msfr.msfr_srcs,
1654		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1655		free(tss, M_TEMP);
1656		if (error)
1657			return (error);
1658	}
1659
1660	msfr.msfr_nsrcs = ncsrcs;
1661	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1662
1663	return (error);
1664}
1665
1666/*
1667 * Return the IP multicast options in response to user getsockopt().
1668 */
1669int
1670inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1671{
1672	struct ip_mreqn		 mreqn;
1673	struct ip_moptions	*imo;
1674	struct ifnet		*ifp;
1675	struct in_ifaddr	*ia;
1676	int			 error, optval;
1677	u_char			 coptval;
1678
1679	INP_WLOCK(inp);
1680	imo = inp->inp_moptions;
1681	/*
1682	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1683	 * or is a divert socket, reject it.
1684	 */
1685	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1686	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1687	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1688		INP_WUNLOCK(inp);
1689		return (EOPNOTSUPP);
1690	}
1691
1692	error = 0;
1693	switch (sopt->sopt_name) {
1694	case IP_MULTICAST_VIF:
1695		if (imo != NULL)
1696			optval = imo->imo_multicast_vif;
1697		else
1698			optval = -1;
1699		INP_WUNLOCK(inp);
1700		error = sooptcopyout(sopt, &optval, sizeof(int));
1701		break;
1702
1703	case IP_MULTICAST_IF:
1704		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1705		if (imo != NULL) {
1706			ifp = imo->imo_multicast_ifp;
1707			if (!in_nullhost(imo->imo_multicast_addr)) {
1708				mreqn.imr_address = imo->imo_multicast_addr;
1709			} else if (ifp != NULL) {
1710				mreqn.imr_ifindex = ifp->if_index;
1711				IFP_TO_IA(ifp, ia);
1712				if (ia != NULL) {
1713					mreqn.imr_address =
1714					    IA_SIN(ia)->sin_addr;
1715					ifa_free(&ia->ia_ifa);
1716				}
1717			}
1718		}
1719		INP_WUNLOCK(inp);
1720		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1721			error = sooptcopyout(sopt, &mreqn,
1722			    sizeof(struct ip_mreqn));
1723		} else {
1724			error = sooptcopyout(sopt, &mreqn.imr_address,
1725			    sizeof(struct in_addr));
1726		}
1727		break;
1728
1729	case IP_MULTICAST_TTL:
1730		if (imo == 0)
1731			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1732		else
1733			optval = coptval = imo->imo_multicast_ttl;
1734		INP_WUNLOCK(inp);
1735		if (sopt->sopt_valsize == sizeof(u_char))
1736			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1737		else
1738			error = sooptcopyout(sopt, &optval, sizeof(int));
1739		break;
1740
1741	case IP_MULTICAST_LOOP:
1742		if (imo == 0)
1743			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1744		else
1745			optval = coptval = imo->imo_multicast_loop;
1746		INP_WUNLOCK(inp);
1747		if (sopt->sopt_valsize == sizeof(u_char))
1748			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1749		else
1750			error = sooptcopyout(sopt, &optval, sizeof(int));
1751		break;
1752
1753	case IP_MSFILTER:
1754		if (imo == NULL) {
1755			error = EADDRNOTAVAIL;
1756			INP_WUNLOCK(inp);
1757		} else {
1758			error = inp_get_source_filters(inp, sopt);
1759		}
1760		break;
1761
1762	default:
1763		INP_WUNLOCK(inp);
1764		error = ENOPROTOOPT;
1765		break;
1766	}
1767
1768	INP_UNLOCK_ASSERT(inp);
1769
1770	return (error);
1771}
1772
1773/*
1774 * Look up the ifnet to use for a multicast group membership,
1775 * given the IPv4 address of an interface, and the IPv4 group address.
1776 *
1777 * This routine exists to support legacy multicast applications
1778 * which do not understand that multicast memberships are scoped to
1779 * specific physical links in the networking stack, or which need
1780 * to join link-scope groups before IPv4 addresses are configured.
1781 *
1782 * If inp is non-NULL, use this socket's current FIB number for any
1783 * required FIB lookup.
1784 * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1785 * and use its ifp; usually, this points to the default next-hop.
1786 *
1787 * If the FIB lookup fails, attempt to use the first non-loopback
1788 * interface with multicast capability in the system as a
1789 * last resort. The legacy IPv4 ASM API requires that we do
1790 * this in order to allow groups to be joined when the routing
1791 * table has not yet been populated during boot.
1792 *
1793 * Returns NULL if no ifp could be found.
1794 *
1795 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1796 * FUTURE: Implement IPv4 source-address selection.
1797 */
1798static struct ifnet *
1799inp_lookup_mcast_ifp(const struct inpcb *inp,
1800    const struct sockaddr_in *gsin, const struct in_addr ina)
1801{
1802	struct ifnet *ifp;
1803
1804	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1805	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1806	    ("%s: not multicast", __func__));
1807
1808	ifp = NULL;
1809	if (!in_nullhost(ina)) {
1810		INADDR_TO_IFP(ina, ifp);
1811	} else {
1812		struct route ro;
1813
1814		ro.ro_rt = NULL;
1815		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
1816		in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1817		if (ro.ro_rt != NULL) {
1818			ifp = ro.ro_rt->rt_ifp;
1819			KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1820			RTFREE(ro.ro_rt);
1821		} else {
1822			struct in_ifaddr *ia;
1823			struct ifnet *mifp;
1824
1825			mifp = NULL;
1826			IN_IFADDR_RLOCK();
1827			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1828				mifp = ia->ia_ifp;
1829				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1830				     (mifp->if_flags & IFF_MULTICAST)) {
1831					ifp = mifp;
1832					break;
1833				}
1834			}
1835			IN_IFADDR_RUNLOCK();
1836		}
1837	}
1838
1839	return (ifp);
1840}
1841
1842/*
1843 * Join an IPv4 multicast group, possibly with a source.
1844 */
1845static int
1846inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1847{
1848	struct group_source_req		 gsr;
1849	sockunion_t			*gsa, *ssa;
1850	struct ifnet			*ifp;
1851	struct in_mfilter		*imf;
1852	struct ip_moptions		*imo;
1853	struct in_multi			*inm;
1854	struct in_msource		*lims;
1855	size_t				 idx;
1856	int				 error, is_new;
1857
1858	ifp = NULL;
1859	imf = NULL;
1860	lims = NULL;
1861	error = 0;
1862	is_new = 0;
1863
1864	memset(&gsr, 0, sizeof(struct group_source_req));
1865	gsa = (sockunion_t *)&gsr.gsr_group;
1866	gsa->ss.ss_family = AF_UNSPEC;
1867	ssa = (sockunion_t *)&gsr.gsr_source;
1868	ssa->ss.ss_family = AF_UNSPEC;
1869
1870	switch (sopt->sopt_name) {
1871	case IP_ADD_MEMBERSHIP:
1872	case IP_ADD_SOURCE_MEMBERSHIP: {
1873		struct ip_mreq_source	 mreqs;
1874
1875		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1876			error = sooptcopyin(sopt, &mreqs,
1877			    sizeof(struct ip_mreq),
1878			    sizeof(struct ip_mreq));
1879			/*
1880			 * Do argument switcharoo from ip_mreq into
1881			 * ip_mreq_source to avoid using two instances.
1882			 */
1883			mreqs.imr_interface = mreqs.imr_sourceaddr;
1884			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1885		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1886			error = sooptcopyin(sopt, &mreqs,
1887			    sizeof(struct ip_mreq_source),
1888			    sizeof(struct ip_mreq_source));
1889		}
1890		if (error)
1891			return (error);
1892
1893		gsa->sin.sin_family = AF_INET;
1894		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1895		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1896
1897		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1898			ssa->sin.sin_family = AF_INET;
1899			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1900			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1901		}
1902
1903		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1904			return (EINVAL);
1905
1906		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1907		    mreqs.imr_interface);
1908		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1909		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1910		break;
1911	}
1912
1913	case MCAST_JOIN_GROUP:
1914	case MCAST_JOIN_SOURCE_GROUP:
1915		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1916			error = sooptcopyin(sopt, &gsr,
1917			    sizeof(struct group_req),
1918			    sizeof(struct group_req));
1919		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1920			error = sooptcopyin(sopt, &gsr,
1921			    sizeof(struct group_source_req),
1922			    sizeof(struct group_source_req));
1923		}
1924		if (error)
1925			return (error);
1926
1927		if (gsa->sin.sin_family != AF_INET ||
1928		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1929			return (EINVAL);
1930
1931		/*
1932		 * Overwrite the port field if present, as the sockaddr
1933		 * being copied in may be matched with a binary comparison.
1934		 */
1935		gsa->sin.sin_port = 0;
1936		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1937			if (ssa->sin.sin_family != AF_INET ||
1938			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1939				return (EINVAL);
1940			ssa->sin.sin_port = 0;
1941		}
1942
1943		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1944			return (EINVAL);
1945
1946		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1947			return (EADDRNOTAVAIL);
1948		ifp = ifnet_byindex(gsr.gsr_interface);
1949		break;
1950
1951	default:
1952		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1953		    __func__, sopt->sopt_name);
1954		return (EOPNOTSUPP);
1955		break;
1956	}
1957
1958	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1959		return (EADDRNOTAVAIL);
1960
1961	imo = inp_findmoptions(inp);
1962	idx = imo_match_group(imo, ifp, &gsa->sa);
1963	if (idx == -1) {
1964		is_new = 1;
1965	} else {
1966		inm = imo->imo_membership[idx];
1967		imf = &imo->imo_mfilters[idx];
1968		if (ssa->ss.ss_family != AF_UNSPEC) {
1969			/*
1970			 * MCAST_JOIN_SOURCE on an exclusive membership
1971			 * is an error. On an existing inclusive membership,
1972			 * it just adds the source to the filter list.
1973			 */
1974			if (imf->imf_st[1] != MCAST_INCLUDE) {
1975				error = EINVAL;
1976				goto out_inp_locked;
1977			}
1978			/*
1979			 * Throw out duplicates.
1980			 *
1981			 * XXX FIXME: This makes a naive assumption that
1982			 * even if entries exist for *ssa in this imf,
1983			 * they will be rejected as dupes, even if they
1984			 * are not valid in the current mode (in-mode).
1985			 *
1986			 * in_msource is transactioned just as for anything
1987			 * else in SSM -- but note naive use of inm_graft()
1988			 * below for allocating new filter entries.
1989			 *
1990			 * This is only an issue if someone mixes the
1991			 * full-state SSM API with the delta-based API,
1992			 * which is discouraged in the relevant RFCs.
1993			 */
1994			lims = imo_match_source(imo, idx, &ssa->sa);
1995			if (lims != NULL /*&&
1996			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
1997				error = EADDRNOTAVAIL;
1998				goto out_inp_locked;
1999			}
2000		} else {
2001			/*
2002			 * MCAST_JOIN_GROUP alone, on any existing membership,
2003			 * is rejected, to stop the same inpcb tying up
2004			 * multiple refs to the in_multi.
2005			 * On an existing inclusive membership, this is also
2006			 * an error; if you want to change filter mode,
2007			 * you must use the userland API setsourcefilter().
2008			 * XXX We don't reject this for imf in UNDEFINED
2009			 * state at t1, because allocation of a filter
2010			 * is atomic with allocation of a membership.
2011			 */
2012			error = EINVAL;
2013			goto out_inp_locked;
2014		}
2015	}
2016
2017	/*
2018	 * Begin state merge transaction at socket layer.
2019	 */
2020	INP_WLOCK_ASSERT(inp);
2021
2022	if (is_new) {
2023		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2024			error = imo_grow(imo);
2025			if (error)
2026				goto out_inp_locked;
2027		}
2028		/*
2029		 * Allocate the new slot upfront so we can deal with
2030		 * grafting the new source filter in same code path
2031		 * as for join-source on existing membership.
2032		 */
2033		idx = imo->imo_num_memberships;
2034		imo->imo_membership[idx] = NULL;
2035		imo->imo_num_memberships++;
2036		KASSERT(imo->imo_mfilters != NULL,
2037		    ("%s: imf_mfilters vector was not allocated", __func__));
2038		imf = &imo->imo_mfilters[idx];
2039		KASSERT(RB_EMPTY(&imf->imf_sources),
2040		    ("%s: imf_sources not empty", __func__));
2041	}
2042
2043	/*
2044	 * Graft new source into filter list for this inpcb's
2045	 * membership of the group. The in_multi may not have
2046	 * been allocated yet if this is a new membership, however,
2047	 * the in_mfilter slot will be allocated and must be initialized.
2048	 *
2049	 * Note: Grafting of exclusive mode filters doesn't happen
2050	 * in this path.
2051	 * XXX: Should check for non-NULL lims (node exists but may
2052	 * not be in-mode) for interop with full-state API.
2053	 */
2054	if (ssa->ss.ss_family != AF_UNSPEC) {
2055		/* Membership starts in IN mode */
2056		if (is_new) {
2057			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2058			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2059		} else {
2060			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2061		}
2062		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2063		if (lims == NULL) {
2064			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2065			    __func__);
2066			error = ENOMEM;
2067			goto out_imo_free;
2068		}
2069	} else {
2070		/* No address specified; Membership starts in EX mode */
2071		if (is_new) {
2072			CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__);
2073			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2074		}
2075	}
2076
2077	/*
2078	 * Begin state merge transaction at IGMP layer.
2079	 */
2080	IN_MULTI_LOCK();
2081
2082	if (is_new) {
2083		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2084		    &inm);
2085		if (error)
2086			goto out_imo_free;
2087		imo->imo_membership[idx] = inm;
2088	} else {
2089		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2090		error = inm_merge(inm, imf);
2091		if (error) {
2092			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2093			    __func__);
2094			goto out_imf_rollback;
2095		}
2096		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2097		error = igmp_change_state(inm);
2098		if (error) {
2099			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2100			    __func__);
2101			goto out_imf_rollback;
2102		}
2103	}
2104
2105	IN_MULTI_UNLOCK();
2106
2107out_imf_rollback:
2108	INP_WLOCK_ASSERT(inp);
2109	if (error) {
2110		imf_rollback(imf);
2111		if (is_new)
2112			imf_purge(imf);
2113		else
2114			imf_reap(imf);
2115	} else {
2116		imf_commit(imf);
2117	}
2118
2119out_imo_free:
2120	if (error && is_new) {
2121		imo->imo_membership[idx] = NULL;
2122		--imo->imo_num_memberships;
2123	}
2124
2125out_inp_locked:
2126	INP_WUNLOCK(inp);
2127	return (error);
2128}
2129
2130/*
2131 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2132 */
2133static int
2134inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2135{
2136	struct group_source_req		 gsr;
2137	struct ip_mreq_source		 mreqs;
2138	sockunion_t			*gsa, *ssa;
2139	struct ifnet			*ifp;
2140	struct in_mfilter		*imf;
2141	struct ip_moptions		*imo;
2142	struct in_msource		*ims;
2143	struct in_multi			*inm;
2144	size_t				 idx;
2145	int				 error, is_final;
2146
2147	ifp = NULL;
2148	error = 0;
2149	is_final = 1;
2150
2151	memset(&gsr, 0, sizeof(struct group_source_req));
2152	gsa = (sockunion_t *)&gsr.gsr_group;
2153	gsa->ss.ss_family = AF_UNSPEC;
2154	ssa = (sockunion_t *)&gsr.gsr_source;
2155	ssa->ss.ss_family = AF_UNSPEC;
2156
2157	switch (sopt->sopt_name) {
2158	case IP_DROP_MEMBERSHIP:
2159	case IP_DROP_SOURCE_MEMBERSHIP:
2160		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2161			error = sooptcopyin(sopt, &mreqs,
2162			    sizeof(struct ip_mreq),
2163			    sizeof(struct ip_mreq));
2164			/*
2165			 * Swap interface and sourceaddr arguments,
2166			 * as ip_mreq and ip_mreq_source are laid
2167			 * out differently.
2168			 */
2169			mreqs.imr_interface = mreqs.imr_sourceaddr;
2170			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2171		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2172			error = sooptcopyin(sopt, &mreqs,
2173			    sizeof(struct ip_mreq_source),
2174			    sizeof(struct ip_mreq_source));
2175		}
2176		if (error)
2177			return (error);
2178
2179		gsa->sin.sin_family = AF_INET;
2180		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2181		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2182
2183		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2184			ssa->sin.sin_family = AF_INET;
2185			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2186			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2187		}
2188
2189		if (!in_nullhost(gsa->sin.sin_addr))
2190			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2191
2192		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
2193		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
2194
2195		break;
2196
2197	case MCAST_LEAVE_GROUP:
2198	case MCAST_LEAVE_SOURCE_GROUP:
2199		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2200			error = sooptcopyin(sopt, &gsr,
2201			    sizeof(struct group_req),
2202			    sizeof(struct group_req));
2203		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2204			error = sooptcopyin(sopt, &gsr,
2205			    sizeof(struct group_source_req),
2206			    sizeof(struct group_source_req));
2207		}
2208		if (error)
2209			return (error);
2210
2211		if (gsa->sin.sin_family != AF_INET ||
2212		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2213			return (EINVAL);
2214
2215		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2216			if (ssa->sin.sin_family != AF_INET ||
2217			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2218				return (EINVAL);
2219		}
2220
2221		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2222			return (EADDRNOTAVAIL);
2223
2224		ifp = ifnet_byindex(gsr.gsr_interface);
2225		break;
2226
2227	default:
2228		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2229		    __func__, sopt->sopt_name);
2230		return (EOPNOTSUPP);
2231		break;
2232	}
2233
2234	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2235		return (EINVAL);
2236
2237	if (ifp == NULL)
2238		return (EADDRNOTAVAIL);
2239
2240	/*
2241	 * Find the membership in the membership array.
2242	 */
2243	imo = inp_findmoptions(inp);
2244	idx = imo_match_group(imo, ifp, &gsa->sa);
2245	if (idx == -1) {
2246		error = EADDRNOTAVAIL;
2247		goto out_inp_locked;
2248	}
2249	inm = imo->imo_membership[idx];
2250	imf = &imo->imo_mfilters[idx];
2251
2252	if (ssa->ss.ss_family != AF_UNSPEC)
2253		is_final = 0;
2254
2255	/*
2256	 * Begin state merge transaction at socket layer.
2257	 */
2258	INP_WLOCK_ASSERT(inp);
2259
2260	/*
2261	 * If we were instructed only to leave a given source, do so.
2262	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2263	 */
2264	if (is_final) {
2265		imf_leave(imf);
2266	} else {
2267		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2268			error = EADDRNOTAVAIL;
2269			goto out_inp_locked;
2270		}
2271		ims = imo_match_source(imo, idx, &ssa->sa);
2272		if (ims == NULL) {
2273			CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
2274			    inet_ntoa(ssa->sin.sin_addr), "not ");
2275			error = EADDRNOTAVAIL;
2276			goto out_inp_locked;
2277		}
2278		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2279		error = imf_prune(imf, &ssa->sin);
2280		if (error) {
2281			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2282			    __func__);
2283			goto out_inp_locked;
2284		}
2285	}
2286
2287	/*
2288	 * Begin state merge transaction at IGMP layer.
2289	 */
2290	IN_MULTI_LOCK();
2291
2292	if (is_final) {
2293		/*
2294		 * Give up the multicast address record to which
2295		 * the membership points.
2296		 */
2297		(void)in_leavegroup_locked(inm, imf);
2298	} else {
2299		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2300		error = inm_merge(inm, imf);
2301		if (error) {
2302			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2303			    __func__);
2304			goto out_imf_rollback;
2305		}
2306
2307		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2308		error = igmp_change_state(inm);
2309		if (error) {
2310			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2311			    __func__);
2312		}
2313	}
2314
2315	IN_MULTI_UNLOCK();
2316
2317out_imf_rollback:
2318	if (error)
2319		imf_rollback(imf);
2320	else
2321		imf_commit(imf);
2322
2323	imf_reap(imf);
2324
2325	if (is_final) {
2326		/* Remove the gap in the membership and filter array. */
2327		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2328			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2329			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2330		}
2331		imo->imo_num_memberships--;
2332	}
2333
2334out_inp_locked:
2335	INP_WUNLOCK(inp);
2336	return (error);
2337}
2338
2339/*
2340 * Select the interface for transmitting IPv4 multicast datagrams.
2341 *
2342 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2343 * may be passed to this socket option. An address of INADDR_ANY or an
2344 * interface index of 0 is used to remove a previous selection.
2345 * When no interface is selected, one is chosen for every send.
2346 */
2347static int
2348inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2349{
2350	struct in_addr		 addr;
2351	struct ip_mreqn		 mreqn;
2352	struct ifnet		*ifp;
2353	struct ip_moptions	*imo;
2354	int			 error;
2355
2356	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2357		/*
2358		 * An interface index was specified using the
2359		 * Linux-derived ip_mreqn structure.
2360		 */
2361		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2362		    sizeof(struct ip_mreqn));
2363		if (error)
2364			return (error);
2365
2366		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2367			return (EINVAL);
2368
2369		if (mreqn.imr_ifindex == 0) {
2370			ifp = NULL;
2371		} else {
2372			ifp = ifnet_byindex(mreqn.imr_ifindex);
2373			if (ifp == NULL)
2374				return (EADDRNOTAVAIL);
2375		}
2376	} else {
2377		/*
2378		 * An interface was specified by IPv4 address.
2379		 * This is the traditional BSD usage.
2380		 */
2381		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2382		    sizeof(struct in_addr));
2383		if (error)
2384			return (error);
2385		if (in_nullhost(addr)) {
2386			ifp = NULL;
2387		} else {
2388			INADDR_TO_IFP(addr, ifp);
2389			if (ifp == NULL)
2390				return (EADDRNOTAVAIL);
2391		}
2392		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
2393		    inet_ntoa(addr));
2394	}
2395
2396	/* Reject interfaces which do not support multicast. */
2397	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2398		return (EOPNOTSUPP);
2399
2400	imo = inp_findmoptions(inp);
2401	imo->imo_multicast_ifp = ifp;
2402	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2403	INP_WUNLOCK(inp);
2404
2405	return (0);
2406}
2407
2408/*
2409 * Atomically set source filters on a socket for an IPv4 multicast group.
2410 *
2411 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2412 */
2413static int
2414inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2415{
2416	struct __msfilterreq	 msfr;
2417	sockunion_t		*gsa;
2418	struct ifnet		*ifp;
2419	struct in_mfilter	*imf;
2420	struct ip_moptions	*imo;
2421	struct in_multi		*inm;
2422	size_t			 idx;
2423	int			 error;
2424
2425	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2426	    sizeof(struct __msfilterreq));
2427	if (error)
2428		return (error);
2429
2430	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2431		return (ENOBUFS);
2432
2433	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2434	     msfr.msfr_fmode != MCAST_INCLUDE))
2435		return (EINVAL);
2436
2437	if (msfr.msfr_group.ss_family != AF_INET ||
2438	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2439		return (EINVAL);
2440
2441	gsa = (sockunion_t *)&msfr.msfr_group;
2442	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2443		return (EINVAL);
2444
2445	gsa->sin.sin_port = 0;	/* ignore port */
2446
2447	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2448		return (EADDRNOTAVAIL);
2449
2450	ifp = ifnet_byindex(msfr.msfr_ifindex);
2451	if (ifp == NULL)
2452		return (EADDRNOTAVAIL);
2453
2454	/*
2455	 * Take the INP write lock.
2456	 * Check if this socket is a member of this group.
2457	 */
2458	imo = inp_findmoptions(inp);
2459	idx = imo_match_group(imo, ifp, &gsa->sa);
2460	if (idx == -1 || imo->imo_mfilters == NULL) {
2461		error = EADDRNOTAVAIL;
2462		goto out_inp_locked;
2463	}
2464	inm = imo->imo_membership[idx];
2465	imf = &imo->imo_mfilters[idx];
2466
2467	/*
2468	 * Begin state merge transaction at socket layer.
2469	 */
2470	INP_WLOCK_ASSERT(inp);
2471
2472	imf->imf_st[1] = msfr.msfr_fmode;
2473
2474	/*
2475	 * Apply any new source filters, if present.
2476	 * Make a copy of the user-space source vector so
2477	 * that we may copy them with a single copyin. This
2478	 * allows us to deal with page faults up-front.
2479	 */
2480	if (msfr.msfr_nsrcs > 0) {
2481		struct in_msource	*lims;
2482		struct sockaddr_in	*psin;
2483		struct sockaddr_storage	*kss, *pkss;
2484		int			 i;
2485
2486		INP_WUNLOCK(inp);
2487
2488		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2489		    __func__, (unsigned long)msfr.msfr_nsrcs);
2490		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2491		    M_TEMP, M_WAITOK);
2492		error = copyin(msfr.msfr_srcs, kss,
2493		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2494		if (error) {
2495			free(kss, M_TEMP);
2496			return (error);
2497		}
2498
2499		INP_WLOCK(inp);
2500
2501		/*
2502		 * Mark all source filters as UNDEFINED at t1.
2503		 * Restore new group filter mode, as imf_leave()
2504		 * will set it to INCLUDE.
2505		 */
2506		imf_leave(imf);
2507		imf->imf_st[1] = msfr.msfr_fmode;
2508
2509		/*
2510		 * Update socket layer filters at t1, lazy-allocating
2511		 * new entries. This saves a bunch of memory at the
2512		 * cost of one RB_FIND() per source entry; duplicate
2513		 * entries in the msfr_nsrcs vector are ignored.
2514		 * If we encounter an error, rollback transaction.
2515		 *
2516		 * XXX This too could be replaced with a set-symmetric
2517		 * difference like loop to avoid walking from root
2518		 * every time, as the key space is common.
2519		 */
2520		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2521			psin = (struct sockaddr_in *)pkss;
2522			if (psin->sin_family != AF_INET) {
2523				error = EAFNOSUPPORT;
2524				break;
2525			}
2526			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2527				error = EINVAL;
2528				break;
2529			}
2530			error = imf_get_source(imf, psin, &lims);
2531			if (error)
2532				break;
2533			lims->imsl_st[1] = imf->imf_st[1];
2534		}
2535		free(kss, M_TEMP);
2536	}
2537
2538	if (error)
2539		goto out_imf_rollback;
2540
2541	INP_WLOCK_ASSERT(inp);
2542	IN_MULTI_LOCK();
2543
2544	/*
2545	 * Begin state merge transaction at IGMP layer.
2546	 */
2547	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2548	error = inm_merge(inm, imf);
2549	if (error) {
2550		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2551		goto out_imf_rollback;
2552	}
2553
2554	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2555	error = igmp_change_state(inm);
2556	if (error)
2557		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2558
2559	IN_MULTI_UNLOCK();
2560
2561out_imf_rollback:
2562	if (error)
2563		imf_rollback(imf);
2564	else
2565		imf_commit(imf);
2566
2567	imf_reap(imf);
2568
2569out_inp_locked:
2570	INP_WUNLOCK(inp);
2571	return (error);
2572}
2573
2574/*
2575 * Set the IP multicast options in response to user setsockopt().
2576 *
2577 * Many of the socket options handled in this function duplicate the
2578 * functionality of socket options in the regular unicast API. However,
2579 * it is not possible to merge the duplicate code, because the idempotence
2580 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2581 * the effects of these options must be treated as separate and distinct.
2582 *
2583 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2584 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2585 * is refactored to no longer use vifs.
2586 */
2587int
2588inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2589{
2590	struct ip_moptions	*imo;
2591	int			 error;
2592
2593	error = 0;
2594
2595	/*
2596	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2597	 * or is a divert socket, reject it.
2598	 */
2599	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2600	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2601	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2602		return (EOPNOTSUPP);
2603
2604	switch (sopt->sopt_name) {
2605	case IP_MULTICAST_VIF: {
2606		int vifi;
2607		/*
2608		 * Select a multicast VIF for transmission.
2609		 * Only useful if multicast forwarding is active.
2610		 */
2611		if (legal_vif_num == NULL) {
2612			error = EOPNOTSUPP;
2613			break;
2614		}
2615		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2616		if (error)
2617			break;
2618		if (!legal_vif_num(vifi) && (vifi != -1)) {
2619			error = EINVAL;
2620			break;
2621		}
2622		imo = inp_findmoptions(inp);
2623		imo->imo_multicast_vif = vifi;
2624		INP_WUNLOCK(inp);
2625		break;
2626	}
2627
2628	case IP_MULTICAST_IF:
2629		error = inp_set_multicast_if(inp, sopt);
2630		break;
2631
2632	case IP_MULTICAST_TTL: {
2633		u_char ttl;
2634
2635		/*
2636		 * Set the IP time-to-live for outgoing multicast packets.
2637		 * The original multicast API required a char argument,
2638		 * which is inconsistent with the rest of the socket API.
2639		 * We allow either a char or an int.
2640		 */
2641		if (sopt->sopt_valsize == sizeof(u_char)) {
2642			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2643			    sizeof(u_char));
2644			if (error)
2645				break;
2646		} else {
2647			u_int ittl;
2648
2649			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2650			    sizeof(u_int));
2651			if (error)
2652				break;
2653			if (ittl > 255) {
2654				error = EINVAL;
2655				break;
2656			}
2657			ttl = (u_char)ittl;
2658		}
2659		imo = inp_findmoptions(inp);
2660		imo->imo_multicast_ttl = ttl;
2661		INP_WUNLOCK(inp);
2662		break;
2663	}
2664
2665	case IP_MULTICAST_LOOP: {
2666		u_char loop;
2667
2668		/*
2669		 * Set the loopback flag for outgoing multicast packets.
2670		 * Must be zero or one.  The original multicast API required a
2671		 * char argument, which is inconsistent with the rest
2672		 * of the socket API.  We allow either a char or an int.
2673		 */
2674		if (sopt->sopt_valsize == sizeof(u_char)) {
2675			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2676			    sizeof(u_char));
2677			if (error)
2678				break;
2679		} else {
2680			u_int iloop;
2681
2682			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2683					    sizeof(u_int));
2684			if (error)
2685				break;
2686			loop = (u_char)iloop;
2687		}
2688		imo = inp_findmoptions(inp);
2689		imo->imo_multicast_loop = !!loop;
2690		INP_WUNLOCK(inp);
2691		break;
2692	}
2693
2694	case IP_ADD_MEMBERSHIP:
2695	case IP_ADD_SOURCE_MEMBERSHIP:
2696	case MCAST_JOIN_GROUP:
2697	case MCAST_JOIN_SOURCE_GROUP:
2698		error = inp_join_group(inp, sopt);
2699		break;
2700
2701	case IP_DROP_MEMBERSHIP:
2702	case IP_DROP_SOURCE_MEMBERSHIP:
2703	case MCAST_LEAVE_GROUP:
2704	case MCAST_LEAVE_SOURCE_GROUP:
2705		error = inp_leave_group(inp, sopt);
2706		break;
2707
2708	case IP_BLOCK_SOURCE:
2709	case IP_UNBLOCK_SOURCE:
2710	case MCAST_BLOCK_SOURCE:
2711	case MCAST_UNBLOCK_SOURCE:
2712		error = inp_block_unblock_source(inp, sopt);
2713		break;
2714
2715	case IP_MSFILTER:
2716		error = inp_set_source_filters(inp, sopt);
2717		break;
2718
2719	default:
2720		error = EOPNOTSUPP;
2721		break;
2722	}
2723
2724	INP_UNLOCK_ASSERT(inp);
2725
2726	return (error);
2727}
2728
2729/*
2730 * Expose IGMP's multicast filter mode and source list(s) to userland,
2731 * keyed by (ifindex, group).
2732 * The filter mode is written out as a uint32_t, followed by
2733 * 0..n of struct in_addr.
2734 * For use by ifmcstat(8).
2735 * SMPng: NOTE: unlocked read of ifindex space.
2736 */
2737static int
2738sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2739{
2740	struct in_addr			 src, group;
2741	struct ifnet			*ifp;
2742	struct ifmultiaddr		*ifma;
2743	struct in_multi			*inm;
2744	struct ip_msource		*ims;
2745	int				*name;
2746	int				 retval;
2747	u_int				 namelen;
2748	uint32_t			 fmode, ifindex;
2749
2750	name = (int *)arg1;
2751	namelen = arg2;
2752
2753	if (req->newptr != NULL)
2754		return (EPERM);
2755
2756	if (namelen != 2)
2757		return (EINVAL);
2758
2759	ifindex = name[0];
2760	if (ifindex <= 0 || ifindex > V_if_index) {
2761		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2762		    __func__, ifindex);
2763		return (ENOENT);
2764	}
2765
2766	group.s_addr = name[1];
2767	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2768		CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
2769		    __func__, inet_ntoa(group));
2770		return (EINVAL);
2771	}
2772
2773	ifp = ifnet_byindex(ifindex);
2774	if (ifp == NULL) {
2775		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2776		    __func__, ifindex);
2777		return (ENOENT);
2778	}
2779
2780	retval = sysctl_wire_old_buffer(req,
2781	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2782	if (retval)
2783		return (retval);
2784
2785	IN_MULTI_LOCK();
2786
2787	IF_ADDR_LOCK(ifp);
2788	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2789		if (ifma->ifma_addr->sa_family != AF_INET ||
2790		    ifma->ifma_protospec == NULL)
2791			continue;
2792		inm = (struct in_multi *)ifma->ifma_protospec;
2793		if (!in_hosteq(inm->inm_addr, group))
2794			continue;
2795		fmode = inm->inm_st[1].iss_fmode;
2796		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2797		if (retval != 0)
2798			break;
2799		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2800#ifdef KTR
2801			struct in_addr ina;
2802			ina.s_addr = htonl(ims->ims_haddr);
2803			CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
2804			    inet_ntoa(ina));
2805#endif
2806			/*
2807			 * Only copy-out sources which are in-mode.
2808			 */
2809			if (fmode != ims_get_mode(inm, ims, 1)) {
2810				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2811				    __func__);
2812				continue;
2813			}
2814			src.s_addr = htonl(ims->ims_haddr);
2815			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2816			if (retval != 0)
2817				break;
2818		}
2819	}
2820	IF_ADDR_UNLOCK(ifp);
2821
2822	IN_MULTI_UNLOCK();
2823
2824	return (retval);
2825}
2826
2827#ifdef KTR
2828
2829static const char *inm_modestrs[] = { "un", "in", "ex" };
2830
2831static const char *
2832inm_mode_str(const int mode)
2833{
2834
2835	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2836		return (inm_modestrs[mode]);
2837	return ("??");
2838}
2839
2840static const char *inm_statestrs[] = {
2841	"not-member",
2842	"silent",
2843	"idle",
2844	"lazy",
2845	"sleeping",
2846	"awakening",
2847	"query-pending",
2848	"sg-query-pending",
2849	"leaving"
2850};
2851
2852static const char *
2853inm_state_str(const int state)
2854{
2855
2856	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2857		return (inm_statestrs[state]);
2858	return ("??");
2859}
2860
2861/*
2862 * Dump an in_multi structure to the console.
2863 */
2864void
2865inm_print(const struct in_multi *inm)
2866{
2867	int t;
2868
2869	if ((ktr_mask & KTR_IGMPV3) == 0)
2870		return;
2871
2872	printf("%s: --- begin inm %p ---\n", __func__, inm);
2873	printf("addr %s ifp %p(%s) ifma %p\n",
2874	    inet_ntoa(inm->inm_addr),
2875	    inm->inm_ifp,
2876	    inm->inm_ifp->if_xname,
2877	    inm->inm_ifma);
2878	printf("timer %u state %s refcount %u scq.len %u\n",
2879	    inm->inm_timer,
2880	    inm_state_str(inm->inm_state),
2881	    inm->inm_refcount,
2882	    inm->inm_scq.ifq_len);
2883	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2884	    inm->inm_igi,
2885	    inm->inm_nsrc,
2886	    inm->inm_sctimer,
2887	    inm->inm_scrv);
2888	for (t = 0; t < 2; t++) {
2889		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2890		    inm_mode_str(inm->inm_st[t].iss_fmode),
2891		    inm->inm_st[t].iss_asm,
2892		    inm->inm_st[t].iss_ex,
2893		    inm->inm_st[t].iss_in,
2894		    inm->inm_st[t].iss_rec);
2895	}
2896	printf("%s: --- end inm %p ---\n", __func__, inm);
2897}
2898
2899#else /* !KTR */
2900
2901void
2902inm_print(const struct in_multi *inm)
2903{
2904
2905}
2906
2907#endif /* KTR */
2908
2909RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
2910