radix.c revision 200439
1/*-
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30 * $FreeBSD: head/sys/net/radix.c 200439 2009-12-12 15:49:28Z luigi $
31 */
32
33/*
34 * Routines to build and maintain radix trees for routing lookups.
35 */
36#include <sys/param.h>
37#ifdef	_KERNEL
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/rwlock.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/domain.h>
44#include <sys/syslog.h>
45#include <net/radix.h>
46#include "opt_mpath.h"
47#ifdef RADIX_MPATH
48#include <net/radix_mpath.h>
49#endif
50#else /* !_KERNEL */
51#include <stdio.h>
52#include <strings.h>
53#include <stdlib.h>
54#define log(x, arg...)  fprintf(stderr, ## arg)
55#define panic(x)        fprintf(stderr, "PANIC: %s", x), exit(1)
56#define min(a, b) ((a) < (b) ? (a) : (b) )
57#include <net/radix.h>
58#endif /* !_KERNEL */
59
60static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
61		    walktree_f_t *f, void *w);
62static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
63static struct radix_node
64	 *rn_insert(void *, struct radix_node_head *, int *,
65	     struct radix_node [2]),
66	 *rn_newpair(void *, int, struct radix_node[2]),
67	 *rn_search(void *, struct radix_node *),
68	 *rn_search_m(void *, struct radix_node *, void *);
69
70static int	max_keylen;
71static struct radix_mask *rn_mkfreelist;
72static struct radix_node_head *mask_rnhead;
73/*
74 * Work area -- the following point to 3 buffers of size max_keylen,
75 * allocated in this order in a block of memory malloc'ed by rn_init.
76 * rn_zeros, rn_ones are set in rn_init and used in readonly afterwards.
77 * addmask_key is used in rn_addmask in rw mode and not thread-safe.
78 */
79static char *rn_zeros, *rn_ones, *addmask_key;
80
81#define MKGet(m) {						\
82	if (rn_mkfreelist) {					\
83		m = rn_mkfreelist;				\
84		rn_mkfreelist = (m)->rm_mklist;			\
85	} else							\
86		R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); }
87
88#define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
89
90#define rn_masktop (mask_rnhead->rnh_treetop)
91
92static int	rn_lexobetter(void *m_arg, void *n_arg);
93static struct radix_mask *
94		rn_new_radix_mask(struct radix_node *tt,
95		    struct radix_mask *next);
96static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
97		    int skip);
98
99/*
100 * The data structure for the keys is a radix tree with one way
101 * branching removed.  The index rn_bit at an internal node n represents a bit
102 * position to be tested.  The tree is arranged so that all descendants
103 * of a node n have keys whose bits all agree up to position rn_bit - 1.
104 * (We say the index of n is rn_bit.)
105 *
106 * There is at least one descendant which has a one bit at position rn_bit,
107 * and at least one with a zero there.
108 *
109 * A route is determined by a pair of key and mask.  We require that the
110 * bit-wise logical and of the key and mask to be the key.
111 * We define the index of a route to associated with the mask to be
112 * the first bit number in the mask where 0 occurs (with bit number 0
113 * representing the highest order bit).
114 *
115 * We say a mask is normal if every bit is 0, past the index of the mask.
116 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
117 * and m is a normal mask, then the route applies to every descendant of n.
118 * If the index(m) < rn_bit, this implies the trailing last few bits of k
119 * before bit b are all 0, (and hence consequently true of every descendant
120 * of n), so the route applies to all descendants of the node as well.
121 *
122 * Similar logic shows that a non-normal mask m such that
123 * index(m) <= index(n) could potentially apply to many children of n.
124 * Thus, for each non-host route, we attach its mask to a list at an internal
125 * node as high in the tree as we can go.
126 *
127 * The present version of the code makes use of normal routes in short-
128 * circuiting an explict mask and compare operation when testing whether
129 * a key satisfies a normal route, and also in remembering the unique leaf
130 * that governs a subtree.
131 */
132
133/*
134 * Most of the functions in this code assume that the key/mask arguments
135 * are sockaddr-like structures, where the first byte is an u_char
136 * indicating the size of the entire structure.
137 *
138 * To make the assumption more explicit, we use the LEN() macro to access
139 * this field. It is safe to pass an expression with side effects
140 * to LEN() as the argument is evaluated only once.
141 * We cast the result to int as this is the dominant usage.
142 */
143#define LEN(x) ( (int) (*(const u_char *)(x)) )
144
145/*
146 * XXX THIS NEEDS TO BE FIXED
147 * In the code, pointers to keys and masks are passed as either
148 * 'void *' (because callers use to pass pointers of various kinds), or
149 * 'caddr_t' (which is fine for pointer arithmetics, but not very
150 * clean when you dereference it to access data). Furthermore, caddr_t
151 * is really 'char *', while the natural type to operate on keys and
152 * masks would be 'u_char'. This mismatch require a lot of casts and
153 * intermediate variables to adapt types that clutter the code.
154 */
155
156/*
157 * Search a node in the tree matching the key.
158 */
159static struct radix_node *
160rn_search(v_arg, head)
161	void *v_arg;
162	struct radix_node *head;
163{
164	register struct radix_node *x;
165	register caddr_t v;
166
167	for (x = head, v = v_arg; x->rn_bit >= 0;) {
168		if (x->rn_bmask & v[x->rn_offset])
169			x = x->rn_right;
170		else
171			x = x->rn_left;
172	}
173	return (x);
174}
175
176/*
177 * Same as above, but with an additional mask.
178 * XXX note this function is used only once.
179 */
180static struct radix_node *
181rn_search_m(v_arg, head, m_arg)
182	struct radix_node *head;
183	void *v_arg, *m_arg;
184{
185	register struct radix_node *x;
186	register caddr_t v = v_arg, m = m_arg;
187
188	for (x = head; x->rn_bit >= 0;) {
189		if ((x->rn_bmask & m[x->rn_offset]) &&
190		    (x->rn_bmask & v[x->rn_offset]))
191			x = x->rn_right;
192		else
193			x = x->rn_left;
194	}
195	return x;
196}
197
198int
199rn_refines(m_arg, n_arg)
200	void *m_arg, *n_arg;
201{
202	register caddr_t m = m_arg, n = n_arg;
203	register caddr_t lim, lim2 = lim = n + LEN(n);
204	int longer = LEN(n++) - LEN(m++);
205	int masks_are_equal = 1;
206
207	if (longer > 0)
208		lim -= longer;
209	while (n < lim) {
210		if (*n & ~(*m))
211			return 0;
212		if (*n++ != *m++)
213			masks_are_equal = 0;
214	}
215	while (n < lim2)
216		if (*n++)
217			return 0;
218	if (masks_are_equal && (longer < 0))
219		for (lim2 = m - longer; m < lim2; )
220			if (*m++)
221				return 1;
222	return (!masks_are_equal);
223}
224
225struct radix_node *
226rn_lookup(v_arg, m_arg, head)
227	void *v_arg, *m_arg;
228	struct radix_node_head *head;
229{
230	register struct radix_node *x;
231	caddr_t netmask = 0;
232
233	if (m_arg) {
234		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
235		if (x == 0)
236			return (0);
237		netmask = x->rn_key;
238	}
239	x = rn_match(v_arg, head);
240	if (x && netmask) {
241		while (x && x->rn_mask != netmask)
242			x = x->rn_dupedkey;
243	}
244	return x;
245}
246
247static int
248rn_satisfies_leaf(trial, leaf, skip)
249	char *trial;
250	register struct radix_node *leaf;
251	int skip;
252{
253	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
254	char *cplim;
255	int length = min(LEN(cp), LEN(cp2));
256
257	if (cp3 == NULL)
258		cp3 = rn_ones;
259	else
260		length = min(length, LEN(cp3));
261	cplim = cp + length; cp3 += skip; cp2 += skip;
262	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
263		if ((*cp ^ *cp2) & *cp3)
264			return 0;
265	return 1;
266}
267
268struct radix_node *
269rn_match(v_arg, head)
270	void *v_arg;
271	struct radix_node_head *head;
272{
273	caddr_t v = v_arg;
274	register struct radix_node *t = head->rnh_treetop, *x;
275	register caddr_t cp = v, cp2;
276	caddr_t cplim;
277	struct radix_node *saved_t, *top = t;
278	int off = t->rn_offset, vlen = LEN(cp), matched_off;
279	register int test, b, rn_bit;
280
281	/*
282	 * Open code rn_search(v, top) to avoid overhead of extra
283	 * subroutine call.
284	 */
285	for (; t->rn_bit >= 0; ) {
286		if (t->rn_bmask & cp[t->rn_offset])
287			t = t->rn_right;
288		else
289			t = t->rn_left;
290	}
291	/*
292	 * See if we match exactly as a host destination
293	 * or at least learn how many bits match, for normal mask finesse.
294	 *
295	 * It doesn't hurt us to limit how many bytes to check
296	 * to the length of the mask, since if it matches we had a genuine
297	 * match and the leaf we have is the most specific one anyway;
298	 * if it didn't match with a shorter length it would fail
299	 * with a long one.  This wins big for class B&C netmasks which
300	 * are probably the most common case...
301	 */
302	if (t->rn_mask)
303		vlen = *(u_char *)t->rn_mask;
304	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
305	for (; cp < cplim; cp++, cp2++)
306		if (*cp != *cp2)
307			goto on1;
308	/*
309	 * This extra grot is in case we are explicitly asked
310	 * to look up the default.  Ugh!
311	 *
312	 * Never return the root node itself, it seems to cause a
313	 * lot of confusion.
314	 */
315	if (t->rn_flags & RNF_ROOT)
316		t = t->rn_dupedkey;
317	return t;
318on1:
319	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
320	for (b = 7; (test >>= 1) > 0;)
321		b--;
322	matched_off = cp - v;
323	b += matched_off << 3;
324	rn_bit = -1 - b;
325	/*
326	 * If there is a host route in a duped-key chain, it will be first.
327	 */
328	if ((saved_t = t)->rn_mask == 0)
329		t = t->rn_dupedkey;
330	for (; t; t = t->rn_dupedkey)
331		/*
332		 * Even if we don't match exactly as a host,
333		 * we may match if the leaf we wound up at is
334		 * a route to a net.
335		 */
336		if (t->rn_flags & RNF_NORMAL) {
337			if (rn_bit <= t->rn_bit)
338				return t;
339		} else if (rn_satisfies_leaf(v, t, matched_off))
340				return t;
341	t = saved_t;
342	/* start searching up the tree */
343	do {
344		register struct radix_mask *m;
345		t = t->rn_parent;
346		m = t->rn_mklist;
347		/*
348		 * If non-contiguous masks ever become important
349		 * we can restore the masking and open coding of
350		 * the search and satisfaction test and put the
351		 * calculation of "off" back before the "do".
352		 */
353		while (m) {
354			if (m->rm_flags & RNF_NORMAL) {
355				if (rn_bit <= m->rm_bit)
356					return (m->rm_leaf);
357			} else {
358				off = min(t->rn_offset, matched_off);
359				x = rn_search_m(v, t, m->rm_mask);
360				while (x && x->rn_mask != m->rm_mask)
361					x = x->rn_dupedkey;
362				if (x && rn_satisfies_leaf(v, x, off))
363					return x;
364			}
365			m = m->rm_mklist;
366		}
367	} while (t != top);
368	return 0;
369}
370
371#ifdef RN_DEBUG
372int	rn_nodenum;
373struct	radix_node *rn_clist;
374int	rn_saveinfo;
375int	rn_debug =  1;
376#endif
377
378/*
379 * Whenever we add a new leaf to the tree, we also add a parent node,
380 * so we allocate them as an array of two elements: the first one must be
381 * the leaf (see RNTORT() in route.c), the second one is the parent.
382 * This routine initializes the relevant fields of the nodes, so that
383 * the leaf is the left child of the parent node, and both nodes have
384 * (almost) all all fields filled as appropriate.
385 * (XXX some fields are left unset, see the '#if 0' section).
386 * The function returns a pointer to the parent node.
387 */
388
389static struct radix_node *
390rn_newpair(v, b, nodes)
391	void *v;
392	int b;
393	struct radix_node nodes[2];
394{
395	register struct radix_node *tt = nodes, *t = tt + 1;
396	t->rn_bit = b;
397	t->rn_bmask = 0x80 >> (b & 7);
398	t->rn_left = tt;
399	t->rn_offset = b >> 3;
400
401#if 0  /* XXX perhaps we should fill these fields as well. */
402	t->rn_parent = t->rn_right = NULL;
403
404	tt->rn_mask = NULL;
405	tt->rn_dupedkey = NULL;
406	tt->rn_bmask = 0;
407#endif
408	tt->rn_bit = -1;
409	tt->rn_key = (caddr_t)v;
410	tt->rn_parent = t;
411	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
412	tt->rn_mklist = t->rn_mklist = 0;
413#ifdef RN_DEBUG
414	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
415	tt->rn_twin = t;
416	tt->rn_ybro = rn_clist;
417	rn_clist = tt;
418#endif
419	return t;
420}
421
422static struct radix_node *
423rn_insert(v_arg, head, dupentry, nodes)
424	void *v_arg;
425	struct radix_node_head *head;
426	int *dupentry;
427	struct radix_node nodes[2];
428{
429	caddr_t v = v_arg;
430	struct radix_node *top = head->rnh_treetop;
431	int head_off = top->rn_offset, vlen = LEN(v);
432	register struct radix_node *t = rn_search(v_arg, top);
433	register caddr_t cp = v + head_off;
434	register int b;
435	struct radix_node *tt;
436    	/*
437	 * Find first bit at which v and t->rn_key differ
438	 */
439    {
440	register caddr_t cp2 = t->rn_key + head_off;
441	register int cmp_res;
442	caddr_t cplim = v + vlen;
443
444	while (cp < cplim)
445		if (*cp2++ != *cp++)
446			goto on1;
447	*dupentry = 1;
448	return t;
449on1:
450	*dupentry = 0;
451	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
452	for (b = (cp - v) << 3; cmp_res; b--)
453		cmp_res >>= 1;
454    }
455    {
456	register struct radix_node *p, *x = top;
457	cp = v;
458	do {
459		p = x;
460		if (cp[x->rn_offset] & x->rn_bmask)
461			x = x->rn_right;
462		else
463			x = x->rn_left;
464	} while (b > (unsigned) x->rn_bit);
465				/* x->rn_bit < b && x->rn_bit >= 0 */
466#ifdef RN_DEBUG
467	if (rn_debug)
468		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
469#endif
470	t = rn_newpair(v_arg, b, nodes);
471	tt = t->rn_left;
472	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
473		p->rn_left = t;
474	else
475		p->rn_right = t;
476	x->rn_parent = t;
477	t->rn_parent = p; /* frees x, p as temp vars below */
478	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
479		t->rn_right = x;
480	} else {
481		t->rn_right = tt;
482		t->rn_left = x;
483	}
484#ifdef RN_DEBUG
485	if (rn_debug)
486		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
487#endif
488    }
489	return (tt);
490}
491
492struct radix_node *
493rn_addmask(n_arg, search, skip)
494	int search, skip;
495	void *n_arg;
496{
497	caddr_t netmask = (caddr_t)n_arg;
498	register struct radix_node *x;
499	register caddr_t cp, cplim;
500	register int b = 0, mlen, j;
501	int maskduplicated, m0, isnormal;
502	struct radix_node *saved_x;
503	static int last_zeroed = 0;
504
505	if ((mlen = LEN(netmask)) > max_keylen)
506		mlen = max_keylen;
507	if (skip == 0)
508		skip = 1;
509	if (mlen <= skip)
510		return (mask_rnhead->rnh_nodes);
511	if (skip > 1)
512		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
513	if ((m0 = mlen) > skip)
514		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
515	/*
516	 * Trim trailing zeroes.
517	 */
518	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
519		cp--;
520	mlen = cp - addmask_key;
521	if (mlen <= skip) {
522		if (m0 >= last_zeroed)
523			last_zeroed = mlen;
524		return (mask_rnhead->rnh_nodes);
525	}
526	if (m0 < last_zeroed)
527		bzero(addmask_key + m0, last_zeroed - m0);
528	*addmask_key = last_zeroed = mlen;
529	x = rn_search(addmask_key, rn_masktop);
530	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
531		x = 0;
532	if (x || search)
533		return (x);
534	R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
535	if ((saved_x = x) == 0)
536		return (0);
537	netmask = cp = (caddr_t)(x + 2);
538	bcopy(addmask_key, cp, mlen);
539	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
540	if (maskduplicated) {
541		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
542		Free(saved_x);
543		return (x);
544	}
545	/*
546	 * Calculate index of mask, and check for normalcy.
547	 * First find the first byte with a 0 bit, then if there are
548	 * more bits left (remember we already trimmed the trailing 0's),
549	 * the pattern must be one of those in normal_chars[], or we have
550	 * a non-contiguous mask.
551	 */
552	cplim = netmask + mlen;
553	isnormal = 1;
554	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
555		cp++;
556	if (cp != cplim) {
557		static char normal_chars[] = {
558			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
559
560		for (j = 0x80; (j & *cp) != 0; j >>= 1)
561			b++;
562		if (*cp != normal_chars[b] || cp != (cplim - 1))
563			isnormal = 0;
564	}
565	b += (cp - netmask) << 3;
566	x->rn_bit = -1 - b;
567	if (isnormal)
568		x->rn_flags |= RNF_NORMAL;
569	return (x);
570}
571
572static int	/* XXX: arbitrary ordering for non-contiguous masks */
573rn_lexobetter(m_arg, n_arg)
574	void *m_arg, *n_arg;
575{
576	register u_char *mp = m_arg, *np = n_arg, *lim;
577
578	if (LEN(mp) > LEN(np))
579		return 1;  /* not really, but need to check longer one first */
580	if (LEN(mp) == LEN(np))
581		for (lim = mp + LEN(mp); mp < lim;)
582			if (*mp++ > *np++)
583				return 1;
584	return 0;
585}
586
587static struct radix_mask *
588rn_new_radix_mask(tt, next)
589	register struct radix_node *tt;
590	register struct radix_mask *next;
591{
592	register struct radix_mask *m;
593
594	MKGet(m);
595	if (m == 0) {
596		log(LOG_ERR, "Mask for route not entered\n");
597		return (0);
598	}
599	bzero(m, sizeof *m);
600	m->rm_bit = tt->rn_bit;
601	m->rm_flags = tt->rn_flags;
602	if (tt->rn_flags & RNF_NORMAL)
603		m->rm_leaf = tt;
604	else
605		m->rm_mask = tt->rn_mask;
606	m->rm_mklist = next;
607	tt->rn_mklist = m;
608	return m;
609}
610
611struct radix_node *
612rn_addroute(v_arg, n_arg, head, treenodes)
613	void *v_arg, *n_arg;
614	struct radix_node_head *head;
615	struct radix_node treenodes[2];
616{
617	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
618	register struct radix_node *t, *x = 0, *tt;
619	struct radix_node *saved_tt, *top = head->rnh_treetop;
620	short b = 0, b_leaf = 0;
621	int keyduplicated;
622	caddr_t mmask;
623	struct radix_mask *m, **mp;
624
625	/*
626	 * In dealing with non-contiguous masks, there may be
627	 * many different routes which have the same mask.
628	 * We will find it useful to have a unique pointer to
629	 * the mask to speed avoiding duplicate references at
630	 * nodes and possibly save time in calculating indices.
631	 */
632	if (netmask)  {
633		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
634			return (0);
635		b_leaf = x->rn_bit;
636		b = -1 - x->rn_bit;
637		netmask = x->rn_key;
638	}
639	/*
640	 * Deal with duplicated keys: attach node to previous instance
641	 */
642	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
643	if (keyduplicated) {
644		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
645#ifdef RADIX_MPATH
646			/* permit multipath, if enabled for the family */
647			if (rn_mpath_capable(head) && netmask == tt->rn_mask) {
648				/*
649				 * go down to the end of multipaths, so that
650				 * new entry goes into the end of rn_dupedkey
651				 * chain.
652				 */
653				do {
654					t = tt;
655					tt = tt->rn_dupedkey;
656				} while (tt && t->rn_mask == tt->rn_mask);
657				break;
658			}
659#endif
660			if (tt->rn_mask == netmask)
661				return (0);
662			if (netmask == 0 ||
663			    (tt->rn_mask &&
664			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
665			      || rn_refines(netmask, tt->rn_mask)
666			      || rn_lexobetter(netmask, tt->rn_mask))))
667				break;
668		}
669		/*
670		 * If the mask is not duplicated, we wouldn't
671		 * find it among possible duplicate key entries
672		 * anyway, so the above test doesn't hurt.
673		 *
674		 * We sort the masks for a duplicated key the same way as
675		 * in a masklist -- most specific to least specific.
676		 * This may require the unfortunate nuisance of relocating
677		 * the head of the list.
678		 *
679		 * We also reverse, or doubly link the list through the
680		 * parent pointer.
681		 */
682		if (tt == saved_tt) {
683			struct	radix_node *xx = x;
684			/* link in at head of list */
685			(tt = treenodes)->rn_dupedkey = t;
686			tt->rn_flags = t->rn_flags;
687			tt->rn_parent = x = t->rn_parent;
688			t->rn_parent = tt;	 		/* parent */
689			if (x->rn_left == t)
690				x->rn_left = tt;
691			else
692				x->rn_right = tt;
693			saved_tt = tt; x = xx;
694		} else {
695			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
696			t->rn_dupedkey = tt;
697			tt->rn_parent = t;			/* parent */
698			if (tt->rn_dupedkey)			/* parent */
699				tt->rn_dupedkey->rn_parent = tt; /* parent */
700		}
701#ifdef RN_DEBUG
702		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
703		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
704#endif
705		tt->rn_key = (caddr_t) v;
706		tt->rn_bit = -1;
707		tt->rn_flags = RNF_ACTIVE;
708	}
709	/*
710	 * Put mask in tree.
711	 */
712	if (netmask) {
713		tt->rn_mask = netmask;
714		tt->rn_bit = x->rn_bit;
715		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
716	}
717	t = saved_tt->rn_parent;
718	if (keyduplicated)
719		goto on2;
720	b_leaf = -1 - t->rn_bit;
721	if (t->rn_right == saved_tt)
722		x = t->rn_left;
723	else
724		x = t->rn_right;
725	/* Promote general routes from below */
726	if (x->rn_bit < 0) {
727	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
728		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
729			*mp = m = rn_new_radix_mask(x, 0);
730			if (m)
731				mp = &m->rm_mklist;
732		}
733	} else if (x->rn_mklist) {
734		/*
735		 * Skip over masks whose index is > that of new node
736		 */
737		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
738			if (m->rm_bit >= b_leaf)
739				break;
740		t->rn_mklist = m; *mp = 0;
741	}
742on2:
743	/* Add new route to highest possible ancestor's list */
744	if ((netmask == 0) || (b > t->rn_bit ))
745		return tt; /* can't lift at all */
746	b_leaf = tt->rn_bit;
747	do {
748		x = t;
749		t = t->rn_parent;
750	} while (b <= t->rn_bit && x != top);
751	/*
752	 * Search through routes associated with node to
753	 * insert new route according to index.
754	 * Need same criteria as when sorting dupedkeys to avoid
755	 * double loop on deletion.
756	 */
757	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
758		if (m->rm_bit < b_leaf)
759			continue;
760		if (m->rm_bit > b_leaf)
761			break;
762		if (m->rm_flags & RNF_NORMAL) {
763			mmask = m->rm_leaf->rn_mask;
764			if (tt->rn_flags & RNF_NORMAL) {
765			    log(LOG_ERR,
766			        "Non-unique normal route, mask not entered\n");
767				return tt;
768			}
769		} else
770			mmask = m->rm_mask;
771		if (mmask == netmask) {
772			m->rm_refs++;
773			tt->rn_mklist = m;
774			return tt;
775		}
776		if (rn_refines(netmask, mmask)
777		    || rn_lexobetter(netmask, mmask))
778			break;
779	}
780	*mp = rn_new_radix_mask(tt, *mp);
781	return tt;
782}
783
784struct radix_node *
785rn_delete(v_arg, netmask_arg, head)
786	void *v_arg, *netmask_arg;
787	struct radix_node_head *head;
788{
789	register struct radix_node *t, *p, *x, *tt;
790	struct radix_mask *m, *saved_m, **mp;
791	struct radix_node *dupedkey, *saved_tt, *top;
792	caddr_t v, netmask;
793	int b, head_off, vlen;
794
795	v = v_arg;
796	netmask = netmask_arg;
797	x = head->rnh_treetop;
798	tt = rn_search(v, x);
799	head_off = x->rn_offset;
800	vlen =  LEN(v);
801	saved_tt = tt;
802	top = x;
803	if (tt == 0 ||
804	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
805		return (0);
806	/*
807	 * Delete our route from mask lists.
808	 */
809	if (netmask) {
810		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
811			return (0);
812		netmask = x->rn_key;
813		while (tt->rn_mask != netmask)
814			if ((tt = tt->rn_dupedkey) == 0)
815				return (0);
816	}
817	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
818		goto on1;
819	if (tt->rn_flags & RNF_NORMAL) {
820		if (m->rm_leaf != tt || m->rm_refs > 0) {
821			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
822			return 0;  /* dangling ref could cause disaster */
823		}
824	} else {
825		if (m->rm_mask != tt->rn_mask) {
826			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
827			goto on1;
828		}
829		if (--m->rm_refs >= 0)
830			goto on1;
831	}
832	b = -1 - tt->rn_bit;
833	t = saved_tt->rn_parent;
834	if (b > t->rn_bit)
835		goto on1; /* Wasn't lifted at all */
836	do {
837		x = t;
838		t = t->rn_parent;
839	} while (b <= t->rn_bit && x != top);
840	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
841		if (m == saved_m) {
842			*mp = m->rm_mklist;
843			MKFree(m);
844			break;
845		}
846	if (m == 0) {
847		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
848		if (tt->rn_flags & RNF_NORMAL)
849			return (0); /* Dangling ref to us */
850	}
851on1:
852	/*
853	 * Eliminate us from tree
854	 */
855	if (tt->rn_flags & RNF_ROOT)
856		return (0);
857#ifdef RN_DEBUG
858	/* Get us out of the creation list */
859	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
860	if (t) t->rn_ybro = tt->rn_ybro;
861#endif
862	t = tt->rn_parent;
863	dupedkey = saved_tt->rn_dupedkey;
864	if (dupedkey) {
865		/*
866		 * Here, tt is the deletion target and
867		 * saved_tt is the head of the dupekey chain.
868		 */
869		if (tt == saved_tt) {
870			/* remove from head of chain */
871			x = dupedkey; x->rn_parent = t;
872			if (t->rn_left == tt)
873				t->rn_left = x;
874			else
875				t->rn_right = x;
876		} else {
877			/* find node in front of tt on the chain */
878			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
879				p = p->rn_dupedkey;
880			if (p) {
881				p->rn_dupedkey = tt->rn_dupedkey;
882				if (tt->rn_dupedkey)		/* parent */
883					tt->rn_dupedkey->rn_parent = p;
884								/* parent */
885			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
886		}
887		t = tt + 1;
888		if  (t->rn_flags & RNF_ACTIVE) {
889#ifndef RN_DEBUG
890			*++x = *t;
891			p = t->rn_parent;
892#else
893			b = t->rn_info;
894			*++x = *t;
895			t->rn_info = b;
896			p = t->rn_parent;
897#endif
898			if (p->rn_left == t)
899				p->rn_left = x;
900			else
901				p->rn_right = x;
902			x->rn_left->rn_parent = x;
903			x->rn_right->rn_parent = x;
904		}
905		goto out;
906	}
907	if (t->rn_left == tt)
908		x = t->rn_right;
909	else
910		x = t->rn_left;
911	p = t->rn_parent;
912	if (p->rn_right == t)
913		p->rn_right = x;
914	else
915		p->rn_left = x;
916	x->rn_parent = p;
917	/*
918	 * Demote routes attached to us.
919	 */
920	if (t->rn_mklist) {
921		if (x->rn_bit >= 0) {
922			for (mp = &x->rn_mklist; (m = *mp);)
923				mp = &m->rm_mklist;
924			*mp = t->rn_mklist;
925		} else {
926			/* If there are any key,mask pairs in a sibling
927			   duped-key chain, some subset will appear sorted
928			   in the same order attached to our mklist */
929			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
930				if (m == x->rn_mklist) {
931					struct radix_mask *mm = m->rm_mklist;
932					x->rn_mklist = 0;
933					if (--(m->rm_refs) < 0)
934						MKFree(m);
935					m = mm;
936				}
937			if (m)
938				log(LOG_ERR,
939				    "rn_delete: Orphaned Mask %p at %p\n",
940				    (void *)m, (void *)x);
941		}
942	}
943	/*
944	 * We may be holding an active internal node in the tree.
945	 */
946	x = tt + 1;
947	if (t != x) {
948#ifndef RN_DEBUG
949		*t = *x;
950#else
951		b = t->rn_info;
952		*t = *x;
953		t->rn_info = b;
954#endif
955		t->rn_left->rn_parent = t;
956		t->rn_right->rn_parent = t;
957		p = x->rn_parent;
958		if (p->rn_left == x)
959			p->rn_left = t;
960		else
961			p->rn_right = t;
962	}
963out:
964	tt->rn_flags &= ~RNF_ACTIVE;
965	tt[1].rn_flags &= ~RNF_ACTIVE;
966	return (tt);
967}
968
969/*
970 * This is the same as rn_walktree() except for the parameters and the
971 * exit.
972 */
973static int
974rn_walktree_from(h, a, m, f, w)
975	struct radix_node_head *h;
976	void *a, *m;
977	walktree_f_t *f;
978	void *w;
979{
980	int error;
981	struct radix_node *base, *next;
982	u_char *xa = (u_char *)a;
983	u_char *xm = (u_char *)m;
984	register struct radix_node *rn, *last = 0 /* shut up gcc */;
985	int stopping = 0;
986	int lastb;
987
988	/*
989	 * rn_search_m is sort-of-open-coded here. We cannot use the
990	 * function because we need to keep track of the last node seen.
991	 */
992	/* printf("about to search\n"); */
993	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
994		last = rn;
995		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
996		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
997		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
998			break;
999		}
1000		if (rn->rn_bmask & xa[rn->rn_offset]) {
1001			rn = rn->rn_right;
1002		} else {
1003			rn = rn->rn_left;
1004		}
1005	}
1006	/* printf("done searching\n"); */
1007
1008	/*
1009	 * Two cases: either we stepped off the end of our mask,
1010	 * in which case last == rn, or we reached a leaf, in which
1011	 * case we want to start from the last node we looked at.
1012	 * Either way, last is the node we want to start from.
1013	 */
1014	rn = last;
1015	lastb = rn->rn_bit;
1016
1017	/* printf("rn %p, lastb %d\n", rn, lastb);*/
1018
1019	/*
1020	 * This gets complicated because we may delete the node
1021	 * while applying the function f to it, so we need to calculate
1022	 * the successor node in advance.
1023	 */
1024	while (rn->rn_bit >= 0)
1025		rn = rn->rn_left;
1026
1027	while (!stopping) {
1028		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1029		base = rn;
1030		/* If at right child go back up, otherwise, go right */
1031		while (rn->rn_parent->rn_right == rn
1032		       && !(rn->rn_flags & RNF_ROOT)) {
1033			rn = rn->rn_parent;
1034
1035			/* if went up beyond last, stop */
1036			if (rn->rn_bit <= lastb) {
1037				stopping = 1;
1038				/* printf("up too far\n"); */
1039				/*
1040				 * XXX we should jump to the 'Process leaves'
1041				 * part, because the values of 'rn' and 'next'
1042				 * we compute will not be used. Not a big deal
1043				 * because this loop will terminate, but it is
1044				 * inefficient and hard to understand!
1045				 */
1046			}
1047		}
1048
1049		/*
1050		 * At the top of the tree, no need to traverse the right
1051		 * half, prevent the traversal of the entire tree in the
1052		 * case of default route.
1053		 */
1054		if (rn->rn_parent->rn_flags & RNF_ROOT)
1055			stopping = 1;
1056
1057		/* Find the next *leaf* since next node might vanish, too */
1058		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1059			rn = rn->rn_left;
1060		next = rn;
1061		/* Process leaves */
1062		while ((rn = base) != 0) {
1063			base = rn->rn_dupedkey;
1064			/* printf("leaf %p\n", rn); */
1065			if (!(rn->rn_flags & RNF_ROOT)
1066			    && (error = (*f)(rn, w)))
1067				return (error);
1068		}
1069		rn = next;
1070
1071		if (rn->rn_flags & RNF_ROOT) {
1072			/* printf("root, stopping"); */
1073			stopping = 1;
1074		}
1075
1076	}
1077	return 0;
1078}
1079
1080static int
1081rn_walktree(h, f, w)
1082	struct radix_node_head *h;
1083	walktree_f_t *f;
1084	void *w;
1085{
1086	int error;
1087	struct radix_node *base, *next;
1088	register struct radix_node *rn = h->rnh_treetop;
1089	/*
1090	 * This gets complicated because we may delete the node
1091	 * while applying the function f to it, so we need to calculate
1092	 * the successor node in advance.
1093	 */
1094
1095	/* First time through node, go left */
1096	while (rn->rn_bit >= 0)
1097		rn = rn->rn_left;
1098	for (;;) {
1099		base = rn;
1100		/* If at right child go back up, otherwise, go right */
1101		while (rn->rn_parent->rn_right == rn
1102		       && (rn->rn_flags & RNF_ROOT) == 0)
1103			rn = rn->rn_parent;
1104		/* Find the next *leaf* since next node might vanish, too */
1105		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1106			rn = rn->rn_left;
1107		next = rn;
1108		/* Process leaves */
1109		while ((rn = base)) {
1110			base = rn->rn_dupedkey;
1111			if (!(rn->rn_flags & RNF_ROOT)
1112			    && (error = (*f)(rn, w)))
1113				return (error);
1114		}
1115		rn = next;
1116		if (rn->rn_flags & RNF_ROOT)
1117			return (0);
1118	}
1119	/* NOTREACHED */
1120}
1121
1122/*
1123 * Allocate and initialize an empty tree. This has 3 nodes, which are
1124 * part of the radix_node_head (in the order <left,root,right>) and are
1125 * marked RNF_ROOT so they cannot be freed.
1126 * The leaves have all-zero and all-one keys, with significant
1127 * bits starting at 'off'.
1128 * Return 1 on success, 0 on error.
1129 */
1130int
1131rn_inithead(head, off)
1132	void **head;
1133	int off;
1134{
1135	register struct radix_node_head *rnh;
1136	register struct radix_node *t, *tt, *ttt;
1137	if (*head)
1138		return (1);
1139	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1140	if (rnh == 0)
1141		return (0);
1142#ifdef _KERNEL
1143	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1144#endif
1145	*head = rnh;
1146	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1147	ttt = rnh->rnh_nodes + 2;
1148	t->rn_right = ttt;
1149	t->rn_parent = t;
1150	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1151	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1152	tt->rn_bit = -1 - off;
1153	*ttt = *tt;
1154	ttt->rn_key = rn_ones;
1155	rnh->rnh_addaddr = rn_addroute;
1156	rnh->rnh_deladdr = rn_delete;
1157	rnh->rnh_matchaddr = rn_match;
1158	rnh->rnh_lookup = rn_lookup;
1159	rnh->rnh_walktree = rn_walktree;
1160	rnh->rnh_walktree_from = rn_walktree_from;
1161	rnh->rnh_treetop = t;
1162	return (1);
1163}
1164
1165void
1166rn_init()
1167{
1168	char *cp, *cplim;
1169#ifdef _KERNEL
1170	struct domain *dom;
1171
1172	for (dom = domains; dom; dom = dom->dom_next)
1173		if (dom->dom_maxrtkey > max_keylen)
1174			max_keylen = dom->dom_maxrtkey;
1175#endif
1176	if (max_keylen == 0) {
1177		log(LOG_ERR,
1178		    "rn_init: radix functions require max_keylen be set\n");
1179		return;
1180	}
1181	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1182	if (rn_zeros == NULL)
1183		panic("rn_init");
1184	bzero(rn_zeros, 3 * max_keylen);
1185	rn_ones = cp = rn_zeros + max_keylen;
1186	addmask_key = cplim = rn_ones + max_keylen;
1187	while (cp < cplim)
1188		*cp++ = -1;
1189	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1190		panic("rn_init 2");
1191}
1192
1193#ifndef _KERNEL
1194/*
1195 * A simple function to make the code usable from userland.
1196 * A proper fix (maybe later) would be to change rn_init() so that it
1197 * takes maxkeylen as an argument, and move the scan of
1198 * domains into net/route.c::route_init().
1199 */
1200void rn_init2(int maxk);
1201void
1202rn_init2(int maxk)
1203{
1204	max_keylen = maxk;
1205	rn_init();
1206}
1207#endif /* !_KERNEL */
1208