in_mcast.c revision 197129
1/*-
2 * Copyright (c) 2007-2009 Bruce Simpson.
3 * Copyright (c) 2005 Robert N. M. Watson.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote
15 *    products derived from this software without specific prior written
16 *    permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31/*
32 * IPv4 multicast socket, group, and socket option processing module.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/netinet/in_mcast.c 197129 2009-09-12 18:55:15Z bms $");
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/protosw.h>
44#include <sys/socket.h>
45#include <sys/socketvar.h>
46#include <sys/protosw.h>
47#include <sys/sysctl.h>
48#include <sys/ktr.h>
49#include <sys/tree.h>
50
51#include <net/if.h>
52#include <net/if_dl.h>
53#include <net/route.h>
54#include <net/vnet.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/in_pcb.h>
59#include <netinet/in_var.h>
60#include <netinet/ip_var.h>
61#include <netinet/igmp_var.h>
62
63#ifndef KTR_IGMPV3
64#define KTR_IGMPV3 KTR_INET
65#endif
66
67#ifndef __SOCKUNION_DECLARED
68union sockunion {
69	struct sockaddr_storage	ss;
70	struct sockaddr		sa;
71	struct sockaddr_dl	sdl;
72	struct sockaddr_in	sin;
73};
74typedef union sockunion sockunion_t;
75#define __SOCKUNION_DECLARED
76#endif /* __SOCKUNION_DECLARED */
77
78static MALLOC_DEFINE(M_INMFILTER, "in_mfilter",
79    "IPv4 multicast PCB-layer source filter");
80static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group");
81static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options");
82static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource",
83    "IPv4 multicast IGMP-layer source filter");
84
85/*
86 * Locking:
87 * - Lock order is: Giant, INP_WLOCK, IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK.
88 * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however
89 *   it can be taken by code in net/if.c also.
90 * - ip_moptions and in_mfilter are covered by the INP_WLOCK.
91 *
92 * struct in_multi is covered by IN_MULTI_LOCK. There isn't strictly
93 * any need for in_multi itself to be virtualized -- it is bound to an ifp
94 * anyway no matter what happens.
95 */
96struct mtx in_multi_mtx;
97MTX_SYSINIT(in_multi_mtx, &in_multi_mtx, "in_multi_mtx", MTX_DEF);
98
99/*
100 * Functions with non-static linkage defined in this file should be
101 * declared in in_var.h:
102 *  imo_multi_filter()
103 *  in_addmulti()
104 *  in_delmulti()
105 *  in_joingroup()
106 *  in_joingroup_locked()
107 *  in_leavegroup()
108 *  in_leavegroup_locked()
109 * and ip_var.h:
110 *  inp_freemoptions()
111 *  inp_getmoptions()
112 *  inp_setmoptions()
113 *
114 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
115 * and in_delmulti().
116 */
117static void	imf_commit(struct in_mfilter *);
118static int	imf_get_source(struct in_mfilter *imf,
119		    const struct sockaddr_in *psin,
120		    struct in_msource **);
121static struct in_msource *
122		imf_graft(struct in_mfilter *, const uint8_t,
123		    const struct sockaddr_in *);
124static void	imf_leave(struct in_mfilter *);
125static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
126static void	imf_purge(struct in_mfilter *);
127static void	imf_rollback(struct in_mfilter *);
128static void	imf_reap(struct in_mfilter *);
129static int	imo_grow(struct ip_moptions *);
130static size_t	imo_match_group(const struct ip_moptions *,
131		    const struct ifnet *, const struct sockaddr *);
132static struct in_msource *
133		imo_match_source(const struct ip_moptions *, const size_t,
134		    const struct sockaddr *);
135static void	ims_merge(struct ip_msource *ims,
136		    const struct in_msource *lims, const int rollback);
137static int	in_getmulti(struct ifnet *, const struct in_addr *,
138		    struct in_multi **);
139static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
140		    const int noalloc, struct ip_msource **pims);
141static int	inm_is_ifp_detached(const struct in_multi *);
142static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
143static void	inm_purge(struct in_multi *);
144static void	inm_reap(struct in_multi *);
145static struct ip_moptions *
146		inp_findmoptions(struct inpcb *);
147static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
148static int	inp_join_group(struct inpcb *, struct sockopt *);
149static int	inp_leave_group(struct inpcb *, struct sockopt *);
150static struct ifnet *
151		inp_lookup_mcast_ifp(const struct inpcb *,
152		    const struct sockaddr_in *, const struct in_addr);
153static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
154static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
155static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
156static int	sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS);
157
158SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv4 multicast");
159
160static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
161SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
162    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxgrpsrc, 0,
163    "Max source filters per group");
164TUNABLE_ULONG("net.inet.ip.mcast.maxgrpsrc", &in_mcast_maxgrpsrc);
165
166static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
167SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
168    CTLFLAG_RW | CTLFLAG_TUN, &in_mcast_maxsocksrc, 0,
169    "Max source filters per socket");
170TUNABLE_ULONG("net.inet.ip.mcast.maxsocksrc", &in_mcast_maxsocksrc);
171
172int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
173SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
174    &in_mcast_loop, 0, "Loopback multicast datagrams by default");
175TUNABLE_INT("net.inet.ip.mcast.loop", &in_mcast_loop);
176
177SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
178    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters,
179    "Per-interface stack-wide source filters");
180
181/*
182 * Inline function which wraps assertions for a valid ifp.
183 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
184 * is detached.
185 */
186static int __inline
187inm_is_ifp_detached(const struct in_multi *inm)
188{
189	struct ifnet *ifp;
190
191	KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__));
192	ifp = inm->inm_ifma->ifma_ifp;
193	if (ifp != NULL) {
194		/*
195		 * Sanity check that netinet's notion of ifp is the
196		 * same as net's.
197		 */
198		KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__));
199	}
200
201	return (ifp == NULL);
202}
203
204/*
205 * Initialize an in_mfilter structure to a known state at t0, t1
206 * with an empty source filter list.
207 */
208static __inline void
209imf_init(struct in_mfilter *imf, const int st0, const int st1)
210{
211	memset(imf, 0, sizeof(struct in_mfilter));
212	RB_INIT(&imf->imf_sources);
213	imf->imf_st[0] = st0;
214	imf->imf_st[1] = st1;
215}
216
217/*
218 * Resize the ip_moptions vector to the next power-of-two minus 1.
219 * May be called with locks held; do not sleep.
220 */
221static int
222imo_grow(struct ip_moptions *imo)
223{
224	struct in_multi		**nmships;
225	struct in_multi		**omships;
226	struct in_mfilter	 *nmfilters;
227	struct in_mfilter	 *omfilters;
228	size_t			  idx;
229	size_t			  newmax;
230	size_t			  oldmax;
231
232	nmships = NULL;
233	nmfilters = NULL;
234	omships = imo->imo_membership;
235	omfilters = imo->imo_mfilters;
236	oldmax = imo->imo_max_memberships;
237	newmax = ((oldmax + 1) * 2) - 1;
238
239	if (newmax <= IP_MAX_MEMBERSHIPS) {
240		nmships = (struct in_multi **)realloc(omships,
241		    sizeof(struct in_multi *) * newmax, M_IPMOPTS, M_NOWAIT);
242		nmfilters = (struct in_mfilter *)realloc(omfilters,
243		    sizeof(struct in_mfilter) * newmax, M_INMFILTER, M_NOWAIT);
244		if (nmships != NULL && nmfilters != NULL) {
245			/* Initialize newly allocated source filter heads. */
246			for (idx = oldmax; idx < newmax; idx++) {
247				imf_init(&nmfilters[idx], MCAST_UNDEFINED,
248				    MCAST_EXCLUDE);
249			}
250			imo->imo_max_memberships = newmax;
251			imo->imo_membership = nmships;
252			imo->imo_mfilters = nmfilters;
253		}
254	}
255
256	if (nmships == NULL || nmfilters == NULL) {
257		if (nmships != NULL)
258			free(nmships, M_IPMOPTS);
259		if (nmfilters != NULL)
260			free(nmfilters, M_INMFILTER);
261		return (ETOOMANYREFS);
262	}
263
264	return (0);
265}
266
267/*
268 * Find an IPv4 multicast group entry for this ip_moptions instance
269 * which matches the specified group, and optionally an interface.
270 * Return its index into the array, or -1 if not found.
271 */
272static size_t
273imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
274    const struct sockaddr *group)
275{
276	const struct sockaddr_in *gsin;
277	struct in_multi	**pinm;
278	int		  idx;
279	int		  nmships;
280
281	gsin = (const struct sockaddr_in *)group;
282
283	/* The imo_membership array may be lazy allocated. */
284	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
285		return (-1);
286
287	nmships = imo->imo_num_memberships;
288	pinm = &imo->imo_membership[0];
289	for (idx = 0; idx < nmships; idx++, pinm++) {
290		if (*pinm == NULL)
291			continue;
292		if ((ifp == NULL || ((*pinm)->inm_ifp == ifp)) &&
293		    in_hosteq((*pinm)->inm_addr, gsin->sin_addr)) {
294			break;
295		}
296	}
297	if (idx >= nmships)
298		idx = -1;
299
300	return (idx);
301}
302
303/*
304 * Find an IPv4 multicast source entry for this imo which matches
305 * the given group index for this socket, and source address.
306 *
307 * NOTE: This does not check if the entry is in-mode, merely if
308 * it exists, which may not be the desired behaviour.
309 */
310static struct in_msource *
311imo_match_source(const struct ip_moptions *imo, const size_t gidx,
312    const struct sockaddr *src)
313{
314	struct ip_msource	 find;
315	struct in_mfilter	*imf;
316	struct ip_msource	*ims;
317	const sockunion_t	*psa;
318
319	KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__));
320	KASSERT(gidx != -1 && gidx < imo->imo_num_memberships,
321	    ("%s: invalid index %d\n", __func__, (int)gidx));
322
323	/* The imo_mfilters array may be lazy allocated. */
324	if (imo->imo_mfilters == NULL)
325		return (NULL);
326	imf = &imo->imo_mfilters[gidx];
327
328	/* Source trees are keyed in host byte order. */
329	psa = (const sockunion_t *)src;
330	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
331	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
332
333	return ((struct in_msource *)ims);
334}
335
336/*
337 * Perform filtering for multicast datagrams on a socket by group and source.
338 *
339 * Returns 0 if a datagram should be allowed through, or various error codes
340 * if the socket was not a member of the group, or the source was muted, etc.
341 */
342int
343imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
344    const struct sockaddr *group, const struct sockaddr *src)
345{
346	size_t gidx;
347	struct in_msource *ims;
348	int mode;
349
350	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
351
352	gidx = imo_match_group(imo, ifp, group);
353	if (gidx == -1)
354		return (MCAST_NOTGMEMBER);
355
356	/*
357	 * Check if the source was included in an (S,G) join.
358	 * Allow reception on exclusive memberships by default,
359	 * reject reception on inclusive memberships by default.
360	 * Exclude source only if an in-mode exclude filter exists.
361	 * Include source only if an in-mode include filter exists.
362	 * NOTE: We are comparing group state here at IGMP t1 (now)
363	 * with socket-layer t0 (since last downcall).
364	 */
365	mode = imo->imo_mfilters[gidx].imf_st[1];
366	ims = imo_match_source(imo, gidx, src);
367
368	if ((ims == NULL && mode == MCAST_INCLUDE) ||
369	    (ims != NULL && ims->imsl_st[0] != mode))
370		return (MCAST_NOTSMEMBER);
371
372	return (MCAST_PASS);
373}
374
375/*
376 * Find and return a reference to an in_multi record for (ifp, group),
377 * and bump its reference count.
378 * If one does not exist, try to allocate it, and update link-layer multicast
379 * filters on ifp to listen for group.
380 * Assumes the IN_MULTI lock is held across the call.
381 * Return 0 if successful, otherwise return an appropriate error code.
382 */
383static int
384in_getmulti(struct ifnet *ifp, const struct in_addr *group,
385    struct in_multi **pinm)
386{
387	struct sockaddr_in	 gsin;
388	struct ifmultiaddr	*ifma;
389	struct in_ifinfo	*ii;
390	struct in_multi		*inm;
391	int error;
392
393	IN_MULTI_LOCK_ASSERT();
394
395	ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET];
396
397	inm = inm_lookup(ifp, *group);
398	if (inm != NULL) {
399		/*
400		 * If we already joined this group, just bump the
401		 * refcount and return it.
402		 */
403		KASSERT(inm->inm_refcount >= 1,
404		    ("%s: bad refcount %d", __func__, inm->inm_refcount));
405		++inm->inm_refcount;
406		*pinm = inm;
407		return (0);
408	}
409
410	memset(&gsin, 0, sizeof(gsin));
411	gsin.sin_family = AF_INET;
412	gsin.sin_len = sizeof(struct sockaddr_in);
413	gsin.sin_addr = *group;
414
415	/*
416	 * Check if a link-layer group is already associated
417	 * with this network-layer group on the given ifnet.
418	 */
419	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
420	if (error != 0)
421		return (error);
422
423	/* XXX ifma_protospec must be covered by IF_ADDR_LOCK */
424	IF_ADDR_LOCK(ifp);
425
426	/*
427	 * If something other than netinet is occupying the link-layer
428	 * group, print a meaningful error message and back out of
429	 * the allocation.
430	 * Otherwise, bump the refcount on the existing network-layer
431	 * group association and return it.
432	 */
433	if (ifma->ifma_protospec != NULL) {
434		inm = (struct in_multi *)ifma->ifma_protospec;
435#ifdef INVARIANTS
436		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
437		    __func__));
438		KASSERT(ifma->ifma_addr->sa_family == AF_INET,
439		    ("%s: ifma not AF_INET", __func__));
440		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
441		if (inm->inm_ifma != ifma || inm->inm_ifp != ifp ||
442		    !in_hosteq(inm->inm_addr, *group))
443			panic("%s: ifma %p is inconsistent with %p (%s)",
444			    __func__, ifma, inm, inet_ntoa(*group));
445#endif
446		++inm->inm_refcount;
447		*pinm = inm;
448		IF_ADDR_UNLOCK(ifp);
449		return (0);
450	}
451
452	IF_ADDR_LOCK_ASSERT(ifp);
453
454	/*
455	 * A new in_multi record is needed; allocate and initialize it.
456	 * We DO NOT perform an IGMP join as the in_ layer may need to
457	 * push an initial source list down to IGMP to support SSM.
458	 *
459	 * The initial source filter state is INCLUDE, {} as per the RFC.
460	 */
461	inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO);
462	if (inm == NULL) {
463		if_delmulti_ifma(ifma);
464		IF_ADDR_UNLOCK(ifp);
465		return (ENOMEM);
466	}
467	inm->inm_addr = *group;
468	inm->inm_ifp = ifp;
469	inm->inm_igi = ii->ii_igmp;
470	inm->inm_ifma = ifma;
471	inm->inm_refcount = 1;
472	inm->inm_state = IGMP_NOT_MEMBER;
473
474	/*
475	 * Pending state-changes per group are subject to a bounds check.
476	 */
477	IFQ_SET_MAXLEN(&inm->inm_scq, IGMP_MAX_STATE_CHANGES);
478
479	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
480	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
481	RB_INIT(&inm->inm_srcs);
482
483	ifma->ifma_protospec = inm;
484
485	*pinm = inm;
486
487	IF_ADDR_UNLOCK(ifp);
488	return (0);
489}
490
491/*
492 * Drop a reference to an in_multi record.
493 *
494 * If the refcount drops to 0, free the in_multi record and
495 * delete the underlying link-layer membership.
496 */
497void
498inm_release_locked(struct in_multi *inm)
499{
500	struct ifmultiaddr *ifma;
501
502	IN_MULTI_LOCK_ASSERT();
503
504	CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount);
505
506	if (--inm->inm_refcount > 0) {
507		CTR2(KTR_IGMPV3, "%s: refcount is now %d", __func__,
508		    inm->inm_refcount);
509		return;
510	}
511
512	CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm);
513
514	ifma = inm->inm_ifma;
515
516	/* XXX this access is not covered by IF_ADDR_LOCK */
517	CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma);
518	KASSERT(ifma->ifma_protospec == inm,
519	    ("%s: ifma_protospec != inm", __func__));
520	ifma->ifma_protospec = NULL;
521
522	inm_purge(inm);
523
524	free(inm, M_IPMADDR);
525
526	if_delmulti_ifma(ifma);
527}
528
529/*
530 * Clear recorded source entries for a group.
531 * Used by the IGMP code. Caller must hold the IN_MULTI lock.
532 * FIXME: Should reap.
533 */
534void
535inm_clear_recorded(struct in_multi *inm)
536{
537	struct ip_msource	*ims;
538
539	IN_MULTI_LOCK_ASSERT();
540
541	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
542		if (ims->ims_stp) {
543			ims->ims_stp = 0;
544			--inm->inm_st[1].iss_rec;
545		}
546	}
547	KASSERT(inm->inm_st[1].iss_rec == 0,
548	    ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec));
549}
550
551/*
552 * Record a source as pending for a Source-Group IGMPv3 query.
553 * This lives here as it modifies the shared tree.
554 *
555 * inm is the group descriptor.
556 * naddr is the address of the source to record in network-byte order.
557 *
558 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
559 * lazy-allocate a source node in response to an SG query.
560 * Otherwise, no allocation is performed. This saves some memory
561 * with the trade-off that the source will not be reported to the
562 * router if joined in the window between the query response and
563 * the group actually being joined on the local host.
564 *
565 * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed.
566 * This turns off the allocation of a recorded source entry if
567 * the group has not been joined.
568 *
569 * Return 0 if the source didn't exist or was already marked as recorded.
570 * Return 1 if the source was marked as recorded by this function.
571 * Return <0 if any error occured (negated errno code).
572 */
573int
574inm_record_source(struct in_multi *inm, const in_addr_t naddr)
575{
576	struct ip_msource	 find;
577	struct ip_msource	*ims, *nims;
578
579	IN_MULTI_LOCK_ASSERT();
580
581	find.ims_haddr = ntohl(naddr);
582	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
583	if (ims && ims->ims_stp)
584		return (0);
585	if (ims == NULL) {
586		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
587			return (-ENOSPC);
588		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
589		    M_NOWAIT | M_ZERO);
590		if (nims == NULL)
591			return (-ENOMEM);
592		nims->ims_haddr = find.ims_haddr;
593		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
594		++inm->inm_nsrc;
595		ims = nims;
596	}
597
598	/*
599	 * Mark the source as recorded and update the recorded
600	 * source count.
601	 */
602	++ims->ims_stp;
603	++inm->inm_st[1].iss_rec;
604
605	return (1);
606}
607
608/*
609 * Return a pointer to an in_msource owned by an in_mfilter,
610 * given its source address.
611 * Lazy-allocate if needed. If this is a new entry its filter state is
612 * undefined at t0.
613 *
614 * imf is the filter set being modified.
615 * haddr is the source address in *host* byte-order.
616 *
617 * SMPng: May be called with locks held; malloc must not block.
618 */
619static int
620imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
621    struct in_msource **plims)
622{
623	struct ip_msource	 find;
624	struct ip_msource	*ims, *nims;
625	struct in_msource	*lims;
626	int			 error;
627
628	error = 0;
629	ims = NULL;
630	lims = NULL;
631
632	/* key is host byte order */
633	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
634	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
635	lims = (struct in_msource *)ims;
636	if (lims == NULL) {
637		if (imf->imf_nsrc == in_mcast_maxsocksrc)
638			return (ENOSPC);
639		nims = malloc(sizeof(struct in_msource), M_INMFILTER,
640		    M_NOWAIT | M_ZERO);
641		if (nims == NULL)
642			return (ENOMEM);
643		lims = (struct in_msource *)nims;
644		lims->ims_haddr = find.ims_haddr;
645		lims->imsl_st[0] = MCAST_UNDEFINED;
646		RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
647		++imf->imf_nsrc;
648	}
649
650	*plims = lims;
651
652	return (error);
653}
654
655/*
656 * Graft a source entry into an existing socket-layer filter set,
657 * maintaining any required invariants and checking allocations.
658 *
659 * The source is marked as being in the new filter mode at t1.
660 *
661 * Return the pointer to the new node, otherwise return NULL.
662 */
663static struct in_msource *
664imf_graft(struct in_mfilter *imf, const uint8_t st1,
665    const struct sockaddr_in *psin)
666{
667	struct ip_msource	*nims;
668	struct in_msource	*lims;
669
670	nims = malloc(sizeof(struct in_msource), M_INMFILTER,
671	    M_NOWAIT | M_ZERO);
672	if (nims == NULL)
673		return (NULL);
674	lims = (struct in_msource *)nims;
675	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
676	lims->imsl_st[0] = MCAST_UNDEFINED;
677	lims->imsl_st[1] = st1;
678	RB_INSERT(ip_msource_tree, &imf->imf_sources, nims);
679	++imf->imf_nsrc;
680
681	return (lims);
682}
683
684/*
685 * Prune a source entry from an existing socket-layer filter set,
686 * maintaining any required invariants and checking allocations.
687 *
688 * The source is marked as being left at t1, it is not freed.
689 *
690 * Return 0 if no error occurred, otherwise return an errno value.
691 */
692static int
693imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
694{
695	struct ip_msource	 find;
696	struct ip_msource	*ims;
697	struct in_msource	*lims;
698
699	/* key is host byte order */
700	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
701	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
702	if (ims == NULL)
703		return (ENOENT);
704	lims = (struct in_msource *)ims;
705	lims->imsl_st[1] = MCAST_UNDEFINED;
706	return (0);
707}
708
709/*
710 * Revert socket-layer filter set deltas at t1 to t0 state.
711 */
712static void
713imf_rollback(struct in_mfilter *imf)
714{
715	struct ip_msource	*ims, *tims;
716	struct in_msource	*lims;
717
718	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
719		lims = (struct in_msource *)ims;
720		if (lims->imsl_st[0] == lims->imsl_st[1]) {
721			/* no change at t1 */
722			continue;
723		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
724			/* revert change to existing source at t1 */
725			lims->imsl_st[1] = lims->imsl_st[0];
726		} else {
727			/* revert source added t1 */
728			CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
729			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
730			free(ims, M_INMFILTER);
731			imf->imf_nsrc--;
732		}
733	}
734	imf->imf_st[1] = imf->imf_st[0];
735}
736
737/*
738 * Mark socket-layer filter set as INCLUDE {} at t1.
739 */
740static void
741imf_leave(struct in_mfilter *imf)
742{
743	struct ip_msource	*ims;
744	struct in_msource	*lims;
745
746	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
747		lims = (struct in_msource *)ims;
748		lims->imsl_st[1] = MCAST_UNDEFINED;
749	}
750	imf->imf_st[1] = MCAST_INCLUDE;
751}
752
753/*
754 * Mark socket-layer filter set deltas as committed.
755 */
756static void
757imf_commit(struct in_mfilter *imf)
758{
759	struct ip_msource	*ims;
760	struct in_msource	*lims;
761
762	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
763		lims = (struct in_msource *)ims;
764		lims->imsl_st[0] = lims->imsl_st[1];
765	}
766	imf->imf_st[0] = imf->imf_st[1];
767}
768
769/*
770 * Reap unreferenced sources from socket-layer filter set.
771 */
772static void
773imf_reap(struct in_mfilter *imf)
774{
775	struct ip_msource	*ims, *tims;
776	struct in_msource	*lims;
777
778	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
779		lims = (struct in_msource *)ims;
780		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
781		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
782			CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims);
783			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
784			free(ims, M_INMFILTER);
785			imf->imf_nsrc--;
786		}
787	}
788}
789
790/*
791 * Purge socket-layer filter set.
792 */
793static void
794imf_purge(struct in_mfilter *imf)
795{
796	struct ip_msource	*ims, *tims;
797
798	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
799		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
800		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
801		free(ims, M_INMFILTER);
802		imf->imf_nsrc--;
803	}
804	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
805	KASSERT(RB_EMPTY(&imf->imf_sources),
806	    ("%s: imf_sources not empty", __func__));
807}
808
809/*
810 * Look up a source filter entry for a multicast group.
811 *
812 * inm is the group descriptor to work with.
813 * haddr is the host-byte-order IPv4 address to look up.
814 * noalloc may be non-zero to suppress allocation of sources.
815 * *pims will be set to the address of the retrieved or allocated source.
816 *
817 * SMPng: NOTE: may be called with locks held.
818 * Return 0 if successful, otherwise return a non-zero error code.
819 */
820static int
821inm_get_source(struct in_multi *inm, const in_addr_t haddr,
822    const int noalloc, struct ip_msource **pims)
823{
824	struct ip_msource	 find;
825	struct ip_msource	*ims, *nims;
826#ifdef KTR
827	struct in_addr ia;
828#endif
829
830	find.ims_haddr = haddr;
831	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
832	if (ims == NULL && !noalloc) {
833		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
834			return (ENOSPC);
835		nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE,
836		    M_NOWAIT | M_ZERO);
837		if (nims == NULL)
838			return (ENOMEM);
839		nims->ims_haddr = haddr;
840		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
841		++inm->inm_nsrc;
842		ims = nims;
843#ifdef KTR
844		ia.s_addr = htonl(haddr);
845		CTR3(KTR_IGMPV3, "%s: allocated %s as %p", __func__,
846		    inet_ntoa(ia), ims);
847#endif
848	}
849
850	*pims = ims;
851	return (0);
852}
853
854/*
855 * Merge socket-layer source into IGMP-layer source.
856 * If rollback is non-zero, perform the inverse of the merge.
857 */
858static void
859ims_merge(struct ip_msource *ims, const struct in_msource *lims,
860    const int rollback)
861{
862	int n = rollback ? -1 : 1;
863#ifdef KTR
864	struct in_addr ia;
865
866	ia.s_addr = htonl(ims->ims_haddr);
867#endif
868
869	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
870		CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on %s",
871		    __func__, n, inet_ntoa(ia));
872		ims->ims_st[1].ex -= n;
873	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
874		CTR3(KTR_IGMPV3, "%s: t1 in -= %d on %s",
875		    __func__, n, inet_ntoa(ia));
876		ims->ims_st[1].in -= n;
877	}
878
879	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
880		CTR3(KTR_IGMPV3, "%s: t1 ex += %d on %s",
881		    __func__, n, inet_ntoa(ia));
882		ims->ims_st[1].ex += n;
883	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
884		CTR3(KTR_IGMPV3, "%s: t1 in += %d on %s",
885		    __func__, n, inet_ntoa(ia));
886		ims->ims_st[1].in += n;
887	}
888}
889
890/*
891 * Atomically update the global in_multi state, when a membership's
892 * filter list is being updated in any way.
893 *
894 * imf is the per-inpcb-membership group filter pointer.
895 * A fake imf may be passed for in-kernel consumers.
896 *
897 * XXX This is a candidate for a set-symmetric-difference style loop
898 * which would eliminate the repeated lookup from root of ims nodes,
899 * as they share the same key space.
900 *
901 * If any error occurred this function will back out of refcounts
902 * and return a non-zero value.
903 */
904static int
905inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
906{
907	struct ip_msource	*ims, *nims;
908	struct in_msource	*lims;
909	int			 schanged, error;
910	int			 nsrc0, nsrc1;
911
912	schanged = 0;
913	error = 0;
914	nsrc1 = nsrc0 = 0;
915
916	/*
917	 * Update the source filters first, as this may fail.
918	 * Maintain count of in-mode filters at t0, t1. These are
919	 * used to work out if we transition into ASM mode or not.
920	 * Maintain a count of source filters whose state was
921	 * actually modified by this operation.
922	 */
923	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
924		lims = (struct in_msource *)ims;
925		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
926		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
927		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
928		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
929		++schanged;
930		if (error)
931			break;
932		ims_merge(nims, lims, 0);
933	}
934	if (error) {
935		struct ip_msource *bims;
936
937		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
938			lims = (struct in_msource *)ims;
939			if (lims->imsl_st[0] == lims->imsl_st[1])
940				continue;
941			(void)inm_get_source(inm, lims->ims_haddr, 1, &bims);
942			if (bims == NULL)
943				continue;
944			ims_merge(bims, lims, 1);
945		}
946		goto out_reap;
947	}
948
949	CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1",
950	    __func__, nsrc0, nsrc1);
951
952	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
953	if (imf->imf_st[0] == imf->imf_st[1] &&
954	    imf->imf_st[1] == MCAST_INCLUDE) {
955		if (nsrc1 == 0) {
956			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
957			--inm->inm_st[1].iss_in;
958		}
959	}
960
961	/* Handle filter mode transition on socket. */
962	if (imf->imf_st[0] != imf->imf_st[1]) {
963		CTR3(KTR_IGMPV3, "%s: imf transition %d to %d",
964		    __func__, imf->imf_st[0], imf->imf_st[1]);
965
966		if (imf->imf_st[0] == MCAST_EXCLUDE) {
967			CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__);
968			--inm->inm_st[1].iss_ex;
969		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
970			CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__);
971			--inm->inm_st[1].iss_in;
972		}
973
974		if (imf->imf_st[1] == MCAST_EXCLUDE) {
975			CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__);
976			inm->inm_st[1].iss_ex++;
977		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
978			CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__);
979			inm->inm_st[1].iss_in++;
980		}
981	}
982
983	/*
984	 * Track inm filter state in terms of listener counts.
985	 * If there are any exclusive listeners, stack-wide
986	 * membership is exclusive.
987	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
988	 * If no listeners remain, state is undefined at t1,
989	 * and the IGMP lifecycle for this group should finish.
990	 */
991	if (inm->inm_st[1].iss_ex > 0) {
992		CTR1(KTR_IGMPV3, "%s: transition to EX", __func__);
993		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
994	} else if (inm->inm_st[1].iss_in > 0) {
995		CTR1(KTR_IGMPV3, "%s: transition to IN", __func__);
996		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
997	} else {
998		CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__);
999		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1000	}
1001
1002	/* Decrement ASM listener count on transition out of ASM mode. */
1003	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1004		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1005		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1006			CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__);
1007			--inm->inm_st[1].iss_asm;
1008	}
1009
1010	/* Increment ASM listener count on transition to ASM mode. */
1011	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1012		CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__);
1013		inm->inm_st[1].iss_asm++;
1014	}
1015
1016	CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm);
1017	inm_print(inm);
1018
1019out_reap:
1020	if (schanged > 0) {
1021		CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__);
1022		inm_reap(inm);
1023	}
1024	return (error);
1025}
1026
1027/*
1028 * Mark an in_multi's filter set deltas as committed.
1029 * Called by IGMP after a state change has been enqueued.
1030 */
1031void
1032inm_commit(struct in_multi *inm)
1033{
1034	struct ip_msource	*ims;
1035
1036	CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm);
1037	CTR1(KTR_IGMPV3, "%s: pre commit:", __func__);
1038	inm_print(inm);
1039
1040	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1041		ims->ims_st[0] = ims->ims_st[1];
1042	}
1043	inm->inm_st[0] = inm->inm_st[1];
1044}
1045
1046/*
1047 * Reap unreferenced nodes from an in_multi's filter set.
1048 */
1049static void
1050inm_reap(struct in_multi *inm)
1051{
1052	struct ip_msource	*ims, *tims;
1053
1054	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1055		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1056		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1057		    ims->ims_stp != 0)
1058			continue;
1059		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1060		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1061		free(ims, M_IPMSOURCE);
1062		inm->inm_nsrc--;
1063	}
1064}
1065
1066/*
1067 * Purge all source nodes from an in_multi's filter set.
1068 */
1069static void
1070inm_purge(struct in_multi *inm)
1071{
1072	struct ip_msource	*ims, *tims;
1073
1074	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1075		CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims);
1076		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1077		free(ims, M_IPMSOURCE);
1078		inm->inm_nsrc--;
1079	}
1080}
1081
1082/*
1083 * Join a multicast group; unlocked entry point.
1084 *
1085 * SMPng: XXX: in_joingroup() is called from in_control() when Giant
1086 * is not held. Fortunately, ifp is unlikely to have been detached
1087 * at this point, so we assume it's OK to recurse.
1088 */
1089int
1090in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1091    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1092{
1093	int error;
1094
1095	IN_MULTI_LOCK();
1096	error = in_joingroup_locked(ifp, gina, imf, pinm);
1097	IN_MULTI_UNLOCK();
1098
1099	return (error);
1100}
1101
1102/*
1103 * Join a multicast group; real entry point.
1104 *
1105 * Only preserves atomicity at inm level.
1106 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1107 *
1108 * If the IGMP downcall fails, the group is not joined, and an error
1109 * code is returned.
1110 */
1111int
1112in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina,
1113    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1114{
1115	struct in_mfilter	 timf;
1116	struct in_multi		*inm;
1117	int			 error;
1118
1119	IN_MULTI_LOCK_ASSERT();
1120
1121	CTR4(KTR_IGMPV3, "%s: join %s on %p(%s))", __func__,
1122	    inet_ntoa(*gina), ifp, ifp->if_xname);
1123
1124	error = 0;
1125	inm = NULL;
1126
1127	/*
1128	 * If no imf was specified (i.e. kernel consumer),
1129	 * fake one up and assume it is an ASM join.
1130	 */
1131	if (imf == NULL) {
1132		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1133		imf = &timf;
1134	}
1135
1136	error = in_getmulti(ifp, gina, &inm);
1137	if (error) {
1138		CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__);
1139		return (error);
1140	}
1141
1142	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1143	error = inm_merge(inm, imf);
1144	if (error) {
1145		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1146		goto out_inm_release;
1147	}
1148
1149	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1150	error = igmp_change_state(inm);
1151	if (error) {
1152		CTR1(KTR_IGMPV3, "%s: failed to update source", __func__);
1153		goto out_inm_release;
1154	}
1155
1156out_inm_release:
1157	if (error) {
1158		CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1159		inm_release_locked(inm);
1160	} else {
1161		*pinm = inm;
1162	}
1163
1164	return (error);
1165}
1166
1167/*
1168 * Leave a multicast group; unlocked entry point.
1169 */
1170int
1171in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1172{
1173	struct ifnet *ifp;
1174	int error;
1175
1176	ifp = inm->inm_ifp;
1177
1178	IN_MULTI_LOCK();
1179	error = in_leavegroup_locked(inm, imf);
1180	IN_MULTI_UNLOCK();
1181
1182	return (error);
1183}
1184
1185/*
1186 * Leave a multicast group; real entry point.
1187 * All source filters will be expunged.
1188 *
1189 * Only preserves atomicity at inm level.
1190 *
1191 * Holding the write lock for the INP which contains imf
1192 * is highly advisable. We can't assert for it as imf does not
1193 * contain a back-pointer to the owning inp.
1194 *
1195 * Note: This is not the same as inm_release(*) as this function also
1196 * makes a state change downcall into IGMP.
1197 */
1198int
1199in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1200{
1201	struct in_mfilter	 timf;
1202	int			 error;
1203
1204	error = 0;
1205
1206	IN_MULTI_LOCK_ASSERT();
1207
1208	CTR5(KTR_IGMPV3, "%s: leave inm %p, %s/%s, imf %p", __func__,
1209	    inm, inet_ntoa(inm->inm_addr),
1210	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname),
1211	    imf);
1212
1213	/*
1214	 * If no imf was specified (i.e. kernel consumer),
1215	 * fake one up and assume it is an ASM join.
1216	 */
1217	if (imf == NULL) {
1218		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1219		imf = &timf;
1220	}
1221
1222	/*
1223	 * Begin state merge transaction at IGMP layer.
1224	 *
1225	 * As this particular invocation should not cause any memory
1226	 * to be allocated, and there is no opportunity to roll back
1227	 * the transaction, it MUST NOT fail.
1228	 */
1229	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1230	error = inm_merge(inm, imf);
1231	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1232
1233	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1234	error = igmp_change_state(inm);
1235	if (error)
1236		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1237
1238	CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm);
1239	inm_release_locked(inm);
1240
1241	return (error);
1242}
1243
1244/*#ifndef BURN_BRIDGES*/
1245/*
1246 * Join an IPv4 multicast group in (*,G) exclusive mode.
1247 * The group must be a 224.0.0.0/24 link-scope group.
1248 * This KPI is for legacy kernel consumers only.
1249 */
1250struct in_multi *
1251in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1252{
1253	struct in_multi *pinm;
1254	int error;
1255
1256	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1257	    ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa(*ap)));
1258
1259	error = in_joingroup(ifp, ap, NULL, &pinm);
1260	if (error != 0)
1261		pinm = NULL;
1262
1263	return (pinm);
1264}
1265
1266/*
1267 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1268 * This KPI is for legacy kernel consumers only.
1269 */
1270void
1271in_delmulti(struct in_multi *inm)
1272{
1273
1274	(void)in_leavegroup(inm, NULL);
1275}
1276/*#endif*/
1277
1278/*
1279 * Block or unblock an ASM multicast source on an inpcb.
1280 * This implements the delta-based API described in RFC 3678.
1281 *
1282 * The delta-based API applies only to exclusive-mode memberships.
1283 * An IGMP downcall will be performed.
1284 *
1285 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1286 *
1287 * Return 0 if successful, otherwise return an appropriate error code.
1288 */
1289static int
1290inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1291{
1292	struct group_source_req		 gsr;
1293	sockunion_t			*gsa, *ssa;
1294	struct ifnet			*ifp;
1295	struct in_mfilter		*imf;
1296	struct ip_moptions		*imo;
1297	struct in_msource		*ims;
1298	struct in_multi			*inm;
1299	size_t				 idx;
1300	uint16_t			 fmode;
1301	int				 error, doblock;
1302
1303	ifp = NULL;
1304	error = 0;
1305	doblock = 0;
1306
1307	memset(&gsr, 0, sizeof(struct group_source_req));
1308	gsa = (sockunion_t *)&gsr.gsr_group;
1309	ssa = (sockunion_t *)&gsr.gsr_source;
1310
1311	switch (sopt->sopt_name) {
1312	case IP_BLOCK_SOURCE:
1313	case IP_UNBLOCK_SOURCE: {
1314		struct ip_mreq_source	 mreqs;
1315
1316		error = sooptcopyin(sopt, &mreqs,
1317		    sizeof(struct ip_mreq_source),
1318		    sizeof(struct ip_mreq_source));
1319		if (error)
1320			return (error);
1321
1322		gsa->sin.sin_family = AF_INET;
1323		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1324		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1325
1326		ssa->sin.sin_family = AF_INET;
1327		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1328		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1329
1330		if (!in_nullhost(mreqs.imr_interface))
1331			INADDR_TO_IFP(mreqs.imr_interface, ifp);
1332
1333		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1334			doblock = 1;
1335
1336		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1337		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1338		break;
1339	    }
1340
1341	case MCAST_BLOCK_SOURCE:
1342	case MCAST_UNBLOCK_SOURCE:
1343		error = sooptcopyin(sopt, &gsr,
1344		    sizeof(struct group_source_req),
1345		    sizeof(struct group_source_req));
1346		if (error)
1347			return (error);
1348
1349		if (gsa->sin.sin_family != AF_INET ||
1350		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1351			return (EINVAL);
1352
1353		if (ssa->sin.sin_family != AF_INET ||
1354		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1355			return (EINVAL);
1356
1357		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1358			return (EADDRNOTAVAIL);
1359
1360		ifp = ifnet_byindex(gsr.gsr_interface);
1361
1362		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1363			doblock = 1;
1364		break;
1365
1366	default:
1367		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1368		    __func__, sopt->sopt_name);
1369		return (EOPNOTSUPP);
1370		break;
1371	}
1372
1373	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1374		return (EINVAL);
1375
1376	/*
1377	 * Check if we are actually a member of this group.
1378	 */
1379	imo = inp_findmoptions(inp);
1380	idx = imo_match_group(imo, ifp, &gsa->sa);
1381	if (idx == -1 || imo->imo_mfilters == NULL) {
1382		error = EADDRNOTAVAIL;
1383		goto out_inp_locked;
1384	}
1385
1386	KASSERT(imo->imo_mfilters != NULL,
1387	    ("%s: imo_mfilters not allocated", __func__));
1388	imf = &imo->imo_mfilters[idx];
1389	inm = imo->imo_membership[idx];
1390
1391	/*
1392	 * Attempting to use the delta-based API on an
1393	 * non exclusive-mode membership is an error.
1394	 */
1395	fmode = imf->imf_st[0];
1396	if (fmode != MCAST_EXCLUDE) {
1397		error = EINVAL;
1398		goto out_inp_locked;
1399	}
1400
1401	/*
1402	 * Deal with error cases up-front:
1403	 *  Asked to block, but already blocked; or
1404	 *  Asked to unblock, but nothing to unblock.
1405	 * If adding a new block entry, allocate it.
1406	 */
1407	ims = imo_match_source(imo, idx, &ssa->sa);
1408	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1409		CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
1410		    inet_ntoa(ssa->sin.sin_addr), doblock ? "" : "not ");
1411		error = EADDRNOTAVAIL;
1412		goto out_inp_locked;
1413	}
1414
1415	INP_WLOCK_ASSERT(inp);
1416
1417	/*
1418	 * Begin state merge transaction at socket layer.
1419	 */
1420	if (doblock) {
1421		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
1422		ims = imf_graft(imf, fmode, &ssa->sin);
1423		if (ims == NULL)
1424			error = ENOMEM;
1425	} else {
1426		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
1427		error = imf_prune(imf, &ssa->sin);
1428	}
1429
1430	if (error) {
1431		CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__);
1432		goto out_imf_rollback;
1433	}
1434
1435	/*
1436	 * Begin state merge transaction at IGMP layer.
1437	 */
1438	IN_MULTI_LOCK();
1439
1440	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
1441	error = inm_merge(inm, imf);
1442	if (error) {
1443		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
1444		goto out_imf_rollback;
1445	}
1446
1447	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
1448	error = igmp_change_state(inm);
1449	if (error)
1450		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
1451
1452	IN_MULTI_UNLOCK();
1453
1454out_imf_rollback:
1455	if (error)
1456		imf_rollback(imf);
1457	else
1458		imf_commit(imf);
1459
1460	imf_reap(imf);
1461
1462out_inp_locked:
1463	INP_WUNLOCK(inp);
1464	return (error);
1465}
1466
1467/*
1468 * Given an inpcb, return its multicast options structure pointer.  Accepts
1469 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1470 *
1471 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1472 * SMPng: NOTE: Returns with the INP write lock held.
1473 */
1474static struct ip_moptions *
1475inp_findmoptions(struct inpcb *inp)
1476{
1477	struct ip_moptions	 *imo;
1478	struct in_multi		**immp;
1479	struct in_mfilter	 *imfp;
1480	size_t			  idx;
1481
1482	INP_WLOCK(inp);
1483	if (inp->inp_moptions != NULL)
1484		return (inp->inp_moptions);
1485
1486	INP_WUNLOCK(inp);
1487
1488	imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1489	immp = malloc(sizeof(*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1490	    M_WAITOK | M_ZERO);
1491	imfp = malloc(sizeof(struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1492	    M_INMFILTER, M_WAITOK);
1493
1494	imo->imo_multicast_ifp = NULL;
1495	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1496	imo->imo_multicast_vif = -1;
1497	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1498	imo->imo_multicast_loop = in_mcast_loop;
1499	imo->imo_num_memberships = 0;
1500	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1501	imo->imo_membership = immp;
1502
1503	/* Initialize per-group source filters. */
1504	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1505		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1506	imo->imo_mfilters = imfp;
1507
1508	INP_WLOCK(inp);
1509	if (inp->inp_moptions != NULL) {
1510		free(imfp, M_INMFILTER);
1511		free(immp, M_IPMOPTS);
1512		free(imo, M_IPMOPTS);
1513		return (inp->inp_moptions);
1514	}
1515	inp->inp_moptions = imo;
1516	return (imo);
1517}
1518
1519/*
1520 * Discard the IP multicast options (and source filters).
1521 *
1522 * SMPng: NOTE: assumes INP write lock is held.
1523 */
1524void
1525inp_freemoptions(struct ip_moptions *imo)
1526{
1527	struct in_mfilter	*imf;
1528	size_t			 idx, nmships;
1529
1530	KASSERT(imo != NULL, ("%s: ip_moptions is NULL", __func__));
1531
1532	nmships = imo->imo_num_memberships;
1533	for (idx = 0; idx < nmships; ++idx) {
1534		imf = imo->imo_mfilters ? &imo->imo_mfilters[idx] : NULL;
1535		if (imf)
1536			imf_leave(imf);
1537		(void)in_leavegroup(imo->imo_membership[idx], imf);
1538		if (imf)
1539			imf_purge(imf);
1540	}
1541
1542	if (imo->imo_mfilters)
1543		free(imo->imo_mfilters, M_INMFILTER);
1544	free(imo->imo_membership, M_IPMOPTS);
1545	free(imo, M_IPMOPTS);
1546}
1547
1548/*
1549 * Atomically get source filters on a socket for an IPv4 multicast group.
1550 * Called with INP lock held; returns with lock released.
1551 */
1552static int
1553inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1554{
1555	struct __msfilterreq	 msfr;
1556	sockunion_t		*gsa;
1557	struct ifnet		*ifp;
1558	struct ip_moptions	*imo;
1559	struct in_mfilter	*imf;
1560	struct ip_msource	*ims;
1561	struct in_msource	*lims;
1562	struct sockaddr_in	*psin;
1563	struct sockaddr_storage	*ptss;
1564	struct sockaddr_storage	*tss;
1565	int			 error;
1566	size_t			 idx, nsrcs, ncsrcs;
1567
1568	INP_WLOCK_ASSERT(inp);
1569
1570	imo = inp->inp_moptions;
1571	KASSERT(imo != NULL, ("%s: null ip_moptions", __func__));
1572
1573	INP_WUNLOCK(inp);
1574
1575	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1576	    sizeof(struct __msfilterreq));
1577	if (error)
1578		return (error);
1579
1580	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1581		return (EINVAL);
1582
1583	ifp = ifnet_byindex(msfr.msfr_ifindex);
1584	if (ifp == NULL)
1585		return (EINVAL);
1586
1587	INP_WLOCK(inp);
1588
1589	/*
1590	 * Lookup group on the socket.
1591	 */
1592	gsa = (sockunion_t *)&msfr.msfr_group;
1593	idx = imo_match_group(imo, ifp, &gsa->sa);
1594	if (idx == -1 || imo->imo_mfilters == NULL) {
1595		INP_WUNLOCK(inp);
1596		return (EADDRNOTAVAIL);
1597	}
1598	imf = &imo->imo_mfilters[idx];
1599
1600	/*
1601	 * Ignore memberships which are in limbo.
1602	 */
1603	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1604		INP_WUNLOCK(inp);
1605		return (EAGAIN);
1606	}
1607	msfr.msfr_fmode = imf->imf_st[1];
1608
1609	/*
1610	 * If the user specified a buffer, copy out the source filter
1611	 * entries to userland gracefully.
1612	 * We only copy out the number of entries which userland
1613	 * has asked for, but we always tell userland how big the
1614	 * buffer really needs to be.
1615	 */
1616	tss = NULL;
1617	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1618		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1619		    M_TEMP, M_NOWAIT | M_ZERO);
1620		if (tss == NULL) {
1621			INP_WUNLOCK(inp);
1622			return (ENOBUFS);
1623		}
1624	}
1625
1626	/*
1627	 * Count number of sources in-mode at t0.
1628	 * If buffer space exists and remains, copy out source entries.
1629	 */
1630	nsrcs = msfr.msfr_nsrcs;
1631	ncsrcs = 0;
1632	ptss = tss;
1633	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1634		lims = (struct in_msource *)ims;
1635		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1636		    lims->imsl_st[0] != imf->imf_st[0])
1637			continue;
1638		++ncsrcs;
1639		if (tss != NULL && nsrcs > 0) {
1640			psin = (struct sockaddr_in *)ptss;
1641			psin->sin_family = AF_INET;
1642			psin->sin_len = sizeof(struct sockaddr_in);
1643			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1644			psin->sin_port = 0;
1645			++ptss;
1646			--nsrcs;
1647		}
1648	}
1649
1650	INP_WUNLOCK(inp);
1651
1652	if (tss != NULL) {
1653		error = copyout(tss, msfr.msfr_srcs,
1654		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1655		free(tss, M_TEMP);
1656		if (error)
1657			return (error);
1658	}
1659
1660	msfr.msfr_nsrcs = ncsrcs;
1661	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1662
1663	return (error);
1664}
1665
1666/*
1667 * Return the IP multicast options in response to user getsockopt().
1668 */
1669int
1670inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1671{
1672	struct ip_mreqn		 mreqn;
1673	struct ip_moptions	*imo;
1674	struct ifnet		*ifp;
1675	struct in_ifaddr	*ia;
1676	int			 error, optval;
1677	u_char			 coptval;
1678
1679	INP_WLOCK(inp);
1680	imo = inp->inp_moptions;
1681	/*
1682	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1683	 * or is a divert socket, reject it.
1684	 */
1685	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1686	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1687	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1688		INP_WUNLOCK(inp);
1689		return (EOPNOTSUPP);
1690	}
1691
1692	error = 0;
1693	switch (sopt->sopt_name) {
1694	case IP_MULTICAST_VIF:
1695		if (imo != NULL)
1696			optval = imo->imo_multicast_vif;
1697		else
1698			optval = -1;
1699		INP_WUNLOCK(inp);
1700		error = sooptcopyout(sopt, &optval, sizeof(int));
1701		break;
1702
1703	case IP_MULTICAST_IF:
1704		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1705		if (imo != NULL) {
1706			ifp = imo->imo_multicast_ifp;
1707			if (!in_nullhost(imo->imo_multicast_addr)) {
1708				mreqn.imr_address = imo->imo_multicast_addr;
1709			} else if (ifp != NULL) {
1710				mreqn.imr_ifindex = ifp->if_index;
1711				IFP_TO_IA(ifp, ia);
1712				if (ia != NULL) {
1713					mreqn.imr_address =
1714					    IA_SIN(ia)->sin_addr;
1715					ifa_free(&ia->ia_ifa);
1716				}
1717			}
1718		}
1719		INP_WUNLOCK(inp);
1720		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1721			error = sooptcopyout(sopt, &mreqn,
1722			    sizeof(struct ip_mreqn));
1723		} else {
1724			error = sooptcopyout(sopt, &mreqn.imr_address,
1725			    sizeof(struct in_addr));
1726		}
1727		break;
1728
1729	case IP_MULTICAST_TTL:
1730		if (imo == 0)
1731			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1732		else
1733			optval = coptval = imo->imo_multicast_ttl;
1734		INP_WUNLOCK(inp);
1735		if (sopt->sopt_valsize == sizeof(u_char))
1736			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1737		else
1738			error = sooptcopyout(sopt, &optval, sizeof(int));
1739		break;
1740
1741	case IP_MULTICAST_LOOP:
1742		if (imo == 0)
1743			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1744		else
1745			optval = coptval = imo->imo_multicast_loop;
1746		INP_WUNLOCK(inp);
1747		if (sopt->sopt_valsize == sizeof(u_char))
1748			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1749		else
1750			error = sooptcopyout(sopt, &optval, sizeof(int));
1751		break;
1752
1753	case IP_MSFILTER:
1754		if (imo == NULL) {
1755			error = EADDRNOTAVAIL;
1756			INP_WUNLOCK(inp);
1757		} else {
1758			error = inp_get_source_filters(inp, sopt);
1759		}
1760		break;
1761
1762	default:
1763		INP_WUNLOCK(inp);
1764		error = ENOPROTOOPT;
1765		break;
1766	}
1767
1768	INP_UNLOCK_ASSERT(inp);
1769
1770	return (error);
1771}
1772
1773/*
1774 * Look up the ifnet to use for a multicast group membership,
1775 * given the IPv4 address of an interface, and the IPv4 group address.
1776 *
1777 * This routine exists to support legacy multicast applications
1778 * which do not understand that multicast memberships are scoped to
1779 * specific physical links in the networking stack, or which need
1780 * to join link-scope groups before IPv4 addresses are configured.
1781 *
1782 * If inp is non-NULL, use this socket's current FIB number for any
1783 * required FIB lookup.
1784 * If ina is INADDR_ANY, look up the group address in the unicast FIB,
1785 * and use its ifp; usually, this points to the default next-hop.
1786 *
1787 * If the FIB lookup fails, attempt to use the first non-loopback
1788 * interface with multicast capability in the system as a
1789 * last resort. The legacy IPv4 ASM API requires that we do
1790 * this in order to allow groups to be joined when the routing
1791 * table has not yet been populated during boot.
1792 *
1793 * Returns NULL if no ifp could be found.
1794 *
1795 * SMPng: TODO: Acquire the appropriate locks for INADDR_TO_IFP.
1796 * FUTURE: Implement IPv4 source-address selection.
1797 */
1798static struct ifnet *
1799inp_lookup_mcast_ifp(const struct inpcb *inp,
1800    const struct sockaddr_in *gsin, const struct in_addr ina)
1801{
1802	struct ifnet *ifp;
1803
1804	KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__));
1805	KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)),
1806	    ("%s: not multicast", __func__));
1807
1808	ifp = NULL;
1809	if (!in_nullhost(ina)) {
1810		INADDR_TO_IFP(ina, ifp);
1811	} else {
1812		struct route ro;
1813
1814		ro.ro_rt = NULL;
1815		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
1816		in_rtalloc_ign(&ro, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1817		if (ro.ro_rt != NULL) {
1818			ifp = ro.ro_rt->rt_ifp;
1819			KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1820			RTFREE(ro.ro_rt);
1821		} else {
1822			struct in_ifaddr *ia;
1823			struct ifnet *mifp;
1824
1825			mifp = NULL;
1826			IN_IFADDR_RLOCK();
1827			TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1828				mifp = ia->ia_ifp;
1829				if (!(mifp->if_flags & IFF_LOOPBACK) &&
1830				     (mifp->if_flags & IFF_MULTICAST)) {
1831					ifp = mifp;
1832					break;
1833				}
1834			}
1835			IN_IFADDR_RUNLOCK();
1836		}
1837	}
1838
1839	return (ifp);
1840}
1841
1842/*
1843 * Join an IPv4 multicast group, possibly with a source.
1844 */
1845static int
1846inp_join_group(struct inpcb *inp, struct sockopt *sopt)
1847{
1848	struct group_source_req		 gsr;
1849	sockunion_t			*gsa, *ssa;
1850	struct ifnet			*ifp;
1851	struct in_mfilter		*imf;
1852	struct ip_moptions		*imo;
1853	struct in_multi			*inm;
1854	struct in_msource		*lims;
1855	size_t				 idx;
1856	int				 error, is_new;
1857
1858	ifp = NULL;
1859	imf = NULL;
1860	error = 0;
1861	is_new = 0;
1862
1863	memset(&gsr, 0, sizeof(struct group_source_req));
1864	gsa = (sockunion_t *)&gsr.gsr_group;
1865	gsa->ss.ss_family = AF_UNSPEC;
1866	ssa = (sockunion_t *)&gsr.gsr_source;
1867	ssa->ss.ss_family = AF_UNSPEC;
1868
1869	switch (sopt->sopt_name) {
1870	case IP_ADD_MEMBERSHIP:
1871	case IP_ADD_SOURCE_MEMBERSHIP: {
1872		struct ip_mreq_source	 mreqs;
1873
1874		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
1875			error = sooptcopyin(sopt, &mreqs,
1876			    sizeof(struct ip_mreq),
1877			    sizeof(struct ip_mreq));
1878			/*
1879			 * Do argument switcharoo from ip_mreq into
1880			 * ip_mreq_source to avoid using two instances.
1881			 */
1882			mreqs.imr_interface = mreqs.imr_sourceaddr;
1883			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
1884		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1885			error = sooptcopyin(sopt, &mreqs,
1886			    sizeof(struct ip_mreq_source),
1887			    sizeof(struct ip_mreq_source));
1888		}
1889		if (error)
1890			return (error);
1891
1892		gsa->sin.sin_family = AF_INET;
1893		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1894		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1895
1896		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
1897			ssa->sin.sin_family = AF_INET;
1898			ssa->sin.sin_len = sizeof(struct sockaddr_in);
1899			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1900		}
1901
1902		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1903			return (EINVAL);
1904
1905		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
1906		    mreqs.imr_interface);
1907		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
1908		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
1909		break;
1910	}
1911
1912	case MCAST_JOIN_GROUP:
1913	case MCAST_JOIN_SOURCE_GROUP:
1914		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1915			error = sooptcopyin(sopt, &gsr,
1916			    sizeof(struct group_req),
1917			    sizeof(struct group_req));
1918		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1919			error = sooptcopyin(sopt, &gsr,
1920			    sizeof(struct group_source_req),
1921			    sizeof(struct group_source_req));
1922		}
1923		if (error)
1924			return (error);
1925
1926		if (gsa->sin.sin_family != AF_INET ||
1927		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1928			return (EINVAL);
1929
1930		/*
1931		 * Overwrite the port field if present, as the sockaddr
1932		 * being copied in may be matched with a binary comparison.
1933		 */
1934		gsa->sin.sin_port = 0;
1935		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1936			if (ssa->sin.sin_family != AF_INET ||
1937			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1938				return (EINVAL);
1939			ssa->sin.sin_port = 0;
1940		}
1941
1942		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1943			return (EINVAL);
1944
1945		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1946			return (EADDRNOTAVAIL);
1947		ifp = ifnet_byindex(gsr.gsr_interface);
1948		break;
1949
1950	default:
1951		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
1952		    __func__, sopt->sopt_name);
1953		return (EOPNOTSUPP);
1954		break;
1955	}
1956
1957	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1958		return (EADDRNOTAVAIL);
1959
1960	/*
1961	 * MCAST_JOIN_SOURCE on an exclusive membership is an error.
1962	 * On an existing inclusive membership, it just adds the
1963	 * source to the filter list.
1964	 */
1965	imo = inp_findmoptions(inp);
1966	idx = imo_match_group(imo, ifp, &gsa->sa);
1967	if (idx == -1) {
1968		is_new = 1;
1969	} else {
1970		inm = imo->imo_membership[idx];
1971		imf = &imo->imo_mfilters[idx];
1972		if (ssa->ss.ss_family != AF_UNSPEC &&
1973		    imf->imf_st[1] != MCAST_INCLUDE) {
1974			error = EINVAL;
1975			goto out_inp_locked;
1976		}
1977		lims = imo_match_source(imo, idx, &ssa->sa);
1978		if (lims != NULL) {
1979			error = EADDRNOTAVAIL;
1980			goto out_inp_locked;
1981		}
1982	}
1983
1984	/*
1985	 * Begin state merge transaction at socket layer.
1986	 */
1987	INP_WLOCK_ASSERT(inp);
1988
1989	if (is_new) {
1990		if (imo->imo_num_memberships == imo->imo_max_memberships) {
1991			error = imo_grow(imo);
1992			if (error)
1993				goto out_inp_locked;
1994		}
1995		/*
1996		 * Allocate the new slot upfront so we can deal with
1997		 * grafting the new source filter in same code path
1998		 * as for join-source on existing membership.
1999		 */
2000		idx = imo->imo_num_memberships;
2001		imo->imo_membership[idx] = NULL;
2002		imo->imo_num_memberships++;
2003		KASSERT(imo->imo_mfilters != NULL,
2004		    ("%s: imf_mfilters vector was not allocated", __func__));
2005		imf = &imo->imo_mfilters[idx];
2006		KASSERT(RB_EMPTY(&imf->imf_sources),
2007		    ("%s: imf_sources not empty", __func__));
2008	}
2009
2010	/*
2011	 * Graft new source into filter list for this inpcb's
2012	 * membership of the group. The in_multi may not have
2013	 * been allocated yet if this is a new membership.
2014	 */
2015	if (ssa->ss.ss_family != AF_UNSPEC) {
2016		/* Membership starts in IN mode */
2017		if (is_new) {
2018			CTR1(KTR_IGMPV3, "%s: new join w/source", __func__);
2019			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2020		} else {
2021			CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow");
2022		}
2023		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2024		if (lims == NULL) {
2025			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2026			    __func__);
2027			error = ENOMEM;
2028			goto out_imo_free;
2029		}
2030	}
2031
2032	/*
2033	 * Begin state merge transaction at IGMP layer.
2034	 */
2035	IN_MULTI_LOCK();
2036
2037	if (is_new) {
2038		error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf,
2039		    &inm);
2040		if (error)
2041			goto out_imo_free;
2042		imo->imo_membership[idx] = inm;
2043	} else {
2044		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2045		error = inm_merge(inm, imf);
2046		if (error) {
2047			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2048			    __func__);
2049			goto out_imf_rollback;
2050		}
2051		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2052		error = igmp_change_state(inm);
2053		if (error) {
2054			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2055			    __func__);
2056			goto out_imf_rollback;
2057		}
2058	}
2059
2060	IN_MULTI_UNLOCK();
2061
2062out_imf_rollback:
2063	INP_WLOCK_ASSERT(inp);
2064	if (error) {
2065		imf_rollback(imf);
2066		if (is_new)
2067			imf_purge(imf);
2068		else
2069			imf_reap(imf);
2070	} else {
2071		imf_commit(imf);
2072	}
2073
2074out_imo_free:
2075	if (error && is_new) {
2076		imo->imo_membership[idx] = NULL;
2077		--imo->imo_num_memberships;
2078	}
2079
2080out_inp_locked:
2081	INP_WUNLOCK(inp);
2082	return (error);
2083}
2084
2085/*
2086 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2087 */
2088static int
2089inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2090{
2091	struct group_source_req		 gsr;
2092	struct ip_mreq_source		 mreqs;
2093	sockunion_t			*gsa, *ssa;
2094	struct ifnet			*ifp;
2095	struct in_mfilter		*imf;
2096	struct ip_moptions		*imo;
2097	struct in_msource		*ims;
2098	struct in_multi			*inm;
2099	size_t				 idx;
2100	int				 error, is_final;
2101
2102	ifp = NULL;
2103	error = 0;
2104	is_final = 1;
2105
2106	memset(&gsr, 0, sizeof(struct group_source_req));
2107	gsa = (sockunion_t *)&gsr.gsr_group;
2108	gsa->ss.ss_family = AF_UNSPEC;
2109	ssa = (sockunion_t *)&gsr.gsr_source;
2110	ssa->ss.ss_family = AF_UNSPEC;
2111
2112	switch (sopt->sopt_name) {
2113	case IP_DROP_MEMBERSHIP:
2114	case IP_DROP_SOURCE_MEMBERSHIP:
2115		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2116			error = sooptcopyin(sopt, &mreqs,
2117			    sizeof(struct ip_mreq),
2118			    sizeof(struct ip_mreq));
2119			/*
2120			 * Swap interface and sourceaddr arguments,
2121			 * as ip_mreq and ip_mreq_source are laid
2122			 * out differently.
2123			 */
2124			mreqs.imr_interface = mreqs.imr_sourceaddr;
2125			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2126		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2127			error = sooptcopyin(sopt, &mreqs,
2128			    sizeof(struct ip_mreq_source),
2129			    sizeof(struct ip_mreq_source));
2130		}
2131		if (error)
2132			return (error);
2133
2134		gsa->sin.sin_family = AF_INET;
2135		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2136		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2137
2138		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2139			ssa->sin.sin_family = AF_INET;
2140			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2141			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2142		}
2143
2144		if (!in_nullhost(gsa->sin.sin_addr))
2145			INADDR_TO_IFP(mreqs.imr_interface, ifp);
2146
2147		CTR3(KTR_IGMPV3, "%s: imr_interface = %s, ifp = %p",
2148		    __func__, inet_ntoa(mreqs.imr_interface), ifp);
2149
2150		break;
2151
2152	case MCAST_LEAVE_GROUP:
2153	case MCAST_LEAVE_SOURCE_GROUP:
2154		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2155			error = sooptcopyin(sopt, &gsr,
2156			    sizeof(struct group_req),
2157			    sizeof(struct group_req));
2158		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2159			error = sooptcopyin(sopt, &gsr,
2160			    sizeof(struct group_source_req),
2161			    sizeof(struct group_source_req));
2162		}
2163		if (error)
2164			return (error);
2165
2166		if (gsa->sin.sin_family != AF_INET ||
2167		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2168			return (EINVAL);
2169
2170		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2171			if (ssa->sin.sin_family != AF_INET ||
2172			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2173				return (EINVAL);
2174		}
2175
2176		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
2177			return (EADDRNOTAVAIL);
2178
2179		ifp = ifnet_byindex(gsr.gsr_interface);
2180		break;
2181
2182	default:
2183		CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d",
2184		    __func__, sopt->sopt_name);
2185		return (EOPNOTSUPP);
2186		break;
2187	}
2188
2189	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2190		return (EINVAL);
2191
2192	if (ifp == NULL)
2193		return (EADDRNOTAVAIL);
2194
2195	/*
2196	 * Find the membership in the membership array.
2197	 */
2198	imo = inp_findmoptions(inp);
2199	idx = imo_match_group(imo, ifp, &gsa->sa);
2200	if (idx == -1) {
2201		error = EADDRNOTAVAIL;
2202		goto out_inp_locked;
2203	}
2204	inm = imo->imo_membership[idx];
2205	imf = &imo->imo_mfilters[idx];
2206
2207	if (ssa->ss.ss_family != AF_UNSPEC)
2208		is_final = 0;
2209
2210	/*
2211	 * Begin state merge transaction at socket layer.
2212	 */
2213	INP_WLOCK_ASSERT(inp);
2214
2215	/*
2216	 * If we were instructed only to leave a given source, do so.
2217	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2218	 */
2219	if (is_final) {
2220		imf_leave(imf);
2221	} else {
2222		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2223			error = EADDRNOTAVAIL;
2224			goto out_inp_locked;
2225		}
2226		ims = imo_match_source(imo, idx, &ssa->sa);
2227		if (ims == NULL) {
2228			CTR3(KTR_IGMPV3, "%s: source %s %spresent", __func__,
2229			    inet_ntoa(ssa->sin.sin_addr), "not ");
2230			error = EADDRNOTAVAIL;
2231			goto out_inp_locked;
2232		}
2233		CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block");
2234		error = imf_prune(imf, &ssa->sin);
2235		if (error) {
2236			CTR1(KTR_IGMPV3, "%s: merge imf state failed",
2237			    __func__);
2238			goto out_inp_locked;
2239		}
2240	}
2241
2242	/*
2243	 * Begin state merge transaction at IGMP layer.
2244	 */
2245	IN_MULTI_LOCK();
2246
2247	if (is_final) {
2248		/*
2249		 * Give up the multicast address record to which
2250		 * the membership points.
2251		 */
2252		(void)in_leavegroup_locked(inm, imf);
2253	} else {
2254		CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2255		error = inm_merge(inm, imf);
2256		if (error) {
2257			CTR1(KTR_IGMPV3, "%s: failed to merge inm state",
2258			    __func__);
2259			goto out_imf_rollback;
2260		}
2261
2262		CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2263		error = igmp_change_state(inm);
2264		if (error) {
2265			CTR1(KTR_IGMPV3, "%s: failed igmp downcall",
2266			    __func__);
2267		}
2268	}
2269
2270	IN_MULTI_UNLOCK();
2271
2272out_imf_rollback:
2273	if (error)
2274		imf_rollback(imf);
2275	else
2276		imf_commit(imf);
2277
2278	imf_reap(imf);
2279
2280	if (is_final) {
2281		/* Remove the gap in the membership array. */
2282		for (++idx; idx < imo->imo_num_memberships; ++idx)
2283			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2284		imo->imo_num_memberships--;
2285	}
2286
2287out_inp_locked:
2288	INP_WUNLOCK(inp);
2289	return (error);
2290}
2291
2292/*
2293 * Select the interface for transmitting IPv4 multicast datagrams.
2294 *
2295 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2296 * may be passed to this socket option. An address of INADDR_ANY or an
2297 * interface index of 0 is used to remove a previous selection.
2298 * When no interface is selected, one is chosen for every send.
2299 */
2300static int
2301inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2302{
2303	struct in_addr		 addr;
2304	struct ip_mreqn		 mreqn;
2305	struct ifnet		*ifp;
2306	struct ip_moptions	*imo;
2307	int			 error;
2308
2309	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2310		/*
2311		 * An interface index was specified using the
2312		 * Linux-derived ip_mreqn structure.
2313		 */
2314		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2315		    sizeof(struct ip_mreqn));
2316		if (error)
2317			return (error);
2318
2319		if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex)
2320			return (EINVAL);
2321
2322		if (mreqn.imr_ifindex == 0) {
2323			ifp = NULL;
2324		} else {
2325			ifp = ifnet_byindex(mreqn.imr_ifindex);
2326			if (ifp == NULL)
2327				return (EADDRNOTAVAIL);
2328		}
2329	} else {
2330		/*
2331		 * An interface was specified by IPv4 address.
2332		 * This is the traditional BSD usage.
2333		 */
2334		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2335		    sizeof(struct in_addr));
2336		if (error)
2337			return (error);
2338		if (in_nullhost(addr)) {
2339			ifp = NULL;
2340		} else {
2341			INADDR_TO_IFP(addr, ifp);
2342			if (ifp == NULL)
2343				return (EADDRNOTAVAIL);
2344		}
2345		CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = %s", __func__, ifp,
2346		    inet_ntoa(addr));
2347	}
2348
2349	/* Reject interfaces which do not support multicast. */
2350	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2351		return (EOPNOTSUPP);
2352
2353	imo = inp_findmoptions(inp);
2354	imo->imo_multicast_ifp = ifp;
2355	imo->imo_multicast_addr.s_addr = INADDR_ANY;
2356	INP_WUNLOCK(inp);
2357
2358	return (0);
2359}
2360
2361/*
2362 * Atomically set source filters on a socket for an IPv4 multicast group.
2363 *
2364 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2365 */
2366static int
2367inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2368{
2369	struct __msfilterreq	 msfr;
2370	sockunion_t		*gsa;
2371	struct ifnet		*ifp;
2372	struct in_mfilter	*imf;
2373	struct ip_moptions	*imo;
2374	struct in_multi		*inm;
2375	size_t			 idx;
2376	int			 error;
2377
2378	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2379	    sizeof(struct __msfilterreq));
2380	if (error)
2381		return (error);
2382
2383	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc ||
2384	    (msfr.msfr_fmode != MCAST_EXCLUDE &&
2385	     msfr.msfr_fmode != MCAST_INCLUDE))
2386		return (EINVAL);
2387
2388	if (msfr.msfr_group.ss_family != AF_INET ||
2389	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2390		return (EINVAL);
2391
2392	gsa = (sockunion_t *)&msfr.msfr_group;
2393	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2394		return (EINVAL);
2395
2396	gsa->sin.sin_port = 0;	/* ignore port */
2397
2398	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2399		return (EADDRNOTAVAIL);
2400
2401	ifp = ifnet_byindex(msfr.msfr_ifindex);
2402	if (ifp == NULL)
2403		return (EADDRNOTAVAIL);
2404
2405	/*
2406	 * Take the INP write lock.
2407	 * Check if this socket is a member of this group.
2408	 */
2409	imo = inp_findmoptions(inp);
2410	idx = imo_match_group(imo, ifp, &gsa->sa);
2411	if (idx == -1 || imo->imo_mfilters == NULL) {
2412		error = EADDRNOTAVAIL;
2413		goto out_inp_locked;
2414	}
2415	inm = imo->imo_membership[idx];
2416	imf = &imo->imo_mfilters[idx];
2417
2418	/*
2419	 * Begin state merge transaction at socket layer.
2420	 */
2421	INP_WLOCK_ASSERT(inp);
2422
2423	imf->imf_st[1] = msfr.msfr_fmode;
2424
2425	/*
2426	 * Apply any new source filters, if present.
2427	 * Make a copy of the user-space source vector so
2428	 * that we may copy them with a single copyin. This
2429	 * allows us to deal with page faults up-front.
2430	 */
2431	if (msfr.msfr_nsrcs > 0) {
2432		struct in_msource	*lims;
2433		struct sockaddr_in	*psin;
2434		struct sockaddr_storage	*kss, *pkss;
2435		int			 i;
2436
2437		INP_WUNLOCK(inp);
2438
2439		CTR2(KTR_IGMPV3, "%s: loading %lu source list entries",
2440		    __func__, (unsigned long)msfr.msfr_nsrcs);
2441		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2442		    M_TEMP, M_WAITOK);
2443		error = copyin(msfr.msfr_srcs, kss,
2444		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2445		if (error) {
2446			free(kss, M_TEMP);
2447			return (error);
2448		}
2449
2450		INP_WLOCK(inp);
2451
2452		/*
2453		 * Mark all source filters as UNDEFINED at t1.
2454		 * Restore new group filter mode, as imf_leave()
2455		 * will set it to INCLUDE.
2456		 */
2457		imf_leave(imf);
2458		imf->imf_st[1] = msfr.msfr_fmode;
2459
2460		/*
2461		 * Update socket layer filters at t1, lazy-allocating
2462		 * new entries. This saves a bunch of memory at the
2463		 * cost of one RB_FIND() per source entry; duplicate
2464		 * entries in the msfr_nsrcs vector are ignored.
2465		 * If we encounter an error, rollback transaction.
2466		 *
2467		 * XXX This too could be replaced with a set-symmetric
2468		 * difference like loop to avoid walking from root
2469		 * every time, as the key space is common.
2470		 */
2471		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2472			psin = (struct sockaddr_in *)pkss;
2473			if (psin->sin_family != AF_INET) {
2474				error = EAFNOSUPPORT;
2475				break;
2476			}
2477			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2478				error = EINVAL;
2479				break;
2480			}
2481			error = imf_get_source(imf, psin, &lims);
2482			if (error)
2483				break;
2484			lims->imsl_st[1] = imf->imf_st[1];
2485		}
2486		free(kss, M_TEMP);
2487	}
2488
2489	if (error)
2490		goto out_imf_rollback;
2491
2492	INP_WLOCK_ASSERT(inp);
2493	IN_MULTI_LOCK();
2494
2495	/*
2496	 * Begin state merge transaction at IGMP layer.
2497	 */
2498	CTR1(KTR_IGMPV3, "%s: merge inm state", __func__);
2499	error = inm_merge(inm, imf);
2500	if (error) {
2501		CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__);
2502		goto out_imf_rollback;
2503	}
2504
2505	CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__);
2506	error = igmp_change_state(inm);
2507	if (error)
2508		CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__);
2509
2510	IN_MULTI_UNLOCK();
2511
2512out_imf_rollback:
2513	if (error)
2514		imf_rollback(imf);
2515	else
2516		imf_commit(imf);
2517
2518	imf_reap(imf);
2519
2520out_inp_locked:
2521	INP_WUNLOCK(inp);
2522	return (error);
2523}
2524
2525/*
2526 * Set the IP multicast options in response to user setsockopt().
2527 *
2528 * Many of the socket options handled in this function duplicate the
2529 * functionality of socket options in the regular unicast API. However,
2530 * it is not possible to merge the duplicate code, because the idempotence
2531 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2532 * the effects of these options must be treated as separate and distinct.
2533 *
2534 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2535 * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING
2536 * is refactored to no longer use vifs.
2537 */
2538int
2539inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2540{
2541	struct ip_moptions	*imo;
2542	int			 error;
2543
2544	error = 0;
2545
2546	/*
2547	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2548	 * or is a divert socket, reject it.
2549	 */
2550	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2551	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2552	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2553		return (EOPNOTSUPP);
2554
2555	switch (sopt->sopt_name) {
2556	case IP_MULTICAST_VIF: {
2557		int vifi;
2558		/*
2559		 * Select a multicast VIF for transmission.
2560		 * Only useful if multicast forwarding is active.
2561		 */
2562		if (legal_vif_num == NULL) {
2563			error = EOPNOTSUPP;
2564			break;
2565		}
2566		error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int));
2567		if (error)
2568			break;
2569		if (!legal_vif_num(vifi) && (vifi != -1)) {
2570			error = EINVAL;
2571			break;
2572		}
2573		imo = inp_findmoptions(inp);
2574		imo->imo_multicast_vif = vifi;
2575		INP_WUNLOCK(inp);
2576		break;
2577	}
2578
2579	case IP_MULTICAST_IF:
2580		error = inp_set_multicast_if(inp, sopt);
2581		break;
2582
2583	case IP_MULTICAST_TTL: {
2584		u_char ttl;
2585
2586		/*
2587		 * Set the IP time-to-live for outgoing multicast packets.
2588		 * The original multicast API required a char argument,
2589		 * which is inconsistent with the rest of the socket API.
2590		 * We allow either a char or an int.
2591		 */
2592		if (sopt->sopt_valsize == sizeof(u_char)) {
2593			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
2594			    sizeof(u_char));
2595			if (error)
2596				break;
2597		} else {
2598			u_int ittl;
2599
2600			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
2601			    sizeof(u_int));
2602			if (error)
2603				break;
2604			if (ittl > 255) {
2605				error = EINVAL;
2606				break;
2607			}
2608			ttl = (u_char)ittl;
2609		}
2610		imo = inp_findmoptions(inp);
2611		imo->imo_multicast_ttl = ttl;
2612		INP_WUNLOCK(inp);
2613		break;
2614	}
2615
2616	case IP_MULTICAST_LOOP: {
2617		u_char loop;
2618
2619		/*
2620		 * Set the loopback flag for outgoing multicast packets.
2621		 * Must be zero or one.  The original multicast API required a
2622		 * char argument, which is inconsistent with the rest
2623		 * of the socket API.  We allow either a char or an int.
2624		 */
2625		if (sopt->sopt_valsize == sizeof(u_char)) {
2626			error = sooptcopyin(sopt, &loop, sizeof(u_char),
2627			    sizeof(u_char));
2628			if (error)
2629				break;
2630		} else {
2631			u_int iloop;
2632
2633			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
2634					    sizeof(u_int));
2635			if (error)
2636				break;
2637			loop = (u_char)iloop;
2638		}
2639		imo = inp_findmoptions(inp);
2640		imo->imo_multicast_loop = !!loop;
2641		INP_WUNLOCK(inp);
2642		break;
2643	}
2644
2645	case IP_ADD_MEMBERSHIP:
2646	case IP_ADD_SOURCE_MEMBERSHIP:
2647	case MCAST_JOIN_GROUP:
2648	case MCAST_JOIN_SOURCE_GROUP:
2649		error = inp_join_group(inp, sopt);
2650		break;
2651
2652	case IP_DROP_MEMBERSHIP:
2653	case IP_DROP_SOURCE_MEMBERSHIP:
2654	case MCAST_LEAVE_GROUP:
2655	case MCAST_LEAVE_SOURCE_GROUP:
2656		error = inp_leave_group(inp, sopt);
2657		break;
2658
2659	case IP_BLOCK_SOURCE:
2660	case IP_UNBLOCK_SOURCE:
2661	case MCAST_BLOCK_SOURCE:
2662	case MCAST_UNBLOCK_SOURCE:
2663		error = inp_block_unblock_source(inp, sopt);
2664		break;
2665
2666	case IP_MSFILTER:
2667		error = inp_set_source_filters(inp, sopt);
2668		break;
2669
2670	default:
2671		error = EOPNOTSUPP;
2672		break;
2673	}
2674
2675	INP_UNLOCK_ASSERT(inp);
2676
2677	return (error);
2678}
2679
2680/*
2681 * Expose IGMP's multicast filter mode and source list(s) to userland,
2682 * keyed by (ifindex, group).
2683 * The filter mode is written out as a uint32_t, followed by
2684 * 0..n of struct in_addr.
2685 * For use by ifmcstat(8).
2686 * SMPng: NOTE: unlocked read of ifindex space.
2687 */
2688static int
2689sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS)
2690{
2691	struct in_addr			 src, group;
2692	struct ifnet			*ifp;
2693	struct ifmultiaddr		*ifma;
2694	struct in_multi			*inm;
2695	struct ip_msource		*ims;
2696	int				*name;
2697	int				 retval;
2698	u_int				 namelen;
2699	uint32_t			 fmode, ifindex;
2700
2701	name = (int *)arg1;
2702	namelen = arg2;
2703
2704	if (req->newptr != NULL)
2705		return (EPERM);
2706
2707	if (namelen != 2)
2708		return (EINVAL);
2709
2710	ifindex = name[0];
2711	if (ifindex <= 0 || ifindex > V_if_index) {
2712		CTR2(KTR_IGMPV3, "%s: ifindex %u out of range",
2713		    __func__, ifindex);
2714		return (ENOENT);
2715	}
2716
2717	group.s_addr = name[1];
2718	if (!IN_MULTICAST(ntohl(group.s_addr))) {
2719		CTR2(KTR_IGMPV3, "%s: group %s is not multicast",
2720		    __func__, inet_ntoa(group));
2721		return (EINVAL);
2722	}
2723
2724	ifp = ifnet_byindex(ifindex);
2725	if (ifp == NULL) {
2726		CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u",
2727		    __func__, ifindex);
2728		return (ENOENT);
2729	}
2730
2731	retval = sysctl_wire_old_buffer(req,
2732	    sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr)));
2733	if (retval)
2734		return (retval);
2735
2736	IN_MULTI_LOCK();
2737
2738	IF_ADDR_LOCK(ifp);
2739	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2740		if (ifma->ifma_addr->sa_family != AF_INET ||
2741		    ifma->ifma_protospec == NULL)
2742			continue;
2743		inm = (struct in_multi *)ifma->ifma_protospec;
2744		if (!in_hosteq(inm->inm_addr, group))
2745			continue;
2746		fmode = inm->inm_st[1].iss_fmode;
2747		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2748		if (retval != 0)
2749			break;
2750		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
2751#ifdef KTR
2752			struct in_addr ina;
2753			ina.s_addr = htonl(ims->ims_haddr);
2754			CTR2(KTR_IGMPV3, "%s: visit node %s", __func__,
2755			    inet_ntoa(ina));
2756#endif
2757			/*
2758			 * Only copy-out sources which are in-mode.
2759			 */
2760			if (fmode != ims_get_mode(inm, ims, 1)) {
2761				CTR1(KTR_IGMPV3, "%s: skip non-in-mode",
2762				    __func__);
2763				continue;
2764			}
2765			src.s_addr = htonl(ims->ims_haddr);
2766			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
2767			if (retval != 0)
2768				break;
2769		}
2770	}
2771	IF_ADDR_UNLOCK(ifp);
2772
2773	IN_MULTI_UNLOCK();
2774
2775	return (retval);
2776}
2777
2778#ifdef KTR
2779
2780static const char *inm_modestrs[] = { "un", "in", "ex" };
2781
2782static const char *
2783inm_mode_str(const int mode)
2784{
2785
2786	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2787		return (inm_modestrs[mode]);
2788	return ("??");
2789}
2790
2791static const char *inm_statestrs[] = {
2792	"not-member",
2793	"silent",
2794	"idle",
2795	"lazy",
2796	"sleeping",
2797	"awakening",
2798	"query-pending",
2799	"sg-query-pending",
2800	"leaving"
2801};
2802
2803static const char *
2804inm_state_str(const int state)
2805{
2806
2807	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
2808		return (inm_statestrs[state]);
2809	return ("??");
2810}
2811
2812/*
2813 * Dump an in_multi structure to the console.
2814 */
2815void
2816inm_print(const struct in_multi *inm)
2817{
2818	int t;
2819
2820	if ((ktr_mask & KTR_IGMPV3) == 0)
2821		return;
2822
2823	printf("%s: --- begin inm %p ---\n", __func__, inm);
2824	printf("addr %s ifp %p(%s) ifma %p\n",
2825	    inet_ntoa(inm->inm_addr),
2826	    inm->inm_ifp,
2827	    inm->inm_ifp->if_xname,
2828	    inm->inm_ifma);
2829	printf("timer %u state %s refcount %u scq.len %u\n",
2830	    inm->inm_timer,
2831	    inm_state_str(inm->inm_state),
2832	    inm->inm_refcount,
2833	    inm->inm_scq.ifq_len);
2834	printf("igi %p nsrc %lu sctimer %u scrv %u\n",
2835	    inm->inm_igi,
2836	    inm->inm_nsrc,
2837	    inm->inm_sctimer,
2838	    inm->inm_scrv);
2839	for (t = 0; t < 2; t++) {
2840		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2841		    inm_mode_str(inm->inm_st[t].iss_fmode),
2842		    inm->inm_st[t].iss_asm,
2843		    inm->inm_st[t].iss_ex,
2844		    inm->inm_st[t].iss_in,
2845		    inm->inm_st[t].iss_rec);
2846	}
2847	printf("%s: --- end inm %p ---\n", __func__, inm);
2848}
2849
2850#else /* !KTR */
2851
2852void
2853inm_print(const struct in_multi *inm)
2854{
2855
2856}
2857
2858#endif /* KTR */
2859
2860RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
2861