radix.c revision 128525
1/*
2 * Copyright (c) 1988, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)radix.c	8.5 (Berkeley) 5/19/95
30 * $FreeBSD: head/sys/net/radix.c 128525 2004-04-21 15:27:36Z luigi $
31 */
32
33/*
34 * Routines to build and maintain radix trees for routing lookups.
35 */
36#ifndef _RADIX_H_
37#include <sys/param.h>
38#ifdef	_KERNEL
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/domain.h>
44#else
45#include <stdlib.h>
46#endif
47#include <sys/syslog.h>
48#include <net/radix.h>
49#endif
50
51static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
52		    walktree_f_t *f, void *w);
53static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
54static struct radix_node
55	 *rn_insert(void *, struct radix_node_head *, int *,
56	     struct radix_node [2]),
57	 *rn_newpair(void *, int, struct radix_node[2]),
58	 *rn_search(void *, struct radix_node *),
59	 *rn_search_m(void *, struct radix_node *, void *);
60
61static int	max_keylen;
62static struct radix_mask *rn_mkfreelist;
63static struct radix_node_head *mask_rnhead;
64/*
65 * Work area -- the following point to 3 buffers of size max_keylen,
66 * allocated in this order in a block of memory malloc'ed by rn_init.
67 */
68static char *rn_zeros, *rn_ones, *addmask_key;
69
70#define MKGet(m) {						\
71	if (rn_mkfreelist) {					\
72		m = rn_mkfreelist;				\
73		rn_mkfreelist = (m)->rm_mklist;			\
74	} else							\
75		R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); }
76
77#define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);}
78
79#define rn_masktop (mask_rnhead->rnh_treetop)
80
81static int	rn_lexobetter(void *m_arg, void *n_arg);
82static struct radix_mask *
83		rn_new_radix_mask(struct radix_node *tt,
84		    struct radix_mask *next);
85static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
86		    int skip);
87
88/*
89 * The data structure for the keys is a radix tree with one way
90 * branching removed.  The index rn_bit at an internal node n represents a bit
91 * position to be tested.  The tree is arranged so that all descendants
92 * of a node n have keys whose bits all agree up to position rn_bit - 1.
93 * (We say the index of n is rn_bit.)
94 *
95 * There is at least one descendant which has a one bit at position rn_bit,
96 * and at least one with a zero there.
97 *
98 * A route is determined by a pair of key and mask.  We require that the
99 * bit-wise logical and of the key and mask to be the key.
100 * We define the index of a route to associated with the mask to be
101 * the first bit number in the mask where 0 occurs (with bit number 0
102 * representing the highest order bit).
103 *
104 * We say a mask is normal if every bit is 0, past the index of the mask.
105 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
106 * and m is a normal mask, then the route applies to every descendant of n.
107 * If the index(m) < rn_bit, this implies the trailing last few bits of k
108 * before bit b are all 0, (and hence consequently true of every descendant
109 * of n), so the route applies to all descendants of the node as well.
110 *
111 * Similar logic shows that a non-normal mask m such that
112 * index(m) <= index(n) could potentially apply to many children of n.
113 * Thus, for each non-host route, we attach its mask to a list at an internal
114 * node as high in the tree as we can go.
115 *
116 * The present version of the code makes use of normal routes in short-
117 * circuiting an explict mask and compare operation when testing whether
118 * a key satisfies a normal route, and also in remembering the unique leaf
119 * that governs a subtree.
120 */
121
122/*
123 * Most of the functions in this code assume that the key/mask arguments
124 * are sockaddr-like structures, where the first byte is an u_char
125 * indicating the size of the entire structure.
126 *
127 * To make the assumption more explicit, we use the LEN() macro to access
128 * this field. It is safe to pass an expression with side effects
129 * to LEN() as the argument is evaluated only once.
130 */
131#define LEN(x) (*(const u_char *)(x))
132
133/*
134 * XXX THIS NEEDS TO BE FIXED
135 * In the code, pointers to keys and masks are passed as either
136 * 'void *' (because callers use to pass pointers of various kinds), or
137 * 'caddr_t' (which is fine for pointer arithmetics, but not very
138 * clean when you dereference it to access data). Furthermore, caddr_t
139 * is really 'char *', while the natural type to operate on keys and
140 * masks would be 'u_char'. This mismatch require a lot of casts and
141 * intermediate variables to adapt types that clutter the code.
142 */
143
144/*
145 * Search a node in the tree matching the key.
146 */
147static struct radix_node *
148rn_search(v_arg, head)
149	void *v_arg;
150	struct radix_node *head;
151{
152	register struct radix_node *x;
153	register caddr_t v;
154
155	for (x = head, v = v_arg; x->rn_bit >= 0;) {
156		if (x->rn_bmask & v[x->rn_offset])
157			x = x->rn_right;
158		else
159			x = x->rn_left;
160	}
161	return (x);
162}
163
164/*
165 * Same as above, but with an additional mask.
166 * XXX note this function is used only once.
167 */
168static struct radix_node *
169rn_search_m(v_arg, head, m_arg)
170	struct radix_node *head;
171	void *v_arg, *m_arg;
172{
173	register struct radix_node *x;
174	register caddr_t v = v_arg, m = m_arg;
175
176	for (x = head; x->rn_bit >= 0;) {
177		if ((x->rn_bmask & m[x->rn_offset]) &&
178		    (x->rn_bmask & v[x->rn_offset]))
179			x = x->rn_right;
180		else
181			x = x->rn_left;
182	}
183	return x;
184}
185
186int
187rn_refines(m_arg, n_arg)
188	void *m_arg, *n_arg;
189{
190	register caddr_t m = m_arg, n = n_arg;
191	register caddr_t lim, lim2 = lim = n + LEN(n);
192	int longer = LEN(n++) - (int)LEN(m++);
193	int masks_are_equal = 1;
194
195	if (longer > 0)
196		lim -= longer;
197	while (n < lim) {
198		if (*n & ~(*m))
199			return 0;
200		if (*n++ != *m++)
201			masks_are_equal = 0;
202	}
203	while (n < lim2)
204		if (*n++)
205			return 0;
206	if (masks_are_equal && (longer < 0))
207		for (lim2 = m - longer; m < lim2; )
208			if (*m++)
209				return 1;
210	return (!masks_are_equal);
211}
212
213struct radix_node *
214rn_lookup(v_arg, m_arg, head)
215	void *v_arg, *m_arg;
216	struct radix_node_head *head;
217{
218	register struct radix_node *x;
219	caddr_t netmask = 0;
220
221	if (m_arg) {
222		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
223		if (x == 0)
224			return (0);
225		netmask = x->rn_key;
226	}
227	x = rn_match(v_arg, head);
228	if (x && netmask) {
229		while (x && x->rn_mask != netmask)
230			x = x->rn_dupedkey;
231	}
232	return x;
233}
234
235static int
236rn_satisfies_leaf(trial, leaf, skip)
237	char *trial;
238	register struct radix_node *leaf;
239	int skip;
240{
241	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
242	char *cplim;
243	int length = min(LEN(cp), LEN(cp2));
244
245	if (cp3 == 0)
246		cp3 = rn_ones;
247	else
248		length = min(length, *(u_char *)cp3);
249	cplim = cp + length; cp3 += skip; cp2 += skip;
250	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
251		if ((*cp ^ *cp2) & *cp3)
252			return 0;
253	return 1;
254}
255
256struct radix_node *
257rn_match(v_arg, head)
258	void *v_arg;
259	struct radix_node_head *head;
260{
261	caddr_t v = v_arg;
262	register struct radix_node *t = head->rnh_treetop, *x;
263	register caddr_t cp = v, cp2;
264	caddr_t cplim;
265	struct radix_node *saved_t, *top = t;
266	int off = t->rn_offset, vlen = LEN(cp), matched_off;
267	register int test, b, rn_bit;
268
269	/*
270	 * Open code rn_search(v, top) to avoid overhead of extra
271	 * subroutine call.
272	 */
273	for (; t->rn_bit >= 0; ) {
274		if (t->rn_bmask & cp[t->rn_offset])
275			t = t->rn_right;
276		else
277			t = t->rn_left;
278	}
279	/*
280	 * See if we match exactly as a host destination
281	 * or at least learn how many bits match, for normal mask finesse.
282	 *
283	 * It doesn't hurt us to limit how many bytes to check
284	 * to the length of the mask, since if it matches we had a genuine
285	 * match and the leaf we have is the most specific one anyway;
286	 * if it didn't match with a shorter length it would fail
287	 * with a long one.  This wins big for class B&C netmasks which
288	 * are probably the most common case...
289	 */
290	if (t->rn_mask)
291		vlen = *(u_char *)t->rn_mask;
292	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
293	for (; cp < cplim; cp++, cp2++)
294		if (*cp != *cp2)
295			goto on1;
296	/*
297	 * This extra grot is in case we are explicitly asked
298	 * to look up the default.  Ugh!
299	 *
300	 * Never return the root node itself, it seems to cause a
301	 * lot of confusion.
302	 */
303	if (t->rn_flags & RNF_ROOT)
304		t = t->rn_dupedkey;
305	return t;
306on1:
307	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
308	for (b = 7; (test >>= 1) > 0;)
309		b--;
310	matched_off = cp - v;
311	b += matched_off << 3;
312	rn_bit = -1 - b;
313	/*
314	 * If there is a host route in a duped-key chain, it will be first.
315	 */
316	if ((saved_t = t)->rn_mask == 0)
317		t = t->rn_dupedkey;
318	for (; t; t = t->rn_dupedkey)
319		/*
320		 * Even if we don't match exactly as a host,
321		 * we may match if the leaf we wound up at is
322		 * a route to a net.
323		 */
324		if (t->rn_flags & RNF_NORMAL) {
325			if (rn_bit <= t->rn_bit)
326				return t;
327		} else if (rn_satisfies_leaf(v, t, matched_off))
328				return t;
329	t = saved_t;
330	/* start searching up the tree */
331	do {
332		register struct radix_mask *m;
333		t = t->rn_parent;
334		m = t->rn_mklist;
335		/*
336		 * If non-contiguous masks ever become important
337		 * we can restore the masking and open coding of
338		 * the search and satisfaction test and put the
339		 * calculation of "off" back before the "do".
340		 */
341		while (m) {
342			if (m->rm_flags & RNF_NORMAL) {
343				if (rn_bit <= m->rm_bit)
344					return (m->rm_leaf);
345			} else {
346				off = min(t->rn_offset, matched_off);
347				x = rn_search_m(v, t, m->rm_mask);
348				while (x && x->rn_mask != m->rm_mask)
349					x = x->rn_dupedkey;
350				if (x && rn_satisfies_leaf(v, x, off))
351					return x;
352			}
353			m = m->rm_mklist;
354		}
355	} while (t != top);
356	return 0;
357}
358
359#ifdef RN_DEBUG
360int	rn_nodenum;
361struct	radix_node *rn_clist;
362int	rn_saveinfo;
363int	rn_debug =  1;
364#endif
365
366/*
367 * Whenever we add a new leaf to the tree, we also add a parent node,
368 * so we allocate them as an array of two elements: the first one must be
369 * the leaf (see RNTORT() in route.c), the second one is the parent.
370 * This routine initializes the relevant fields of the nodes, so that
371 * the leaf is the left child of the parent node, and both nodes have
372 * (almost) all all fields filled as appropriate.
373 * (XXX some fields are left unset, see the '#if 0' section).
374 * The function returns a pointer to the parent node.
375 */
376
377static struct radix_node *
378rn_newpair(v, b, nodes)
379	void *v;
380	int b;
381	struct radix_node nodes[2];
382{
383	register struct radix_node *tt = nodes, *t = tt + 1;
384	t->rn_bit = b;
385	t->rn_bmask = 0x80 >> (b & 7);
386	t->rn_left = tt;
387	t->rn_offset = b >> 3;
388
389#if 0  /* XXX perhaps we should fill these fields as well. */
390	t->rn_parent = t->rn_right = NULL;
391
392	tt->rn_mask = NULL;
393	tt->rn_dupedkey = NULL;
394	tt->rn_bmask = 0;
395#endif
396	tt->rn_bit = -1;
397	tt->rn_key = (caddr_t)v;
398	tt->rn_parent = t;
399	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
400	tt->rn_mklist = t->rn_mklist = 0;
401#ifdef RN_DEBUG
402	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
403	tt->rn_twin = t;
404	tt->rn_ybro = rn_clist;
405	rn_clist = tt;
406#endif
407	return t;
408}
409
410static struct radix_node *
411rn_insert(v_arg, head, dupentry, nodes)
412	void *v_arg;
413	struct radix_node_head *head;
414	int *dupentry;
415	struct radix_node nodes[2];
416{
417	caddr_t v = v_arg;
418	struct radix_node *top = head->rnh_treetop;
419	int head_off = top->rn_offset, vlen = (int)LEN(v);
420	register struct radix_node *t = rn_search(v_arg, top);
421	register caddr_t cp = v + head_off;
422	register int b;
423	struct radix_node *tt;
424    	/*
425	 * Find first bit at which v and t->rn_key differ
426	 */
427    {
428	register caddr_t cp2 = t->rn_key + head_off;
429	register int cmp_res;
430	caddr_t cplim = v + vlen;
431
432	while (cp < cplim)
433		if (*cp2++ != *cp++)
434			goto on1;
435	*dupentry = 1;
436	return t;
437on1:
438	*dupentry = 0;
439	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
440	for (b = (cp - v) << 3; cmp_res; b--)
441		cmp_res >>= 1;
442    }
443    {
444	register struct radix_node *p, *x = top;
445	cp = v;
446	do {
447		p = x;
448		if (cp[x->rn_offset] & x->rn_bmask)
449			x = x->rn_right;
450		else
451			x = x->rn_left;
452	} while (b > (unsigned) x->rn_bit);
453				/* x->rn_bit < b && x->rn_bit >= 0 */
454#ifdef RN_DEBUG
455	if (rn_debug)
456		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
457#endif
458	t = rn_newpair(v_arg, b, nodes);
459	tt = t->rn_left;
460	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
461		p->rn_left = t;
462	else
463		p->rn_right = t;
464	x->rn_parent = t;
465	t->rn_parent = p; /* frees x, p as temp vars below */
466	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
467		t->rn_right = x;
468	} else {
469		t->rn_right = tt;
470		t->rn_left = x;
471	}
472#ifdef RN_DEBUG
473	if (rn_debug)
474		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
475#endif
476    }
477	return (tt);
478}
479
480struct radix_node *
481rn_addmask(n_arg, search, skip)
482	int search, skip;
483	void *n_arg;
484{
485	caddr_t netmask = (caddr_t)n_arg;
486	register struct radix_node *x;
487	register caddr_t cp, cplim;
488	register int b = 0, mlen, j;
489	int maskduplicated, m0, isnormal;
490	struct radix_node *saved_x;
491	static int last_zeroed = 0;
492
493	if ((mlen = LEN(netmask)) > max_keylen)
494		mlen = max_keylen;
495	if (skip == 0)
496		skip = 1;
497	if (mlen <= skip)
498		return (mask_rnhead->rnh_nodes);
499	if (skip > 1)
500		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
501	if ((m0 = mlen) > skip)
502		bcopy(netmask + skip, addmask_key + skip, mlen - skip);
503	/*
504	 * Trim trailing zeroes.
505	 */
506	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
507		cp--;
508	mlen = cp - addmask_key;
509	if (mlen <= skip) {
510		if (m0 >= last_zeroed)
511			last_zeroed = mlen;
512		return (mask_rnhead->rnh_nodes);
513	}
514	if (m0 < last_zeroed)
515		bzero(addmask_key + m0, last_zeroed - m0);
516	*addmask_key = last_zeroed = mlen;
517	x = rn_search(addmask_key, rn_masktop);
518	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
519		x = 0;
520	if (x || search)
521		return (x);
522	R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
523	if ((saved_x = x) == 0)
524		return (0);
525	netmask = cp = (caddr_t)(x + 2);
526	bcopy(addmask_key, cp, mlen);
527	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
528	if (maskduplicated) {
529		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
530		Free(saved_x);
531		return (x);
532	}
533	/*
534	 * Calculate index of mask, and check for normalcy.
535	 * First find the first byte with a 0 bit, then if there are
536	 * more bits left (remember we already trimmed the trailing 0's),
537	 * the pattern must be one of those in normal_chars[], or we have
538	 * a non-contiguous mask.
539	 */
540	cplim = netmask + mlen;
541	isnormal = 1;
542	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
543		cp++;
544	if (cp != cplim) {
545		static char normal_chars[] = {
546			0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
547
548		for (j = 0x80; (j & *cp) != 0; j >>= 1)
549			b++;
550		if (*cp != normal_chars[b] || cp != (cplim - 1))
551			isnormal = 0;
552	}
553	b += (cp - netmask) << 3;
554	x->rn_bit = -1 - b;
555	if (isnormal)
556		x->rn_flags |= RNF_NORMAL;
557	return (x);
558}
559
560static int	/* XXX: arbitrary ordering for non-contiguous masks */
561rn_lexobetter(m_arg, n_arg)
562	void *m_arg, *n_arg;
563{
564	register u_char *mp = m_arg, *np = n_arg, *lim;
565
566	if (LEN(mp) > LEN(np))
567		return 1;  /* not really, but need to check longer one first */
568	if (LEN(mp) == LEN(np))
569		for (lim = mp + LEN(mp); mp < lim;)
570			if (*mp++ > *np++)
571				return 1;
572	return 0;
573}
574
575static struct radix_mask *
576rn_new_radix_mask(tt, next)
577	register struct radix_node *tt;
578	register struct radix_mask *next;
579{
580	register struct radix_mask *m;
581
582	MKGet(m);
583	if (m == 0) {
584		log(LOG_ERR, "Mask for route not entered\n");
585		return (0);
586	}
587	bzero(m, sizeof *m);
588	m->rm_bit = tt->rn_bit;
589	m->rm_flags = tt->rn_flags;
590	if (tt->rn_flags & RNF_NORMAL)
591		m->rm_leaf = tt;
592	else
593		m->rm_mask = tt->rn_mask;
594	m->rm_mklist = next;
595	tt->rn_mklist = m;
596	return m;
597}
598
599struct radix_node *
600rn_addroute(v_arg, n_arg, head, treenodes)
601	void *v_arg, *n_arg;
602	struct radix_node_head *head;
603	struct radix_node treenodes[2];
604{
605	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
606	register struct radix_node *t, *x = 0, *tt;
607	struct radix_node *saved_tt, *top = head->rnh_treetop;
608	short b = 0, b_leaf = 0;
609	int keyduplicated;
610	caddr_t mmask;
611	struct radix_mask *m, **mp;
612
613	/*
614	 * In dealing with non-contiguous masks, there may be
615	 * many different routes which have the same mask.
616	 * We will find it useful to have a unique pointer to
617	 * the mask to speed avoiding duplicate references at
618	 * nodes and possibly save time in calculating indices.
619	 */
620	if (netmask)  {
621		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
622			return (0);
623		b_leaf = x->rn_bit;
624		b = -1 - x->rn_bit;
625		netmask = x->rn_key;
626	}
627	/*
628	 * Deal with duplicated keys: attach node to previous instance
629	 */
630	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
631	if (keyduplicated) {
632		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
633			if (tt->rn_mask == netmask)
634				return (0);
635			if (netmask == 0 ||
636			    (tt->rn_mask &&
637			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
638			      || rn_refines(netmask, tt->rn_mask)
639			      || rn_lexobetter(netmask, tt->rn_mask))))
640				break;
641		}
642		/*
643		 * If the mask is not duplicated, we wouldn't
644		 * find it among possible duplicate key entries
645		 * anyway, so the above test doesn't hurt.
646		 *
647		 * We sort the masks for a duplicated key the same way as
648		 * in a masklist -- most specific to least specific.
649		 * This may require the unfortunate nuisance of relocating
650		 * the head of the list.
651		 *
652		 * We also reverse, or doubly link the list through the
653		 * parent pointer.
654		 */
655		if (tt == saved_tt) {
656			struct	radix_node *xx = x;
657			/* link in at head of list */
658			(tt = treenodes)->rn_dupedkey = t;
659			tt->rn_flags = t->rn_flags;
660			tt->rn_parent = x = t->rn_parent;
661			t->rn_parent = tt;	 		/* parent */
662			if (x->rn_left == t)
663				x->rn_left = tt;
664			else
665				x->rn_right = tt;
666			saved_tt = tt; x = xx;
667		} else {
668			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
669			t->rn_dupedkey = tt;
670			tt->rn_parent = t;			/* parent */
671			if (tt->rn_dupedkey)			/* parent */
672				tt->rn_dupedkey->rn_parent = tt; /* parent */
673		}
674#ifdef RN_DEBUG
675		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
676		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
677#endif
678		tt->rn_key = (caddr_t) v;
679		tt->rn_bit = -1;
680		tt->rn_flags = RNF_ACTIVE;
681	}
682	/*
683	 * Put mask in tree.
684	 */
685	if (netmask) {
686		tt->rn_mask = netmask;
687		tt->rn_bit = x->rn_bit;
688		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
689	}
690	t = saved_tt->rn_parent;
691	if (keyduplicated)
692		goto on2;
693	b_leaf = -1 - t->rn_bit;
694	if (t->rn_right == saved_tt)
695		x = t->rn_left;
696	else
697		x = t->rn_right;
698	/* Promote general routes from below */
699	if (x->rn_bit < 0) {
700	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
701		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
702			*mp = m = rn_new_radix_mask(x, 0);
703			if (m)
704				mp = &m->rm_mklist;
705		}
706	} else if (x->rn_mklist) {
707		/*
708		 * Skip over masks whose index is > that of new node
709		 */
710		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
711			if (m->rm_bit >= b_leaf)
712				break;
713		t->rn_mklist = m; *mp = 0;
714	}
715on2:
716	/* Add new route to highest possible ancestor's list */
717	if ((netmask == 0) || (b > t->rn_bit ))
718		return tt; /* can't lift at all */
719	b_leaf = tt->rn_bit;
720	do {
721		x = t;
722		t = t->rn_parent;
723	} while (b <= t->rn_bit && x != top);
724	/*
725	 * Search through routes associated with node to
726	 * insert new route according to index.
727	 * Need same criteria as when sorting dupedkeys to avoid
728	 * double loop on deletion.
729	 */
730	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
731		if (m->rm_bit < b_leaf)
732			continue;
733		if (m->rm_bit > b_leaf)
734			break;
735		if (m->rm_flags & RNF_NORMAL) {
736			mmask = m->rm_leaf->rn_mask;
737			if (tt->rn_flags & RNF_NORMAL) {
738			    log(LOG_ERR,
739			        "Non-unique normal route, mask not entered\n");
740				return tt;
741			}
742		} else
743			mmask = m->rm_mask;
744		if (mmask == netmask) {
745			m->rm_refs++;
746			tt->rn_mklist = m;
747			return tt;
748		}
749		if (rn_refines(netmask, mmask)
750		    || rn_lexobetter(netmask, mmask))
751			break;
752	}
753	*mp = rn_new_radix_mask(tt, *mp);
754	return tt;
755}
756
757struct radix_node *
758rn_delete(v_arg, netmask_arg, head)
759	void *v_arg, *netmask_arg;
760	struct radix_node_head *head;
761{
762	register struct radix_node *t, *p, *x, *tt;
763	struct radix_mask *m, *saved_m, **mp;
764	struct radix_node *dupedkey, *saved_tt, *top;
765	caddr_t v, netmask;
766	int b, head_off, vlen;
767
768	v = v_arg;
769	netmask = netmask_arg;
770	x = head->rnh_treetop;
771	tt = rn_search(v, x);
772	head_off = x->rn_offset;
773	vlen =  LEN(v);
774	saved_tt = tt;
775	top = x;
776	if (tt == 0 ||
777	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
778		return (0);
779	/*
780	 * Delete our route from mask lists.
781	 */
782	if (netmask) {
783		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
784			return (0);
785		netmask = x->rn_key;
786		while (tt->rn_mask != netmask)
787			if ((tt = tt->rn_dupedkey) == 0)
788				return (0);
789	}
790	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
791		goto on1;
792	if (tt->rn_flags & RNF_NORMAL) {
793		if (m->rm_leaf != tt || m->rm_refs > 0) {
794			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
795			return 0;  /* dangling ref could cause disaster */
796		}
797	} else {
798		if (m->rm_mask != tt->rn_mask) {
799			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
800			goto on1;
801		}
802		if (--m->rm_refs >= 0)
803			goto on1;
804	}
805	b = -1 - tt->rn_bit;
806	t = saved_tt->rn_parent;
807	if (b > t->rn_bit)
808		goto on1; /* Wasn't lifted at all */
809	do {
810		x = t;
811		t = t->rn_parent;
812	} while (b <= t->rn_bit && x != top);
813	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
814		if (m == saved_m) {
815			*mp = m->rm_mklist;
816			MKFree(m);
817			break;
818		}
819	if (m == 0) {
820		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
821		if (tt->rn_flags & RNF_NORMAL)
822			return (0); /* Dangling ref to us */
823	}
824on1:
825	/*
826	 * Eliminate us from tree
827	 */
828	if (tt->rn_flags & RNF_ROOT)
829		return (0);
830#ifdef RN_DEBUG
831	/* Get us out of the creation list */
832	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
833	if (t) t->rn_ybro = tt->rn_ybro;
834#endif
835	t = tt->rn_parent;
836	dupedkey = saved_tt->rn_dupedkey;
837	if (dupedkey) {
838		/*
839		 * Here, tt is the deletion target and
840		 * saved_tt is the head of the dupekey chain.
841		 */
842		if (tt == saved_tt) {
843			/* remove from head of chain */
844			x = dupedkey; x->rn_parent = t;
845			if (t->rn_left == tt)
846				t->rn_left = x;
847			else
848				t->rn_right = x;
849		} else {
850			/* find node in front of tt on the chain */
851			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
852				p = p->rn_dupedkey;
853			if (p) {
854				p->rn_dupedkey = tt->rn_dupedkey;
855				if (tt->rn_dupedkey)		/* parent */
856					tt->rn_dupedkey->rn_parent = p;
857								/* parent */
858			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
859		}
860		t = tt + 1;
861		if  (t->rn_flags & RNF_ACTIVE) {
862#ifndef RN_DEBUG
863			*++x = *t;
864			p = t->rn_parent;
865#else
866			b = t->rn_info;
867			*++x = *t;
868			t->rn_info = b;
869			p = t->rn_parent;
870#endif
871			if (p->rn_left == t)
872				p->rn_left = x;
873			else
874				p->rn_right = x;
875			x->rn_left->rn_parent = x;
876			x->rn_right->rn_parent = x;
877		}
878		goto out;
879	}
880	if (t->rn_left == tt)
881		x = t->rn_right;
882	else
883		x = t->rn_left;
884	p = t->rn_parent;
885	if (p->rn_right == t)
886		p->rn_right = x;
887	else
888		p->rn_left = x;
889	x->rn_parent = p;
890	/*
891	 * Demote routes attached to us.
892	 */
893	if (t->rn_mklist) {
894		if (x->rn_bit >= 0) {
895			for (mp = &x->rn_mklist; (m = *mp);)
896				mp = &m->rm_mklist;
897			*mp = t->rn_mklist;
898		} else {
899			/* If there are any key,mask pairs in a sibling
900			   duped-key chain, some subset will appear sorted
901			   in the same order attached to our mklist */
902			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
903				if (m == x->rn_mklist) {
904					struct radix_mask *mm = m->rm_mklist;
905					x->rn_mklist = 0;
906					if (--(m->rm_refs) < 0)
907						MKFree(m);
908					m = mm;
909				}
910			if (m)
911				log(LOG_ERR,
912				    "rn_delete: Orphaned Mask %p at %p\n",
913				    (void *)m, (void *)x);
914		}
915	}
916	/*
917	 * We may be holding an active internal node in the tree.
918	 */
919	x = tt + 1;
920	if (t != x) {
921#ifndef RN_DEBUG
922		*t = *x;
923#else
924		b = t->rn_info;
925		*t = *x;
926		t->rn_info = b;
927#endif
928		t->rn_left->rn_parent = t;
929		t->rn_right->rn_parent = t;
930		p = x->rn_parent;
931		if (p->rn_left == x)
932			p->rn_left = t;
933		else
934			p->rn_right = t;
935	}
936out:
937	tt->rn_flags &= ~RNF_ACTIVE;
938	tt[1].rn_flags &= ~RNF_ACTIVE;
939	return (tt);
940}
941
942/*
943 * This is the same as rn_walktree() except for the parameters and the
944 * exit.
945 */
946static int
947rn_walktree_from(h, a, m, f, w)
948	struct radix_node_head *h;
949	void *a, *m;
950	walktree_f_t *f;
951	void *w;
952{
953	int error;
954	struct radix_node *base, *next;
955	u_char *xa = (u_char *)a;
956	u_char *xm = (u_char *)m;
957	register struct radix_node *rn, *last = 0 /* shut up gcc */;
958	int stopping = 0;
959	int lastb;
960
961	/*
962	 * rn_search_m is sort-of-open-coded here. We cannot use the
963	 * function because we need to keep track of the last node seen.
964	 */
965	/* printf("about to search\n"); */
966	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
967		last = rn;
968		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
969		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
970		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
971			break;
972		}
973		if (rn->rn_bmask & xa[rn->rn_offset]) {
974			rn = rn->rn_right;
975		} else {
976			rn = rn->rn_left;
977		}
978	}
979	/* printf("done searching\n"); */
980
981	/*
982	 * Two cases: either we stepped off the end of our mask,
983	 * in which case last == rn, or we reached a leaf, in which
984	 * case we want to start from the last node we looked at.
985	 * Either way, last is the node we want to start from.
986	 */
987	rn = last;
988	lastb = rn->rn_bit;
989
990	/* printf("rn %p, lastb %d\n", rn, lastb);*/
991
992	/*
993	 * This gets complicated because we may delete the node
994	 * while applying the function f to it, so we need to calculate
995	 * the successor node in advance.
996	 */
997	while (rn->rn_bit >= 0)
998		rn = rn->rn_left;
999
1000	while (!stopping) {
1001		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1002		base = rn;
1003		/* If at right child go back up, otherwise, go right */
1004		while (rn->rn_parent->rn_right == rn
1005		       && !(rn->rn_flags & RNF_ROOT)) {
1006			rn = rn->rn_parent;
1007
1008			/* if went up beyond last, stop */
1009			if (rn->rn_bit < lastb) {
1010				stopping = 1;
1011				/* printf("up too far\n"); */
1012				/*
1013				 * XXX we should jump to the 'Process leaves'
1014				 * part, because the values of 'rn' and 'next'
1015				 * we compute will not be used. Not a big deal
1016				 * because this loop will terminate, but it is
1017				 * inefficient and hard to understand!
1018				 */
1019			}
1020		}
1021
1022		/* Find the next *leaf* since next node might vanish, too */
1023		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1024			rn = rn->rn_left;
1025		next = rn;
1026		/* Process leaves */
1027		while ((rn = base) != 0) {
1028			base = rn->rn_dupedkey;
1029			/* printf("leaf %p\n", rn); */
1030			if (!(rn->rn_flags & RNF_ROOT)
1031			    && (error = (*f)(rn, w)))
1032				return (error);
1033		}
1034		rn = next;
1035
1036		if (rn->rn_flags & RNF_ROOT) {
1037			/* printf("root, stopping"); */
1038			stopping = 1;
1039		}
1040
1041	}
1042	return 0;
1043}
1044
1045static int
1046rn_walktree(h, f, w)
1047	struct radix_node_head *h;
1048	walktree_f_t *f;
1049	void *w;
1050{
1051	int error;
1052	struct radix_node *base, *next;
1053	register struct radix_node *rn = h->rnh_treetop;
1054	/*
1055	 * This gets complicated because we may delete the node
1056	 * while applying the function f to it, so we need to calculate
1057	 * the successor node in advance.
1058	 */
1059	/* First time through node, go left */
1060	while (rn->rn_bit >= 0)
1061		rn = rn->rn_left;
1062	for (;;) {
1063		base = rn;
1064		/* If at right child go back up, otherwise, go right */
1065		while (rn->rn_parent->rn_right == rn
1066		       && (rn->rn_flags & RNF_ROOT) == 0)
1067			rn = rn->rn_parent;
1068		/* Find the next *leaf* since next node might vanish, too */
1069		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1070			rn = rn->rn_left;
1071		next = rn;
1072		/* Process leaves */
1073		while ((rn = base)) {
1074			base = rn->rn_dupedkey;
1075			if (!(rn->rn_flags & RNF_ROOT)
1076			    && (error = (*f)(rn, w)))
1077				return (error);
1078		}
1079		rn = next;
1080		if (rn->rn_flags & RNF_ROOT)
1081			return (0);
1082	}
1083	/* NOTREACHED */
1084}
1085
1086/*
1087 * Allocate and initialize an empty tree. This has 3 nodes, which are
1088 * part of the radix_node_head (in the order <left,root,right>) and are
1089 * marked RNF_ROOT so they cannot be freed.
1090 * The leaves have all-zero and all-one keys, with significant
1091 * bits starting at 'off'.
1092 * Return 1 on success, 0 on error.
1093 */
1094int
1095rn_inithead(head, off)
1096	void **head;
1097	int off;
1098{
1099	register struct radix_node_head *rnh;
1100	register struct radix_node *t, *tt, *ttt;
1101	if (*head)
1102		return (1);
1103	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1104	if (rnh == 0)
1105		return (0);
1106#ifdef _KERNEL
1107	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1108#endif
1109	*head = rnh;
1110	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1111	ttt = rnh->rnh_nodes + 2;
1112	t->rn_right = ttt;
1113	t->rn_parent = t;
1114	tt = t->rn_left;	/* ... which in turn is rnh->rnh_nodes */
1115	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1116	tt->rn_bit = -1 - off;
1117	*ttt = *tt;
1118	ttt->rn_key = rn_ones;
1119	rnh->rnh_addaddr = rn_addroute;
1120	rnh->rnh_deladdr = rn_delete;
1121	rnh->rnh_matchaddr = rn_match;
1122	rnh->rnh_lookup = rn_lookup;
1123	rnh->rnh_walktree = rn_walktree;
1124	rnh->rnh_walktree_from = rn_walktree_from;
1125	rnh->rnh_treetop = t;
1126	return (1);
1127}
1128
1129void
1130rn_init()
1131{
1132	char *cp, *cplim;
1133#ifdef _KERNEL
1134	struct domain *dom;
1135
1136	for (dom = domains; dom; dom = dom->dom_next)
1137		if (dom->dom_maxrtkey > max_keylen)
1138			max_keylen = dom->dom_maxrtkey;
1139#endif
1140	if (max_keylen == 0) {
1141		log(LOG_ERR,
1142		    "rn_init: radix functions require max_keylen be set\n");
1143		return;
1144	}
1145	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1146	if (rn_zeros == NULL)
1147		panic("rn_init");
1148	bzero(rn_zeros, 3 * max_keylen);
1149	rn_ones = cp = rn_zeros + max_keylen;
1150	addmask_key = cplim = rn_ones + max_keylen;
1151	while (cp < cplim)
1152		*cp++ = -1;
1153	if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0)
1154		panic("rn_init 2");
1155}
1156