vfs_bio.c revision 99737
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 99737 2002-07-10 17:02:32Z dillon $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/stdint.h>
33#include <sys/bio.h>
34#include <sys/buf.h>
35#include <sys/eventhandler.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mount.h>
39#include <sys/mutex.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/ktr.h>
43#include <sys/proc.h>
44#include <sys/reboot.h>
45#include <sys/resourcevar.h>
46#include <sys/sysctl.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57
58static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
59
60struct	bio_ops bioops;		/* I/O operation notification */
61
62struct	buf_ops buf_ops_bio = {
63	"buf_ops_bio",
64	bwrite
65};
66
67/*
68 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
69 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
70 */
71struct buf *buf;		/* buffer header pool */
72struct mtx buftimelock;		/* Interlock on setting prio and timo */
73
74static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
75		vm_offset_t to);
76static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
77		vm_offset_t to);
78static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
79			       int pageno, vm_page_t m);
80static void vfs_clean_pages(struct buf * bp);
81static void vfs_setdirty(struct buf *bp);
82static void vfs_vmio_release(struct buf *bp);
83static void vfs_backgroundwritedone(struct buf *bp);
84static int flushbufqueues(void);
85static void buf_daemon(void);
86
87int vmiodirenable = TRUE;
88SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
89    "Use the VM system for directory writes");
90int runningbufspace;
91SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
92    "Amount of presently outstanding async buffer io");
93static int bufspace;
94SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
95    "KVA memory used for bufs");
96static int maxbufspace;
97SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
98    "Maximum allowed value of bufspace (including buf_daemon)");
99static int bufmallocspace;
100SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
101    "Amount of malloced memory for buffers");
102static int maxbufmallocspace;
103SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
104    "Maximum amount of malloced memory for buffers");
105static int lobufspace;
106SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
107    "Minimum amount of buffers we want to have");
108static int hibufspace;
109SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
110    "Maximum allowed value of bufspace (excluding buf_daemon)");
111static int bufreusecnt;
112SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
113    "Number of times we have reused a buffer");
114static int buffreekvacnt;
115SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
116    "Number of times we have freed the KVA space from some buffer");
117static int bufdefragcnt;
118SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
119    "Number of times we have had to repeat buffer allocation to defragment");
120static int lorunningspace;
121SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
122    "Minimum preferred space used for in-progress I/O");
123static int hirunningspace;
124SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
125    "Maximum amount of space to use for in-progress I/O");
126static int numdirtybuffers;
127SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
128    "Number of buffers that are dirty (has unwritten changes) at the moment");
129static int lodirtybuffers;
130SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
131    "How many buffers we want to have free before bufdaemon can sleep");
132static int hidirtybuffers;
133SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
134    "When the number of dirty buffers is considered severe");
135static int numfreebuffers;
136SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
137    "Number of free buffers");
138static int lofreebuffers;
139SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
140   "XXX Unused");
141static int hifreebuffers;
142SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
143   "XXX Complicatedly unused");
144static int getnewbufcalls;
145SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
146   "Number of calls to getnewbuf");
147static int getnewbufrestarts;
148SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
149    "Number of times getnewbuf has had to restart a buffer aquisition");
150static int dobkgrdwrite = 1;
151SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
152    "Do background writes (honoring the BX_BKGRDWRITE flag)?");
153
154/*
155 * Wakeup point for bufdaemon, as well as indicator of whether it is already
156 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
157 * is idling.
158 */
159static int bd_request;
160
161/*
162 * bogus page -- for I/O to/from partially complete buffers
163 * this is a temporary solution to the problem, but it is not
164 * really that bad.  it would be better to split the buffer
165 * for input in the case of buffers partially already in memory,
166 * but the code is intricate enough already.
167 */
168vm_page_t bogus_page;
169
170/*
171 * Offset for bogus_page.
172 * XXX bogus_offset should be local to bufinit
173 */
174static vm_offset_t bogus_offset;
175
176/*
177 * Synchronization (sleep/wakeup) variable for active buffer space requests.
178 * Set when wait starts, cleared prior to wakeup().
179 * Used in runningbufwakeup() and waitrunningbufspace().
180 */
181static int runningbufreq;
182
183/*
184 * Synchronization (sleep/wakeup) variable for buffer requests.
185 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
186 * by and/or.
187 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
188 * getnewbuf(), and getblk().
189 */
190static int needsbuffer;
191
192#ifdef USE_BUFHASH
193/*
194 * Mask for index into the buffer hash table, which needs to be power of 2 in
195 * size.  Set in kern_vfs_bio_buffer_alloc.
196 */
197static int bufhashmask;
198
199/*
200 * Hash table for all buffers, with a linked list hanging from each table
201 * entry.  Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
202 */
203static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
204
205/*
206 * Somewhere to store buffers when they are not in another list, to always
207 * have them in a list (and thus being able to use the same set of operations
208 * on them.)
209 */
210static struct bufhashhdr invalhash;
211
212#endif
213
214/*
215 * Definitions for the buffer free lists.
216 */
217#define BUFFER_QUEUES	6	/* number of free buffer queues */
218
219#define QUEUE_NONE	0	/* on no queue */
220#define QUEUE_LOCKED	1	/* locked buffers */
221#define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
222#define QUEUE_DIRTY	3	/* B_DELWRI buffers */
223#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
224#define QUEUE_EMPTY	5	/* empty buffer headers */
225
226/* Queues for free buffers with various properties */
227static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
228/*
229 * Single global constant for BUF_WMESG, to avoid getting multiple references.
230 * buf_wmesg is referred from macros.
231 */
232const char *buf_wmesg = BUF_WMESG;
233
234#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
235#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
236#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
237#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
238
239#ifdef USE_BUFHASH
240/*
241 * Buffer hash table code.  Note that the logical block scans linearly, which
242 * gives us some L1 cache locality.
243 */
244
245static __inline
246struct bufhashhdr *
247bufhash(struct vnode *vnp, daddr_t bn)
248{
249	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
250}
251
252#endif
253
254/*
255 *	numdirtywakeup:
256 *
257 *	If someone is blocked due to there being too many dirty buffers,
258 *	and numdirtybuffers is now reasonable, wake them up.
259 */
260
261static __inline void
262numdirtywakeup(int level)
263{
264	if (numdirtybuffers <= level) {
265		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
266			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
267			wakeup(&needsbuffer);
268		}
269	}
270}
271
272/*
273 *	bufspacewakeup:
274 *
275 *	Called when buffer space is potentially available for recovery.
276 *	getnewbuf() will block on this flag when it is unable to free
277 *	sufficient buffer space.  Buffer space becomes recoverable when
278 *	bp's get placed back in the queues.
279 */
280
281static __inline void
282bufspacewakeup(void)
283{
284	/*
285	 * If someone is waiting for BUF space, wake them up.  Even
286	 * though we haven't freed the kva space yet, the waiting
287	 * process will be able to now.
288	 */
289	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
290		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
291		wakeup(&needsbuffer);
292	}
293}
294
295/*
296 * runningbufwakeup() - in-progress I/O accounting.
297 *
298 */
299static __inline void
300runningbufwakeup(struct buf *bp)
301{
302	if (bp->b_runningbufspace) {
303		runningbufspace -= bp->b_runningbufspace;
304		bp->b_runningbufspace = 0;
305		if (runningbufreq && runningbufspace <= lorunningspace) {
306			runningbufreq = 0;
307			wakeup(&runningbufreq);
308		}
309	}
310}
311
312/*
313 *	bufcountwakeup:
314 *
315 *	Called when a buffer has been added to one of the free queues to
316 *	account for the buffer and to wakeup anyone waiting for free buffers.
317 *	This typically occurs when large amounts of metadata are being handled
318 *	by the buffer cache ( else buffer space runs out first, usually ).
319 */
320
321static __inline void
322bufcountwakeup(void)
323{
324	++numfreebuffers;
325	if (needsbuffer) {
326		needsbuffer &= ~VFS_BIO_NEED_ANY;
327		if (numfreebuffers >= hifreebuffers)
328			needsbuffer &= ~VFS_BIO_NEED_FREE;
329		wakeup(&needsbuffer);
330	}
331}
332
333/*
334 *	waitrunningbufspace()
335 *
336 *	runningbufspace is a measure of the amount of I/O currently
337 *	running.  This routine is used in async-write situations to
338 *	prevent creating huge backups of pending writes to a device.
339 *	Only asynchronous writes are governed by this function.
340 *
341 *	Reads will adjust runningbufspace, but will not block based on it.
342 *	The read load has a side effect of reducing the allowed write load.
343 *
344 *	This does NOT turn an async write into a sync write.  It waits
345 *	for earlier writes to complete and generally returns before the
346 *	caller's write has reached the device.
347 */
348static __inline void
349waitrunningbufspace(void)
350{
351	/*
352	 * XXX race against wakeup interrupt, currently
353	 * protected by Giant.  FIXME!
354	 */
355	while (runningbufspace > hirunningspace) {
356		++runningbufreq;
357		tsleep(&runningbufreq, PVM, "wdrain", 0);
358	}
359}
360
361
362/*
363 *	vfs_buf_test_cache:
364 *
365 *	Called when a buffer is extended.  This function clears the B_CACHE
366 *	bit if the newly extended portion of the buffer does not contain
367 *	valid data.
368 */
369static __inline__
370void
371vfs_buf_test_cache(struct buf *bp,
372		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
373		  vm_page_t m)
374{
375	GIANT_REQUIRED;
376
377	if (bp->b_flags & B_CACHE) {
378		int base = (foff + off) & PAGE_MASK;
379		if (vm_page_is_valid(m, base, size) == 0)
380			bp->b_flags &= ~B_CACHE;
381	}
382}
383
384/* Wake up the buffer deamon if necessary */
385static __inline__
386void
387bd_wakeup(int dirtybuflevel)
388{
389	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
390		bd_request = 1;
391		wakeup(&bd_request);
392	}
393}
394
395/*
396 * bd_speedup - speedup the buffer cache flushing code
397 */
398
399static __inline__
400void
401bd_speedup(void)
402{
403	bd_wakeup(1);
404}
405
406/*
407 * Calculating buffer cache scaling values and reserve space for buffer
408 * headers.  This is called during low level kernel initialization and
409 * may be called more then once.  We CANNOT write to the memory area
410 * being reserved at this time.
411 */
412caddr_t
413kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
414{
415	/*
416	 * physmem_est is in pages.  Convert it to kilobytes (assumes
417	 * PAGE_SIZE is >= 1K)
418	 */
419	physmem_est = physmem_est * (PAGE_SIZE / 1024);
420
421	/*
422	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
423	 * For the first 64MB of ram nominally allocate sufficient buffers to
424	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
425	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
426	 * the buffer cache we limit the eventual kva reservation to
427	 * maxbcache bytes.
428	 *
429	 * factor represents the 1/4 x ram conversion.
430	 */
431	if (nbuf == 0) {
432		int factor = 4 * BKVASIZE / 1024;
433
434		nbuf = 50;
435		if (physmem_est > 4096)
436			nbuf += min((physmem_est - 4096) / factor,
437			    65536 / factor);
438		if (physmem_est > 65536)
439			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
440
441		if (maxbcache && nbuf > maxbcache / BKVASIZE)
442			nbuf = maxbcache / BKVASIZE;
443	}
444
445#if 0
446	/*
447	 * Do not allow the buffer_map to be more then 1/2 the size of the
448	 * kernel_map.
449	 */
450	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
451	    (BKVASIZE * 2)) {
452		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
453		    (BKVASIZE * 2);
454		printf("Warning: nbufs capped at %d\n", nbuf);
455	}
456#endif
457
458	/*
459	 * swbufs are used as temporary holders for I/O, such as paging I/O.
460	 * We have no less then 16 and no more then 256.
461	 */
462	nswbuf = max(min(nbuf/4, 256), 16);
463
464	/*
465	 * Reserve space for the buffer cache buffers
466	 */
467	swbuf = (void *)v;
468	v = (caddr_t)(swbuf + nswbuf);
469	buf = (void *)v;
470	v = (caddr_t)(buf + nbuf);
471
472#ifdef USE_BUFHASH
473	/*
474	 * Calculate the hash table size and reserve space
475	 */
476	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
477		;
478	bufhashtbl = (void *)v;
479	v = (caddr_t)(bufhashtbl + bufhashmask);
480	--bufhashmask;
481#endif
482	return(v);
483}
484
485/* Initialize the buffer subsystem.  Called before use of any buffers. */
486void
487bufinit(void)
488{
489	struct buf *bp;
490	int i;
491
492	GIANT_REQUIRED;
493
494#ifdef USE_BUFHASH
495	LIST_INIT(&invalhash);
496#endif
497	mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF);
498
499#ifdef USE_BUFHASH
500	for (i = 0; i <= bufhashmask; i++)
501		LIST_INIT(&bufhashtbl[i]);
502#endif
503
504	/* next, make a null set of free lists */
505	for (i = 0; i < BUFFER_QUEUES; i++)
506		TAILQ_INIT(&bufqueues[i]);
507
508	/* finally, initialize each buffer header and stick on empty q */
509	for (i = 0; i < nbuf; i++) {
510		bp = &buf[i];
511		bzero(bp, sizeof *bp);
512		bp->b_flags = B_INVAL;	/* we're just an empty header */
513		bp->b_dev = NODEV;
514		bp->b_rcred = NOCRED;
515		bp->b_wcred = NOCRED;
516		bp->b_qindex = QUEUE_EMPTY;
517		bp->b_xflags = 0;
518		LIST_INIT(&bp->b_dep);
519		BUF_LOCKINIT(bp);
520		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
521#ifdef USE_BUFHASH
522		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
523#endif
524	}
525
526	/*
527	 * maxbufspace is the absolute maximum amount of buffer space we are
528	 * allowed to reserve in KVM and in real terms.  The absolute maximum
529	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
530	 * used by most other processes.  The differential is required to
531	 * ensure that buf_daemon is able to run when other processes might
532	 * be blocked waiting for buffer space.
533	 *
534	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
535	 * this may result in KVM fragmentation which is not handled optimally
536	 * by the system.
537	 */
538	maxbufspace = nbuf * BKVASIZE;
539	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
540	lobufspace = hibufspace - MAXBSIZE;
541
542	lorunningspace = 512 * 1024;
543	hirunningspace = 1024 * 1024;
544
545/*
546 * Limit the amount of malloc memory since it is wired permanently into
547 * the kernel space.  Even though this is accounted for in the buffer
548 * allocation, we don't want the malloced region to grow uncontrolled.
549 * The malloc scheme improves memory utilization significantly on average
550 * (small) directories.
551 */
552	maxbufmallocspace = hibufspace / 20;
553
554/*
555 * Reduce the chance of a deadlock occuring by limiting the number
556 * of delayed-write dirty buffers we allow to stack up.
557 */
558	hidirtybuffers = nbuf / 4 + 20;
559	numdirtybuffers = 0;
560/*
561 * To support extreme low-memory systems, make sure hidirtybuffers cannot
562 * eat up all available buffer space.  This occurs when our minimum cannot
563 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
564 * BKVASIZE'd (8K) buffers.
565 */
566	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
567		hidirtybuffers >>= 1;
568	}
569	lodirtybuffers = hidirtybuffers / 2;
570
571/*
572 * Try to keep the number of free buffers in the specified range,
573 * and give special processes (e.g. like buf_daemon) access to an
574 * emergency reserve.
575 */
576	lofreebuffers = nbuf / 18 + 5;
577	hifreebuffers = 2 * lofreebuffers;
578	numfreebuffers = nbuf;
579
580/*
581 * Maximum number of async ops initiated per buf_daemon loop.  This is
582 * somewhat of a hack at the moment, we really need to limit ourselves
583 * based on the number of bytes of I/O in-transit that were initiated
584 * from buf_daemon.
585 */
586
587	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
588	bogus_page = vm_page_alloc(kernel_object,
589			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
590			VM_ALLOC_NORMAL);
591	cnt.v_wire_count++;
592}
593
594/*
595 * bfreekva() - free the kva allocation for a buffer.
596 *
597 *	Must be called at splbio() or higher as this is the only locking for
598 *	buffer_map.
599 *
600 *	Since this call frees up buffer space, we call bufspacewakeup().
601 */
602static void
603bfreekva(struct buf * bp)
604{
605	GIANT_REQUIRED;
606
607	if (bp->b_kvasize) {
608		++buffreekvacnt;
609		bufspace -= bp->b_kvasize;
610		vm_map_delete(buffer_map,
611		    (vm_offset_t) bp->b_kvabase,
612		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
613		);
614		bp->b_kvasize = 0;
615		bufspacewakeup();
616	}
617}
618
619/*
620 *	bremfree:
621 *
622 *	Remove the buffer from the appropriate free list.
623 */
624void
625bremfree(struct buf * bp)
626{
627	int s = splbio();
628	int old_qindex = bp->b_qindex;
629
630	GIANT_REQUIRED;
631
632	if (bp->b_qindex != QUEUE_NONE) {
633		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
634		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
635		bp->b_qindex = QUEUE_NONE;
636	} else {
637		if (BUF_REFCNT(bp) <= 1)
638			panic("bremfree: removing a buffer not on a queue");
639	}
640
641	/*
642	 * Fixup numfreebuffers count.  If the buffer is invalid or not
643	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
644	 * the buffer was free and we must decrement numfreebuffers.
645	 */
646	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
647		switch(old_qindex) {
648		case QUEUE_DIRTY:
649		case QUEUE_CLEAN:
650		case QUEUE_EMPTY:
651		case QUEUE_EMPTYKVA:
652			--numfreebuffers;
653			break;
654		default:
655			break;
656		}
657	}
658	splx(s);
659}
660
661
662/*
663 * Get a buffer with the specified data.  Look in the cache first.  We
664 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
665 * is set, the buffer is valid and we do not have to do anything ( see
666 * getblk() ).  This is really just a special case of breadn().
667 */
668int
669bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
670    struct buf ** bpp)
671{
672
673	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
674}
675
676/*
677 * Operates like bread, but also starts asynchronous I/O on
678 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
679 * to initiating I/O . If B_CACHE is set, the buffer is valid
680 * and we do not have to do anything.
681 */
682int
683breadn(struct vnode * vp, daddr_t blkno, int size,
684    daddr_t * rablkno, int *rabsize,
685    int cnt, struct ucred * cred, struct buf ** bpp)
686{
687	struct buf *bp, *rabp;
688	int i;
689	int rv = 0, readwait = 0;
690
691	*bpp = bp = getblk(vp, blkno, size, 0, 0);
692
693	/* if not found in cache, do some I/O */
694	if ((bp->b_flags & B_CACHE) == 0) {
695		if (curthread != PCPU_GET(idlethread))
696			curthread->td_proc->p_stats->p_ru.ru_inblock++;
697		bp->b_iocmd = BIO_READ;
698		bp->b_flags &= ~B_INVAL;
699		bp->b_ioflags &= ~BIO_ERROR;
700		if (bp->b_rcred == NOCRED && cred != NOCRED)
701			bp->b_rcred = crhold(cred);
702		vfs_busy_pages(bp, 0);
703		VOP_STRATEGY(vp, bp);
704		++readwait;
705	}
706
707	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
708		if (inmem(vp, *rablkno))
709			continue;
710		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
711
712		if ((rabp->b_flags & B_CACHE) == 0) {
713			if (curthread != PCPU_GET(idlethread))
714				curthread->td_proc->p_stats->p_ru.ru_inblock++;
715			rabp->b_flags |= B_ASYNC;
716			rabp->b_flags &= ~B_INVAL;
717			rabp->b_ioflags &= ~BIO_ERROR;
718			rabp->b_iocmd = BIO_READ;
719			if (rabp->b_rcred == NOCRED && cred != NOCRED)
720				rabp->b_rcred = crhold(cred);
721			vfs_busy_pages(rabp, 0);
722			BUF_KERNPROC(rabp);
723			VOP_STRATEGY(vp, rabp);
724		} else {
725			brelse(rabp);
726		}
727	}
728
729	if (readwait) {
730		rv = bufwait(bp);
731	}
732	return (rv);
733}
734
735/*
736 * Write, release buffer on completion.  (Done by iodone
737 * if async).  Do not bother writing anything if the buffer
738 * is invalid.
739 *
740 * Note that we set B_CACHE here, indicating that buffer is
741 * fully valid and thus cacheable.  This is true even of NFS
742 * now so we set it generally.  This could be set either here
743 * or in biodone() since the I/O is synchronous.  We put it
744 * here.
745 */
746
747int
748bwrite(struct buf * bp)
749{
750	int oldflags, s;
751	struct buf *newbp;
752
753	if (bp->b_flags & B_INVAL) {
754		brelse(bp);
755		return (0);
756	}
757
758	oldflags = bp->b_flags;
759
760	if (BUF_REFCNT(bp) == 0)
761		panic("bwrite: buffer is not busy???");
762	s = splbio();
763	/*
764	 * If a background write is already in progress, delay
765	 * writing this block if it is asynchronous. Otherwise
766	 * wait for the background write to complete.
767	 */
768	if (bp->b_xflags & BX_BKGRDINPROG) {
769		if (bp->b_flags & B_ASYNC) {
770			splx(s);
771			bdwrite(bp);
772			return (0);
773		}
774		bp->b_xflags |= BX_BKGRDWAIT;
775		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
776		if (bp->b_xflags & BX_BKGRDINPROG)
777			panic("bwrite: still writing");
778	}
779
780	/* Mark the buffer clean */
781	bundirty(bp);
782
783	/*
784	 * If this buffer is marked for background writing and we
785	 * do not have to wait for it, make a copy and write the
786	 * copy so as to leave this buffer ready for further use.
787	 *
788	 * This optimization eats a lot of memory.  If we have a page
789	 * or buffer shortfall we can't do it.
790	 */
791	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
792	    (bp->b_flags & B_ASYNC) &&
793	    !vm_page_count_severe() &&
794	    !buf_dirty_count_severe()) {
795		if (bp->b_iodone != NULL) {
796			printf("bp->b_iodone = %p\n", bp->b_iodone);
797			panic("bwrite: need chained iodone");
798		}
799
800		/* get a new block */
801		newbp = geteblk(bp->b_bufsize);
802
803		/*
804		 * set it to be identical to the old block.  We have to
805		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
806		 * to avoid confusing the splay tree and gbincore().
807		 */
808		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
809		newbp->b_lblkno = bp->b_lblkno;
810		newbp->b_xflags |= BX_BKGRDMARKER;
811		bgetvp(bp->b_vp, newbp);
812		newbp->b_blkno = bp->b_blkno;
813		newbp->b_offset = bp->b_offset;
814		newbp->b_iodone = vfs_backgroundwritedone;
815		newbp->b_flags |= B_ASYNC;
816		newbp->b_flags &= ~B_INVAL;
817
818		/* move over the dependencies */
819		if (LIST_FIRST(&bp->b_dep) != NULL)
820			buf_movedeps(bp, newbp);
821
822		/*
823		 * Initiate write on the copy, release the original to
824		 * the B_LOCKED queue so that it cannot go away until
825		 * the background write completes. If not locked it could go
826		 * away and then be reconstituted while it was being written.
827		 * If the reconstituted buffer were written, we could end up
828		 * with two background copies being written at the same time.
829		 */
830		bp->b_xflags |= BX_BKGRDINPROG;
831		bp->b_flags |= B_LOCKED;
832		bqrelse(bp);
833		bp = newbp;
834	}
835
836	bp->b_flags &= ~B_DONE;
837	bp->b_ioflags &= ~BIO_ERROR;
838	bp->b_flags |= B_WRITEINPROG | B_CACHE;
839	bp->b_iocmd = BIO_WRITE;
840
841	bp->b_vp->v_numoutput++;
842	vfs_busy_pages(bp, 1);
843
844	/*
845	 * Normal bwrites pipeline writes
846	 */
847	bp->b_runningbufspace = bp->b_bufsize;
848	runningbufspace += bp->b_runningbufspace;
849
850	if (curthread != PCPU_GET(idlethread))
851		curthread->td_proc->p_stats->p_ru.ru_oublock++;
852	splx(s);
853	if (oldflags & B_ASYNC)
854		BUF_KERNPROC(bp);
855	BUF_STRATEGY(bp);
856
857	if ((oldflags & B_ASYNC) == 0) {
858		int rtval = bufwait(bp);
859		brelse(bp);
860		return (rtval);
861	} else if ((oldflags & B_NOWDRAIN) == 0) {
862		/*
863		 * don't allow the async write to saturate the I/O
864		 * system.  Deadlocks can occur only if a device strategy
865		 * routine (like in MD) turns around and issues another
866		 * high-level write, in which case B_NOWDRAIN is expected
867		 * to be set.  Otherwise we will not deadlock here because
868		 * we are blocking waiting for I/O that is already in-progress
869		 * to complete.
870		 */
871		waitrunningbufspace();
872	}
873
874	return (0);
875}
876
877/*
878 * Complete a background write started from bwrite.
879 */
880static void
881vfs_backgroundwritedone(bp)
882	struct buf *bp;
883{
884	struct buf *origbp;
885
886	/*
887	 * Find the original buffer that we are writing.
888	 */
889	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
890		panic("backgroundwritedone: lost buffer");
891	/*
892	 * Process dependencies then return any unfinished ones.
893	 */
894	if (LIST_FIRST(&bp->b_dep) != NULL)
895		buf_complete(bp);
896	if (LIST_FIRST(&bp->b_dep) != NULL)
897		buf_movedeps(bp, origbp);
898	/*
899	 * Clear the BX_BKGRDINPROG flag in the original buffer
900	 * and awaken it if it is waiting for the write to complete.
901	 * If BX_BKGRDINPROG is not set in the original buffer it must
902	 * have been released and re-instantiated - which is not legal.
903	 */
904	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
905	    ("backgroundwritedone: lost buffer2"));
906	origbp->b_xflags &= ~BX_BKGRDINPROG;
907	if (origbp->b_xflags & BX_BKGRDWAIT) {
908		origbp->b_xflags &= ~BX_BKGRDWAIT;
909		wakeup(&origbp->b_xflags);
910	}
911	/*
912	 * Clear the B_LOCKED flag and remove it from the locked
913	 * queue if it currently resides there.
914	 */
915	origbp->b_flags &= ~B_LOCKED;
916	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
917		bremfree(origbp);
918		bqrelse(origbp);
919	}
920	/*
921	 * This buffer is marked B_NOCACHE, so when it is released
922	 * by biodone, it will be tossed. We mark it with BIO_READ
923	 * to avoid biodone doing a second vwakeup.
924	 */
925	bp->b_flags |= B_NOCACHE;
926	bp->b_iocmd = BIO_READ;
927	bp->b_flags &= ~(B_CACHE | B_DONE);
928	bp->b_iodone = 0;
929	bufdone(bp);
930}
931
932/*
933 * Delayed write. (Buffer is marked dirty).  Do not bother writing
934 * anything if the buffer is marked invalid.
935 *
936 * Note that since the buffer must be completely valid, we can safely
937 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
938 * biodone() in order to prevent getblk from writing the buffer
939 * out synchronously.
940 */
941void
942bdwrite(struct buf * bp)
943{
944	GIANT_REQUIRED;
945
946	if (BUF_REFCNT(bp) == 0)
947		panic("bdwrite: buffer is not busy");
948
949	if (bp->b_flags & B_INVAL) {
950		brelse(bp);
951		return;
952	}
953	bdirty(bp);
954
955	/*
956	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
957	 * true even of NFS now.
958	 */
959	bp->b_flags |= B_CACHE;
960
961	/*
962	 * This bmap keeps the system from needing to do the bmap later,
963	 * perhaps when the system is attempting to do a sync.  Since it
964	 * is likely that the indirect block -- or whatever other datastructure
965	 * that the filesystem needs is still in memory now, it is a good
966	 * thing to do this.  Note also, that if the pageout daemon is
967	 * requesting a sync -- there might not be enough memory to do
968	 * the bmap then...  So, this is important to do.
969	 */
970	if (bp->b_lblkno == bp->b_blkno) {
971		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
972	}
973
974	/*
975	 * Set the *dirty* buffer range based upon the VM system dirty pages.
976	 */
977	vfs_setdirty(bp);
978
979	/*
980	 * We need to do this here to satisfy the vnode_pager and the
981	 * pageout daemon, so that it thinks that the pages have been
982	 * "cleaned".  Note that since the pages are in a delayed write
983	 * buffer -- the VFS layer "will" see that the pages get written
984	 * out on the next sync, or perhaps the cluster will be completed.
985	 */
986	vfs_clean_pages(bp);
987	bqrelse(bp);
988
989	/*
990	 * Wakeup the buffer flushing daemon if we have a lot of dirty
991	 * buffers (midpoint between our recovery point and our stall
992	 * point).
993	 */
994	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
995
996	/*
997	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
998	 * due to the softdep code.
999	 */
1000}
1001
1002/*
1003 *	bdirty:
1004 *
1005 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1006 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1007 *	itself to properly update it in the dirty/clean lists.  We mark it
1008 *	B_DONE to ensure that any asynchronization of the buffer properly
1009 *	clears B_DONE ( else a panic will occur later ).
1010 *
1011 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1012 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1013 *	should only be called if the buffer is known-good.
1014 *
1015 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1016 *	count.
1017 *
1018 *	Must be called at splbio().
1019 *	The buffer must be on QUEUE_NONE.
1020 */
1021void
1022bdirty(bp)
1023	struct buf *bp;
1024{
1025	KASSERT(bp->b_qindex == QUEUE_NONE,
1026	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1027	bp->b_flags &= ~(B_RELBUF);
1028	bp->b_iocmd = BIO_WRITE;
1029
1030	if ((bp->b_flags & B_DELWRI) == 0) {
1031		bp->b_flags |= B_DONE | B_DELWRI;
1032		reassignbuf(bp, bp->b_vp);
1033		++numdirtybuffers;
1034		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1035	}
1036}
1037
1038/*
1039 *	bundirty:
1040 *
1041 *	Clear B_DELWRI for buffer.
1042 *
1043 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1044 *	count.
1045 *
1046 *	Must be called at splbio().
1047 *	The buffer must be on QUEUE_NONE.
1048 */
1049
1050void
1051bundirty(bp)
1052	struct buf *bp;
1053{
1054	KASSERT(bp->b_qindex == QUEUE_NONE,
1055	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1056
1057	if (bp->b_flags & B_DELWRI) {
1058		bp->b_flags &= ~B_DELWRI;
1059		reassignbuf(bp, bp->b_vp);
1060		--numdirtybuffers;
1061		numdirtywakeup(lodirtybuffers);
1062	}
1063	/*
1064	 * Since it is now being written, we can clear its deferred write flag.
1065	 */
1066	bp->b_flags &= ~B_DEFERRED;
1067}
1068
1069/*
1070 *	bawrite:
1071 *
1072 *	Asynchronous write.  Start output on a buffer, but do not wait for
1073 *	it to complete.  The buffer is released when the output completes.
1074 *
1075 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1076 *	B_INVAL buffers.  Not us.
1077 */
1078void
1079bawrite(struct buf * bp)
1080{
1081	bp->b_flags |= B_ASYNC;
1082	(void) BUF_WRITE(bp);
1083}
1084
1085/*
1086 *	bwillwrite:
1087 *
1088 *	Called prior to the locking of any vnodes when we are expecting to
1089 *	write.  We do not want to starve the buffer cache with too many
1090 *	dirty buffers so we block here.  By blocking prior to the locking
1091 *	of any vnodes we attempt to avoid the situation where a locked vnode
1092 *	prevents the various system daemons from flushing related buffers.
1093 */
1094
1095void
1096bwillwrite(void)
1097{
1098	if (numdirtybuffers >= hidirtybuffers) {
1099		int s;
1100
1101		mtx_lock(&Giant);
1102		s = splbio();
1103		while (numdirtybuffers >= hidirtybuffers) {
1104			bd_wakeup(1);
1105			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1106			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1107		}
1108		splx(s);
1109		mtx_unlock(&Giant);
1110	}
1111}
1112
1113/*
1114 * Return true if we have too many dirty buffers.
1115 */
1116int
1117buf_dirty_count_severe(void)
1118{
1119	return(numdirtybuffers >= hidirtybuffers);
1120}
1121
1122/*
1123 *	brelse:
1124 *
1125 *	Release a busy buffer and, if requested, free its resources.  The
1126 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1127 *	to be accessed later as a cache entity or reused for other purposes.
1128 */
1129void
1130brelse(struct buf * bp)
1131{
1132	int s;
1133
1134	GIANT_REQUIRED;
1135
1136	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1137	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1138
1139	s = splbio();
1140
1141	if (bp->b_flags & B_LOCKED)
1142		bp->b_ioflags &= ~BIO_ERROR;
1143
1144	if (bp->b_iocmd == BIO_WRITE &&
1145	    (bp->b_ioflags & BIO_ERROR) &&
1146	    !(bp->b_flags & B_INVAL)) {
1147		/*
1148		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1149		 * pages from being scrapped.  If B_INVAL is set then
1150		 * this case is not run and the next case is run to
1151		 * destroy the buffer.  B_INVAL can occur if the buffer
1152		 * is outside the range supported by the underlying device.
1153		 */
1154		bp->b_ioflags &= ~BIO_ERROR;
1155		bdirty(bp);
1156	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1157	    (bp->b_ioflags & BIO_ERROR) ||
1158	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1159		/*
1160		 * Either a failed I/O or we were asked to free or not
1161		 * cache the buffer.
1162		 */
1163		bp->b_flags |= B_INVAL;
1164		if (LIST_FIRST(&bp->b_dep) != NULL)
1165			buf_deallocate(bp);
1166		if (bp->b_flags & B_DELWRI) {
1167			--numdirtybuffers;
1168			numdirtywakeup(lodirtybuffers);
1169		}
1170		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1171		if ((bp->b_flags & B_VMIO) == 0) {
1172			if (bp->b_bufsize)
1173				allocbuf(bp, 0);
1174			if (bp->b_vp)
1175				brelvp(bp);
1176		}
1177	}
1178
1179	/*
1180	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1181	 * is called with B_DELWRI set, the underlying pages may wind up
1182	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1183	 * because pages associated with a B_DELWRI bp are marked clean.
1184	 *
1185	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1186	 * if B_DELWRI is set.
1187	 *
1188	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1189	 * on pages to return pages to the VM page queues.
1190	 */
1191	if (bp->b_flags & B_DELWRI)
1192		bp->b_flags &= ~B_RELBUF;
1193	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1194		bp->b_flags |= B_RELBUF;
1195
1196	/*
1197	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1198	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1199	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1200	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1201	 *
1202	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1203	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1204	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1205	 *
1206	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1207	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1208	 * the commit state and we cannot afford to lose the buffer. If the
1209	 * buffer has a background write in progress, we need to keep it
1210	 * around to prevent it from being reconstituted and starting a second
1211	 * background write.
1212	 */
1213	if ((bp->b_flags & B_VMIO)
1214	    && !(bp->b_vp->v_tag == VT_NFS &&
1215		 !vn_isdisk(bp->b_vp, NULL) &&
1216		 (bp->b_flags & B_DELWRI))
1217	    ) {
1218
1219		int i, j, resid;
1220		vm_page_t m;
1221		off_t foff;
1222		vm_pindex_t poff;
1223		vm_object_t obj;
1224		struct vnode *vp;
1225
1226		vp = bp->b_vp;
1227		obj = bp->b_object;
1228
1229		/*
1230		 * Get the base offset and length of the buffer.  Note that
1231		 * in the VMIO case if the buffer block size is not
1232		 * page-aligned then b_data pointer may not be page-aligned.
1233		 * But our b_pages[] array *IS* page aligned.
1234		 *
1235		 * block sizes less then DEV_BSIZE (usually 512) are not
1236		 * supported due to the page granularity bits (m->valid,
1237		 * m->dirty, etc...).
1238		 *
1239		 * See man buf(9) for more information
1240		 */
1241		resid = bp->b_bufsize;
1242		foff = bp->b_offset;
1243
1244		for (i = 0; i < bp->b_npages; i++) {
1245			int had_bogus = 0;
1246
1247			m = bp->b_pages[i];
1248			vm_page_flag_clear(m, PG_ZERO);
1249
1250			/*
1251			 * If we hit a bogus page, fixup *all* the bogus pages
1252			 * now.
1253			 */
1254			if (m == bogus_page) {
1255				poff = OFF_TO_IDX(bp->b_offset);
1256				had_bogus = 1;
1257
1258				for (j = i; j < bp->b_npages; j++) {
1259					vm_page_t mtmp;
1260					mtmp = bp->b_pages[j];
1261					if (mtmp == bogus_page) {
1262						mtmp = vm_page_lookup(obj, poff + j);
1263						if (!mtmp) {
1264							panic("brelse: page missing\n");
1265						}
1266						bp->b_pages[j] = mtmp;
1267					}
1268				}
1269
1270				if ((bp->b_flags & B_INVAL) == 0) {
1271					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1272				}
1273				m = bp->b_pages[i];
1274			}
1275			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1276				int poffset = foff & PAGE_MASK;
1277				int presid = resid > (PAGE_SIZE - poffset) ?
1278					(PAGE_SIZE - poffset) : resid;
1279
1280				KASSERT(presid >= 0, ("brelse: extra page"));
1281				vm_page_set_invalid(m, poffset, presid);
1282				if (had_bogus)
1283					printf("avoided corruption bug in bogus_page/brelse code\n");
1284			}
1285			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1286			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1287		}
1288
1289		if (bp->b_flags & (B_INVAL | B_RELBUF))
1290			vfs_vmio_release(bp);
1291
1292	} else if (bp->b_flags & B_VMIO) {
1293
1294		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1295			vfs_vmio_release(bp);
1296		}
1297
1298	}
1299
1300	if (bp->b_qindex != QUEUE_NONE)
1301		panic("brelse: free buffer onto another queue???");
1302	if (BUF_REFCNT(bp) > 1) {
1303		/* do not release to free list */
1304		BUF_UNLOCK(bp);
1305		splx(s);
1306		return;
1307	}
1308
1309	/* enqueue */
1310
1311	/* buffers with no memory */
1312	if (bp->b_bufsize == 0) {
1313		bp->b_flags |= B_INVAL;
1314		bp->b_xflags &= ~BX_BKGRDWRITE;
1315		if (bp->b_xflags & BX_BKGRDINPROG)
1316			panic("losing buffer 1");
1317		if (bp->b_kvasize) {
1318			bp->b_qindex = QUEUE_EMPTYKVA;
1319		} else {
1320			bp->b_qindex = QUEUE_EMPTY;
1321		}
1322		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1323#ifdef USE_BUFHASH
1324		LIST_REMOVE(bp, b_hash);
1325		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1326#endif
1327		bp->b_dev = NODEV;
1328	/* buffers with junk contents */
1329	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1330	    (bp->b_ioflags & BIO_ERROR)) {
1331		bp->b_flags |= B_INVAL;
1332		bp->b_xflags &= ~BX_BKGRDWRITE;
1333		if (bp->b_xflags & BX_BKGRDINPROG)
1334			panic("losing buffer 2");
1335		bp->b_qindex = QUEUE_CLEAN;
1336		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1337#ifdef USE_BUFHASH
1338		LIST_REMOVE(bp, b_hash);
1339		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1340#endif
1341		bp->b_dev = NODEV;
1342
1343	/* buffers that are locked */
1344	} else if (bp->b_flags & B_LOCKED) {
1345		bp->b_qindex = QUEUE_LOCKED;
1346		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1347
1348	/* remaining buffers */
1349	} else {
1350		if (bp->b_flags & B_DELWRI)
1351			bp->b_qindex = QUEUE_DIRTY;
1352		else
1353			bp->b_qindex = QUEUE_CLEAN;
1354		if (bp->b_flags & B_AGE)
1355			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1356		else
1357			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1358	}
1359
1360	/*
1361	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1362	 * placed the buffer on the correct queue.  We must also disassociate
1363	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1364	 * find it.
1365	 */
1366	if (bp->b_flags & B_INVAL) {
1367		if (bp->b_flags & B_DELWRI)
1368			bundirty(bp);
1369		if (bp->b_vp)
1370			brelvp(bp);
1371	}
1372
1373	/*
1374	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1375	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1376	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1377	 * if B_INVAL is set ).
1378	 */
1379
1380	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1381		bufcountwakeup();
1382
1383	/*
1384	 * Something we can maybe free or reuse
1385	 */
1386	if (bp->b_bufsize || bp->b_kvasize)
1387		bufspacewakeup();
1388
1389	/* unlock */
1390	BUF_UNLOCK(bp);
1391	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1392			B_DIRECT | B_NOWDRAIN);
1393	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1394		panic("brelse: not dirty");
1395	splx(s);
1396}
1397
1398/*
1399 * Release a buffer back to the appropriate queue but do not try to free
1400 * it.  The buffer is expected to be used again soon.
1401 *
1402 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1403 * biodone() to requeue an async I/O on completion.  It is also used when
1404 * known good buffers need to be requeued but we think we may need the data
1405 * again soon.
1406 *
1407 * XXX we should be able to leave the B_RELBUF hint set on completion.
1408 */
1409void
1410bqrelse(struct buf * bp)
1411{
1412	int s;
1413
1414	s = splbio();
1415
1416	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1417
1418	if (bp->b_qindex != QUEUE_NONE)
1419		panic("bqrelse: free buffer onto another queue???");
1420	if (BUF_REFCNT(bp) > 1) {
1421		/* do not release to free list */
1422		BUF_UNLOCK(bp);
1423		splx(s);
1424		return;
1425	}
1426	if (bp->b_flags & B_LOCKED) {
1427		bp->b_ioflags &= ~BIO_ERROR;
1428		bp->b_qindex = QUEUE_LOCKED;
1429		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1430		/* buffers with stale but valid contents */
1431	} else if (bp->b_flags & B_DELWRI) {
1432		bp->b_qindex = QUEUE_DIRTY;
1433		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1434	} else if (vm_page_count_severe()) {
1435		/*
1436		 * We are too low on memory, we have to try to free the
1437		 * buffer (most importantly: the wired pages making up its
1438		 * backing store) *now*.
1439		 */
1440		splx(s);
1441		brelse(bp);
1442		return;
1443	} else {
1444		bp->b_qindex = QUEUE_CLEAN;
1445		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1446	}
1447
1448	if ((bp->b_flags & B_LOCKED) == 0 &&
1449	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1450		bufcountwakeup();
1451	}
1452
1453	/*
1454	 * Something we can maybe free or reuse.
1455	 */
1456	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1457		bufspacewakeup();
1458
1459	/* unlock */
1460	BUF_UNLOCK(bp);
1461	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1462	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1463		panic("bqrelse: not dirty");
1464	splx(s);
1465}
1466
1467/* Give pages used by the bp back to the VM system (where possible) */
1468static void
1469vfs_vmio_release(bp)
1470	struct buf *bp;
1471{
1472	int i;
1473	vm_page_t m;
1474
1475	GIANT_REQUIRED;
1476
1477	for (i = 0; i < bp->b_npages; i++) {
1478		m = bp->b_pages[i];
1479		bp->b_pages[i] = NULL;
1480		/*
1481		 * In order to keep page LRU ordering consistent, put
1482		 * everything on the inactive queue.
1483		 */
1484		vm_page_unwire(m, 0);
1485		/*
1486		 * We don't mess with busy pages, it is
1487		 * the responsibility of the process that
1488		 * busied the pages to deal with them.
1489		 */
1490		if ((m->flags & PG_BUSY) || (m->busy != 0))
1491			continue;
1492
1493		if (m->wire_count == 0) {
1494			vm_page_flag_clear(m, PG_ZERO);
1495			/*
1496			 * Might as well free the page if we can and it has
1497			 * no valid data.  We also free the page if the
1498			 * buffer was used for direct I/O
1499			 */
1500			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1501			    m->hold_count == 0) {
1502				vm_page_busy(m);
1503				vm_page_protect(m, VM_PROT_NONE);
1504				vm_page_free(m);
1505			} else if (bp->b_flags & B_DIRECT) {
1506				vm_page_try_to_free(m);
1507			} else if (vm_page_count_severe()) {
1508				vm_page_try_to_cache(m);
1509			}
1510		}
1511	}
1512	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1513
1514	if (bp->b_bufsize) {
1515		bufspacewakeup();
1516		bp->b_bufsize = 0;
1517	}
1518	bp->b_npages = 0;
1519	bp->b_flags &= ~B_VMIO;
1520	if (bp->b_vp)
1521		brelvp(bp);
1522}
1523
1524#ifdef USE_BUFHASH
1525/*
1526 * XXX MOVED TO VFS_SUBR.C
1527 *
1528 * Check to see if a block is currently memory resident.
1529 */
1530struct buf *
1531gbincore(struct vnode * vp, daddr_t blkno)
1532{
1533	struct buf *bp;
1534	struct bufhashhdr *bh;
1535
1536	bh = bufhash(vp, blkno);
1537
1538	/* Search hash chain */
1539	LIST_FOREACH(bp, bh, b_hash) {
1540		/* hit */
1541		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1542		    (bp->b_flags & B_INVAL) == 0) {
1543			break;
1544		}
1545	}
1546	return (bp);
1547}
1548#endif
1549
1550/*
1551 *	vfs_bio_awrite:
1552 *
1553 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1554 *	This is much better then the old way of writing only one buffer at
1555 *	a time.  Note that we may not be presented with the buffers in the
1556 *	correct order, so we search for the cluster in both directions.
1557 */
1558int
1559vfs_bio_awrite(struct buf * bp)
1560{
1561	int i;
1562	int j;
1563	daddr_t lblkno = bp->b_lblkno;
1564	struct vnode *vp = bp->b_vp;
1565	int s;
1566	int ncl;
1567	struct buf *bpa;
1568	int nwritten;
1569	int size;
1570	int maxcl;
1571
1572	s = splbio();
1573	/*
1574	 * right now we support clustered writing only to regular files.  If
1575	 * we find a clusterable block we could be in the middle of a cluster
1576	 * rather then at the beginning.
1577	 */
1578	if ((vp->v_type == VREG) &&
1579	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1580	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1581
1582		size = vp->v_mount->mnt_stat.f_iosize;
1583		maxcl = MAXPHYS / size;
1584
1585		for (i = 1; i < maxcl; i++) {
1586			if ((bpa = gbincore(vp, lblkno + i)) &&
1587			    BUF_REFCNT(bpa) == 0 &&
1588			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1589			    (B_DELWRI | B_CLUSTEROK)) &&
1590			    (bpa->b_bufsize == size)) {
1591				if ((bpa->b_blkno == bpa->b_lblkno) ||
1592				    (bpa->b_blkno !=
1593				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1594					break;
1595			} else {
1596				break;
1597			}
1598		}
1599		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1600			if ((bpa = gbincore(vp, lblkno - j)) &&
1601			    BUF_REFCNT(bpa) == 0 &&
1602			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1603			    (B_DELWRI | B_CLUSTEROK)) &&
1604			    (bpa->b_bufsize == size)) {
1605				if ((bpa->b_blkno == bpa->b_lblkno) ||
1606				    (bpa->b_blkno !=
1607				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1608					break;
1609			} else {
1610				break;
1611			}
1612		}
1613		--j;
1614		ncl = i + j;
1615		/*
1616		 * this is a possible cluster write
1617		 */
1618		if (ncl != 1) {
1619			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1620			splx(s);
1621			return nwritten;
1622		}
1623	}
1624
1625	BUF_LOCK(bp, LK_EXCLUSIVE);
1626	bremfree(bp);
1627	bp->b_flags |= B_ASYNC;
1628
1629	splx(s);
1630	/*
1631	 * default (old) behavior, writing out only one block
1632	 *
1633	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1634	 */
1635	nwritten = bp->b_bufsize;
1636	(void) BUF_WRITE(bp);
1637
1638	return nwritten;
1639}
1640
1641/*
1642 *	getnewbuf:
1643 *
1644 *	Find and initialize a new buffer header, freeing up existing buffers
1645 *	in the bufqueues as necessary.  The new buffer is returned locked.
1646 *
1647 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1648 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1649 *
1650 *	We block if:
1651 *		We have insufficient buffer headers
1652 *		We have insufficient buffer space
1653 *		buffer_map is too fragmented ( space reservation fails )
1654 *		If we have to flush dirty buffers ( but we try to avoid this )
1655 *
1656 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1657 *	Instead we ask the buf daemon to do it for us.  We attempt to
1658 *	avoid piecemeal wakeups of the pageout daemon.
1659 */
1660
1661static struct buf *
1662getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1663{
1664	struct buf *bp;
1665	struct buf *nbp;
1666	int defrag = 0;
1667	int nqindex;
1668	static int flushingbufs;
1669
1670	GIANT_REQUIRED;
1671
1672	/*
1673	 * We can't afford to block since we might be holding a vnode lock,
1674	 * which may prevent system daemons from running.  We deal with
1675	 * low-memory situations by proactively returning memory and running
1676	 * async I/O rather then sync I/O.
1677	 */
1678
1679	++getnewbufcalls;
1680	--getnewbufrestarts;
1681restart:
1682	++getnewbufrestarts;
1683
1684	/*
1685	 * Setup for scan.  If we do not have enough free buffers,
1686	 * we setup a degenerate case that immediately fails.  Note
1687	 * that if we are specially marked process, we are allowed to
1688	 * dip into our reserves.
1689	 *
1690	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1691	 *
1692	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1693	 * However, there are a number of cases (defragging, reusing, ...)
1694	 * where we cannot backup.
1695	 */
1696	nqindex = QUEUE_EMPTYKVA;
1697	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1698
1699	if (nbp == NULL) {
1700		/*
1701		 * If no EMPTYKVA buffers and we are either
1702		 * defragging or reusing, locate a CLEAN buffer
1703		 * to free or reuse.  If bufspace useage is low
1704		 * skip this step so we can allocate a new buffer.
1705		 */
1706		if (defrag || bufspace >= lobufspace) {
1707			nqindex = QUEUE_CLEAN;
1708			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1709		}
1710
1711		/*
1712		 * If we could not find or were not allowed to reuse a
1713		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1714		 * buffer.  We can only use an EMPTY buffer if allocating
1715		 * its KVA would not otherwise run us out of buffer space.
1716		 */
1717		if (nbp == NULL && defrag == 0 &&
1718		    bufspace + maxsize < hibufspace) {
1719			nqindex = QUEUE_EMPTY;
1720			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1721		}
1722	}
1723
1724	/*
1725	 * Run scan, possibly freeing data and/or kva mappings on the fly
1726	 * depending.
1727	 */
1728
1729	while ((bp = nbp) != NULL) {
1730		int qindex = nqindex;
1731
1732		/*
1733		 * Calculate next bp ( we can only use it if we do not block
1734		 * or do other fancy things ).
1735		 */
1736		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1737			switch(qindex) {
1738			case QUEUE_EMPTY:
1739				nqindex = QUEUE_EMPTYKVA;
1740				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1741					break;
1742				/* fall through */
1743			case QUEUE_EMPTYKVA:
1744				nqindex = QUEUE_CLEAN;
1745				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1746					break;
1747				/* fall through */
1748			case QUEUE_CLEAN:
1749				/*
1750				 * nbp is NULL.
1751				 */
1752				break;
1753			}
1754		}
1755
1756		/*
1757		 * Sanity Checks
1758		 */
1759		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1760
1761		/*
1762		 * Note: we no longer distinguish between VMIO and non-VMIO
1763		 * buffers.
1764		 */
1765
1766		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1767
1768		/*
1769		 * If we are defragging then we need a buffer with
1770		 * b_kvasize != 0.  XXX this situation should no longer
1771		 * occur, if defrag is non-zero the buffer's b_kvasize
1772		 * should also be non-zero at this point.  XXX
1773		 */
1774		if (defrag && bp->b_kvasize == 0) {
1775			printf("Warning: defrag empty buffer %p\n", bp);
1776			continue;
1777		}
1778
1779		/*
1780		 * Start freeing the bp.  This is somewhat involved.  nbp
1781		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1782		 */
1783
1784		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1785			panic("getnewbuf: locked buf");
1786		bremfree(bp);
1787
1788		if (qindex == QUEUE_CLEAN) {
1789			if (bp->b_flags & B_VMIO) {
1790				bp->b_flags &= ~B_ASYNC;
1791				vfs_vmio_release(bp);
1792			}
1793			if (bp->b_vp)
1794				brelvp(bp);
1795		}
1796
1797		/*
1798		 * NOTE:  nbp is now entirely invalid.  We can only restart
1799		 * the scan from this point on.
1800		 *
1801		 * Get the rest of the buffer freed up.  b_kva* is still
1802		 * valid after this operation.
1803		 */
1804
1805		if (bp->b_rcred != NOCRED) {
1806			crfree(bp->b_rcred);
1807			bp->b_rcred = NOCRED;
1808		}
1809		if (bp->b_wcred != NOCRED) {
1810			crfree(bp->b_wcred);
1811			bp->b_wcred = NOCRED;
1812		}
1813		if (LIST_FIRST(&bp->b_dep) != NULL)
1814			buf_deallocate(bp);
1815		if (bp->b_xflags & BX_BKGRDINPROG)
1816			panic("losing buffer 3");
1817#ifdef USE_BUFHASH
1818		LIST_REMOVE(bp, b_hash);
1819		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1820#endif
1821
1822		if (bp->b_bufsize)
1823			allocbuf(bp, 0);
1824
1825		bp->b_flags = 0;
1826		bp->b_ioflags = 0;
1827		bp->b_xflags = 0;
1828		bp->b_dev = NODEV;
1829		bp->b_vp = NULL;
1830		bp->b_blkno = bp->b_lblkno = 0;
1831		bp->b_offset = NOOFFSET;
1832		bp->b_iodone = 0;
1833		bp->b_error = 0;
1834		bp->b_resid = 0;
1835		bp->b_bcount = 0;
1836		bp->b_npages = 0;
1837		bp->b_dirtyoff = bp->b_dirtyend = 0;
1838		bp->b_magic = B_MAGIC_BIO;
1839		bp->b_op = &buf_ops_bio;
1840		bp->b_object = NULL;
1841
1842		LIST_INIT(&bp->b_dep);
1843
1844		/*
1845		 * If we are defragging then free the buffer.
1846		 */
1847		if (defrag) {
1848			bp->b_flags |= B_INVAL;
1849			bfreekva(bp);
1850			brelse(bp);
1851			defrag = 0;
1852			goto restart;
1853		}
1854
1855		/*
1856		 * If we are overcomitted then recover the buffer and its
1857		 * KVM space.  This occurs in rare situations when multiple
1858		 * processes are blocked in getnewbuf() or allocbuf().
1859		 */
1860		if (bufspace >= hibufspace)
1861			flushingbufs = 1;
1862		if (flushingbufs && bp->b_kvasize != 0) {
1863			bp->b_flags |= B_INVAL;
1864			bfreekva(bp);
1865			brelse(bp);
1866			goto restart;
1867		}
1868		if (bufspace < lobufspace)
1869			flushingbufs = 0;
1870		break;
1871	}
1872
1873	/*
1874	 * If we exhausted our list, sleep as appropriate.  We may have to
1875	 * wakeup various daemons and write out some dirty buffers.
1876	 *
1877	 * Generally we are sleeping due to insufficient buffer space.
1878	 */
1879
1880	if (bp == NULL) {
1881		int flags;
1882		char *waitmsg;
1883
1884		if (defrag) {
1885			flags = VFS_BIO_NEED_BUFSPACE;
1886			waitmsg = "nbufkv";
1887		} else if (bufspace >= hibufspace) {
1888			waitmsg = "nbufbs";
1889			flags = VFS_BIO_NEED_BUFSPACE;
1890		} else {
1891			waitmsg = "newbuf";
1892			flags = VFS_BIO_NEED_ANY;
1893		}
1894
1895		bd_speedup();	/* heeeelp */
1896
1897		needsbuffer |= flags;
1898		while (needsbuffer & flags) {
1899			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1900			    waitmsg, slptimeo))
1901				return (NULL);
1902		}
1903	} else {
1904		/*
1905		 * We finally have a valid bp.  We aren't quite out of the
1906		 * woods, we still have to reserve kva space.  In order
1907		 * to keep fragmentation sane we only allocate kva in
1908		 * BKVASIZE chunks.
1909		 */
1910		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1911
1912		if (maxsize != bp->b_kvasize) {
1913			vm_offset_t addr = 0;
1914
1915			bfreekva(bp);
1916
1917			if (vm_map_findspace(buffer_map,
1918				vm_map_min(buffer_map), maxsize, &addr)) {
1919				/*
1920				 * Uh oh.  Buffer map is to fragmented.  We
1921				 * must defragment the map.
1922				 */
1923				++bufdefragcnt;
1924				defrag = 1;
1925				bp->b_flags |= B_INVAL;
1926				brelse(bp);
1927				goto restart;
1928			}
1929			if (addr) {
1930				vm_map_insert(buffer_map, NULL, 0,
1931					addr, addr + maxsize,
1932					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1933
1934				bp->b_kvabase = (caddr_t) addr;
1935				bp->b_kvasize = maxsize;
1936				bufspace += bp->b_kvasize;
1937				++bufreusecnt;
1938			}
1939		}
1940		bp->b_data = bp->b_kvabase;
1941	}
1942	return(bp);
1943}
1944
1945/*
1946 *	buf_daemon:
1947 *
1948 *	buffer flushing daemon.  Buffers are normally flushed by the
1949 *	update daemon but if it cannot keep up this process starts to
1950 *	take the load in an attempt to prevent getnewbuf() from blocking.
1951 */
1952
1953static struct proc *bufdaemonproc;
1954
1955static struct kproc_desc buf_kp = {
1956	"bufdaemon",
1957	buf_daemon,
1958	&bufdaemonproc
1959};
1960SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1961
1962static void
1963buf_daemon()
1964{
1965	int s;
1966
1967	mtx_lock(&Giant);
1968
1969	/*
1970	 * This process needs to be suspended prior to shutdown sync.
1971	 */
1972	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1973	    SHUTDOWN_PRI_LAST);
1974
1975	/*
1976	 * This process is allowed to take the buffer cache to the limit
1977	 */
1978	s = splbio();
1979
1980	for (;;) {
1981		kthread_suspend_check(bufdaemonproc);
1982
1983		bd_request = 0;
1984
1985		/*
1986		 * Do the flush.  Limit the amount of in-transit I/O we
1987		 * allow to build up, otherwise we would completely saturate
1988		 * the I/O system.  Wakeup any waiting processes before we
1989		 * normally would so they can run in parallel with our drain.
1990		 */
1991		while (numdirtybuffers > lodirtybuffers) {
1992			if (flushbufqueues() == 0)
1993				break;
1994			waitrunningbufspace();
1995			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1996		}
1997
1998		/*
1999		 * Only clear bd_request if we have reached our low water
2000		 * mark.  The buf_daemon normally waits 1 second and
2001		 * then incrementally flushes any dirty buffers that have
2002		 * built up, within reason.
2003		 *
2004		 * If we were unable to hit our low water mark and couldn't
2005		 * find any flushable buffers, we sleep half a second.
2006		 * Otherwise we loop immediately.
2007		 */
2008		if (numdirtybuffers <= lodirtybuffers) {
2009			/*
2010			 * We reached our low water mark, reset the
2011			 * request and sleep until we are needed again.
2012			 * The sleep is just so the suspend code works.
2013			 */
2014			bd_request = 0;
2015			tsleep(&bd_request, PVM, "psleep", hz);
2016		} else {
2017			/*
2018			 * We couldn't find any flushable dirty buffers but
2019			 * still have too many dirty buffers, we
2020			 * have to sleep and try again.  (rare)
2021			 */
2022			tsleep(&bd_request, PVM, "qsleep", hz / 2);
2023		}
2024	}
2025}
2026
2027/*
2028 *	flushbufqueues:
2029 *
2030 *	Try to flush a buffer in the dirty queue.  We must be careful to
2031 *	free up B_INVAL buffers instead of write them, which NFS is
2032 *	particularly sensitive to.
2033 */
2034
2035static int
2036flushbufqueues(void)
2037{
2038	struct buf *bp;
2039	int r = 0;
2040
2041	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2042
2043	while (bp) {
2044		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2045		if ((bp->b_flags & B_DELWRI) != 0 &&
2046		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2047			if (bp->b_flags & B_INVAL) {
2048				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2049					panic("flushbufqueues: locked buf");
2050				bremfree(bp);
2051				brelse(bp);
2052				++r;
2053				break;
2054			}
2055			if (LIST_FIRST(&bp->b_dep) != NULL &&
2056			    (bp->b_flags & B_DEFERRED) == 0 &&
2057			    buf_countdeps(bp, 0)) {
2058				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2059				    bp, b_freelist);
2060				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2061				    bp, b_freelist);
2062				bp->b_flags |= B_DEFERRED;
2063				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2064				continue;
2065			}
2066			vfs_bio_awrite(bp);
2067			++r;
2068			break;
2069		}
2070		bp = TAILQ_NEXT(bp, b_freelist);
2071	}
2072	return (r);
2073}
2074
2075/*
2076 * Check to see if a block is currently memory resident.
2077 */
2078struct buf *
2079incore(struct vnode * vp, daddr_t blkno)
2080{
2081	struct buf *bp;
2082
2083	int s = splbio();
2084	bp = gbincore(vp, blkno);
2085	splx(s);
2086	return (bp);
2087}
2088
2089/*
2090 * Returns true if no I/O is needed to access the
2091 * associated VM object.  This is like incore except
2092 * it also hunts around in the VM system for the data.
2093 */
2094
2095int
2096inmem(struct vnode * vp, daddr_t blkno)
2097{
2098	vm_object_t obj;
2099	vm_offset_t toff, tinc, size;
2100	vm_page_t m;
2101	vm_ooffset_t off;
2102
2103	GIANT_REQUIRED;
2104
2105	if (incore(vp, blkno))
2106		return 1;
2107	if (vp->v_mount == NULL)
2108		return 0;
2109	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2110		return 0;
2111
2112	size = PAGE_SIZE;
2113	if (size > vp->v_mount->mnt_stat.f_iosize)
2114		size = vp->v_mount->mnt_stat.f_iosize;
2115	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2116
2117	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2118		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2119		if (!m)
2120			goto notinmem;
2121		tinc = size;
2122		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2123			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2124		if (vm_page_is_valid(m,
2125		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2126			goto notinmem;
2127	}
2128	return 1;
2129
2130notinmem:
2131	return (0);
2132}
2133
2134/*
2135 *	vfs_setdirty:
2136 *
2137 *	Sets the dirty range for a buffer based on the status of the dirty
2138 *	bits in the pages comprising the buffer.
2139 *
2140 *	The range is limited to the size of the buffer.
2141 *
2142 *	This routine is primarily used by NFS, but is generalized for the
2143 *	B_VMIO case.
2144 */
2145static void
2146vfs_setdirty(struct buf *bp)
2147{
2148	int i;
2149	vm_object_t object;
2150
2151	GIANT_REQUIRED;
2152	/*
2153	 * Degenerate case - empty buffer
2154	 */
2155
2156	if (bp->b_bufsize == 0)
2157		return;
2158
2159	/*
2160	 * We qualify the scan for modified pages on whether the
2161	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2162	 * is not cleared simply by protecting pages off.
2163	 */
2164
2165	if ((bp->b_flags & B_VMIO) == 0)
2166		return;
2167
2168	object = bp->b_pages[0]->object;
2169
2170	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2171		printf("Warning: object %p writeable but not mightbedirty\n", object);
2172	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2173		printf("Warning: object %p mightbedirty but not writeable\n", object);
2174
2175	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2176		vm_offset_t boffset;
2177		vm_offset_t eoffset;
2178
2179		/*
2180		 * test the pages to see if they have been modified directly
2181		 * by users through the VM system.
2182		 */
2183		for (i = 0; i < bp->b_npages; i++) {
2184			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2185			vm_page_test_dirty(bp->b_pages[i]);
2186		}
2187
2188		/*
2189		 * Calculate the encompassing dirty range, boffset and eoffset,
2190		 * (eoffset - boffset) bytes.
2191		 */
2192
2193		for (i = 0; i < bp->b_npages; i++) {
2194			if (bp->b_pages[i]->dirty)
2195				break;
2196		}
2197		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2198
2199		for (i = bp->b_npages - 1; i >= 0; --i) {
2200			if (bp->b_pages[i]->dirty) {
2201				break;
2202			}
2203		}
2204		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2205
2206		/*
2207		 * Fit it to the buffer.
2208		 */
2209
2210		if (eoffset > bp->b_bcount)
2211			eoffset = bp->b_bcount;
2212
2213		/*
2214		 * If we have a good dirty range, merge with the existing
2215		 * dirty range.
2216		 */
2217
2218		if (boffset < eoffset) {
2219			if (bp->b_dirtyoff > boffset)
2220				bp->b_dirtyoff = boffset;
2221			if (bp->b_dirtyend < eoffset)
2222				bp->b_dirtyend = eoffset;
2223		}
2224	}
2225}
2226
2227/*
2228 *	getblk:
2229 *
2230 *	Get a block given a specified block and offset into a file/device.
2231 *	The buffers B_DONE bit will be cleared on return, making it almost
2232 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2233 *	return.  The caller should clear B_INVAL prior to initiating a
2234 *	READ.
2235 *
2236 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2237 *	an existing buffer.
2238 *
2239 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2240 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2241 *	and then cleared based on the backing VM.  If the previous buffer is
2242 *	non-0-sized but invalid, B_CACHE will be cleared.
2243 *
2244 *	If getblk() must create a new buffer, the new buffer is returned with
2245 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2246 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2247 *	backing VM.
2248 *
2249 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2250 *	B_CACHE bit is clear.
2251 *
2252 *	What this means, basically, is that the caller should use B_CACHE to
2253 *	determine whether the buffer is fully valid or not and should clear
2254 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2255 *	the buffer by loading its data area with something, the caller needs
2256 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2257 *	the caller should set B_CACHE ( as an optimization ), else the caller
2258 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2259 *	a write attempt or if it was a successfull read.  If the caller
2260 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2261 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2262 */
2263struct buf *
2264getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2265{
2266	struct buf *bp;
2267	int s;
2268#ifdef USE_BUFHASH
2269	struct bufhashhdr *bh;
2270#endif
2271
2272	if (size > MAXBSIZE)
2273		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2274
2275	s = splbio();
2276loop:
2277	/*
2278	 * Block if we are low on buffers.   Certain processes are allowed
2279	 * to completely exhaust the buffer cache.
2280         *
2281         * If this check ever becomes a bottleneck it may be better to
2282         * move it into the else, when gbincore() fails.  At the moment
2283         * it isn't a problem.
2284	 *
2285	 * XXX remove if 0 sections (clean this up after its proven)
2286         */
2287	if (numfreebuffers == 0) {
2288		if (curthread == PCPU_GET(idlethread))
2289			return NULL;
2290		needsbuffer |= VFS_BIO_NEED_ANY;
2291	}
2292
2293	if ((bp = gbincore(vp, blkno))) {
2294		/*
2295		 * Buffer is in-core.  If the buffer is not busy, it must
2296		 * be on a queue.
2297		 */
2298
2299		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2300			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2301			    "getblk", slpflag, slptimeo) == ENOLCK)
2302				goto loop;
2303			splx(s);
2304			return (struct buf *) NULL;
2305		}
2306
2307		/*
2308		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2309		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2310		 * and for a VMIO buffer B_CACHE is adjusted according to the
2311		 * backing VM cache.
2312		 */
2313		if (bp->b_flags & B_INVAL)
2314			bp->b_flags &= ~B_CACHE;
2315		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2316			bp->b_flags |= B_CACHE;
2317		bremfree(bp);
2318
2319		/*
2320		 * check for size inconsistancies for non-VMIO case.
2321		 */
2322
2323		if (bp->b_bcount != size) {
2324			if ((bp->b_flags & B_VMIO) == 0 ||
2325			    (size > bp->b_kvasize)) {
2326				if (bp->b_flags & B_DELWRI) {
2327					bp->b_flags |= B_NOCACHE;
2328					BUF_WRITE(bp);
2329				} else {
2330					if ((bp->b_flags & B_VMIO) &&
2331					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2332						bp->b_flags |= B_RELBUF;
2333						brelse(bp);
2334					} else {
2335						bp->b_flags |= B_NOCACHE;
2336						BUF_WRITE(bp);
2337					}
2338				}
2339				goto loop;
2340			}
2341		}
2342
2343		/*
2344		 * If the size is inconsistant in the VMIO case, we can resize
2345		 * the buffer.  This might lead to B_CACHE getting set or
2346		 * cleared.  If the size has not changed, B_CACHE remains
2347		 * unchanged from its previous state.
2348		 */
2349
2350		if (bp->b_bcount != size)
2351			allocbuf(bp, size);
2352
2353		KASSERT(bp->b_offset != NOOFFSET,
2354		    ("getblk: no buffer offset"));
2355
2356		/*
2357		 * A buffer with B_DELWRI set and B_CACHE clear must
2358		 * be committed before we can return the buffer in
2359		 * order to prevent the caller from issuing a read
2360		 * ( due to B_CACHE not being set ) and overwriting
2361		 * it.
2362		 *
2363		 * Most callers, including NFS and FFS, need this to
2364		 * operate properly either because they assume they
2365		 * can issue a read if B_CACHE is not set, or because
2366		 * ( for example ) an uncached B_DELWRI might loop due
2367		 * to softupdates re-dirtying the buffer.  In the latter
2368		 * case, B_CACHE is set after the first write completes,
2369		 * preventing further loops.
2370		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2371		 * above while extending the buffer, we cannot allow the
2372		 * buffer to remain with B_CACHE set after the write
2373		 * completes or it will represent a corrupt state.  To
2374		 * deal with this we set B_NOCACHE to scrap the buffer
2375		 * after the write.
2376		 *
2377		 * We might be able to do something fancy, like setting
2378		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2379		 * so the below call doesn't set B_CACHE, but that gets real
2380		 * confusing.  This is much easier.
2381		 */
2382
2383		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2384			bp->b_flags |= B_NOCACHE;
2385			BUF_WRITE(bp);
2386			goto loop;
2387		}
2388
2389		splx(s);
2390		bp->b_flags &= ~B_DONE;
2391	} else {
2392		/*
2393		 * Buffer is not in-core, create new buffer.  The buffer
2394		 * returned by getnewbuf() is locked.  Note that the returned
2395		 * buffer is also considered valid (not marked B_INVAL).
2396		 */
2397		int bsize, maxsize, vmio;
2398		off_t offset;
2399
2400		if (vn_isdisk(vp, NULL))
2401			bsize = DEV_BSIZE;
2402		else if (vp->v_mountedhere)
2403			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2404		else if (vp->v_mount)
2405			bsize = vp->v_mount->mnt_stat.f_iosize;
2406		else
2407			bsize = size;
2408
2409		offset = blkno * bsize;
2410		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2411		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2412		maxsize = imax(maxsize, bsize);
2413
2414		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2415			if (slpflag || slptimeo) {
2416				splx(s);
2417				return NULL;
2418			}
2419			goto loop;
2420		}
2421
2422		/*
2423		 * This code is used to make sure that a buffer is not
2424		 * created while the getnewbuf routine is blocked.
2425		 * This can be a problem whether the vnode is locked or not.
2426		 * If the buffer is created out from under us, we have to
2427		 * throw away the one we just created.  There is now window
2428		 * race because we are safely running at splbio() from the
2429		 * point of the duplicate buffer creation through to here,
2430		 * and we've locked the buffer.
2431		 *
2432		 * Note: this must occur before we associate the buffer
2433		 * with the vp especially considering limitations in
2434		 * the splay tree implementation when dealing with duplicate
2435		 * lblkno's.
2436		 */
2437		if (gbincore(vp, blkno)) {
2438			bp->b_flags |= B_INVAL;
2439			brelse(bp);
2440			goto loop;
2441		}
2442
2443		/*
2444		 * Insert the buffer into the hash, so that it can
2445		 * be found by incore.
2446		 */
2447		bp->b_blkno = bp->b_lblkno = blkno;
2448		bp->b_offset = offset;
2449
2450		bgetvp(vp, bp);
2451#ifdef USE_BUFHASH
2452		LIST_REMOVE(bp, b_hash);
2453		bh = bufhash(vp, blkno);
2454		LIST_INSERT_HEAD(bh, bp, b_hash);
2455#endif
2456
2457		/*
2458		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2459		 * buffer size starts out as 0, B_CACHE will be set by
2460		 * allocbuf() for the VMIO case prior to it testing the
2461		 * backing store for validity.
2462		 */
2463
2464		if (vmio) {
2465			bp->b_flags |= B_VMIO;
2466#if defined(VFS_BIO_DEBUG)
2467			if (vp->v_type != VREG)
2468				printf("getblk: vmioing file type %d???\n", vp->v_type);
2469#endif
2470			VOP_GETVOBJECT(vp, &bp->b_object);
2471		} else {
2472			bp->b_flags &= ~B_VMIO;
2473			bp->b_object = NULL;
2474		}
2475
2476		allocbuf(bp, size);
2477
2478		splx(s);
2479		bp->b_flags &= ~B_DONE;
2480	}
2481	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2482	return (bp);
2483}
2484
2485/*
2486 * Get an empty, disassociated buffer of given size.  The buffer is initially
2487 * set to B_INVAL.
2488 */
2489struct buf *
2490geteblk(int size)
2491{
2492	struct buf *bp;
2493	int s;
2494	int maxsize;
2495
2496	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2497
2498	s = splbio();
2499	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2500	splx(s);
2501	allocbuf(bp, size);
2502	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2503	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2504	return (bp);
2505}
2506
2507
2508/*
2509 * This code constitutes the buffer memory from either anonymous system
2510 * memory (in the case of non-VMIO operations) or from an associated
2511 * VM object (in the case of VMIO operations).  This code is able to
2512 * resize a buffer up or down.
2513 *
2514 * Note that this code is tricky, and has many complications to resolve
2515 * deadlock or inconsistant data situations.  Tread lightly!!!
2516 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2517 * the caller.  Calling this code willy nilly can result in the loss of data.
2518 *
2519 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2520 * B_CACHE for the non-VMIO case.
2521 */
2522
2523int
2524allocbuf(struct buf *bp, int size)
2525{
2526	int newbsize, mbsize;
2527	int i;
2528
2529	GIANT_REQUIRED;
2530
2531	if (BUF_REFCNT(bp) == 0)
2532		panic("allocbuf: buffer not busy");
2533
2534	if (bp->b_kvasize < size)
2535		panic("allocbuf: buffer too small");
2536
2537	if ((bp->b_flags & B_VMIO) == 0) {
2538		caddr_t origbuf;
2539		int origbufsize;
2540		/*
2541		 * Just get anonymous memory from the kernel.  Don't
2542		 * mess with B_CACHE.
2543		 */
2544		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2545		if (bp->b_flags & B_MALLOC)
2546			newbsize = mbsize;
2547		else
2548			newbsize = round_page(size);
2549
2550		if (newbsize < bp->b_bufsize) {
2551			/*
2552			 * malloced buffers are not shrunk
2553			 */
2554			if (bp->b_flags & B_MALLOC) {
2555				if (newbsize) {
2556					bp->b_bcount = size;
2557				} else {
2558					free(bp->b_data, M_BIOBUF);
2559					if (bp->b_bufsize) {
2560						bufmallocspace -= bp->b_bufsize;
2561						bufspacewakeup();
2562						bp->b_bufsize = 0;
2563					}
2564					bp->b_data = bp->b_kvabase;
2565					bp->b_bcount = 0;
2566					bp->b_flags &= ~B_MALLOC;
2567				}
2568				return 1;
2569			}
2570			vm_hold_free_pages(
2571			    bp,
2572			    (vm_offset_t) bp->b_data + newbsize,
2573			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2574		} else if (newbsize > bp->b_bufsize) {
2575			/*
2576			 * We only use malloced memory on the first allocation.
2577			 * and revert to page-allocated memory when the buffer
2578			 * grows.
2579			 */
2580			if ( (bufmallocspace < maxbufmallocspace) &&
2581				(bp->b_bufsize == 0) &&
2582				(mbsize <= PAGE_SIZE/2)) {
2583
2584				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2585				bp->b_bufsize = mbsize;
2586				bp->b_bcount = size;
2587				bp->b_flags |= B_MALLOC;
2588				bufmallocspace += mbsize;
2589				return 1;
2590			}
2591			origbuf = NULL;
2592			origbufsize = 0;
2593			/*
2594			 * If the buffer is growing on its other-than-first allocation,
2595			 * then we revert to the page-allocation scheme.
2596			 */
2597			if (bp->b_flags & B_MALLOC) {
2598				origbuf = bp->b_data;
2599				origbufsize = bp->b_bufsize;
2600				bp->b_data = bp->b_kvabase;
2601				if (bp->b_bufsize) {
2602					bufmallocspace -= bp->b_bufsize;
2603					bufspacewakeup();
2604					bp->b_bufsize = 0;
2605				}
2606				bp->b_flags &= ~B_MALLOC;
2607				newbsize = round_page(newbsize);
2608			}
2609			vm_hold_load_pages(
2610			    bp,
2611			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2612			    (vm_offset_t) bp->b_data + newbsize);
2613			if (origbuf) {
2614				bcopy(origbuf, bp->b_data, origbufsize);
2615				free(origbuf, M_BIOBUF);
2616			}
2617		}
2618	} else {
2619		vm_page_t m;
2620		int desiredpages;
2621
2622		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2623		desiredpages = (size == 0) ? 0 :
2624			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2625
2626		if (bp->b_flags & B_MALLOC)
2627			panic("allocbuf: VMIO buffer can't be malloced");
2628		/*
2629		 * Set B_CACHE initially if buffer is 0 length or will become
2630		 * 0-length.
2631		 */
2632		if (size == 0 || bp->b_bufsize == 0)
2633			bp->b_flags |= B_CACHE;
2634
2635		if (newbsize < bp->b_bufsize) {
2636			/*
2637			 * DEV_BSIZE aligned new buffer size is less then the
2638			 * DEV_BSIZE aligned existing buffer size.  Figure out
2639			 * if we have to remove any pages.
2640			 */
2641			if (desiredpages < bp->b_npages) {
2642				for (i = desiredpages; i < bp->b_npages; i++) {
2643					/*
2644					 * the page is not freed here -- it
2645					 * is the responsibility of
2646					 * vnode_pager_setsize
2647					 */
2648					m = bp->b_pages[i];
2649					KASSERT(m != bogus_page,
2650					    ("allocbuf: bogus page found"));
2651					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2652						;
2653
2654					bp->b_pages[i] = NULL;
2655					vm_page_unwire(m, 0);
2656				}
2657				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2658				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2659				bp->b_npages = desiredpages;
2660			}
2661		} else if (size > bp->b_bcount) {
2662			/*
2663			 * We are growing the buffer, possibly in a
2664			 * byte-granular fashion.
2665			 */
2666			struct vnode *vp;
2667			vm_object_t obj;
2668			vm_offset_t toff;
2669			vm_offset_t tinc;
2670
2671			/*
2672			 * Step 1, bring in the VM pages from the object,
2673			 * allocating them if necessary.  We must clear
2674			 * B_CACHE if these pages are not valid for the
2675			 * range covered by the buffer.
2676			 */
2677
2678			vp = bp->b_vp;
2679			obj = bp->b_object;
2680
2681			while (bp->b_npages < desiredpages) {
2682				vm_page_t m;
2683				vm_pindex_t pi;
2684
2685				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2686				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2687					/*
2688					 * note: must allocate system pages
2689					 * since blocking here could intefere
2690					 * with paging I/O, no matter which
2691					 * process we are.
2692					 */
2693					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2694					if (m == NULL) {
2695						VM_WAIT;
2696						vm_pageout_deficit += desiredpages - bp->b_npages;
2697					} else {
2698						vm_page_wire(m);
2699						vm_page_wakeup(m);
2700						bp->b_flags &= ~B_CACHE;
2701						bp->b_pages[bp->b_npages] = m;
2702						++bp->b_npages;
2703					}
2704					continue;
2705				}
2706
2707				/*
2708				 * We found a page.  If we have to sleep on it,
2709				 * retry because it might have gotten freed out
2710				 * from under us.
2711				 *
2712				 * We can only test PG_BUSY here.  Blocking on
2713				 * m->busy might lead to a deadlock:
2714				 *
2715				 *  vm_fault->getpages->cluster_read->allocbuf
2716				 *
2717				 */
2718
2719				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2720					continue;
2721
2722				/*
2723				 * We have a good page.  Should we wakeup the
2724				 * page daemon?
2725				 */
2726				if ((curproc != pageproc) &&
2727				    ((m->queue - m->pc) == PQ_CACHE) &&
2728				    ((cnt.v_free_count + cnt.v_cache_count) <
2729					(cnt.v_free_min + cnt.v_cache_min))) {
2730					pagedaemon_wakeup();
2731				}
2732				vm_page_flag_clear(m, PG_ZERO);
2733				vm_page_wire(m);
2734				bp->b_pages[bp->b_npages] = m;
2735				++bp->b_npages;
2736			}
2737
2738			/*
2739			 * Step 2.  We've loaded the pages into the buffer,
2740			 * we have to figure out if we can still have B_CACHE
2741			 * set.  Note that B_CACHE is set according to the
2742			 * byte-granular range ( bcount and size ), new the
2743			 * aligned range ( newbsize ).
2744			 *
2745			 * The VM test is against m->valid, which is DEV_BSIZE
2746			 * aligned.  Needless to say, the validity of the data
2747			 * needs to also be DEV_BSIZE aligned.  Note that this
2748			 * fails with NFS if the server or some other client
2749			 * extends the file's EOF.  If our buffer is resized,
2750			 * B_CACHE may remain set! XXX
2751			 */
2752
2753			toff = bp->b_bcount;
2754			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2755
2756			while ((bp->b_flags & B_CACHE) && toff < size) {
2757				vm_pindex_t pi;
2758
2759				if (tinc > (size - toff))
2760					tinc = size - toff;
2761
2762				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2763				    PAGE_SHIFT;
2764
2765				vfs_buf_test_cache(
2766				    bp,
2767				    bp->b_offset,
2768				    toff,
2769				    tinc,
2770				    bp->b_pages[pi]
2771				);
2772				toff += tinc;
2773				tinc = PAGE_SIZE;
2774			}
2775
2776			/*
2777			 * Step 3, fixup the KVM pmap.  Remember that
2778			 * bp->b_data is relative to bp->b_offset, but
2779			 * bp->b_offset may be offset into the first page.
2780			 */
2781
2782			bp->b_data = (caddr_t)
2783			    trunc_page((vm_offset_t)bp->b_data);
2784			pmap_qenter(
2785			    (vm_offset_t)bp->b_data,
2786			    bp->b_pages,
2787			    bp->b_npages
2788			);
2789
2790			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2791			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2792		}
2793	}
2794	if (newbsize < bp->b_bufsize)
2795		bufspacewakeup();
2796	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2797	bp->b_bcount = size;		/* requested buffer size	*/
2798	return 1;
2799}
2800
2801/*
2802 *	bufwait:
2803 *
2804 *	Wait for buffer I/O completion, returning error status.  The buffer
2805 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2806 *	error and cleared.
2807 */
2808int
2809bufwait(register struct buf * bp)
2810{
2811	int s;
2812
2813	s = splbio();
2814	while ((bp->b_flags & B_DONE) == 0) {
2815		if (bp->b_iocmd == BIO_READ)
2816			tsleep(bp, PRIBIO, "biord", 0);
2817		else
2818			tsleep(bp, PRIBIO, "biowr", 0);
2819	}
2820	splx(s);
2821	if (bp->b_flags & B_EINTR) {
2822		bp->b_flags &= ~B_EINTR;
2823		return (EINTR);
2824	}
2825	if (bp->b_ioflags & BIO_ERROR) {
2826		return (bp->b_error ? bp->b_error : EIO);
2827	} else {
2828		return (0);
2829	}
2830}
2831
2832 /*
2833  * Call back function from struct bio back up to struct buf.
2834  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2835  */
2836void
2837bufdonebio(struct bio *bp)
2838{
2839	bufdone(bp->bio_caller2);
2840}
2841
2842/*
2843 *	bufdone:
2844 *
2845 *	Finish I/O on a buffer, optionally calling a completion function.
2846 *	This is usually called from an interrupt so process blocking is
2847 *	not allowed.
2848 *
2849 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2850 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2851 *	assuming B_INVAL is clear.
2852 *
2853 *	For the VMIO case, we set B_CACHE if the op was a read and no
2854 *	read error occured, or if the op was a write.  B_CACHE is never
2855 *	set if the buffer is invalid or otherwise uncacheable.
2856 *
2857 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2858 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2859 *	in the biodone routine.
2860 */
2861void
2862bufdone(struct buf *bp)
2863{
2864	int s;
2865	void    (*biodone)(struct buf *);
2866
2867	GIANT_REQUIRED;
2868
2869	s = splbio();
2870
2871	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2872	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2873
2874	bp->b_flags |= B_DONE;
2875	runningbufwakeup(bp);
2876
2877	if (bp->b_iocmd == BIO_DELETE) {
2878		brelse(bp);
2879		splx(s);
2880		return;
2881	}
2882
2883	if (bp->b_iocmd == BIO_WRITE) {
2884		vwakeup(bp);
2885	}
2886
2887	/* call optional completion function if requested */
2888	if (bp->b_iodone != NULL) {
2889		biodone = bp->b_iodone;
2890		bp->b_iodone = NULL;
2891		(*biodone) (bp);
2892		splx(s);
2893		return;
2894	}
2895	if (LIST_FIRST(&bp->b_dep) != NULL)
2896		buf_complete(bp);
2897
2898	if (bp->b_flags & B_VMIO) {
2899		int i;
2900		vm_ooffset_t foff;
2901		vm_page_t m;
2902		vm_object_t obj;
2903		int iosize;
2904		struct vnode *vp = bp->b_vp;
2905
2906		obj = bp->b_object;
2907
2908#if defined(VFS_BIO_DEBUG)
2909		if (vp->v_usecount == 0) {
2910			panic("biodone: zero vnode ref count");
2911		}
2912
2913		if ((vp->v_flag & VOBJBUF) == 0) {
2914			panic("biodone: vnode is not setup for merged cache");
2915		}
2916#endif
2917
2918		foff = bp->b_offset;
2919		KASSERT(bp->b_offset != NOOFFSET,
2920		    ("biodone: no buffer offset"));
2921
2922#if defined(VFS_BIO_DEBUG)
2923		if (obj->paging_in_progress < bp->b_npages) {
2924			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2925			    obj->paging_in_progress, bp->b_npages);
2926		}
2927#endif
2928
2929		/*
2930		 * Set B_CACHE if the op was a normal read and no error
2931		 * occured.  B_CACHE is set for writes in the b*write()
2932		 * routines.
2933		 */
2934		iosize = bp->b_bcount - bp->b_resid;
2935		if (bp->b_iocmd == BIO_READ &&
2936		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2937		    !(bp->b_ioflags & BIO_ERROR)) {
2938			bp->b_flags |= B_CACHE;
2939		}
2940
2941		for (i = 0; i < bp->b_npages; i++) {
2942			int bogusflag = 0;
2943			int resid;
2944
2945			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2946			if (resid > iosize)
2947				resid = iosize;
2948
2949			/*
2950			 * cleanup bogus pages, restoring the originals
2951			 */
2952			m = bp->b_pages[i];
2953			if (m == bogus_page) {
2954				bogusflag = 1;
2955				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2956				if (m == NULL)
2957					panic("biodone: page disappeared!");
2958				bp->b_pages[i] = m;
2959				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2960			}
2961#if defined(VFS_BIO_DEBUG)
2962			if (OFF_TO_IDX(foff) != m->pindex) {
2963				printf(
2964"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
2965				    (intmax_t)foff, (uintmax_t)m->pindex);
2966			}
2967#endif
2968
2969			/*
2970			 * In the write case, the valid and clean bits are
2971			 * already changed correctly ( see bdwrite() ), so we
2972			 * only need to do this here in the read case.
2973			 */
2974			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2975				vfs_page_set_valid(bp, foff, i, m);
2976			}
2977			vm_page_flag_clear(m, PG_ZERO);
2978
2979			/*
2980			 * when debugging new filesystems or buffer I/O methods, this
2981			 * is the most common error that pops up.  if you see this, you
2982			 * have not set the page busy flag correctly!!!
2983			 */
2984			if (m->busy == 0) {
2985				printf("biodone: page busy < 0, "
2986				    "pindex: %d, foff: 0x(%x,%x), "
2987				    "resid: %d, index: %d\n",
2988				    (int) m->pindex, (int)(foff >> 32),
2989						(int) foff & 0xffffffff, resid, i);
2990				if (!vn_isdisk(vp, NULL))
2991					printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n",
2992					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2993					    (intmax_t) bp->b_lblkno,
2994					    bp->b_flags, bp->b_npages);
2995				else
2996					printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n",
2997					    (intmax_t) bp->b_lblkno,
2998					    bp->b_flags, bp->b_npages);
2999				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3000				    m->valid, m->dirty, m->wire_count);
3001				panic("biodone: page busy < 0\n");
3002			}
3003			vm_page_io_finish(m);
3004			vm_object_pip_subtract(obj, 1);
3005			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3006			iosize -= resid;
3007		}
3008		if (obj)
3009			vm_object_pip_wakeupn(obj, 0);
3010	}
3011
3012	/*
3013	 * For asynchronous completions, release the buffer now. The brelse
3014	 * will do a wakeup there if necessary - so no need to do a wakeup
3015	 * here in the async case. The sync case always needs to do a wakeup.
3016	 */
3017
3018	if (bp->b_flags & B_ASYNC) {
3019		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3020			brelse(bp);
3021		else
3022			bqrelse(bp);
3023	} else {
3024		wakeup(bp);
3025	}
3026	splx(s);
3027}
3028
3029/*
3030 * This routine is called in lieu of iodone in the case of
3031 * incomplete I/O.  This keeps the busy status for pages
3032 * consistant.
3033 */
3034void
3035vfs_unbusy_pages(struct buf * bp)
3036{
3037	int i;
3038
3039	GIANT_REQUIRED;
3040
3041	runningbufwakeup(bp);
3042	if (bp->b_flags & B_VMIO) {
3043		vm_object_t obj;
3044
3045		obj = bp->b_object;
3046
3047		for (i = 0; i < bp->b_npages; i++) {
3048			vm_page_t m = bp->b_pages[i];
3049
3050			if (m == bogus_page) {
3051				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3052				if (!m) {
3053					panic("vfs_unbusy_pages: page missing\n");
3054				}
3055				bp->b_pages[i] = m;
3056				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3057			}
3058			vm_object_pip_subtract(obj, 1);
3059			vm_page_flag_clear(m, PG_ZERO);
3060			vm_page_io_finish(m);
3061		}
3062		vm_object_pip_wakeupn(obj, 0);
3063	}
3064}
3065
3066/*
3067 * vfs_page_set_valid:
3068 *
3069 *	Set the valid bits in a page based on the supplied offset.   The
3070 *	range is restricted to the buffer's size.
3071 *
3072 *	This routine is typically called after a read completes.
3073 */
3074static void
3075vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3076{
3077	vm_ooffset_t soff, eoff;
3078
3079	GIANT_REQUIRED;
3080	/*
3081	 * Start and end offsets in buffer.  eoff - soff may not cross a
3082	 * page boundry or cross the end of the buffer.  The end of the
3083	 * buffer, in this case, is our file EOF, not the allocation size
3084	 * of the buffer.
3085	 */
3086	soff = off;
3087	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3088	if (eoff > bp->b_offset + bp->b_bcount)
3089		eoff = bp->b_offset + bp->b_bcount;
3090
3091	/*
3092	 * Set valid range.  This is typically the entire buffer and thus the
3093	 * entire page.
3094	 */
3095	if (eoff > soff) {
3096		vm_page_set_validclean(
3097		    m,
3098		   (vm_offset_t) (soff & PAGE_MASK),
3099		   (vm_offset_t) (eoff - soff)
3100		);
3101	}
3102}
3103
3104/*
3105 * This routine is called before a device strategy routine.
3106 * It is used to tell the VM system that paging I/O is in
3107 * progress, and treat the pages associated with the buffer
3108 * almost as being PG_BUSY.  Also the object paging_in_progress
3109 * flag is handled to make sure that the object doesn't become
3110 * inconsistant.
3111 *
3112 * Since I/O has not been initiated yet, certain buffer flags
3113 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3114 * and should be ignored.
3115 */
3116void
3117vfs_busy_pages(struct buf * bp, int clear_modify)
3118{
3119	int i, bogus;
3120
3121	GIANT_REQUIRED;
3122
3123	if (bp->b_flags & B_VMIO) {
3124		vm_object_t obj;
3125		vm_ooffset_t foff;
3126
3127		obj = bp->b_object;
3128		foff = bp->b_offset;
3129		KASSERT(bp->b_offset != NOOFFSET,
3130		    ("vfs_busy_pages: no buffer offset"));
3131		vfs_setdirty(bp);
3132
3133retry:
3134		for (i = 0; i < bp->b_npages; i++) {
3135			vm_page_t m = bp->b_pages[i];
3136			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3137				goto retry;
3138		}
3139
3140		bogus = 0;
3141		for (i = 0; i < bp->b_npages; i++) {
3142			vm_page_t m = bp->b_pages[i];
3143
3144			vm_page_flag_clear(m, PG_ZERO);
3145			if ((bp->b_flags & B_CLUSTER) == 0) {
3146				vm_object_pip_add(obj, 1);
3147				vm_page_io_start(m);
3148			}
3149
3150			/*
3151			 * When readying a buffer for a read ( i.e
3152			 * clear_modify == 0 ), it is important to do
3153			 * bogus_page replacement for valid pages in
3154			 * partially instantiated buffers.  Partially
3155			 * instantiated buffers can, in turn, occur when
3156			 * reconstituting a buffer from its VM backing store
3157			 * base.  We only have to do this if B_CACHE is
3158			 * clear ( which causes the I/O to occur in the
3159			 * first place ).  The replacement prevents the read
3160			 * I/O from overwriting potentially dirty VM-backed
3161			 * pages.  XXX bogus page replacement is, uh, bogus.
3162			 * It may not work properly with small-block devices.
3163			 * We need to find a better way.
3164			 */
3165
3166			vm_page_protect(m, VM_PROT_NONE);
3167			if (clear_modify)
3168				vfs_page_set_valid(bp, foff, i, m);
3169			else if (m->valid == VM_PAGE_BITS_ALL &&
3170				(bp->b_flags & B_CACHE) == 0) {
3171				bp->b_pages[i] = bogus_page;
3172				bogus++;
3173			}
3174			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3175		}
3176		if (bogus)
3177			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3178	}
3179}
3180
3181/*
3182 * Tell the VM system that the pages associated with this buffer
3183 * are clean.  This is used for delayed writes where the data is
3184 * going to go to disk eventually without additional VM intevention.
3185 *
3186 * Note that while we only really need to clean through to b_bcount, we
3187 * just go ahead and clean through to b_bufsize.
3188 */
3189static void
3190vfs_clean_pages(struct buf * bp)
3191{
3192	int i;
3193
3194	GIANT_REQUIRED;
3195
3196	if (bp->b_flags & B_VMIO) {
3197		vm_ooffset_t foff;
3198
3199		foff = bp->b_offset;
3200		KASSERT(bp->b_offset != NOOFFSET,
3201		    ("vfs_clean_pages: no buffer offset"));
3202		for (i = 0; i < bp->b_npages; i++) {
3203			vm_page_t m = bp->b_pages[i];
3204			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3205			vm_ooffset_t eoff = noff;
3206
3207			if (eoff > bp->b_offset + bp->b_bufsize)
3208				eoff = bp->b_offset + bp->b_bufsize;
3209			vfs_page_set_valid(bp, foff, i, m);
3210			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3211			foff = noff;
3212		}
3213	}
3214}
3215
3216/*
3217 *	vfs_bio_set_validclean:
3218 *
3219 *	Set the range within the buffer to valid and clean.  The range is
3220 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3221 *	itself may be offset from the beginning of the first page.
3222 *
3223 */
3224
3225void
3226vfs_bio_set_validclean(struct buf *bp, int base, int size)
3227{
3228	if (bp->b_flags & B_VMIO) {
3229		int i;
3230		int n;
3231
3232		/*
3233		 * Fixup base to be relative to beginning of first page.
3234		 * Set initial n to be the maximum number of bytes in the
3235		 * first page that can be validated.
3236		 */
3237
3238		base += (bp->b_offset & PAGE_MASK);
3239		n = PAGE_SIZE - (base & PAGE_MASK);
3240
3241		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3242			vm_page_t m = bp->b_pages[i];
3243
3244			if (n > size)
3245				n = size;
3246
3247			vm_page_set_validclean(m, base & PAGE_MASK, n);
3248			base += n;
3249			size -= n;
3250			n = PAGE_SIZE;
3251		}
3252	}
3253}
3254
3255/*
3256 *	vfs_bio_clrbuf:
3257 *
3258 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3259 *	to clear BIO_ERROR and B_INVAL.
3260 *
3261 *	Note that while we only theoretically need to clear through b_bcount,
3262 *	we go ahead and clear through b_bufsize.
3263 */
3264
3265void
3266vfs_bio_clrbuf(struct buf *bp)
3267{
3268	int i, mask = 0;
3269	caddr_t sa, ea;
3270
3271	GIANT_REQUIRED;
3272
3273	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3274		bp->b_flags &= ~B_INVAL;
3275		bp->b_ioflags &= ~BIO_ERROR;
3276		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3277		    (bp->b_offset & PAGE_MASK) == 0) {
3278			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3279			if ((bp->b_pages[0]->valid & mask) == mask) {
3280				bp->b_resid = 0;
3281				return;
3282			}
3283			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3284			    ((bp->b_pages[0]->valid & mask) == 0)) {
3285				bzero(bp->b_data, bp->b_bufsize);
3286				bp->b_pages[0]->valid |= mask;
3287				bp->b_resid = 0;
3288				return;
3289			}
3290		}
3291		ea = sa = bp->b_data;
3292		for(i=0;i<bp->b_npages;i++,sa=ea) {
3293			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3294			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3295			ea = (caddr_t)(vm_offset_t)ulmin(
3296			    (u_long)(vm_offset_t)ea,
3297			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3298			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3299			if ((bp->b_pages[i]->valid & mask) == mask)
3300				continue;
3301			if ((bp->b_pages[i]->valid & mask) == 0) {
3302				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3303					bzero(sa, ea - sa);
3304				}
3305			} else {
3306				for (; sa < ea; sa += DEV_BSIZE, j++) {
3307					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3308						(bp->b_pages[i]->valid & (1<<j)) == 0)
3309						bzero(sa, DEV_BSIZE);
3310				}
3311			}
3312			bp->b_pages[i]->valid |= mask;
3313			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3314		}
3315		bp->b_resid = 0;
3316	} else {
3317		clrbuf(bp);
3318	}
3319}
3320
3321/*
3322 * vm_hold_load_pages and vm_hold_free_pages get pages into
3323 * a buffers address space.  The pages are anonymous and are
3324 * not associated with a file object.
3325 */
3326static void
3327vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3328{
3329	vm_offset_t pg;
3330	vm_page_t p;
3331	int index;
3332
3333	GIANT_REQUIRED;
3334
3335	to = round_page(to);
3336	from = round_page(from);
3337	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3338
3339	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3340tryagain:
3341		/*
3342		 * note: must allocate system pages since blocking here
3343		 * could intefere with paging I/O, no matter which
3344		 * process we are.
3345		 */
3346		p = vm_page_alloc(kernel_object,
3347			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3348		    VM_ALLOC_SYSTEM);
3349		if (!p) {
3350			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3351			VM_WAIT;
3352			goto tryagain;
3353		}
3354		vm_page_wire(p);
3355		p->valid = VM_PAGE_BITS_ALL;
3356		vm_page_flag_clear(p, PG_ZERO);
3357		pmap_qenter(pg, &p, 1);
3358		bp->b_pages[index] = p;
3359		vm_page_wakeup(p);
3360	}
3361	bp->b_npages = index;
3362}
3363
3364/* Return pages associated with this buf to the vm system */
3365void
3366vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3367{
3368	vm_offset_t pg;
3369	vm_page_t p;
3370	int index, newnpages;
3371
3372	GIANT_REQUIRED;
3373
3374	from = round_page(from);
3375	to = round_page(to);
3376	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3377
3378	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3379		p = bp->b_pages[index];
3380		if (p && (index < bp->b_npages)) {
3381			if (p->busy) {
3382				printf(
3383			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3384				    (intmax_t)bp->b_blkno,
3385				    (intmax_t)bp->b_lblkno);
3386			}
3387			bp->b_pages[index] = NULL;
3388			pmap_qremove(pg, 1);
3389			vm_page_busy(p);
3390			vm_page_unwire(p, 0);
3391			vm_page_free(p);
3392		}
3393	}
3394	bp->b_npages = newnpages;
3395}
3396
3397
3398#include "opt_ddb.h"
3399#ifdef DDB
3400#include <ddb/ddb.h>
3401
3402/* DDB command to show buffer data */
3403DB_SHOW_COMMAND(buffer, db_show_buffer)
3404{
3405	/* get args */
3406	struct buf *bp = (struct buf *)addr;
3407
3408	if (!have_addr) {
3409		db_printf("usage: show buffer <addr>\n");
3410		return;
3411	}
3412
3413	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3414	db_printf(
3415	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3416	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3417	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3418	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3419	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3420	if (bp->b_npages) {
3421		int i;
3422		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3423		for (i = 0; i < bp->b_npages; i++) {
3424			vm_page_t m;
3425			m = bp->b_pages[i];
3426			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3427			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3428			if ((i + 1) < bp->b_npages)
3429				db_printf(",");
3430		}
3431		db_printf("\n");
3432	}
3433}
3434#endif /* DDB */
3435