radix.c revision 48215
1/*
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34 *	$Id: radix.c,v 1.17 1999/04/29 03:22:16 luoqi Exp $
35 */
36
37/*
38 * Routines to build and maintain radix trees for routing lookups.
39 */
40#ifndef _RADIX_H_
41#include <sys/param.h>
42#ifdef	KERNEL
43#include <sys/systm.h>
44#include <sys/malloc.h>
45#define	M_DONTWAIT M_NOWAIT
46#include <sys/domain.h>
47#else
48#include <stdlib.h>
49#endif
50#include <sys/syslog.h>
51#include <net/radix.h>
52#endif
53
54static int	rn_walktree_from __P((struct radix_node_head *h, void *a,
55				      void *m, walktree_f_t *f, void *w));
56static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
57static struct radix_node
58	 *rn_insert __P((void *, struct radix_node_head *, int *,
59			struct radix_node [2])),
60	 *rn_newpair __P((void *, int, struct radix_node[2])),
61	 *rn_search __P((void *, struct radix_node *)),
62	 *rn_search_m __P((void *, struct radix_node *, void *));
63
64static int	max_keylen;
65static struct radix_mask *rn_mkfreelist;
66static struct radix_node_head *mask_rnhead;
67static char *addmask_key;
68static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
69static char *rn_zeros, *rn_ones;
70
71#define rn_masktop (mask_rnhead->rnh_treetop)
72#undef Bcmp
73#define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
74
75static int	rn_lexobetter __P((void *m_arg, void *n_arg));
76static struct radix_mask *
77		rn_new_radix_mask __P((struct radix_node *tt,
78				       struct radix_mask *next));
79static int	rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
80				       int skip));
81
82/*
83 * The data structure for the keys is a radix tree with one way
84 * branching removed.  The index rn_b at an internal node n represents a bit
85 * position to be tested.  The tree is arranged so that all descendants
86 * of a node n have keys whose bits all agree up to position rn_b - 1.
87 * (We say the index of n is rn_b.)
88 *
89 * There is at least one descendant which has a one bit at position rn_b,
90 * and at least one with a zero there.
91 *
92 * A route is determined by a pair of key and mask.  We require that the
93 * bit-wise logical and of the key and mask to be the key.
94 * We define the index of a route to associated with the mask to be
95 * the first bit number in the mask where 0 occurs (with bit number 0
96 * representing the highest order bit).
97 *
98 * We say a mask is normal if every bit is 0, past the index of the mask.
99 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
100 * and m is a normal mask, then the route applies to every descendant of n.
101 * If the index(m) < rn_b, this implies the trailing last few bits of k
102 * before bit b are all 0, (and hence consequently true of every descendant
103 * of n), so the route applies to all descendants of the node as well.
104 *
105 * Similar logic shows that a non-normal mask m such that
106 * index(m) <= index(n) could potentially apply to many children of n.
107 * Thus, for each non-host route, we attach its mask to a list at an internal
108 * node as high in the tree as we can go.
109 *
110 * The present version of the code makes use of normal routes in short-
111 * circuiting an explict mask and compare operation when testing whether
112 * a key satisfies a normal route, and also in remembering the unique leaf
113 * that governs a subtree.
114 */
115
116static struct radix_node *
117rn_search(v_arg, head)
118	void *v_arg;
119	struct radix_node *head;
120{
121	register struct radix_node *x;
122	register caddr_t v;
123
124	for (x = head, v = v_arg; x->rn_b >= 0;) {
125		if (x->rn_bmask & v[x->rn_off])
126			x = x->rn_r;
127		else
128			x = x->rn_l;
129	}
130	return (x);
131}
132
133static struct radix_node *
134rn_search_m(v_arg, head, m_arg)
135	struct radix_node *head;
136	void *v_arg, *m_arg;
137{
138	register struct radix_node *x;
139	register caddr_t v = v_arg, m = m_arg;
140
141	for (x = head; x->rn_b >= 0;) {
142		if ((x->rn_bmask & m[x->rn_off]) &&
143		    (x->rn_bmask & v[x->rn_off]))
144			x = x->rn_r;
145		else
146			x = x->rn_l;
147	}
148	return x;
149}
150
151int
152rn_refines(m_arg, n_arg)
153	void *m_arg, *n_arg;
154{
155	register caddr_t m = m_arg, n = n_arg;
156	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
157	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
158	int masks_are_equal = 1;
159
160	if (longer > 0)
161		lim -= longer;
162	while (n < lim) {
163		if (*n & ~(*m))
164			return 0;
165		if (*n++ != *m++)
166			masks_are_equal = 0;
167	}
168	while (n < lim2)
169		if (*n++)
170			return 0;
171	if (masks_are_equal && (longer < 0))
172		for (lim2 = m - longer; m < lim2; )
173			if (*m++)
174				return 1;
175	return (!masks_are_equal);
176}
177
178struct radix_node *
179rn_lookup(v_arg, m_arg, head)
180	void *v_arg, *m_arg;
181	struct radix_node_head *head;
182{
183	register struct radix_node *x;
184	caddr_t netmask = 0;
185
186	if (m_arg) {
187		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
188			return (0);
189		netmask = x->rn_key;
190	}
191	x = rn_match(v_arg, head);
192	if (x && netmask) {
193		while (x && x->rn_mask != netmask)
194			x = x->rn_dupedkey;
195	}
196	return x;
197}
198
199static int
200rn_satsifies_leaf(trial, leaf, skip)
201	char *trial;
202	register struct radix_node *leaf;
203	int skip;
204{
205	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
206	char *cplim;
207	int length = min(*(u_char *)cp, *(u_char *)cp2);
208
209	if (cp3 == 0)
210		cp3 = rn_ones;
211	else
212		length = min(length, *(u_char *)cp3);
213	cplim = cp + length; cp3 += skip; cp2 += skip;
214	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
215		if ((*cp ^ *cp2) & *cp3)
216			return 0;
217	return 1;
218}
219
220struct radix_node *
221rn_match(v_arg, head)
222	void *v_arg;
223	struct radix_node_head *head;
224{
225	caddr_t v = v_arg;
226	register struct radix_node *t = head->rnh_treetop, *x;
227	register caddr_t cp = v, cp2;
228	caddr_t cplim;
229	struct radix_node *saved_t, *top = t;
230	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
231	register int test, b, rn_b;
232
233	/*
234	 * Open code rn_search(v, top) to avoid overhead of extra
235	 * subroutine call.
236	 */
237	for (; t->rn_b >= 0; ) {
238		if (t->rn_bmask & cp[t->rn_off])
239			t = t->rn_r;
240		else
241			t = t->rn_l;
242	}
243	/*
244	 * See if we match exactly as a host destination
245	 * or at least learn how many bits match, for normal mask finesse.
246	 *
247	 * It doesn't hurt us to limit how many bytes to check
248	 * to the length of the mask, since if it matches we had a genuine
249	 * match and the leaf we have is the most specific one anyway;
250	 * if it didn't match with a shorter length it would fail
251	 * with a long one.  This wins big for class B&C netmasks which
252	 * are probably the most common case...
253	 */
254	if (t->rn_mask)
255		vlen = *(u_char *)t->rn_mask;
256	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
257	for (; cp < cplim; cp++, cp2++)
258		if (*cp != *cp2)
259			goto on1;
260	/*
261	 * This extra grot is in case we are explicitly asked
262	 * to look up the default.  Ugh!
263	 *
264	 * Never return the root node itself, it seems to cause a
265	 * lot of confusion.
266	 */
267	if (t->rn_flags & RNF_ROOT)
268		t = t->rn_dupedkey;
269	return t;
270on1:
271	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
272	for (b = 7; (test >>= 1) > 0;)
273		b--;
274	matched_off = cp - v;
275	b += matched_off << 3;
276	rn_b = -1 - b;
277	/*
278	 * If there is a host route in a duped-key chain, it will be first.
279	 */
280	if ((saved_t = t)->rn_mask == 0)
281		t = t->rn_dupedkey;
282	for (; t; t = t->rn_dupedkey)
283		/*
284		 * Even if we don't match exactly as a host,
285		 * we may match if the leaf we wound up at is
286		 * a route to a net.
287		 */
288		if (t->rn_flags & RNF_NORMAL) {
289			if (rn_b <= t->rn_b)
290				return t;
291		} else if (rn_satsifies_leaf(v, t, matched_off))
292				return t;
293	t = saved_t;
294	/* start searching up the tree */
295	do {
296		register struct radix_mask *m;
297		t = t->rn_p;
298		m = t->rn_mklist;
299		if (m) {
300			/*
301			 * If non-contiguous masks ever become important
302			 * we can restore the masking and open coding of
303			 * the search and satisfaction test and put the
304			 * calculation of "off" back before the "do".
305			 */
306			do {
307				if (m->rm_flags & RNF_NORMAL) {
308					if (rn_b <= m->rm_b)
309						return (m->rm_leaf);
310				} else {
311					off = min(t->rn_off, matched_off);
312					x = rn_search_m(v, t, m->rm_mask);
313					while (x && x->rn_mask != m->rm_mask)
314						x = x->rn_dupedkey;
315					if (x && rn_satsifies_leaf(v, x, off))
316						    return x;
317				}
318				m = m->rm_mklist;
319			} while (m);
320		}
321	} while (t != top);
322	return 0;
323}
324
325#ifdef RN_DEBUG
326int	rn_nodenum;
327struct	radix_node *rn_clist;
328int	rn_saveinfo;
329int	rn_debug =  1;
330#endif
331
332static struct radix_node *
333rn_newpair(v, b, nodes)
334	void *v;
335	int b;
336	struct radix_node nodes[2];
337{
338	register struct radix_node *tt = nodes, *t = tt + 1;
339	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
340	t->rn_l = tt; t->rn_off = b >> 3;
341	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
342	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
343#ifdef RN_DEBUG
344	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
345	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
346#endif
347	return t;
348}
349
350static struct radix_node *
351rn_insert(v_arg, head, dupentry, nodes)
352	void *v_arg;
353	struct radix_node_head *head;
354	int *dupentry;
355	struct radix_node nodes[2];
356{
357	caddr_t v = v_arg;
358	struct radix_node *top = head->rnh_treetop;
359	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
360	register struct radix_node *t = rn_search(v_arg, top);
361	register caddr_t cp = v + head_off;
362	register int b;
363	struct radix_node *tt;
364    	/*
365	 * Find first bit at which v and t->rn_key differ
366	 */
367    {
368	register caddr_t cp2 = t->rn_key + head_off;
369	register int cmp_res;
370	caddr_t cplim = v + vlen;
371
372	while (cp < cplim)
373		if (*cp2++ != *cp++)
374			goto on1;
375	*dupentry = 1;
376	return t;
377on1:
378	*dupentry = 0;
379	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
380	for (b = (cp - v) << 3; cmp_res; b--)
381		cmp_res >>= 1;
382    }
383    {
384	register struct radix_node *p, *x = top;
385	cp = v;
386	do {
387		p = x;
388		if (cp[x->rn_off] & x->rn_bmask)
389			x = x->rn_r;
390		else x = x->rn_l;
391	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
392#ifdef RN_DEBUG
393	if (rn_debug)
394		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
395#endif
396	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
397	if ((cp[p->rn_off] & p->rn_bmask) == 0)
398		p->rn_l = t;
399	else
400		p->rn_r = t;
401	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
402	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
403		t->rn_r = x;
404	} else {
405		t->rn_r = tt; t->rn_l = x;
406	}
407#ifdef RN_DEBUG
408	if (rn_debug)
409		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
410#endif
411    }
412	return (tt);
413}
414
415struct radix_node *
416rn_addmask(n_arg, search, skip)
417	int search, skip;
418	void *n_arg;
419{
420	caddr_t netmask = (caddr_t)n_arg;
421	register struct radix_node *x;
422	register caddr_t cp, cplim;
423	register int b = 0, mlen, j;
424	int maskduplicated, m0, isnormal;
425	struct radix_node *saved_x;
426	static int last_zeroed = 0;
427
428	if ((mlen = *(u_char *)netmask) > max_keylen)
429		mlen = max_keylen;
430	if (skip == 0)
431		skip = 1;
432	if (mlen <= skip)
433		return (mask_rnhead->rnh_nodes);
434	if (skip > 1)
435		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
436	if ((m0 = mlen) > skip)
437		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
438	/*
439	 * Trim trailing zeroes.
440	 */
441	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
442		cp--;
443	mlen = cp - addmask_key;
444	if (mlen <= skip) {
445		if (m0 >= last_zeroed)
446			last_zeroed = mlen;
447		return (mask_rnhead->rnh_nodes);
448	}
449	if (m0 < last_zeroed)
450		Bzero(addmask_key + m0, last_zeroed - m0);
451	*addmask_key = last_zeroed = mlen;
452	x = rn_search(addmask_key, rn_masktop);
453	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
454		x = 0;
455	if (x || search)
456		return (x);
457	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
458	if ((saved_x = x) == 0)
459		return (0);
460	Bzero(x, max_keylen + 2 * sizeof (*x));
461	netmask = cp = (caddr_t)(x + 2);
462	Bcopy(addmask_key, cp, mlen);
463	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
464	if (maskduplicated) {
465		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
466		Free(saved_x);
467		return (x);
468	}
469	/*
470	 * Calculate index of mask, and check for normalcy.
471	 */
472	cplim = netmask + mlen; isnormal = 1;
473	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
474		cp++;
475	if (cp != cplim) {
476		for (j = 0x80; (j & *cp) != 0; j >>= 1)
477			b++;
478		if (*cp != normal_chars[b] || cp != (cplim - 1))
479			isnormal = 0;
480	}
481	b += (cp - netmask) << 3;
482	x->rn_b = -1 - b;
483	if (isnormal)
484		x->rn_flags |= RNF_NORMAL;
485	return (x);
486}
487
488static int	/* XXX: arbitrary ordering for non-contiguous masks */
489rn_lexobetter(m_arg, n_arg)
490	void *m_arg, *n_arg;
491{
492	register u_char *mp = m_arg, *np = n_arg, *lim;
493
494	if (*mp > *np)
495		return 1;  /* not really, but need to check longer one first */
496	if (*mp == *np)
497		for (lim = mp + *mp; mp < lim;)
498			if (*mp++ > *np++)
499				return 1;
500	return 0;
501}
502
503static struct radix_mask *
504rn_new_radix_mask(tt, next)
505	register struct radix_node *tt;
506	register struct radix_mask *next;
507{
508	register struct radix_mask *m;
509
510	MKGet(m);
511	if (m == 0) {
512		log(LOG_ERR, "Mask for route not entered\n");
513		return (0);
514	}
515	Bzero(m, sizeof *m);
516	m->rm_b = tt->rn_b;
517	m->rm_flags = tt->rn_flags;
518	if (tt->rn_flags & RNF_NORMAL)
519		m->rm_leaf = tt;
520	else
521		m->rm_mask = tt->rn_mask;
522	m->rm_mklist = next;
523	tt->rn_mklist = m;
524	return m;
525}
526
527struct radix_node *
528rn_addroute(v_arg, n_arg, head, treenodes)
529	void *v_arg, *n_arg;
530	struct radix_node_head *head;
531	struct radix_node treenodes[2];
532{
533	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
534	register struct radix_node *t, *x = 0, *tt;
535	struct radix_node *saved_tt, *top = head->rnh_treetop;
536	short b = 0, b_leaf = 0;
537	int keyduplicated;
538	caddr_t mmask;
539	struct radix_mask *m, **mp;
540
541	/*
542	 * In dealing with non-contiguous masks, there may be
543	 * many different routes which have the same mask.
544	 * We will find it useful to have a unique pointer to
545	 * the mask to speed avoiding duplicate references at
546	 * nodes and possibly save time in calculating indices.
547	 */
548	if (netmask)  {
549		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
550			return (0);
551		b_leaf = x->rn_b;
552		b = -1 - x->rn_b;
553		netmask = x->rn_key;
554	}
555	/*
556	 * Deal with duplicated keys: attach node to previous instance
557	 */
558	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
559	if (keyduplicated) {
560		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
561			if (tt->rn_mask == netmask)
562				return (0);
563			if (netmask == 0 ||
564			    (tt->rn_mask &&
565			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
566			       rn_refines(netmask, tt->rn_mask) ||
567			       rn_lexobetter(netmask, tt->rn_mask))))
568				break;
569		}
570		/*
571		 * If the mask is not duplicated, we wouldn't
572		 * find it among possible duplicate key entries
573		 * anyway, so the above test doesn't hurt.
574		 *
575		 * We sort the masks for a duplicated key the same way as
576		 * in a masklist -- most specific to least specific.
577		 * This may require the unfortunate nuisance of relocating
578		 * the head of the list.
579		 */
580		if (tt == saved_tt) {
581			struct	radix_node *xx = x;
582			/* link in at head of list */
583			(tt = treenodes)->rn_dupedkey = t;
584			tt->rn_flags = t->rn_flags;
585			tt->rn_p = x = t->rn_p;
586			t->rn_p = tt;				/* parent */
587			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
588			saved_tt = tt; x = xx;
589		} else {
590			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
591			t->rn_dupedkey = tt;
592			tt->rn_p = t;				/* parent */
593			if (tt->rn_dupedkey)			/* parent */
594				tt->rn_dupedkey->rn_p = tt;	/* parent */
595		}
596#ifdef RN_DEBUG
597		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
598		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
599#endif
600		tt->rn_key = (caddr_t) v;
601		tt->rn_b = -1;
602		tt->rn_flags = RNF_ACTIVE;
603	}
604	/*
605	 * Put mask in tree.
606	 */
607	if (netmask) {
608		tt->rn_mask = netmask;
609		tt->rn_b = x->rn_b;
610		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
611	}
612	t = saved_tt->rn_p;
613	if (keyduplicated)
614		goto on2;
615	b_leaf = -1 - t->rn_b;
616	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
617	/* Promote general routes from below */
618	if (x->rn_b < 0) {
619	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
620		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
621			*mp = m = rn_new_radix_mask(x, 0);
622			if (m)
623				mp = &m->rm_mklist;
624		}
625	} else if (x->rn_mklist) {
626		/*
627		 * Skip over masks whose index is > that of new node
628		 */
629		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
630			if (m->rm_b >= b_leaf)
631				break;
632		t->rn_mklist = m; *mp = 0;
633	}
634on2:
635	/* Add new route to highest possible ancestor's list */
636	if ((netmask == 0) || (b > t->rn_b ))
637		return tt; /* can't lift at all */
638	b_leaf = tt->rn_b;
639	do {
640		x = t;
641		t = t->rn_p;
642	} while (b <= t->rn_b && x != top);
643	/*
644	 * Search through routes associated with node to
645	 * insert new route according to index.
646	 * Need same criteria as when sorting dupedkeys to avoid
647	 * double loop on deletion.
648	 */
649	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
650		if (m->rm_b < b_leaf)
651			continue;
652		if (m->rm_b > b_leaf)
653			break;
654		if (m->rm_flags & RNF_NORMAL) {
655			mmask = m->rm_leaf->rn_mask;
656			if (tt->rn_flags & RNF_NORMAL) {
657				log(LOG_ERR,
658				   "Non-unique normal route, mask not entered");
659				return tt;
660			}
661		} else
662			mmask = m->rm_mask;
663		if (mmask == netmask) {
664			m->rm_refs++;
665			tt->rn_mklist = m;
666			return tt;
667		}
668		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
669			break;
670	}
671	*mp = rn_new_radix_mask(tt, *mp);
672	return tt;
673}
674
675struct radix_node *
676rn_delete(v_arg, netmask_arg, head)
677	void *v_arg, *netmask_arg;
678	struct radix_node_head *head;
679{
680	register struct radix_node *t, *p, *x, *tt;
681	struct radix_mask *m, *saved_m, **mp;
682	struct radix_node *dupedkey, *saved_tt, *top;
683	caddr_t v, netmask;
684	int b, head_off, vlen;
685
686	v = v_arg;
687	netmask = netmask_arg;
688	x = head->rnh_treetop;
689	tt = rn_search(v, x);
690	head_off = x->rn_off;
691	vlen =  *(u_char *)v;
692	saved_tt = tt;
693	top = x;
694	if (tt == 0 ||
695	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
696		return (0);
697	/*
698	 * Delete our route from mask lists.
699	 */
700	if (netmask) {
701		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
702			return (0);
703		netmask = x->rn_key;
704		while (tt->rn_mask != netmask)
705			if ((tt = tt->rn_dupedkey) == 0)
706				return (0);
707	}
708	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
709		goto on1;
710	if (tt->rn_flags & RNF_NORMAL) {
711		if (m->rm_leaf != tt || m->rm_refs > 0) {
712			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
713			return 0;  /* dangling ref could cause disaster */
714		}
715	} else {
716		if (m->rm_mask != tt->rn_mask) {
717			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
718			goto on1;
719		}
720		if (--m->rm_refs >= 0)
721			goto on1;
722	}
723	b = -1 - tt->rn_b;
724	t = saved_tt->rn_p;
725	if (b > t->rn_b)
726		goto on1; /* Wasn't lifted at all */
727	do {
728		x = t;
729		t = t->rn_p;
730	} while (b <= t->rn_b && x != top);
731	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
732		if (m == saved_m) {
733			*mp = m->rm_mklist;
734			MKFree(m);
735			break;
736		}
737	if (m == 0) {
738		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
739		if (tt->rn_flags & RNF_NORMAL)
740			return (0); /* Dangling ref to us */
741	}
742on1:
743	/*
744	 * Eliminate us from tree
745	 */
746	if (tt->rn_flags & RNF_ROOT)
747		return (0);
748#ifdef RN_DEBUG
749	/* Get us out of the creation list */
750	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
751	if (t) t->rn_ybro = tt->rn_ybro;
752#endif
753	t = tt->rn_p;
754	dupedkey = saved_tt->rn_dupedkey;
755	if (dupedkey) {
756		/*
757		 * at this point, tt is the deletion target and saved_tt
758		 * is the head of the dupekey chain
759		 */
760		if (tt == saved_tt) {
761			/* remove from head of chain */
762			x = dupedkey; x->rn_p = t;
763			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
764		} else {
765			/* find node in front of tt on the chain */
766			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
767				p = p->rn_dupedkey;
768			if (p) {
769				p->rn_dupedkey = tt->rn_dupedkey;
770				if (tt->rn_dupedkey)		   /* parent */
771					tt->rn_dupedkey->rn_p = p; /* parent */
772			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
773		}
774		t = tt + 1;
775		if  (t->rn_flags & RNF_ACTIVE) {
776#ifndef RN_DEBUG
777			*++x = *t; p = t->rn_p;
778#else
779			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
780#endif
781			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
782			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
783		}
784		goto out;
785	}
786	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
787	p = t->rn_p;
788	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
789	x->rn_p = p;
790	/*
791	 * Demote routes attached to us.
792	 */
793	if (t->rn_mklist) {
794		if (x->rn_b >= 0) {
795			for (mp = &x->rn_mklist; (m = *mp);)
796				mp = &m->rm_mklist;
797			*mp = t->rn_mklist;
798		} else {
799			/* If there are any key,mask pairs in a sibling
800			   duped-key chain, some subset will appear sorted
801			   in the same order attached to our mklist */
802			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
803				if (m == x->rn_mklist) {
804					struct radix_mask *mm = m->rm_mklist;
805					x->rn_mklist = 0;
806					if (--(m->rm_refs) < 0)
807						MKFree(m);
808					m = mm;
809				}
810			if (m)
811				log(LOG_ERR,
812				    "rn_delete: Orphaned Mask %p at %p\n",
813				    (void *)m, (void *)x);
814		}
815	}
816	/*
817	 * We may be holding an active internal node in the tree.
818	 */
819	x = tt + 1;
820	if (t != x) {
821#ifndef RN_DEBUG
822		*t = *x;
823#else
824		b = t->rn_info; *t = *x; t->rn_info = b;
825#endif
826		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
827		p = x->rn_p;
828		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
829	}
830out:
831	tt->rn_flags &= ~RNF_ACTIVE;
832	tt[1].rn_flags &= ~RNF_ACTIVE;
833	return (tt);
834}
835
836/*
837 * This is the same as rn_walktree() except for the parameters and the
838 * exit.
839 */
840static int
841rn_walktree_from(h, a, m, f, w)
842	struct radix_node_head *h;
843	void *a, *m;
844	walktree_f_t *f;
845	void *w;
846{
847	int error;
848	struct radix_node *base, *next;
849	u_char *xa = (u_char *)a;
850	u_char *xm = (u_char *)m;
851	register struct radix_node *rn, *last = 0 /* shut up gcc */;
852	int stopping = 0;
853	int lastb;
854
855	/*
856	 * rn_search_m is sort-of-open-coded here.
857	 */
858	/* printf("about to search\n"); */
859	for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
860		last = rn;
861		/* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
862		       rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
863		if (!(rn->rn_bmask & xm[rn->rn_off])) {
864			break;
865		}
866		if (rn->rn_bmask & xa[rn->rn_off]) {
867			rn = rn->rn_r;
868		} else {
869			rn = rn->rn_l;
870		}
871	}
872	/* printf("done searching\n"); */
873
874	/*
875	 * Two cases: either we stepped off the end of our mask,
876	 * in which case last == rn, or we reached a leaf, in which
877	 * case we want to start from the last node we looked at.
878	 * Either way, last is the node we want to start from.
879	 */
880	rn = last;
881	lastb = rn->rn_b;
882
883	/* printf("rn %p, lastb %d\n", rn, lastb);*/
884
885	/*
886	 * This gets complicated because we may delete the node
887	 * while applying the function f to it, so we need to calculate
888	 * the successor node in advance.
889	 */
890	while (rn->rn_b >= 0)
891		rn = rn->rn_l;
892
893	while (!stopping) {
894		/* printf("node %p (%d)\n", rn, rn->rn_b); */
895		base = rn;
896		/* If at right child go back up, otherwise, go right */
897		while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
898			rn = rn->rn_p;
899
900			/* if went up beyond last, stop */
901			if (rn->rn_b < lastb) {
902				stopping = 1;
903				/* printf("up too far\n"); */
904			}
905		}
906
907		/* Find the next *leaf* since next node might vanish, too */
908		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
909			rn = rn->rn_l;
910		next = rn;
911		/* Process leaves */
912		while ((rn = base) != 0) {
913			base = rn->rn_dupedkey;
914			/* printf("leaf %p\n", rn); */
915			if (!(rn->rn_flags & RNF_ROOT)
916			    && (error = (*f)(rn, w)))
917				return (error);
918		}
919		rn = next;
920
921		if (rn->rn_flags & RNF_ROOT) {
922			/* printf("root, stopping"); */
923			stopping = 1;
924		}
925
926	}
927	return 0;
928}
929
930static int
931rn_walktree(h, f, w)
932	struct radix_node_head *h;
933	walktree_f_t *f;
934	void *w;
935{
936	int error;
937	struct radix_node *base, *next;
938	register struct radix_node *rn = h->rnh_treetop;
939	/*
940	 * This gets complicated because we may delete the node
941	 * while applying the function f to it, so we need to calculate
942	 * the successor node in advance.
943	 */
944	/* First time through node, go left */
945	while (rn->rn_b >= 0)
946		rn = rn->rn_l;
947	for (;;) {
948		base = rn;
949		/* If at right child go back up, otherwise, go right */
950		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
951			rn = rn->rn_p;
952		/* Find the next *leaf* since next node might vanish, too */
953		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
954			rn = rn->rn_l;
955		next = rn;
956		/* Process leaves */
957		while ((rn = base)) {
958			base = rn->rn_dupedkey;
959			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
960				return (error);
961		}
962		rn = next;
963		if (rn->rn_flags & RNF_ROOT)
964			return (0);
965	}
966	/* NOTREACHED */
967}
968
969int
970rn_inithead(head, off)
971	void **head;
972	int off;
973{
974	register struct radix_node_head *rnh;
975	register struct radix_node *t, *tt, *ttt;
976	if (*head)
977		return (1);
978	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
979	if (rnh == 0)
980		return (0);
981	Bzero(rnh, sizeof (*rnh));
982	*head = rnh;
983	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
984	ttt = rnh->rnh_nodes + 2;
985	t->rn_r = ttt;
986	t->rn_p = t;
987	tt = t->rn_l;
988	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
989	tt->rn_b = -1 - off;
990	*ttt = *tt;
991	ttt->rn_key = rn_ones;
992	rnh->rnh_addaddr = rn_addroute;
993	rnh->rnh_deladdr = rn_delete;
994	rnh->rnh_matchaddr = rn_match;
995	rnh->rnh_lookup = rn_lookup;
996	rnh->rnh_walktree = rn_walktree;
997	rnh->rnh_walktree_from = rn_walktree_from;
998	rnh->rnh_treetop = t;
999	return (1);
1000}
1001
1002void
1003rn_init()
1004{
1005	char *cp, *cplim;
1006#ifdef KERNEL
1007	struct domain *dom;
1008
1009	for (dom = domains; dom; dom = dom->dom_next)
1010		if (dom->dom_maxrtkey > max_keylen)
1011			max_keylen = dom->dom_maxrtkey;
1012#endif
1013	if (max_keylen == 0) {
1014		log(LOG_ERR,
1015		    "rn_init: radix functions require max_keylen be set\n");
1016		return;
1017	}
1018	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1019	if (rn_zeros == NULL)
1020		panic("rn_init");
1021	Bzero(rn_zeros, 3 * max_keylen);
1022	rn_ones = cp = rn_zeros + max_keylen;
1023	addmask_key = cplim = rn_ones + max_keylen;
1024	while (cp < cplim)
1025		*cp++ = -1;
1026	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1027		panic("rn_init 2");
1028}
1029