radix.c revision 257330
1/*-
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30 * $FreeBSD: stable/10/sys/net/radix.c 257330 2013-10-29 12:53:23Z melifaro $
31 */
32
33/*
34 * Routines to build and maintain radix trees for routing lookups.
35 */
36#include <sys/param.h>
37#ifdef	_KERNEL
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/rwlock.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/syslog.h>
44#include <net/radix.h>
45#include "opt_mpath.h"
46#ifdef RADIX_MPATH
47#include <net/radix_mpath.h>
48#endif
49#else /* !_KERNEL */
50#include <stdio.h>
51#include <strings.h>
52#include <stdlib.h>
53#define log(x, arg...)	fprintf(stderr, ## arg)
54#define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
55#define min(a, b) ((a) < (b) ? (a) : (b) )
56#include <net/radix.h>
57#endif /* !_KERNEL */
58
59static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
60		    walktree_f_t *f, void *w);
61static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
62static struct radix_node
63	 *rn_insert(void *, struct radix_node_head *, int *,
64	     struct radix_node [2]),
65	 *rn_newpair(void *, int, struct radix_node[2]),
66	 *rn_search(void *, struct radix_node *),
67	 *rn_search_m(void *, struct radix_node *, void *);
68
69static void rn_detachhead_internal(void **head);
70static int rn_inithead_internal(void **head, int off);
71
72#define	RADIX_MAX_KEY_LEN	32
73
74static char rn_zeros[RADIX_MAX_KEY_LEN];
75static char rn_ones[RADIX_MAX_KEY_LEN] = {
76	-1, -1, -1, -1, -1, -1, -1, -1,
77	-1, -1, -1, -1, -1, -1, -1, -1,
78	-1, -1, -1, -1, -1, -1, -1, -1,
79	-1, -1, -1, -1, -1, -1, -1, -1,
80};
81
82/*
83 * XXX: Compat stuff for old rn_addmask() users
84 */
85static struct radix_node_head *mask_rnhead_compat;
86#ifdef	_KERNEL
87static struct mtx mask_mtx;
88#endif
89
90
91static int	rn_lexobetter(void *m_arg, void *n_arg);
92static struct radix_mask *
93		rn_new_radix_mask(struct radix_node *tt,
94		    struct radix_mask *next);
95static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
96		    int skip);
97
98/*
99 * The data structure for the keys is a radix tree with one way
100 * branching removed.  The index rn_bit at an internal node n represents a bit
101 * position to be tested.  The tree is arranged so that all descendants
102 * of a node n have keys whose bits all agree up to position rn_bit - 1.
103 * (We say the index of n is rn_bit.)
104 *
105 * There is at least one descendant which has a one bit at position rn_bit,
106 * and at least one with a zero there.
107 *
108 * A route is determined by a pair of key and mask.  We require that the
109 * bit-wise logical and of the key and mask to be the key.
110 * We define the index of a route to associated with the mask to be
111 * the first bit number in the mask where 0 occurs (with bit number 0
112 * representing the highest order bit).
113 *
114 * We say a mask is normal if every bit is 0, past the index of the mask.
115 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
116 * and m is a normal mask, then the route applies to every descendant of n.
117 * If the index(m) < rn_bit, this implies the trailing last few bits of k
118 * before bit b are all 0, (and hence consequently true of every descendant
119 * of n), so the route applies to all descendants of the node as well.
120 *
121 * Similar logic shows that a non-normal mask m such that
122 * index(m) <= index(n) could potentially apply to many children of n.
123 * Thus, for each non-host route, we attach its mask to a list at an internal
124 * node as high in the tree as we can go.
125 *
126 * The present version of the code makes use of normal routes in short-
127 * circuiting an explict mask and compare operation when testing whether
128 * a key satisfies a normal route, and also in remembering the unique leaf
129 * that governs a subtree.
130 */
131
132/*
133 * Most of the functions in this code assume that the key/mask arguments
134 * are sockaddr-like structures, where the first byte is an u_char
135 * indicating the size of the entire structure.
136 *
137 * To make the assumption more explicit, we use the LEN() macro to access
138 * this field. It is safe to pass an expression with side effects
139 * to LEN() as the argument is evaluated only once.
140 * We cast the result to int as this is the dominant usage.
141 */
142#define LEN(x) ( (int) (*(const u_char *)(x)) )
143
144/*
145 * XXX THIS NEEDS TO BE FIXED
146 * In the code, pointers to keys and masks are passed as either
147 * 'void *' (because callers use to pass pointers of various kinds), or
148 * 'caddr_t' (which is fine for pointer arithmetics, but not very
149 * clean when you dereference it to access data). Furthermore, caddr_t
150 * is really 'char *', while the natural type to operate on keys and
151 * masks would be 'u_char'. This mismatch require a lot of casts and
152 * intermediate variables to adapt types that clutter the code.
153 */
154
155/*
156 * Search a node in the tree matching the key.
157 */
158static struct radix_node *
159rn_search(v_arg, head)
160	void *v_arg;
161	struct radix_node *head;
162{
163	register struct radix_node *x;
164	register caddr_t v;
165
166	for (x = head, v = v_arg; x->rn_bit >= 0;) {
167		if (x->rn_bmask & v[x->rn_offset])
168			x = x->rn_right;
169		else
170			x = x->rn_left;
171	}
172	return (x);
173}
174
175/*
176 * Same as above, but with an additional mask.
177 * XXX note this function is used only once.
178 */
179static struct radix_node *
180rn_search_m(v_arg, head, m_arg)
181	struct radix_node *head;
182	void *v_arg, *m_arg;
183{
184	register struct radix_node *x;
185	register caddr_t v = v_arg, m = m_arg;
186
187	for (x = head; x->rn_bit >= 0;) {
188		if ((x->rn_bmask & m[x->rn_offset]) &&
189		    (x->rn_bmask & v[x->rn_offset]))
190			x = x->rn_right;
191		else
192			x = x->rn_left;
193	}
194	return x;
195}
196
197int
198rn_refines(m_arg, n_arg)
199	void *m_arg, *n_arg;
200{
201	register caddr_t m = m_arg, n = n_arg;
202	register caddr_t lim, lim2 = lim = n + LEN(n);
203	int longer = LEN(n++) - LEN(m++);
204	int masks_are_equal = 1;
205
206	if (longer > 0)
207		lim -= longer;
208	while (n < lim) {
209		if (*n & ~(*m))
210			return 0;
211		if (*n++ != *m++)
212			masks_are_equal = 0;
213	}
214	while (n < lim2)
215		if (*n++)
216			return 0;
217	if (masks_are_equal && (longer < 0))
218		for (lim2 = m - longer; m < lim2; )
219			if (*m++)
220				return 1;
221	return (!masks_are_equal);
222}
223
224struct radix_node *
225rn_lookup(v_arg, m_arg, head)
226	void *v_arg, *m_arg;
227	struct radix_node_head *head;
228{
229	register struct radix_node *x;
230	caddr_t netmask = 0;
231
232	if (m_arg) {
233		x = rn_addmask_r(m_arg, head->rnh_masks, 1,
234		    head->rnh_treetop->rn_offset);
235		if (x == 0)
236			return (0);
237		netmask = x->rn_key;
238	}
239	x = rn_match(v_arg, head);
240	if (x && netmask) {
241		while (x && x->rn_mask != netmask)
242			x = x->rn_dupedkey;
243	}
244	return x;
245}
246
247static int
248rn_satisfies_leaf(trial, leaf, skip)
249	char *trial;
250	register struct radix_node *leaf;
251	int skip;
252{
253	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
254	char *cplim;
255	int length = min(LEN(cp), LEN(cp2));
256
257	if (cp3 == NULL)
258		cp3 = rn_ones;
259	else
260		length = min(length, LEN(cp3));
261	cplim = cp + length; cp3 += skip; cp2 += skip;
262	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
263		if ((*cp ^ *cp2) & *cp3)
264			return 0;
265	return 1;
266}
267
268struct radix_node *
269rn_match(v_arg, head)
270	void *v_arg;
271	struct radix_node_head *head;
272{
273	caddr_t v = v_arg;
274	register struct radix_node *t = head->rnh_treetop, *x;
275	register caddr_t cp = v, cp2;
276	caddr_t cplim;
277	struct radix_node *saved_t, *top = t;
278	int off = t->rn_offset, vlen = LEN(cp), matched_off;
279	register int test, b, rn_bit;
280
281	/*
282	 * Open code rn_search(v, top) to avoid overhead of extra
283	 * subroutine call.
284	 */
285	for (; t->rn_bit >= 0; ) {
286		if (t->rn_bmask & cp[t->rn_offset])
287			t = t->rn_right;
288		else
289			t = t->rn_left;
290	}
291	/*
292	 * See if we match exactly as a host destination
293	 * or at least learn how many bits match, for normal mask finesse.
294	 *
295	 * It doesn't hurt us to limit how many bytes to check
296	 * to the length of the mask, since if it matches we had a genuine
297	 * match and the leaf we have is the most specific one anyway;
298	 * if it didn't match with a shorter length it would fail
299	 * with a long one.  This wins big for class B&C netmasks which
300	 * are probably the most common case...
301	 */
302	if (t->rn_mask)
303		vlen = *(u_char *)t->rn_mask;
304	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
305	for (; cp < cplim; cp++, cp2++)
306		if (*cp != *cp2)
307			goto on1;
308	/*
309	 * This extra grot is in case we are explicitly asked
310	 * to look up the default.  Ugh!
311	 *
312	 * Never return the root node itself, it seems to cause a
313	 * lot of confusion.
314	 */
315	if (t->rn_flags & RNF_ROOT)
316		t = t->rn_dupedkey;
317	return t;
318on1:
319	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
320	for (b = 7; (test >>= 1) > 0;)
321		b--;
322	matched_off = cp - v;
323	b += matched_off << 3;
324	rn_bit = -1 - b;
325	/*
326	 * If there is a host route in a duped-key chain, it will be first.
327	 */
328	if ((saved_t = t)->rn_mask == 0)
329		t = t->rn_dupedkey;
330	for (; t; t = t->rn_dupedkey)
331		/*
332		 * Even if we don't match exactly as a host,
333		 * we may match if the leaf we wound up at is
334		 * a route to a net.
335		 */
336		if (t->rn_flags & RNF_NORMAL) {
337			if (rn_bit <= t->rn_bit)
338				return t;
339		} else if (rn_satisfies_leaf(v, t, matched_off))
340				return t;
341	t = saved_t;
342	/* start searching up the tree */
343	do {
344		register struct radix_mask *m;
345		t = t->rn_parent;
346		m = t->rn_mklist;
347		/*
348		 * If non-contiguous masks ever become important
349		 * we can restore the masking and open coding of
350		 * the search and satisfaction test and put the
351		 * calculation of "off" back before the "do".
352		 */
353		while (m) {
354			if (m->rm_flags & RNF_NORMAL) {
355				if (rn_bit <= m->rm_bit)
356					return (m->rm_leaf);
357			} else {
358				off = min(t->rn_offset, matched_off);
359				x = rn_search_m(v, t, m->rm_mask);
360				while (x && x->rn_mask != m->rm_mask)
361					x = x->rn_dupedkey;
362				if (x && rn_satisfies_leaf(v, x, off))
363					return x;
364			}
365			m = m->rm_mklist;
366		}
367	} while (t != top);
368	return 0;
369}
370
371#ifdef RN_DEBUG
372int	rn_nodenum;
373struct	radix_node *rn_clist;
374int	rn_saveinfo;
375int	rn_debug =  1;
376#endif
377
378/*
379 * Whenever we add a new leaf to the tree, we also add a parent node,
380 * so we allocate them as an array of two elements: the first one must be
381 * the leaf (see RNTORT() in route.c), the second one is the parent.
382 * This routine initializes the relevant fields of the nodes, so that
383 * the leaf is the left child of the parent node, and both nodes have
384 * (almost) all all fields filled as appropriate.
385 * (XXX some fields are left unset, see the '#if 0' section).
386 * The function returns a pointer to the parent node.
387 */
388
389static struct radix_node *
390rn_newpair(v, b, nodes)
391	void *v;
392	int b;
393	struct radix_node nodes[2];
394{
395	register struct radix_node *tt = nodes, *t = tt + 1;
396	t->rn_bit = b;
397	t->rn_bmask = 0x80 >> (b & 7);
398	t->rn_left = tt;
399	t->rn_offset = b >> 3;
400
401#if 0  /* XXX perhaps we should fill these fields as well. */
402	t->rn_parent = t->rn_right = NULL;
403
404	tt->rn_mask = NULL;
405	tt->rn_dupedkey = NULL;
406	tt->rn_bmask = 0;
407#endif
408	tt->rn_bit = -1;
409	tt->rn_key = (caddr_t)v;
410	tt->rn_parent = t;
411	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
412	tt->rn_mklist = t->rn_mklist = 0;
413#ifdef RN_DEBUG
414	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
415	tt->rn_twin = t;
416	tt->rn_ybro = rn_clist;
417	rn_clist = tt;
418#endif
419	return t;
420}
421
422static struct radix_node *
423rn_insert(v_arg, head, dupentry, nodes)
424	void *v_arg;
425	struct radix_node_head *head;
426	int *dupentry;
427	struct radix_node nodes[2];
428{
429	caddr_t v = v_arg;
430	struct radix_node *top = head->rnh_treetop;
431	int head_off = top->rn_offset, vlen = LEN(v);
432	register struct radix_node *t = rn_search(v_arg, top);
433	register caddr_t cp = v + head_off;
434	register int b;
435	struct radix_node *tt;
436    	/*
437	 * Find first bit at which v and t->rn_key differ
438	 */
439    {
440	register caddr_t cp2 = t->rn_key + head_off;
441	register int cmp_res;
442	caddr_t cplim = v + vlen;
443
444	while (cp < cplim)
445		if (*cp2++ != *cp++)
446			goto on1;
447	*dupentry = 1;
448	return t;
449on1:
450	*dupentry = 0;
451	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
452	for (b = (cp - v) << 3; cmp_res; b--)
453		cmp_res >>= 1;
454    }
455    {
456	register struct radix_node *p, *x = top;
457	cp = v;
458	do {
459		p = x;
460		if (cp[x->rn_offset] & x->rn_bmask)
461			x = x->rn_right;
462		else
463			x = x->rn_left;
464	} while (b > (unsigned) x->rn_bit);
465				/* x->rn_bit < b && x->rn_bit >= 0 */
466#ifdef RN_DEBUG
467	if (rn_debug)
468		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
469#endif
470	t = rn_newpair(v_arg, b, nodes);
471	tt = t->rn_left;
472	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
473		p->rn_left = t;
474	else
475		p->rn_right = t;
476	x->rn_parent = t;
477	t->rn_parent = p; /* frees x, p as temp vars below */
478	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
479		t->rn_right = x;
480	} else {
481		t->rn_right = tt;
482		t->rn_left = x;
483	}
484#ifdef RN_DEBUG
485	if (rn_debug)
486		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
487#endif
488    }
489	return (tt);
490}
491
492struct radix_node *
493rn_addmask_r(void *arg, struct radix_node_head *maskhead, int search, int skip)
494{
495	caddr_t netmask = (caddr_t)arg;
496	register struct radix_node *x;
497	register caddr_t cp, cplim;
498	register int b = 0, mlen, j;
499	int maskduplicated, isnormal;
500	struct radix_node *saved_x;
501	char addmask_key[RADIX_MAX_KEY_LEN];
502
503	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
504		mlen = RADIX_MAX_KEY_LEN;
505	if (skip == 0)
506		skip = 1;
507	if (mlen <= skip)
508		return (maskhead->rnh_nodes);
509
510	bzero(addmask_key, RADIX_MAX_KEY_LEN);
511	if (skip > 1)
512		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
513	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
514	/*
515	 * Trim trailing zeroes.
516	 */
517	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
518		cp--;
519	mlen = cp - addmask_key;
520	if (mlen <= skip)
521		return (maskhead->rnh_nodes);
522	*addmask_key = mlen;
523	x = rn_search(addmask_key, maskhead->rnh_treetop);
524	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
525		x = 0;
526	if (x || search)
527		return (x);
528	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
529	if ((saved_x = x) == 0)
530		return (0);
531	netmask = cp = (caddr_t)(x + 2);
532	bcopy(addmask_key, cp, mlen);
533	x = rn_insert(cp, maskhead, &maskduplicated, x);
534	if (maskduplicated) {
535		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
536		Free(saved_x);
537		return (x);
538	}
539	/*
540	 * Calculate index of mask, and check for normalcy.
541	 * First find the first byte with a 0 bit, then if there are
542	 * more bits left (remember we already trimmed the trailing 0's),
543	 * the pattern must be one of those in normal_chars[], or we have
544	 * a non-contiguous mask.
545	 */
546	cplim = netmask + mlen;
547	isnormal = 1;
548	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
549		cp++;
550	if (cp != cplim) {
551		static char normal_chars[] = {
552			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
553
554		for (j = 0x80; (j & *cp) != 0; j >>= 1)
555			b++;
556		if (*cp != normal_chars[b] || cp != (cplim - 1))
557			isnormal = 0;
558	}
559	b += (cp - netmask) << 3;
560	x->rn_bit = -1 - b;
561	if (isnormal)
562		x->rn_flags |= RNF_NORMAL;
563	return (x);
564}
565
566struct radix_node *
567rn_addmask(void *n_arg, int search, int skip)
568{
569	struct radix_node *tt;
570
571#ifdef _KERNEL
572	mtx_lock(&mask_mtx);
573#endif
574	tt = rn_addmask_r(&mask_rnhead_compat, n_arg, search, skip);
575
576#ifdef _KERNEL
577	mtx_unlock(&mask_mtx);
578#endif
579
580	return (tt);
581}
582
583static int	/* XXX: arbitrary ordering for non-contiguous masks */
584rn_lexobetter(m_arg, n_arg)
585	void *m_arg, *n_arg;
586{
587	register u_char *mp = m_arg, *np = n_arg, *lim;
588
589	if (LEN(mp) > LEN(np))
590		return 1;  /* not really, but need to check longer one first */
591	if (LEN(mp) == LEN(np))
592		for (lim = mp + LEN(mp); mp < lim;)
593			if (*mp++ > *np++)
594				return 1;
595	return 0;
596}
597
598static struct radix_mask *
599rn_new_radix_mask(tt, next)
600	register struct radix_node *tt;
601	register struct radix_mask *next;
602{
603	register struct radix_mask *m;
604
605	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
606	if (m == 0) {
607		log(LOG_ERR, "Failed to allocate route mask\n");
608		return (0);
609	}
610	bzero(m, sizeof(*m));
611	m->rm_bit = tt->rn_bit;
612	m->rm_flags = tt->rn_flags;
613	if (tt->rn_flags & RNF_NORMAL)
614		m->rm_leaf = tt;
615	else
616		m->rm_mask = tt->rn_mask;
617	m->rm_mklist = next;
618	tt->rn_mklist = m;
619	return m;
620}
621
622struct radix_node *
623rn_addroute(v_arg, n_arg, head, treenodes)
624	void *v_arg, *n_arg;
625	struct radix_node_head *head;
626	struct radix_node treenodes[2];
627{
628	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
629	register struct radix_node *t, *x = 0, *tt;
630	struct radix_node *saved_tt, *top = head->rnh_treetop;
631	short b = 0, b_leaf = 0;
632	int keyduplicated;
633	caddr_t mmask;
634	struct radix_mask *m, **mp;
635
636	/*
637	 * In dealing with non-contiguous masks, there may be
638	 * many different routes which have the same mask.
639	 * We will find it useful to have a unique pointer to
640	 * the mask to speed avoiding duplicate references at
641	 * nodes and possibly save time in calculating indices.
642	 */
643	if (netmask)  {
644		x = rn_addmask_r(netmask, head->rnh_masks, 0, top->rn_offset);
645		if (x == NULL)
646			return (0);
647		b_leaf = x->rn_bit;
648		b = -1 - x->rn_bit;
649		netmask = x->rn_key;
650	}
651	/*
652	 * Deal with duplicated keys: attach node to previous instance
653	 */
654	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
655	if (keyduplicated) {
656		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
657#ifdef RADIX_MPATH
658			/* permit multipath, if enabled for the family */
659			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
660				/*
661				 * go down to the end of multipaths, so that
662				 * new entry goes into the end of rn_dupedkey
663				 * chain.
664				 */
665				do {
666					t = tt;
667					tt = tt->rn_dupedkey;
668				} while (tt && t->rn_mask == tt->rn_mask);
669				break;
670			}
671#endif
672			if (tt->rn_mask == netmask)
673				return (0);
674			if (netmask == 0 ||
675			    (tt->rn_mask &&
676			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
677			      || rn_refines(netmask, tt->rn_mask)
678			      || rn_lexobetter(netmask, tt->rn_mask))))
679				break;
680		}
681		/*
682		 * If the mask is not duplicated, we wouldn't
683		 * find it among possible duplicate key entries
684		 * anyway, so the above test doesn't hurt.
685		 *
686		 * We sort the masks for a duplicated key the same way as
687		 * in a masklist -- most specific to least specific.
688		 * This may require the unfortunate nuisance of relocating
689		 * the head of the list.
690		 *
691		 * We also reverse, or doubly link the list through the
692		 * parent pointer.
693		 */
694		if (tt == saved_tt) {
695			struct	radix_node *xx = x;
696			/* link in at head of list */
697			(tt = treenodes)->rn_dupedkey = t;
698			tt->rn_flags = t->rn_flags;
699			tt->rn_parent = x = t->rn_parent;
700			t->rn_parent = tt;	 		/* parent */
701			if (x->rn_left == t)
702				x->rn_left = tt;
703			else
704				x->rn_right = tt;
705			saved_tt = tt; x = xx;
706		} else {
707			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
708			t->rn_dupedkey = tt;
709			tt->rn_parent = t;			/* parent */
710			if (tt->rn_dupedkey)			/* parent */
711				tt->rn_dupedkey->rn_parent = tt; /* parent */
712		}
713#ifdef RN_DEBUG
714		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
715		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
716#endif
717		tt->rn_key = (caddr_t) v;
718		tt->rn_bit = -1;
719		tt->rn_flags = RNF_ACTIVE;
720	}
721	/*
722	 * Put mask in tree.
723	 */
724	if (netmask) {
725		tt->rn_mask = netmask;
726		tt->rn_bit = x->rn_bit;
727		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
728	}
729	t = saved_tt->rn_parent;
730	if (keyduplicated)
731		goto on2;
732	b_leaf = -1 - t->rn_bit;
733	if (t->rn_right == saved_tt)
734		x = t->rn_left;
735	else
736		x = t->rn_right;
737	/* Promote general routes from below */
738	if (x->rn_bit < 0) {
739	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
740		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
741			*mp = m = rn_new_radix_mask(x, 0);
742			if (m)
743				mp = &m->rm_mklist;
744		}
745	} else if (x->rn_mklist) {
746		/*
747		 * Skip over masks whose index is > that of new node
748		 */
749		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
750			if (m->rm_bit >= b_leaf)
751				break;
752		t->rn_mklist = m; *mp = 0;
753	}
754on2:
755	/* Add new route to highest possible ancestor's list */
756	if ((netmask == 0) || (b > t->rn_bit ))
757		return tt; /* can't lift at all */
758	b_leaf = tt->rn_bit;
759	do {
760		x = t;
761		t = t->rn_parent;
762	} while (b <= t->rn_bit && x != top);
763	/*
764	 * Search through routes associated with node to
765	 * insert new route according to index.
766	 * Need same criteria as when sorting dupedkeys to avoid
767	 * double loop on deletion.
768	 */
769	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
770		if (m->rm_bit < b_leaf)
771			continue;
772		if (m->rm_bit > b_leaf)
773			break;
774		if (m->rm_flags & RNF_NORMAL) {
775			mmask = m->rm_leaf->rn_mask;
776			if (tt->rn_flags & RNF_NORMAL) {
777#if !defined(RADIX_MPATH)
778			    log(LOG_ERR,
779			        "Non-unique normal route, mask not entered\n");
780#endif
781				return tt;
782			}
783		} else
784			mmask = m->rm_mask;
785		if (mmask == netmask) {
786			m->rm_refs++;
787			tt->rn_mklist = m;
788			return tt;
789		}
790		if (rn_refines(netmask, mmask)
791		    || rn_lexobetter(netmask, mmask))
792			break;
793	}
794	*mp = rn_new_radix_mask(tt, *mp);
795	return tt;
796}
797
798struct radix_node *
799rn_delete(v_arg, netmask_arg, head)
800	void *v_arg, *netmask_arg;
801	struct radix_node_head *head;
802{
803	register struct radix_node *t, *p, *x, *tt;
804	struct radix_mask *m, *saved_m, **mp;
805	struct radix_node *dupedkey, *saved_tt, *top;
806	caddr_t v, netmask;
807	int b, head_off, vlen;
808
809	v = v_arg;
810	netmask = netmask_arg;
811	x = head->rnh_treetop;
812	tt = rn_search(v, x);
813	head_off = x->rn_offset;
814	vlen =  LEN(v);
815	saved_tt = tt;
816	top = x;
817	if (tt == 0 ||
818	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
819		return (0);
820	/*
821	 * Delete our route from mask lists.
822	 */
823	if (netmask) {
824		x = rn_addmask_r(netmask, head->rnh_masks, 1, head_off);
825		if (x == NULL)
826			return (0);
827		netmask = x->rn_key;
828		while (tt->rn_mask != netmask)
829			if ((tt = tt->rn_dupedkey) == 0)
830				return (0);
831	}
832	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
833		goto on1;
834	if (tt->rn_flags & RNF_NORMAL) {
835		if (m->rm_leaf != tt || m->rm_refs > 0) {
836			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
837			return 0;  /* dangling ref could cause disaster */
838		}
839	} else {
840		if (m->rm_mask != tt->rn_mask) {
841			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
842			goto on1;
843		}
844		if (--m->rm_refs >= 0)
845			goto on1;
846	}
847	b = -1 - tt->rn_bit;
848	t = saved_tt->rn_parent;
849	if (b > t->rn_bit)
850		goto on1; /* Wasn't lifted at all */
851	do {
852		x = t;
853		t = t->rn_parent;
854	} while (b <= t->rn_bit && x != top);
855	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
856		if (m == saved_m) {
857			*mp = m->rm_mklist;
858			Free(m);
859			break;
860		}
861	if (m == 0) {
862		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
863		if (tt->rn_flags & RNF_NORMAL)
864			return (0); /* Dangling ref to us */
865	}
866on1:
867	/*
868	 * Eliminate us from tree
869	 */
870	if (tt->rn_flags & RNF_ROOT)
871		return (0);
872#ifdef RN_DEBUG
873	/* Get us out of the creation list */
874	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
875	if (t) t->rn_ybro = tt->rn_ybro;
876#endif
877	t = tt->rn_parent;
878	dupedkey = saved_tt->rn_dupedkey;
879	if (dupedkey) {
880		/*
881		 * Here, tt is the deletion target and
882		 * saved_tt is the head of the dupekey chain.
883		 */
884		if (tt == saved_tt) {
885			/* remove from head of chain */
886			x = dupedkey; x->rn_parent = t;
887			if (t->rn_left == tt)
888				t->rn_left = x;
889			else
890				t->rn_right = x;
891		} else {
892			/* find node in front of tt on the chain */
893			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
894				p = p->rn_dupedkey;
895			if (p) {
896				p->rn_dupedkey = tt->rn_dupedkey;
897				if (tt->rn_dupedkey)		/* parent */
898					tt->rn_dupedkey->rn_parent = p;
899								/* parent */
900			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
901		}
902		t = tt + 1;
903		if  (t->rn_flags & RNF_ACTIVE) {
904#ifndef RN_DEBUG
905			*++x = *t;
906			p = t->rn_parent;
907#else
908			b = t->rn_info;
909			*++x = *t;
910			t->rn_info = b;
911			p = t->rn_parent;
912#endif
913			if (p->rn_left == t)
914				p->rn_left = x;
915			else
916				p->rn_right = x;
917			x->rn_left->rn_parent = x;
918			x->rn_right->rn_parent = x;
919		}
920		goto out;
921	}
922	if (t->rn_left == tt)
923		x = t->rn_right;
924	else
925		x = t->rn_left;
926	p = t->rn_parent;
927	if (p->rn_right == t)
928		p->rn_right = x;
929	else
930		p->rn_left = x;
931	x->rn_parent = p;
932	/*
933	 * Demote routes attached to us.
934	 */
935	if (t->rn_mklist) {
936		if (x->rn_bit >= 0) {
937			for (mp = &x->rn_mklist; (m = *mp);)
938				mp = &m->rm_mklist;
939			*mp = t->rn_mklist;
940		} else {
941			/* If there are any key,mask pairs in a sibling
942			   duped-key chain, some subset will appear sorted
943			   in the same order attached to our mklist */
944			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
945				if (m == x->rn_mklist) {
946					struct radix_mask *mm = m->rm_mklist;
947					x->rn_mklist = 0;
948					if (--(m->rm_refs) < 0)
949						Free(m);
950					m = mm;
951				}
952			if (m)
953				log(LOG_ERR,
954				    "rn_delete: Orphaned Mask %p at %p\n",
955				    m, x);
956		}
957	}
958	/*
959	 * We may be holding an active internal node in the tree.
960	 */
961	x = tt + 1;
962	if (t != x) {
963#ifndef RN_DEBUG
964		*t = *x;
965#else
966		b = t->rn_info;
967		*t = *x;
968		t->rn_info = b;
969#endif
970		t->rn_left->rn_parent = t;
971		t->rn_right->rn_parent = t;
972		p = x->rn_parent;
973		if (p->rn_left == x)
974			p->rn_left = t;
975		else
976			p->rn_right = t;
977	}
978out:
979	tt->rn_flags &= ~RNF_ACTIVE;
980	tt[1].rn_flags &= ~RNF_ACTIVE;
981	return (tt);
982}
983
984/*
985 * This is the same as rn_walktree() except for the parameters and the
986 * exit.
987 */
988static int
989rn_walktree_from(h, a, m, f, w)
990	struct radix_node_head *h;
991	void *a, *m;
992	walktree_f_t *f;
993	void *w;
994{
995	int error;
996	struct radix_node *base, *next;
997	u_char *xa = (u_char *)a;
998	u_char *xm = (u_char *)m;
999	register struct radix_node *rn, *last = 0 /* shut up gcc */;
1000	int stopping = 0;
1001	int lastb;
1002
1003	/*
1004	 * rn_search_m is sort-of-open-coded here. We cannot use the
1005	 * function because we need to keep track of the last node seen.
1006	 */
1007	/* printf("about to search\n"); */
1008	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
1009		last = rn;
1010		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
1011		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
1012		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
1013			break;
1014		}
1015		if (rn->rn_bmask & xa[rn->rn_offset]) {
1016			rn = rn->rn_right;
1017		} else {
1018			rn = rn->rn_left;
1019		}
1020	}
1021	/* printf("done searching\n"); */
1022
1023	/*
1024	 * Two cases: either we stepped off the end of our mask,
1025	 * in which case last == rn, or we reached a leaf, in which
1026	 * case we want to start from the last node we looked at.
1027	 * Either way, last is the node we want to start from.
1028	 */
1029	rn = last;
1030	lastb = rn->rn_bit;
1031
1032	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1033
1034	/*
1035	 * This gets complicated because we may delete the node
1036	 * while applying the function f to it, so we need to calculate
1037	 * the successor node in advance.
1038	 */
1039	while (rn->rn_bit >= 0)
1040		rn = rn->rn_left;
1041
1042	while (!stopping) {
1043		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1044		base = rn;
1045		/* If at right child go back up, otherwise, go right */
1046		while (rn->rn_parent->rn_right == rn
1047		       && !(rn->rn_flags & RNF_ROOT)) {
1048			rn = rn->rn_parent;
1049
1050			/* if went up beyond last, stop */
1051			if (rn->rn_bit <= lastb) {
1052				stopping = 1;
1053				/* printf("up too far\n"); */
1054				/*
1055				 * XXX we should jump to the 'Process leaves'
1056				 * part, because the values of 'rn' and 'next'
1057				 * we compute will not be used. Not a big deal
1058				 * because this loop will terminate, but it is
1059				 * inefficient and hard to understand!
1060				 */
1061			}
1062		}
1063
1064		/*
1065		 * At the top of the tree, no need to traverse the right
1066		 * half, prevent the traversal of the entire tree in the
1067		 * case of default route.
1068		 */
1069		if (rn->rn_parent->rn_flags & RNF_ROOT)
1070			stopping = 1;
1071
1072		/* Find the next *leaf* since next node might vanish, too */
1073		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1074			rn = rn->rn_left;
1075		next = rn;
1076		/* Process leaves */
1077		while ((rn = base) != 0) {
1078			base = rn->rn_dupedkey;
1079			/* printf("leaf %p\n", rn); */
1080			if (!(rn->rn_flags & RNF_ROOT)
1081			    && (error = (*f)(rn, w)))
1082				return (error);
1083		}
1084		rn = next;
1085
1086		if (rn->rn_flags & RNF_ROOT) {
1087			/* printf("root, stopping"); */
1088			stopping = 1;
1089		}
1090
1091	}
1092	return 0;
1093}
1094
1095static int
1096rn_walktree(h, f, w)
1097	struct radix_node_head *h;
1098	walktree_f_t *f;
1099	void *w;
1100{
1101	int error;
1102	struct radix_node *base, *next;
1103	register struct radix_node *rn = h->rnh_treetop;
1104	/*
1105	 * This gets complicated because we may delete the node
1106	 * while applying the function f to it, so we need to calculate
1107	 * the successor node in advance.
1108	 */
1109
1110	/* First time through node, go left */
1111	while (rn->rn_bit >= 0)
1112		rn = rn->rn_left;
1113	for (;;) {
1114		base = rn;
1115		/* If at right child go back up, otherwise, go right */
1116		while (rn->rn_parent->rn_right == rn
1117		       && (rn->rn_flags & RNF_ROOT) == 0)
1118			rn = rn->rn_parent;
1119		/* Find the next *leaf* since next node might vanish, too */
1120		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1121			rn = rn->rn_left;
1122		next = rn;
1123		/* Process leaves */
1124		while ((rn = base)) {
1125			base = rn->rn_dupedkey;
1126			if (!(rn->rn_flags & RNF_ROOT)
1127			    && (error = (*f)(rn, w)))
1128				return (error);
1129		}
1130		rn = next;
1131		if (rn->rn_flags & RNF_ROOT)
1132			return (0);
1133	}
1134	/* NOTREACHED */
1135}
1136
1137/*
1138 * Allocate and initialize an empty tree. This has 3 nodes, which are
1139 * part of the radix_node_head (in the order <left,root,right>) and are
1140 * marked RNF_ROOT so they cannot be freed.
1141 * The leaves have all-zero and all-one keys, with significant
1142 * bits starting at 'off'.
1143 * Return 1 on success, 0 on error.
1144 */
1145static int
1146rn_inithead_internal(void **head, int off)
1147{
1148	register struct radix_node_head *rnh;
1149	register struct radix_node *t, *tt, *ttt;
1150	if (*head)
1151		return (1);
1152	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1153	if (rnh == 0)
1154		return (0);
1155#ifdef _KERNEL
1156	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1157#endif
1158	*head = rnh;
1159	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1160	ttt = rnh->rnh_nodes + 2;
1161	t->rn_right = ttt;
1162	t->rn_parent = t;
1163	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1164	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1165	tt->rn_bit = -1 - off;
1166	*ttt = *tt;
1167	ttt->rn_key = rn_ones;
1168	rnh->rnh_addaddr = rn_addroute;
1169	rnh->rnh_deladdr = rn_delete;
1170	rnh->rnh_matchaddr = rn_match;
1171	rnh->rnh_lookup = rn_lookup;
1172	rnh->rnh_walktree = rn_walktree;
1173	rnh->rnh_walktree_from = rn_walktree_from;
1174	rnh->rnh_treetop = t;
1175	return (1);
1176}
1177
1178static void
1179rn_detachhead_internal(void **head)
1180{
1181	struct radix_node_head *rnh;
1182
1183	KASSERT((head != NULL && *head != NULL),
1184	    ("%s: head already freed", __func__));
1185	rnh = *head;
1186
1187	/* Free <left,root,right> nodes. */
1188	Free(rnh);
1189
1190	*head = NULL;
1191}
1192
1193int
1194rn_inithead(void **head, int off)
1195{
1196	struct radix_node_head *rnh;
1197
1198	if (*head != NULL)
1199		return (1);
1200
1201	if (rn_inithead_internal(head, off) == 0)
1202		return (0);
1203
1204	rnh = (struct radix_node_head *)(*head);
1205
1206	if (rn_inithead_internal((void **)&rnh->rnh_masks, 0) == 0) {
1207		rn_detachhead_internal(head);
1208		return (0);
1209	}
1210
1211	return (1);
1212}
1213
1214int
1215rn_detachhead(void **head)
1216{
1217	struct radix_node_head *rnh;
1218
1219	KASSERT((head != NULL && *head != NULL),
1220	    ("%s: head already freed", __func__));
1221
1222	rnh = *head;
1223
1224	rn_detachhead_internal((void **)&rnh->rnh_masks);
1225	rn_detachhead_internal(head);
1226	return (1);
1227}
1228
1229void
1230rn_init(int maxk)
1231{
1232	if ((maxk <= 0) || (maxk > RADIX_MAX_KEY_LEN)) {
1233		log(LOG_ERR,
1234		    "rn_init: max_keylen must be within 1..%d\n",
1235		    RADIX_MAX_KEY_LEN);
1236		return;
1237	}
1238
1239	/*
1240	 * XXX: Compat for old rn_addmask() users
1241	 */
1242	if (rn_inithead((void **)(void *)&mask_rnhead_compat, 0) == 0)
1243		panic("rn_init 2");
1244#ifdef _KERNEL
1245	mtx_init(&mask_mtx, "radix_mask", NULL, MTX_DEF);
1246#endif
1247}
1248