vfs_bio.c revision 99489
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 99489 2002-07-06 08:59:52Z jeff $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/stdint.h>
33#include <sys/bio.h>
34#include <sys/buf.h>
35#include <sys/eventhandler.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mount.h>
39#include <sys/mutex.h>
40#include <sys/kernel.h>
41#include <sys/kthread.h>
42#include <sys/ktr.h>
43#include <sys/proc.h>
44#include <sys/reboot.h>
45#include <sys/resourcevar.h>
46#include <sys/sysctl.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57
58static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
59
60struct	bio_ops bioops;		/* I/O operation notification */
61
62struct	buf_ops buf_ops_bio = {
63	"buf_ops_bio",
64	bwrite
65};
66
67/*
68 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
69 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
70 */
71struct buf *buf;		/* buffer header pool */
72struct mtx buftimelock;		/* Interlock on setting prio and timo */
73
74static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
75		vm_offset_t to);
76static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
77		vm_offset_t to);
78static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
79			       int pageno, vm_page_t m);
80static void vfs_clean_pages(struct buf * bp);
81static void vfs_setdirty(struct buf *bp);
82static void vfs_vmio_release(struct buf *bp);
83static void vfs_backgroundwritedone(struct buf *bp);
84static int flushbufqueues(void);
85static void buf_daemon(void);
86
87int vmiodirenable = TRUE;
88SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
89    "Use the VM system for directory writes");
90int runningbufspace;
91SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
92    "Amount of presently outstanding async buffer io");
93static int bufspace;
94SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
95    "KVA memory used for bufs");
96static int maxbufspace;
97SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
98    "Maximum allowed value of bufspace (including buf_daemon)");
99static int bufmallocspace;
100SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
101    "Amount of malloced memory for buffers");
102static int maxbufmallocspace;
103SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
104    "Maximum amount of malloced memory for buffers");
105static int lobufspace;
106SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
107    "Minimum amount of buffers we want to have");
108static int hibufspace;
109SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
110    "Maximum allowed value of bufspace (excluding buf_daemon)");
111static int bufreusecnt;
112SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
113    "Number of times we have reused a buffer");
114static int buffreekvacnt;
115SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
116    "Number of times we have freed the KVA space from some buffer");
117static int bufdefragcnt;
118SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
119    "Number of times we have had to repeat buffer allocation to defragment");
120static int lorunningspace;
121SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
122    "Minimum preferred space used for in-progress I/O");
123static int hirunningspace;
124SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
125    "Maximum amount of space to use for in-progress I/O");
126static int numdirtybuffers;
127SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
128    "Number of buffers that are dirty (has unwritten changes) at the moment");
129static int lodirtybuffers;
130SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
131    "How many buffers we want to have free before bufdaemon can sleep");
132static int hidirtybuffers;
133SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
134    "When the number of dirty buffers is considered severe");
135static int numfreebuffers;
136SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
137    "Number of free buffers");
138static int lofreebuffers;
139SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
140   "XXX Unused");
141static int hifreebuffers;
142SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
143   "XXX Complicatedly unused");
144static int getnewbufcalls;
145SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
146   "Number of calls to getnewbuf");
147static int getnewbufrestarts;
148SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
149    "Number of times getnewbuf has had to restart a buffer aquisition");
150static int dobkgrdwrite = 1;
151SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
152    "Do background writes (honoring the BX_BKGRDWRITE flag)?");
153
154/*
155 * Wakeup point for bufdaemon, as well as indicator of whether it is already
156 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
157 * is idling.
158 */
159static int bd_request;
160
161/*
162 * bogus page -- for I/O to/from partially complete buffers
163 * this is a temporary solution to the problem, but it is not
164 * really that bad.  it would be better to split the buffer
165 * for input in the case of buffers partially already in memory,
166 * but the code is intricate enough already.
167 */
168vm_page_t bogus_page;
169
170/*
171 * Offset for bogus_page.
172 * XXX bogus_offset should be local to bufinit
173 */
174static vm_offset_t bogus_offset;
175
176/*
177 * Synchronization (sleep/wakeup) variable for active buffer space requests.
178 * Set when wait starts, cleared prior to wakeup().
179 * Used in runningbufwakeup() and waitrunningbufspace().
180 */
181static int runningbufreq;
182
183/*
184 * Synchronization (sleep/wakeup) variable for buffer requests.
185 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
186 * by and/or.
187 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
188 * getnewbuf(), and getblk().
189 */
190static int needsbuffer;
191
192/*
193 * Mask for index into the buffer hash table, which needs to be power of 2 in
194 * size.  Set in kern_vfs_bio_buffer_alloc.
195 */
196static int bufhashmask;
197
198/*
199 * Hash table for all buffers, with a linked list hanging from each table
200 * entry.  Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
201 */
202static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
203
204/*
205 * Somewhere to store buffers when they are not in another list, to always
206 * have them in a list (and thus being able to use the same set of operations
207 * on them.)
208 */
209static struct bufhashhdr invalhash;
210
211/*
212 * Definitions for the buffer free lists.
213 */
214#define BUFFER_QUEUES	6	/* number of free buffer queues */
215
216#define QUEUE_NONE	0	/* on no queue */
217#define QUEUE_LOCKED	1	/* locked buffers */
218#define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
219#define QUEUE_DIRTY	3	/* B_DELWRI buffers */
220#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
221#define QUEUE_EMPTY	5	/* empty buffer headers */
222
223/* Queues for free buffers with various properties */
224static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
225/*
226 * Single global constant for BUF_WMESG, to avoid getting multiple references.
227 * buf_wmesg is referred from macros.
228 */
229const char *buf_wmesg = BUF_WMESG;
230
231#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
232#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
233#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
234#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
235
236/*
237 * Buffer hash table code.  Note that the logical block scans linearly, which
238 * gives us some L1 cache locality.
239 */
240
241static __inline
242struct bufhashhdr *
243bufhash(struct vnode *vnp, daddr_t bn)
244{
245	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
246}
247
248/*
249 *	numdirtywakeup:
250 *
251 *	If someone is blocked due to there being too many dirty buffers,
252 *	and numdirtybuffers is now reasonable, wake them up.
253 */
254
255static __inline void
256numdirtywakeup(int level)
257{
258	if (numdirtybuffers <= level) {
259		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
260			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
261			wakeup(&needsbuffer);
262		}
263	}
264}
265
266/*
267 *	bufspacewakeup:
268 *
269 *	Called when buffer space is potentially available for recovery.
270 *	getnewbuf() will block on this flag when it is unable to free
271 *	sufficient buffer space.  Buffer space becomes recoverable when
272 *	bp's get placed back in the queues.
273 */
274
275static __inline void
276bufspacewakeup(void)
277{
278	/*
279	 * If someone is waiting for BUF space, wake them up.  Even
280	 * though we haven't freed the kva space yet, the waiting
281	 * process will be able to now.
282	 */
283	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
284		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
285		wakeup(&needsbuffer);
286	}
287}
288
289/*
290 * runningbufwakeup() - in-progress I/O accounting.
291 *
292 */
293static __inline void
294runningbufwakeup(struct buf *bp)
295{
296	if (bp->b_runningbufspace) {
297		runningbufspace -= bp->b_runningbufspace;
298		bp->b_runningbufspace = 0;
299		if (runningbufreq && runningbufspace <= lorunningspace) {
300			runningbufreq = 0;
301			wakeup(&runningbufreq);
302		}
303	}
304}
305
306/*
307 *	bufcountwakeup:
308 *
309 *	Called when a buffer has been added to one of the free queues to
310 *	account for the buffer and to wakeup anyone waiting for free buffers.
311 *	This typically occurs when large amounts of metadata are being handled
312 *	by the buffer cache ( else buffer space runs out first, usually ).
313 */
314
315static __inline void
316bufcountwakeup(void)
317{
318	++numfreebuffers;
319	if (needsbuffer) {
320		needsbuffer &= ~VFS_BIO_NEED_ANY;
321		if (numfreebuffers >= hifreebuffers)
322			needsbuffer &= ~VFS_BIO_NEED_FREE;
323		wakeup(&needsbuffer);
324	}
325}
326
327/*
328 *	waitrunningbufspace()
329 *
330 *	runningbufspace is a measure of the amount of I/O currently
331 *	running.  This routine is used in async-write situations to
332 *	prevent creating huge backups of pending writes to a device.
333 *	Only asynchronous writes are governed by this function.
334 *
335 *	Reads will adjust runningbufspace, but will not block based on it.
336 *	The read load has a side effect of reducing the allowed write load.
337 *
338 *	This does NOT turn an async write into a sync write.  It waits
339 *	for earlier writes to complete and generally returns before the
340 *	caller's write has reached the device.
341 */
342static __inline void
343waitrunningbufspace(void)
344{
345	/*
346	 * XXX race against wakeup interrupt, currently
347	 * protected by Giant.  FIXME!
348	 */
349	while (runningbufspace > hirunningspace) {
350		++runningbufreq;
351		tsleep(&runningbufreq, PVM, "wdrain", 0);
352	}
353}
354
355
356/*
357 *	vfs_buf_test_cache:
358 *
359 *	Called when a buffer is extended.  This function clears the B_CACHE
360 *	bit if the newly extended portion of the buffer does not contain
361 *	valid data.
362 */
363static __inline__
364void
365vfs_buf_test_cache(struct buf *bp,
366		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
367		  vm_page_t m)
368{
369	GIANT_REQUIRED;
370
371	if (bp->b_flags & B_CACHE) {
372		int base = (foff + off) & PAGE_MASK;
373		if (vm_page_is_valid(m, base, size) == 0)
374			bp->b_flags &= ~B_CACHE;
375	}
376}
377
378/* Wake up the buffer deamon if necessary */
379static __inline__
380void
381bd_wakeup(int dirtybuflevel)
382{
383	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
384		bd_request = 1;
385		wakeup(&bd_request);
386	}
387}
388
389/*
390 * bd_speedup - speedup the buffer cache flushing code
391 */
392
393static __inline__
394void
395bd_speedup(void)
396{
397	bd_wakeup(1);
398}
399
400/*
401 * Calculating buffer cache scaling values and reserve space for buffer
402 * headers.  This is called during low level kernel initialization and
403 * may be called more then once.  We CANNOT write to the memory area
404 * being reserved at this time.
405 */
406caddr_t
407kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
408{
409	/*
410	 * physmem_est is in pages.  Convert it to kilobytes (assumes
411	 * PAGE_SIZE is >= 1K)
412	 */
413	physmem_est = physmem_est * (PAGE_SIZE / 1024);
414
415	/*
416	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
417	 * For the first 64MB of ram nominally allocate sufficient buffers to
418	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
419	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
420	 * the buffer cache we limit the eventual kva reservation to
421	 * maxbcache bytes.
422	 *
423	 * factor represents the 1/4 x ram conversion.
424	 */
425	if (nbuf == 0) {
426		int factor = 4 * BKVASIZE / 1024;
427
428		nbuf = 50;
429		if (physmem_est > 4096)
430			nbuf += min((physmem_est - 4096) / factor,
431			    65536 / factor);
432		if (physmem_est > 65536)
433			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
434
435		if (maxbcache && nbuf > maxbcache / BKVASIZE)
436			nbuf = maxbcache / BKVASIZE;
437	}
438
439#if 0
440	/*
441	 * Do not allow the buffer_map to be more then 1/2 the size of the
442	 * kernel_map.
443	 */
444	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
445	    (BKVASIZE * 2)) {
446		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
447		    (BKVASIZE * 2);
448		printf("Warning: nbufs capped at %d\n", nbuf);
449	}
450#endif
451
452	/*
453	 * swbufs are used as temporary holders for I/O, such as paging I/O.
454	 * We have no less then 16 and no more then 256.
455	 */
456	nswbuf = max(min(nbuf/4, 256), 16);
457
458	/*
459	 * Reserve space for the buffer cache buffers
460	 */
461	swbuf = (void *)v;
462	v = (caddr_t)(swbuf + nswbuf);
463	buf = (void *)v;
464	v = (caddr_t)(buf + nbuf);
465
466	/*
467	 * Calculate the hash table size and reserve space
468	 */
469	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
470		;
471	bufhashtbl = (void *)v;
472	v = (caddr_t)(bufhashtbl + bufhashmask);
473	--bufhashmask;
474
475	return(v);
476}
477
478/* Initialize the buffer subsystem.  Called before use of any buffers. */
479void
480bufinit(void)
481{
482	struct buf *bp;
483	int i;
484
485	GIANT_REQUIRED;
486
487	LIST_INIT(&invalhash);
488	mtx_init(&buftimelock, "buftime lock", NULL, MTX_DEF);
489
490	for (i = 0; i <= bufhashmask; i++)
491		LIST_INIT(&bufhashtbl[i]);
492
493	/* next, make a null set of free lists */
494	for (i = 0; i < BUFFER_QUEUES; i++)
495		TAILQ_INIT(&bufqueues[i]);
496
497	/* finally, initialize each buffer header and stick on empty q */
498	for (i = 0; i < nbuf; i++) {
499		bp = &buf[i];
500		bzero(bp, sizeof *bp);
501		bp->b_flags = B_INVAL;	/* we're just an empty header */
502		bp->b_dev = NODEV;
503		bp->b_rcred = NOCRED;
504		bp->b_wcred = NOCRED;
505		bp->b_qindex = QUEUE_EMPTY;
506		bp->b_xflags = 0;
507		LIST_INIT(&bp->b_dep);
508		BUF_LOCKINIT(bp);
509		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
510		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
511	}
512
513	/*
514	 * maxbufspace is the absolute maximum amount of buffer space we are
515	 * allowed to reserve in KVM and in real terms.  The absolute maximum
516	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
517	 * used by most other processes.  The differential is required to
518	 * ensure that buf_daemon is able to run when other processes might
519	 * be blocked waiting for buffer space.
520	 *
521	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
522	 * this may result in KVM fragmentation which is not handled optimally
523	 * by the system.
524	 */
525	maxbufspace = nbuf * BKVASIZE;
526	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
527	lobufspace = hibufspace - MAXBSIZE;
528
529	lorunningspace = 512 * 1024;
530	hirunningspace = 1024 * 1024;
531
532/*
533 * Limit the amount of malloc memory since it is wired permanently into
534 * the kernel space.  Even though this is accounted for in the buffer
535 * allocation, we don't want the malloced region to grow uncontrolled.
536 * The malloc scheme improves memory utilization significantly on average
537 * (small) directories.
538 */
539	maxbufmallocspace = hibufspace / 20;
540
541/*
542 * Reduce the chance of a deadlock occuring by limiting the number
543 * of delayed-write dirty buffers we allow to stack up.
544 */
545	hidirtybuffers = nbuf / 4 + 20;
546	numdirtybuffers = 0;
547/*
548 * To support extreme low-memory systems, make sure hidirtybuffers cannot
549 * eat up all available buffer space.  This occurs when our minimum cannot
550 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
551 * BKVASIZE'd (8K) buffers.
552 */
553	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
554		hidirtybuffers >>= 1;
555	}
556	lodirtybuffers = hidirtybuffers / 2;
557
558/*
559 * Try to keep the number of free buffers in the specified range,
560 * and give special processes (e.g. like buf_daemon) access to an
561 * emergency reserve.
562 */
563	lofreebuffers = nbuf / 18 + 5;
564	hifreebuffers = 2 * lofreebuffers;
565	numfreebuffers = nbuf;
566
567/*
568 * Maximum number of async ops initiated per buf_daemon loop.  This is
569 * somewhat of a hack at the moment, we really need to limit ourselves
570 * based on the number of bytes of I/O in-transit that were initiated
571 * from buf_daemon.
572 */
573
574	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
575	bogus_page = vm_page_alloc(kernel_object,
576			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
577			VM_ALLOC_NORMAL);
578	cnt.v_wire_count++;
579}
580
581/*
582 * bfreekva() - free the kva allocation for a buffer.
583 *
584 *	Must be called at splbio() or higher as this is the only locking for
585 *	buffer_map.
586 *
587 *	Since this call frees up buffer space, we call bufspacewakeup().
588 */
589static void
590bfreekva(struct buf * bp)
591{
592	GIANT_REQUIRED;
593
594	if (bp->b_kvasize) {
595		++buffreekvacnt;
596		bufspace -= bp->b_kvasize;
597		vm_map_delete(buffer_map,
598		    (vm_offset_t) bp->b_kvabase,
599		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
600		);
601		bp->b_kvasize = 0;
602		bufspacewakeup();
603	}
604}
605
606/*
607 *	bremfree:
608 *
609 *	Remove the buffer from the appropriate free list.
610 */
611void
612bremfree(struct buf * bp)
613{
614	int s = splbio();
615	int old_qindex = bp->b_qindex;
616
617	GIANT_REQUIRED;
618
619	if (bp->b_qindex != QUEUE_NONE) {
620		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
621		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
622		bp->b_qindex = QUEUE_NONE;
623	} else {
624		if (BUF_REFCNT(bp) <= 1)
625			panic("bremfree: removing a buffer not on a queue");
626	}
627
628	/*
629	 * Fixup numfreebuffers count.  If the buffer is invalid or not
630	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
631	 * the buffer was free and we must decrement numfreebuffers.
632	 */
633	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
634		switch(old_qindex) {
635		case QUEUE_DIRTY:
636		case QUEUE_CLEAN:
637		case QUEUE_EMPTY:
638		case QUEUE_EMPTYKVA:
639			--numfreebuffers;
640			break;
641		default:
642			break;
643		}
644	}
645	splx(s);
646}
647
648
649/*
650 * Get a buffer with the specified data.  Look in the cache first.  We
651 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
652 * is set, the buffer is valid and we do not have to do anything ( see
653 * getblk() ).  This is really just a special case of breadn().
654 */
655int
656bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
657    struct buf ** bpp)
658{
659
660	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
661}
662
663/*
664 * Operates like bread, but also starts asynchronous I/O on
665 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
666 * to initiating I/O . If B_CACHE is set, the buffer is valid
667 * and we do not have to do anything.
668 */
669int
670breadn(struct vnode * vp, daddr_t blkno, int size,
671    daddr_t * rablkno, int *rabsize,
672    int cnt, struct ucred * cred, struct buf ** bpp)
673{
674	struct buf *bp, *rabp;
675	int i;
676	int rv = 0, readwait = 0;
677
678	*bpp = bp = getblk(vp, blkno, size, 0, 0);
679
680	/* if not found in cache, do some I/O */
681	if ((bp->b_flags & B_CACHE) == 0) {
682		if (curthread != PCPU_GET(idlethread))
683			curthread->td_proc->p_stats->p_ru.ru_inblock++;
684		bp->b_iocmd = BIO_READ;
685		bp->b_flags &= ~B_INVAL;
686		bp->b_ioflags &= ~BIO_ERROR;
687		if (bp->b_rcred == NOCRED && cred != NOCRED)
688			bp->b_rcred = crhold(cred);
689		vfs_busy_pages(bp, 0);
690		VOP_STRATEGY(vp, bp);
691		++readwait;
692	}
693
694	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
695		if (inmem(vp, *rablkno))
696			continue;
697		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
698
699		if ((rabp->b_flags & B_CACHE) == 0) {
700			if (curthread != PCPU_GET(idlethread))
701				curthread->td_proc->p_stats->p_ru.ru_inblock++;
702			rabp->b_flags |= B_ASYNC;
703			rabp->b_flags &= ~B_INVAL;
704			rabp->b_ioflags &= ~BIO_ERROR;
705			rabp->b_iocmd = BIO_READ;
706			if (rabp->b_rcred == NOCRED && cred != NOCRED)
707				rabp->b_rcred = crhold(cred);
708			vfs_busy_pages(rabp, 0);
709			BUF_KERNPROC(rabp);
710			VOP_STRATEGY(vp, rabp);
711		} else {
712			brelse(rabp);
713		}
714	}
715
716	if (readwait) {
717		rv = bufwait(bp);
718	}
719	return (rv);
720}
721
722/*
723 * Write, release buffer on completion.  (Done by iodone
724 * if async).  Do not bother writing anything if the buffer
725 * is invalid.
726 *
727 * Note that we set B_CACHE here, indicating that buffer is
728 * fully valid and thus cacheable.  This is true even of NFS
729 * now so we set it generally.  This could be set either here
730 * or in biodone() since the I/O is synchronous.  We put it
731 * here.
732 */
733
734int
735bwrite(struct buf * bp)
736{
737	int oldflags, s;
738	struct buf *newbp;
739
740	if (bp->b_flags & B_INVAL) {
741		brelse(bp);
742		return (0);
743	}
744
745	oldflags = bp->b_flags;
746
747	if (BUF_REFCNT(bp) == 0)
748		panic("bwrite: buffer is not busy???");
749	s = splbio();
750	/*
751	 * If a background write is already in progress, delay
752	 * writing this block if it is asynchronous. Otherwise
753	 * wait for the background write to complete.
754	 */
755	if (bp->b_xflags & BX_BKGRDINPROG) {
756		if (bp->b_flags & B_ASYNC) {
757			splx(s);
758			bdwrite(bp);
759			return (0);
760		}
761		bp->b_xflags |= BX_BKGRDWAIT;
762		tsleep(&bp->b_xflags, PRIBIO, "bwrbg", 0);
763		if (bp->b_xflags & BX_BKGRDINPROG)
764			panic("bwrite: still writing");
765	}
766
767	/* Mark the buffer clean */
768	bundirty(bp);
769
770	/*
771	 * If this buffer is marked for background writing and we
772	 * do not have to wait for it, make a copy and write the
773	 * copy so as to leave this buffer ready for further use.
774	 *
775	 * This optimization eats a lot of memory.  If we have a page
776	 * or buffer shortfall we can't do it.
777	 */
778	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
779	    (bp->b_flags & B_ASYNC) &&
780	    !vm_page_count_severe() &&
781	    !buf_dirty_count_severe()) {
782		if (bp->b_iodone != NULL) {
783			printf("bp->b_iodone = %p\n", bp->b_iodone);
784			panic("bwrite: need chained iodone");
785		}
786
787		/* get a new block */
788		newbp = geteblk(bp->b_bufsize);
789
790		/* set it to be identical to the old block */
791		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
792		bgetvp(bp->b_vp, newbp);
793		newbp->b_lblkno = bp->b_lblkno;
794		newbp->b_blkno = bp->b_blkno;
795		newbp->b_offset = bp->b_offset;
796		newbp->b_iodone = vfs_backgroundwritedone;
797		newbp->b_flags |= B_ASYNC;
798		newbp->b_flags &= ~B_INVAL;
799
800		/* move over the dependencies */
801		if (LIST_FIRST(&bp->b_dep) != NULL)
802			buf_movedeps(bp, newbp);
803
804		/*
805		 * Initiate write on the copy, release the original to
806		 * the B_LOCKED queue so that it cannot go away until
807		 * the background write completes. If not locked it could go
808		 * away and then be reconstituted while it was being written.
809		 * If the reconstituted buffer were written, we could end up
810		 * with two background copies being written at the same time.
811		 */
812		bp->b_xflags |= BX_BKGRDINPROG;
813		bp->b_flags |= B_LOCKED;
814		bqrelse(bp);
815		bp = newbp;
816	}
817
818	bp->b_flags &= ~B_DONE;
819	bp->b_ioflags &= ~BIO_ERROR;
820	bp->b_flags |= B_WRITEINPROG | B_CACHE;
821	bp->b_iocmd = BIO_WRITE;
822
823	bp->b_vp->v_numoutput++;
824	vfs_busy_pages(bp, 1);
825
826	/*
827	 * Normal bwrites pipeline writes
828	 */
829	bp->b_runningbufspace = bp->b_bufsize;
830	runningbufspace += bp->b_runningbufspace;
831
832	if (curthread != PCPU_GET(idlethread))
833		curthread->td_proc->p_stats->p_ru.ru_oublock++;
834	splx(s);
835	if (oldflags & B_ASYNC)
836		BUF_KERNPROC(bp);
837	BUF_STRATEGY(bp);
838
839	if ((oldflags & B_ASYNC) == 0) {
840		int rtval = bufwait(bp);
841		brelse(bp);
842		return (rtval);
843	} else if ((oldflags & B_NOWDRAIN) == 0) {
844		/*
845		 * don't allow the async write to saturate the I/O
846		 * system.  Deadlocks can occur only if a device strategy
847		 * routine (like in MD) turns around and issues another
848		 * high-level write, in which case B_NOWDRAIN is expected
849		 * to be set.  Otherwise we will not deadlock here because
850		 * we are blocking waiting for I/O that is already in-progress
851		 * to complete.
852		 */
853		waitrunningbufspace();
854	}
855
856	return (0);
857}
858
859/*
860 * Complete a background write started from bwrite.
861 */
862static void
863vfs_backgroundwritedone(bp)
864	struct buf *bp;
865{
866	struct buf *origbp;
867
868	/*
869	 * Find the original buffer that we are writing.
870	 */
871	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
872		panic("backgroundwritedone: lost buffer");
873	/*
874	 * Process dependencies then return any unfinished ones.
875	 */
876	if (LIST_FIRST(&bp->b_dep) != NULL)
877		buf_complete(bp);
878	if (LIST_FIRST(&bp->b_dep) != NULL)
879		buf_movedeps(bp, origbp);
880	/*
881	 * Clear the BX_BKGRDINPROG flag in the original buffer
882	 * and awaken it if it is waiting for the write to complete.
883	 * If BX_BKGRDINPROG is not set in the original buffer it must
884	 * have been released and re-instantiated - which is not legal.
885	 */
886	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
887	    ("backgroundwritedone: lost buffer2"));
888	origbp->b_xflags &= ~BX_BKGRDINPROG;
889	if (origbp->b_xflags & BX_BKGRDWAIT) {
890		origbp->b_xflags &= ~BX_BKGRDWAIT;
891		wakeup(&origbp->b_xflags);
892	}
893	/*
894	 * Clear the B_LOCKED flag and remove it from the locked
895	 * queue if it currently resides there.
896	 */
897	origbp->b_flags &= ~B_LOCKED;
898	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
899		bremfree(origbp);
900		bqrelse(origbp);
901	}
902	/*
903	 * This buffer is marked B_NOCACHE, so when it is released
904	 * by biodone, it will be tossed. We mark it with BIO_READ
905	 * to avoid biodone doing a second vwakeup.
906	 */
907	bp->b_flags |= B_NOCACHE;
908	bp->b_iocmd = BIO_READ;
909	bp->b_flags &= ~(B_CACHE | B_DONE);
910	bp->b_iodone = 0;
911	bufdone(bp);
912}
913
914/*
915 * Delayed write. (Buffer is marked dirty).  Do not bother writing
916 * anything if the buffer is marked invalid.
917 *
918 * Note that since the buffer must be completely valid, we can safely
919 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
920 * biodone() in order to prevent getblk from writing the buffer
921 * out synchronously.
922 */
923void
924bdwrite(struct buf * bp)
925{
926	GIANT_REQUIRED;
927
928	if (BUF_REFCNT(bp) == 0)
929		panic("bdwrite: buffer is not busy");
930
931	if (bp->b_flags & B_INVAL) {
932		brelse(bp);
933		return;
934	}
935	bdirty(bp);
936
937	/*
938	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
939	 * true even of NFS now.
940	 */
941	bp->b_flags |= B_CACHE;
942
943	/*
944	 * This bmap keeps the system from needing to do the bmap later,
945	 * perhaps when the system is attempting to do a sync.  Since it
946	 * is likely that the indirect block -- or whatever other datastructure
947	 * that the filesystem needs is still in memory now, it is a good
948	 * thing to do this.  Note also, that if the pageout daemon is
949	 * requesting a sync -- there might not be enough memory to do
950	 * the bmap then...  So, this is important to do.
951	 */
952	if (bp->b_lblkno == bp->b_blkno) {
953		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
954	}
955
956	/*
957	 * Set the *dirty* buffer range based upon the VM system dirty pages.
958	 */
959	vfs_setdirty(bp);
960
961	/*
962	 * We need to do this here to satisfy the vnode_pager and the
963	 * pageout daemon, so that it thinks that the pages have been
964	 * "cleaned".  Note that since the pages are in a delayed write
965	 * buffer -- the VFS layer "will" see that the pages get written
966	 * out on the next sync, or perhaps the cluster will be completed.
967	 */
968	vfs_clean_pages(bp);
969	bqrelse(bp);
970
971	/*
972	 * Wakeup the buffer flushing daemon if we have a lot of dirty
973	 * buffers (midpoint between our recovery point and our stall
974	 * point).
975	 */
976	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
977
978	/*
979	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
980	 * due to the softdep code.
981	 */
982}
983
984/*
985 *	bdirty:
986 *
987 *	Turn buffer into delayed write request.  We must clear BIO_READ and
988 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
989 *	itself to properly update it in the dirty/clean lists.  We mark it
990 *	B_DONE to ensure that any asynchronization of the buffer properly
991 *	clears B_DONE ( else a panic will occur later ).
992 *
993 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
994 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
995 *	should only be called if the buffer is known-good.
996 *
997 *	Since the buffer is not on a queue, we do not update the numfreebuffers
998 *	count.
999 *
1000 *	Must be called at splbio().
1001 *	The buffer must be on QUEUE_NONE.
1002 */
1003void
1004bdirty(bp)
1005	struct buf *bp;
1006{
1007	KASSERT(bp->b_qindex == QUEUE_NONE,
1008	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1009	bp->b_flags &= ~(B_RELBUF);
1010	bp->b_iocmd = BIO_WRITE;
1011
1012	if ((bp->b_flags & B_DELWRI) == 0) {
1013		bp->b_flags |= B_DONE | B_DELWRI;
1014		reassignbuf(bp, bp->b_vp);
1015		++numdirtybuffers;
1016		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1017	}
1018}
1019
1020/*
1021 *	bundirty:
1022 *
1023 *	Clear B_DELWRI for buffer.
1024 *
1025 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1026 *	count.
1027 *
1028 *	Must be called at splbio().
1029 *	The buffer must be on QUEUE_NONE.
1030 */
1031
1032void
1033bundirty(bp)
1034	struct buf *bp;
1035{
1036	KASSERT(bp->b_qindex == QUEUE_NONE,
1037	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1038
1039	if (bp->b_flags & B_DELWRI) {
1040		bp->b_flags &= ~B_DELWRI;
1041		reassignbuf(bp, bp->b_vp);
1042		--numdirtybuffers;
1043		numdirtywakeup(lodirtybuffers);
1044	}
1045	/*
1046	 * Since it is now being written, we can clear its deferred write flag.
1047	 */
1048	bp->b_flags &= ~B_DEFERRED;
1049}
1050
1051/*
1052 *	bawrite:
1053 *
1054 *	Asynchronous write.  Start output on a buffer, but do not wait for
1055 *	it to complete.  The buffer is released when the output completes.
1056 *
1057 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1058 *	B_INVAL buffers.  Not us.
1059 */
1060void
1061bawrite(struct buf * bp)
1062{
1063	bp->b_flags |= B_ASYNC;
1064	(void) BUF_WRITE(bp);
1065}
1066
1067/*
1068 *	bwillwrite:
1069 *
1070 *	Called prior to the locking of any vnodes when we are expecting to
1071 *	write.  We do not want to starve the buffer cache with too many
1072 *	dirty buffers so we block here.  By blocking prior to the locking
1073 *	of any vnodes we attempt to avoid the situation where a locked vnode
1074 *	prevents the various system daemons from flushing related buffers.
1075 */
1076
1077void
1078bwillwrite(void)
1079{
1080	if (numdirtybuffers >= hidirtybuffers) {
1081		int s;
1082
1083		mtx_lock(&Giant);
1084		s = splbio();
1085		while (numdirtybuffers >= hidirtybuffers) {
1086			bd_wakeup(1);
1087			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1088			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1089		}
1090		splx(s);
1091		mtx_unlock(&Giant);
1092	}
1093}
1094
1095/*
1096 * Return true if we have too many dirty buffers.
1097 */
1098int
1099buf_dirty_count_severe(void)
1100{
1101	return(numdirtybuffers >= hidirtybuffers);
1102}
1103
1104/*
1105 *	brelse:
1106 *
1107 *	Release a busy buffer and, if requested, free its resources.  The
1108 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1109 *	to be accessed later as a cache entity or reused for other purposes.
1110 */
1111void
1112brelse(struct buf * bp)
1113{
1114	int s;
1115
1116	GIANT_REQUIRED;
1117
1118	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1119	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1120
1121	s = splbio();
1122
1123	if (bp->b_flags & B_LOCKED)
1124		bp->b_ioflags &= ~BIO_ERROR;
1125
1126	if (bp->b_iocmd == BIO_WRITE &&
1127	    (bp->b_ioflags & BIO_ERROR) &&
1128	    !(bp->b_flags & B_INVAL)) {
1129		/*
1130		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1131		 * pages from being scrapped.  If B_INVAL is set then
1132		 * this case is not run and the next case is run to
1133		 * destroy the buffer.  B_INVAL can occur if the buffer
1134		 * is outside the range supported by the underlying device.
1135		 */
1136		bp->b_ioflags &= ~BIO_ERROR;
1137		bdirty(bp);
1138	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1139	    (bp->b_ioflags & BIO_ERROR) ||
1140	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1141		/*
1142		 * Either a failed I/O or we were asked to free or not
1143		 * cache the buffer.
1144		 */
1145		bp->b_flags |= B_INVAL;
1146		if (LIST_FIRST(&bp->b_dep) != NULL)
1147			buf_deallocate(bp);
1148		if (bp->b_flags & B_DELWRI) {
1149			--numdirtybuffers;
1150			numdirtywakeup(lodirtybuffers);
1151		}
1152		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1153		if ((bp->b_flags & B_VMIO) == 0) {
1154			if (bp->b_bufsize)
1155				allocbuf(bp, 0);
1156			if (bp->b_vp)
1157				brelvp(bp);
1158		}
1159	}
1160
1161	/*
1162	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1163	 * is called with B_DELWRI set, the underlying pages may wind up
1164	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1165	 * because pages associated with a B_DELWRI bp are marked clean.
1166	 *
1167	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1168	 * if B_DELWRI is set.
1169	 *
1170	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1171	 * on pages to return pages to the VM page queues.
1172	 */
1173	if (bp->b_flags & B_DELWRI)
1174		bp->b_flags &= ~B_RELBUF;
1175	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1176		bp->b_flags |= B_RELBUF;
1177
1178	/*
1179	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1180	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1181	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1182	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1183	 *
1184	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1185	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1186	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1187	 *
1188	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1189	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1190	 * the commit state and we cannot afford to lose the buffer. If the
1191	 * buffer has a background write in progress, we need to keep it
1192	 * around to prevent it from being reconstituted and starting a second
1193	 * background write.
1194	 */
1195	if ((bp->b_flags & B_VMIO)
1196	    && !(bp->b_vp->v_tag == VT_NFS &&
1197		 !vn_isdisk(bp->b_vp, NULL) &&
1198		 (bp->b_flags & B_DELWRI))
1199	    ) {
1200
1201		int i, j, resid;
1202		vm_page_t m;
1203		off_t foff;
1204		vm_pindex_t poff;
1205		vm_object_t obj;
1206		struct vnode *vp;
1207
1208		vp = bp->b_vp;
1209		obj = bp->b_object;
1210
1211		/*
1212		 * Get the base offset and length of the buffer.  Note that
1213		 * in the VMIO case if the buffer block size is not
1214		 * page-aligned then b_data pointer may not be page-aligned.
1215		 * But our b_pages[] array *IS* page aligned.
1216		 *
1217		 * block sizes less then DEV_BSIZE (usually 512) are not
1218		 * supported due to the page granularity bits (m->valid,
1219		 * m->dirty, etc...).
1220		 *
1221		 * See man buf(9) for more information
1222		 */
1223		resid = bp->b_bufsize;
1224		foff = bp->b_offset;
1225
1226		for (i = 0; i < bp->b_npages; i++) {
1227			int had_bogus = 0;
1228
1229			m = bp->b_pages[i];
1230			vm_page_flag_clear(m, PG_ZERO);
1231
1232			/*
1233			 * If we hit a bogus page, fixup *all* the bogus pages
1234			 * now.
1235			 */
1236			if (m == bogus_page) {
1237				poff = OFF_TO_IDX(bp->b_offset);
1238				had_bogus = 1;
1239
1240				for (j = i; j < bp->b_npages; j++) {
1241					vm_page_t mtmp;
1242					mtmp = bp->b_pages[j];
1243					if (mtmp == bogus_page) {
1244						mtmp = vm_page_lookup(obj, poff + j);
1245						if (!mtmp) {
1246							panic("brelse: page missing\n");
1247						}
1248						bp->b_pages[j] = mtmp;
1249					}
1250				}
1251
1252				if ((bp->b_flags & B_INVAL) == 0) {
1253					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1254				}
1255				m = bp->b_pages[i];
1256			}
1257			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1258				int poffset = foff & PAGE_MASK;
1259				int presid = resid > (PAGE_SIZE - poffset) ?
1260					(PAGE_SIZE - poffset) : resid;
1261
1262				KASSERT(presid >= 0, ("brelse: extra page"));
1263				vm_page_set_invalid(m, poffset, presid);
1264				if (had_bogus)
1265					printf("avoided corruption bug in bogus_page/brelse code\n");
1266			}
1267			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1268			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1269		}
1270
1271		if (bp->b_flags & (B_INVAL | B_RELBUF))
1272			vfs_vmio_release(bp);
1273
1274	} else if (bp->b_flags & B_VMIO) {
1275
1276		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1277			vfs_vmio_release(bp);
1278		}
1279
1280	}
1281
1282	if (bp->b_qindex != QUEUE_NONE)
1283		panic("brelse: free buffer onto another queue???");
1284	if (BUF_REFCNT(bp) > 1) {
1285		/* do not release to free list */
1286		BUF_UNLOCK(bp);
1287		splx(s);
1288		return;
1289	}
1290
1291	/* enqueue */
1292
1293	/* buffers with no memory */
1294	if (bp->b_bufsize == 0) {
1295		bp->b_flags |= B_INVAL;
1296		bp->b_xflags &= ~BX_BKGRDWRITE;
1297		if (bp->b_xflags & BX_BKGRDINPROG)
1298			panic("losing buffer 1");
1299		if (bp->b_kvasize) {
1300			bp->b_qindex = QUEUE_EMPTYKVA;
1301		} else {
1302			bp->b_qindex = QUEUE_EMPTY;
1303		}
1304		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1305		LIST_REMOVE(bp, b_hash);
1306		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1307		bp->b_dev = NODEV;
1308	/* buffers with junk contents */
1309	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1310	    (bp->b_ioflags & BIO_ERROR)) {
1311		bp->b_flags |= B_INVAL;
1312		bp->b_xflags &= ~BX_BKGRDWRITE;
1313		if (bp->b_xflags & BX_BKGRDINPROG)
1314			panic("losing buffer 2");
1315		bp->b_qindex = QUEUE_CLEAN;
1316		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1317		LIST_REMOVE(bp, b_hash);
1318		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1319		bp->b_dev = NODEV;
1320
1321	/* buffers that are locked */
1322	} else if (bp->b_flags & B_LOCKED) {
1323		bp->b_qindex = QUEUE_LOCKED;
1324		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1325
1326	/* remaining buffers */
1327	} else {
1328		if (bp->b_flags & B_DELWRI)
1329			bp->b_qindex = QUEUE_DIRTY;
1330		else
1331			bp->b_qindex = QUEUE_CLEAN;
1332		if (bp->b_flags & B_AGE)
1333			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1334		else
1335			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1336	}
1337
1338	/*
1339	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1340	 * on the correct queue.
1341	 */
1342	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1343		bundirty(bp);
1344
1345	/*
1346	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1347	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1348	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1349	 * if B_INVAL is set ).
1350	 */
1351
1352	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1353		bufcountwakeup();
1354
1355	/*
1356	 * Something we can maybe free or reuse
1357	 */
1358	if (bp->b_bufsize || bp->b_kvasize)
1359		bufspacewakeup();
1360
1361	/* unlock */
1362	BUF_UNLOCK(bp);
1363	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1364			B_DIRECT | B_NOWDRAIN);
1365	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1366		panic("brelse: not dirty");
1367	splx(s);
1368}
1369
1370/*
1371 * Release a buffer back to the appropriate queue but do not try to free
1372 * it.  The buffer is expected to be used again soon.
1373 *
1374 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1375 * biodone() to requeue an async I/O on completion.  It is also used when
1376 * known good buffers need to be requeued but we think we may need the data
1377 * again soon.
1378 *
1379 * XXX we should be able to leave the B_RELBUF hint set on completion.
1380 */
1381void
1382bqrelse(struct buf * bp)
1383{
1384	int s;
1385
1386	s = splbio();
1387
1388	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1389
1390	if (bp->b_qindex != QUEUE_NONE)
1391		panic("bqrelse: free buffer onto another queue???");
1392	if (BUF_REFCNT(bp) > 1) {
1393		/* do not release to free list */
1394		BUF_UNLOCK(bp);
1395		splx(s);
1396		return;
1397	}
1398	if (bp->b_flags & B_LOCKED) {
1399		bp->b_ioflags &= ~BIO_ERROR;
1400		bp->b_qindex = QUEUE_LOCKED;
1401		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1402		/* buffers with stale but valid contents */
1403	} else if (bp->b_flags & B_DELWRI) {
1404		bp->b_qindex = QUEUE_DIRTY;
1405		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1406	} else if (vm_page_count_severe()) {
1407		/*
1408		 * We are too low on memory, we have to try to free the
1409		 * buffer (most importantly: the wired pages making up its
1410		 * backing store) *now*.
1411		 */
1412		splx(s);
1413		brelse(bp);
1414		return;
1415	} else {
1416		bp->b_qindex = QUEUE_CLEAN;
1417		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1418	}
1419
1420	if ((bp->b_flags & B_LOCKED) == 0 &&
1421	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1422		bufcountwakeup();
1423	}
1424
1425	/*
1426	 * Something we can maybe free or reuse.
1427	 */
1428	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1429		bufspacewakeup();
1430
1431	/* unlock */
1432	BUF_UNLOCK(bp);
1433	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1434	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1435		panic("bqrelse: not dirty");
1436	splx(s);
1437}
1438
1439/* Give pages used by the bp back to the VM system (where possible) */
1440static void
1441vfs_vmio_release(bp)
1442	struct buf *bp;
1443{
1444	int i;
1445	vm_page_t m;
1446
1447	GIANT_REQUIRED;
1448
1449	for (i = 0; i < bp->b_npages; i++) {
1450		m = bp->b_pages[i];
1451		bp->b_pages[i] = NULL;
1452		/*
1453		 * In order to keep page LRU ordering consistent, put
1454		 * everything on the inactive queue.
1455		 */
1456		vm_page_unwire(m, 0);
1457		/*
1458		 * We don't mess with busy pages, it is
1459		 * the responsibility of the process that
1460		 * busied the pages to deal with them.
1461		 */
1462		if ((m->flags & PG_BUSY) || (m->busy != 0))
1463			continue;
1464
1465		if (m->wire_count == 0) {
1466			vm_page_flag_clear(m, PG_ZERO);
1467			/*
1468			 * Might as well free the page if we can and it has
1469			 * no valid data.  We also free the page if the
1470			 * buffer was used for direct I/O
1471			 */
1472			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1473			    m->hold_count == 0) {
1474				vm_page_busy(m);
1475				vm_page_protect(m, VM_PROT_NONE);
1476				vm_page_free(m);
1477			} else if (bp->b_flags & B_DIRECT) {
1478				vm_page_try_to_free(m);
1479			} else if (vm_page_count_severe()) {
1480				vm_page_try_to_cache(m);
1481			}
1482		}
1483	}
1484	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1485
1486	if (bp->b_bufsize) {
1487		bufspacewakeup();
1488		bp->b_bufsize = 0;
1489	}
1490	bp->b_npages = 0;
1491	bp->b_flags &= ~B_VMIO;
1492	if (bp->b_vp)
1493		brelvp(bp);
1494}
1495
1496/*
1497 * Check to see if a block is currently memory resident.
1498 */
1499struct buf *
1500gbincore(struct vnode * vp, daddr_t blkno)
1501{
1502	struct buf *bp;
1503	struct bufhashhdr *bh;
1504
1505	bh = bufhash(vp, blkno);
1506
1507	/* Search hash chain */
1508	LIST_FOREACH(bp, bh, b_hash) {
1509		/* hit */
1510		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1511		    (bp->b_flags & B_INVAL) == 0) {
1512			break;
1513		}
1514	}
1515	return (bp);
1516}
1517
1518/*
1519 *	vfs_bio_awrite:
1520 *
1521 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1522 *	This is much better then the old way of writing only one buffer at
1523 *	a time.  Note that we may not be presented with the buffers in the
1524 *	correct order, so we search for the cluster in both directions.
1525 */
1526int
1527vfs_bio_awrite(struct buf * bp)
1528{
1529	int i;
1530	int j;
1531	daddr_t lblkno = bp->b_lblkno;
1532	struct vnode *vp = bp->b_vp;
1533	int s;
1534	int ncl;
1535	struct buf *bpa;
1536	int nwritten;
1537	int size;
1538	int maxcl;
1539
1540	s = splbio();
1541	/*
1542	 * right now we support clustered writing only to regular files.  If
1543	 * we find a clusterable block we could be in the middle of a cluster
1544	 * rather then at the beginning.
1545	 */
1546	if ((vp->v_type == VREG) &&
1547	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1548	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1549
1550		size = vp->v_mount->mnt_stat.f_iosize;
1551		maxcl = MAXPHYS / size;
1552
1553		for (i = 1; i < maxcl; i++) {
1554			if ((bpa = gbincore(vp, lblkno + i)) &&
1555			    BUF_REFCNT(bpa) == 0 &&
1556			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1557			    (B_DELWRI | B_CLUSTEROK)) &&
1558			    (bpa->b_bufsize == size)) {
1559				if ((bpa->b_blkno == bpa->b_lblkno) ||
1560				    (bpa->b_blkno !=
1561				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1562					break;
1563			} else {
1564				break;
1565			}
1566		}
1567		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1568			if ((bpa = gbincore(vp, lblkno - j)) &&
1569			    BUF_REFCNT(bpa) == 0 &&
1570			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1571			    (B_DELWRI | B_CLUSTEROK)) &&
1572			    (bpa->b_bufsize == size)) {
1573				if ((bpa->b_blkno == bpa->b_lblkno) ||
1574				    (bpa->b_blkno !=
1575				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1576					break;
1577			} else {
1578				break;
1579			}
1580		}
1581		--j;
1582		ncl = i + j;
1583		/*
1584		 * this is a possible cluster write
1585		 */
1586		if (ncl != 1) {
1587			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1588			splx(s);
1589			return nwritten;
1590		}
1591	}
1592
1593	BUF_LOCK(bp, LK_EXCLUSIVE);
1594	bremfree(bp);
1595	bp->b_flags |= B_ASYNC;
1596
1597	splx(s);
1598	/*
1599	 * default (old) behavior, writing out only one block
1600	 *
1601	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1602	 */
1603	nwritten = bp->b_bufsize;
1604	(void) BUF_WRITE(bp);
1605
1606	return nwritten;
1607}
1608
1609/*
1610 *	getnewbuf:
1611 *
1612 *	Find and initialize a new buffer header, freeing up existing buffers
1613 *	in the bufqueues as necessary.  The new buffer is returned locked.
1614 *
1615 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1616 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1617 *
1618 *	We block if:
1619 *		We have insufficient buffer headers
1620 *		We have insufficient buffer space
1621 *		buffer_map is too fragmented ( space reservation fails )
1622 *		If we have to flush dirty buffers ( but we try to avoid this )
1623 *
1624 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1625 *	Instead we ask the buf daemon to do it for us.  We attempt to
1626 *	avoid piecemeal wakeups of the pageout daemon.
1627 */
1628
1629static struct buf *
1630getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1631{
1632	struct buf *bp;
1633	struct buf *nbp;
1634	int defrag = 0;
1635	int nqindex;
1636	static int flushingbufs;
1637
1638	GIANT_REQUIRED;
1639
1640	/*
1641	 * We can't afford to block since we might be holding a vnode lock,
1642	 * which may prevent system daemons from running.  We deal with
1643	 * low-memory situations by proactively returning memory and running
1644	 * async I/O rather then sync I/O.
1645	 */
1646
1647	++getnewbufcalls;
1648	--getnewbufrestarts;
1649restart:
1650	++getnewbufrestarts;
1651
1652	/*
1653	 * Setup for scan.  If we do not have enough free buffers,
1654	 * we setup a degenerate case that immediately fails.  Note
1655	 * that if we are specially marked process, we are allowed to
1656	 * dip into our reserves.
1657	 *
1658	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1659	 *
1660	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1661	 * However, there are a number of cases (defragging, reusing, ...)
1662	 * where we cannot backup.
1663	 */
1664	nqindex = QUEUE_EMPTYKVA;
1665	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1666
1667	if (nbp == NULL) {
1668		/*
1669		 * If no EMPTYKVA buffers and we are either
1670		 * defragging or reusing, locate a CLEAN buffer
1671		 * to free or reuse.  If bufspace useage is low
1672		 * skip this step so we can allocate a new buffer.
1673		 */
1674		if (defrag || bufspace >= lobufspace) {
1675			nqindex = QUEUE_CLEAN;
1676			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1677		}
1678
1679		/*
1680		 * If we could not find or were not allowed to reuse a
1681		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1682		 * buffer.  We can only use an EMPTY buffer if allocating
1683		 * its KVA would not otherwise run us out of buffer space.
1684		 */
1685		if (nbp == NULL && defrag == 0 &&
1686		    bufspace + maxsize < hibufspace) {
1687			nqindex = QUEUE_EMPTY;
1688			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1689		}
1690	}
1691
1692	/*
1693	 * Run scan, possibly freeing data and/or kva mappings on the fly
1694	 * depending.
1695	 */
1696
1697	while ((bp = nbp) != NULL) {
1698		int qindex = nqindex;
1699
1700		/*
1701		 * Calculate next bp ( we can only use it if we do not block
1702		 * or do other fancy things ).
1703		 */
1704		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1705			switch(qindex) {
1706			case QUEUE_EMPTY:
1707				nqindex = QUEUE_EMPTYKVA;
1708				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1709					break;
1710				/* fall through */
1711			case QUEUE_EMPTYKVA:
1712				nqindex = QUEUE_CLEAN;
1713				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1714					break;
1715				/* fall through */
1716			case QUEUE_CLEAN:
1717				/*
1718				 * nbp is NULL.
1719				 */
1720				break;
1721			}
1722		}
1723
1724		/*
1725		 * Sanity Checks
1726		 */
1727		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1728
1729		/*
1730		 * Note: we no longer distinguish between VMIO and non-VMIO
1731		 * buffers.
1732		 */
1733
1734		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1735
1736		/*
1737		 * If we are defragging then we need a buffer with
1738		 * b_kvasize != 0.  XXX this situation should no longer
1739		 * occur, if defrag is non-zero the buffer's b_kvasize
1740		 * should also be non-zero at this point.  XXX
1741		 */
1742		if (defrag && bp->b_kvasize == 0) {
1743			printf("Warning: defrag empty buffer %p\n", bp);
1744			continue;
1745		}
1746
1747		/*
1748		 * Start freeing the bp.  This is somewhat involved.  nbp
1749		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1750		 */
1751
1752		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1753			panic("getnewbuf: locked buf");
1754		bremfree(bp);
1755
1756		if (qindex == QUEUE_CLEAN) {
1757			if (bp->b_flags & B_VMIO) {
1758				bp->b_flags &= ~B_ASYNC;
1759				vfs_vmio_release(bp);
1760			}
1761			if (bp->b_vp)
1762				brelvp(bp);
1763		}
1764
1765		/*
1766		 * NOTE:  nbp is now entirely invalid.  We can only restart
1767		 * the scan from this point on.
1768		 *
1769		 * Get the rest of the buffer freed up.  b_kva* is still
1770		 * valid after this operation.
1771		 */
1772
1773		if (bp->b_rcred != NOCRED) {
1774			crfree(bp->b_rcred);
1775			bp->b_rcred = NOCRED;
1776		}
1777		if (bp->b_wcred != NOCRED) {
1778			crfree(bp->b_wcred);
1779			bp->b_wcred = NOCRED;
1780		}
1781		if (LIST_FIRST(&bp->b_dep) != NULL)
1782			buf_deallocate(bp);
1783		if (bp->b_xflags & BX_BKGRDINPROG)
1784			panic("losing buffer 3");
1785		LIST_REMOVE(bp, b_hash);
1786		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1787
1788		if (bp->b_bufsize)
1789			allocbuf(bp, 0);
1790
1791		bp->b_flags = 0;
1792		bp->b_ioflags = 0;
1793		bp->b_xflags = 0;
1794		bp->b_dev = NODEV;
1795		bp->b_vp = NULL;
1796		bp->b_blkno = bp->b_lblkno = 0;
1797		bp->b_offset = NOOFFSET;
1798		bp->b_iodone = 0;
1799		bp->b_error = 0;
1800		bp->b_resid = 0;
1801		bp->b_bcount = 0;
1802		bp->b_npages = 0;
1803		bp->b_dirtyoff = bp->b_dirtyend = 0;
1804		bp->b_magic = B_MAGIC_BIO;
1805		bp->b_op = &buf_ops_bio;
1806		bp->b_object = NULL;
1807
1808		LIST_INIT(&bp->b_dep);
1809
1810		/*
1811		 * If we are defragging then free the buffer.
1812		 */
1813		if (defrag) {
1814			bp->b_flags |= B_INVAL;
1815			bfreekva(bp);
1816			brelse(bp);
1817			defrag = 0;
1818			goto restart;
1819		}
1820
1821		/*
1822		 * If we are overcomitted then recover the buffer and its
1823		 * KVM space.  This occurs in rare situations when multiple
1824		 * processes are blocked in getnewbuf() or allocbuf().
1825		 */
1826		if (bufspace >= hibufspace)
1827			flushingbufs = 1;
1828		if (flushingbufs && bp->b_kvasize != 0) {
1829			bp->b_flags |= B_INVAL;
1830			bfreekva(bp);
1831			brelse(bp);
1832			goto restart;
1833		}
1834		if (bufspace < lobufspace)
1835			flushingbufs = 0;
1836		break;
1837	}
1838
1839	/*
1840	 * If we exhausted our list, sleep as appropriate.  We may have to
1841	 * wakeup various daemons and write out some dirty buffers.
1842	 *
1843	 * Generally we are sleeping due to insufficient buffer space.
1844	 */
1845
1846	if (bp == NULL) {
1847		int flags;
1848		char *waitmsg;
1849
1850		if (defrag) {
1851			flags = VFS_BIO_NEED_BUFSPACE;
1852			waitmsg = "nbufkv";
1853		} else if (bufspace >= hibufspace) {
1854			waitmsg = "nbufbs";
1855			flags = VFS_BIO_NEED_BUFSPACE;
1856		} else {
1857			waitmsg = "newbuf";
1858			flags = VFS_BIO_NEED_ANY;
1859		}
1860
1861		bd_speedup();	/* heeeelp */
1862
1863		needsbuffer |= flags;
1864		while (needsbuffer & flags) {
1865			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1866			    waitmsg, slptimeo))
1867				return (NULL);
1868		}
1869	} else {
1870		/*
1871		 * We finally have a valid bp.  We aren't quite out of the
1872		 * woods, we still have to reserve kva space.  In order
1873		 * to keep fragmentation sane we only allocate kva in
1874		 * BKVASIZE chunks.
1875		 */
1876		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1877
1878		if (maxsize != bp->b_kvasize) {
1879			vm_offset_t addr = 0;
1880
1881			bfreekva(bp);
1882
1883			if (vm_map_findspace(buffer_map,
1884				vm_map_min(buffer_map), maxsize, &addr)) {
1885				/*
1886				 * Uh oh.  Buffer map is to fragmented.  We
1887				 * must defragment the map.
1888				 */
1889				++bufdefragcnt;
1890				defrag = 1;
1891				bp->b_flags |= B_INVAL;
1892				brelse(bp);
1893				goto restart;
1894			}
1895			if (addr) {
1896				vm_map_insert(buffer_map, NULL, 0,
1897					addr, addr + maxsize,
1898					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1899
1900				bp->b_kvabase = (caddr_t) addr;
1901				bp->b_kvasize = maxsize;
1902				bufspace += bp->b_kvasize;
1903				++bufreusecnt;
1904			}
1905		}
1906		bp->b_data = bp->b_kvabase;
1907	}
1908	return(bp);
1909}
1910
1911/*
1912 *	buf_daemon:
1913 *
1914 *	buffer flushing daemon.  Buffers are normally flushed by the
1915 *	update daemon but if it cannot keep up this process starts to
1916 *	take the load in an attempt to prevent getnewbuf() from blocking.
1917 */
1918
1919static struct proc *bufdaemonproc;
1920
1921static struct kproc_desc buf_kp = {
1922	"bufdaemon",
1923	buf_daemon,
1924	&bufdaemonproc
1925};
1926SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1927
1928static void
1929buf_daemon()
1930{
1931	int s;
1932
1933	mtx_lock(&Giant);
1934
1935	/*
1936	 * This process needs to be suspended prior to shutdown sync.
1937	 */
1938	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1939	    SHUTDOWN_PRI_LAST);
1940
1941	/*
1942	 * This process is allowed to take the buffer cache to the limit
1943	 */
1944	s = splbio();
1945
1946	for (;;) {
1947		kthread_suspend_check(bufdaemonproc);
1948
1949		bd_request = 0;
1950
1951		/*
1952		 * Do the flush.  Limit the amount of in-transit I/O we
1953		 * allow to build up, otherwise we would completely saturate
1954		 * the I/O system.  Wakeup any waiting processes before we
1955		 * normally would so they can run in parallel with our drain.
1956		 */
1957		while (numdirtybuffers > lodirtybuffers) {
1958			if (flushbufqueues() == 0)
1959				break;
1960			waitrunningbufspace();
1961			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1962		}
1963
1964		/*
1965		 * Only clear bd_request if we have reached our low water
1966		 * mark.  The buf_daemon normally waits 1 second and
1967		 * then incrementally flushes any dirty buffers that have
1968		 * built up, within reason.
1969		 *
1970		 * If we were unable to hit our low water mark and couldn't
1971		 * find any flushable buffers, we sleep half a second.
1972		 * Otherwise we loop immediately.
1973		 */
1974		if (numdirtybuffers <= lodirtybuffers) {
1975			/*
1976			 * We reached our low water mark, reset the
1977			 * request and sleep until we are needed again.
1978			 * The sleep is just so the suspend code works.
1979			 */
1980			bd_request = 0;
1981			tsleep(&bd_request, PVM, "psleep", hz);
1982		} else {
1983			/*
1984			 * We couldn't find any flushable dirty buffers but
1985			 * still have too many dirty buffers, we
1986			 * have to sleep and try again.  (rare)
1987			 */
1988			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1989		}
1990	}
1991}
1992
1993/*
1994 *	flushbufqueues:
1995 *
1996 *	Try to flush a buffer in the dirty queue.  We must be careful to
1997 *	free up B_INVAL buffers instead of write them, which NFS is
1998 *	particularly sensitive to.
1999 */
2000
2001static int
2002flushbufqueues(void)
2003{
2004	struct buf *bp;
2005	int r = 0;
2006
2007	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2008
2009	while (bp) {
2010		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2011		if ((bp->b_flags & B_DELWRI) != 0 &&
2012		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2013			if (bp->b_flags & B_INVAL) {
2014				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2015					panic("flushbufqueues: locked buf");
2016				bremfree(bp);
2017				brelse(bp);
2018				++r;
2019				break;
2020			}
2021			if (LIST_FIRST(&bp->b_dep) != NULL &&
2022			    (bp->b_flags & B_DEFERRED) == 0 &&
2023			    buf_countdeps(bp, 0)) {
2024				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2025				    bp, b_freelist);
2026				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2027				    bp, b_freelist);
2028				bp->b_flags |= B_DEFERRED;
2029				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2030				continue;
2031			}
2032			vfs_bio_awrite(bp);
2033			++r;
2034			break;
2035		}
2036		bp = TAILQ_NEXT(bp, b_freelist);
2037	}
2038	return (r);
2039}
2040
2041/*
2042 * Check to see if a block is currently memory resident.
2043 */
2044struct buf *
2045incore(struct vnode * vp, daddr_t blkno)
2046{
2047	struct buf *bp;
2048
2049	int s = splbio();
2050	bp = gbincore(vp, blkno);
2051	splx(s);
2052	return (bp);
2053}
2054
2055/*
2056 * Returns true if no I/O is needed to access the
2057 * associated VM object.  This is like incore except
2058 * it also hunts around in the VM system for the data.
2059 */
2060
2061int
2062inmem(struct vnode * vp, daddr_t blkno)
2063{
2064	vm_object_t obj;
2065	vm_offset_t toff, tinc, size;
2066	vm_page_t m;
2067	vm_ooffset_t off;
2068
2069	GIANT_REQUIRED;
2070
2071	if (incore(vp, blkno))
2072		return 1;
2073	if (vp->v_mount == NULL)
2074		return 0;
2075	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2076		return 0;
2077
2078	size = PAGE_SIZE;
2079	if (size > vp->v_mount->mnt_stat.f_iosize)
2080		size = vp->v_mount->mnt_stat.f_iosize;
2081	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2082
2083	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2084		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2085		if (!m)
2086			goto notinmem;
2087		tinc = size;
2088		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2089			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2090		if (vm_page_is_valid(m,
2091		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2092			goto notinmem;
2093	}
2094	return 1;
2095
2096notinmem:
2097	return (0);
2098}
2099
2100/*
2101 *	vfs_setdirty:
2102 *
2103 *	Sets the dirty range for a buffer based on the status of the dirty
2104 *	bits in the pages comprising the buffer.
2105 *
2106 *	The range is limited to the size of the buffer.
2107 *
2108 *	This routine is primarily used by NFS, but is generalized for the
2109 *	B_VMIO case.
2110 */
2111static void
2112vfs_setdirty(struct buf *bp)
2113{
2114	int i;
2115	vm_object_t object;
2116
2117	GIANT_REQUIRED;
2118	/*
2119	 * Degenerate case - empty buffer
2120	 */
2121
2122	if (bp->b_bufsize == 0)
2123		return;
2124
2125	/*
2126	 * We qualify the scan for modified pages on whether the
2127	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2128	 * is not cleared simply by protecting pages off.
2129	 */
2130
2131	if ((bp->b_flags & B_VMIO) == 0)
2132		return;
2133
2134	object = bp->b_pages[0]->object;
2135
2136	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2137		printf("Warning: object %p writeable but not mightbedirty\n", object);
2138	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2139		printf("Warning: object %p mightbedirty but not writeable\n", object);
2140
2141	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2142		vm_offset_t boffset;
2143		vm_offset_t eoffset;
2144
2145		/*
2146		 * test the pages to see if they have been modified directly
2147		 * by users through the VM system.
2148		 */
2149		for (i = 0; i < bp->b_npages; i++) {
2150			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2151			vm_page_test_dirty(bp->b_pages[i]);
2152		}
2153
2154		/*
2155		 * Calculate the encompassing dirty range, boffset and eoffset,
2156		 * (eoffset - boffset) bytes.
2157		 */
2158
2159		for (i = 0; i < bp->b_npages; i++) {
2160			if (bp->b_pages[i]->dirty)
2161				break;
2162		}
2163		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2164
2165		for (i = bp->b_npages - 1; i >= 0; --i) {
2166			if (bp->b_pages[i]->dirty) {
2167				break;
2168			}
2169		}
2170		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2171
2172		/*
2173		 * Fit it to the buffer.
2174		 */
2175
2176		if (eoffset > bp->b_bcount)
2177			eoffset = bp->b_bcount;
2178
2179		/*
2180		 * If we have a good dirty range, merge with the existing
2181		 * dirty range.
2182		 */
2183
2184		if (boffset < eoffset) {
2185			if (bp->b_dirtyoff > boffset)
2186				bp->b_dirtyoff = boffset;
2187			if (bp->b_dirtyend < eoffset)
2188				bp->b_dirtyend = eoffset;
2189		}
2190	}
2191}
2192
2193/*
2194 *	getblk:
2195 *
2196 *	Get a block given a specified block and offset into a file/device.
2197 *	The buffers B_DONE bit will be cleared on return, making it almost
2198 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2199 *	return.  The caller should clear B_INVAL prior to initiating a
2200 *	READ.
2201 *
2202 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2203 *	an existing buffer.
2204 *
2205 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2206 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2207 *	and then cleared based on the backing VM.  If the previous buffer is
2208 *	non-0-sized but invalid, B_CACHE will be cleared.
2209 *
2210 *	If getblk() must create a new buffer, the new buffer is returned with
2211 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2212 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2213 *	backing VM.
2214 *
2215 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2216 *	B_CACHE bit is clear.
2217 *
2218 *	What this means, basically, is that the caller should use B_CACHE to
2219 *	determine whether the buffer is fully valid or not and should clear
2220 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2221 *	the buffer by loading its data area with something, the caller needs
2222 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2223 *	the caller should set B_CACHE ( as an optimization ), else the caller
2224 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2225 *	a write attempt or if it was a successfull read.  If the caller
2226 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2227 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2228 */
2229struct buf *
2230getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2231{
2232	struct buf *bp;
2233	int s;
2234	struct bufhashhdr *bh;
2235
2236	if (size > MAXBSIZE)
2237		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2238
2239	s = splbio();
2240loop:
2241	/*
2242	 * Block if we are low on buffers.   Certain processes are allowed
2243	 * to completely exhaust the buffer cache.
2244         *
2245         * If this check ever becomes a bottleneck it may be better to
2246         * move it into the else, when gbincore() fails.  At the moment
2247         * it isn't a problem.
2248	 *
2249	 * XXX remove if 0 sections (clean this up after its proven)
2250         */
2251	if (numfreebuffers == 0) {
2252		if (curthread == PCPU_GET(idlethread))
2253			return NULL;
2254		needsbuffer |= VFS_BIO_NEED_ANY;
2255	}
2256
2257	if ((bp = gbincore(vp, blkno))) {
2258		/*
2259		 * Buffer is in-core.  If the buffer is not busy, it must
2260		 * be on a queue.
2261		 */
2262
2263		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2264			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2265			    "getblk", slpflag, slptimeo) == ENOLCK)
2266				goto loop;
2267			splx(s);
2268			return (struct buf *) NULL;
2269		}
2270
2271		/*
2272		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2273		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2274		 * and for a VMIO buffer B_CACHE is adjusted according to the
2275		 * backing VM cache.
2276		 */
2277		if (bp->b_flags & B_INVAL)
2278			bp->b_flags &= ~B_CACHE;
2279		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2280			bp->b_flags |= B_CACHE;
2281		bremfree(bp);
2282
2283		/*
2284		 * check for size inconsistancies for non-VMIO case.
2285		 */
2286
2287		if (bp->b_bcount != size) {
2288			if ((bp->b_flags & B_VMIO) == 0 ||
2289			    (size > bp->b_kvasize)) {
2290				if (bp->b_flags & B_DELWRI) {
2291					bp->b_flags |= B_NOCACHE;
2292					BUF_WRITE(bp);
2293				} else {
2294					if ((bp->b_flags & B_VMIO) &&
2295					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2296						bp->b_flags |= B_RELBUF;
2297						brelse(bp);
2298					} else {
2299						bp->b_flags |= B_NOCACHE;
2300						BUF_WRITE(bp);
2301					}
2302				}
2303				goto loop;
2304			}
2305		}
2306
2307		/*
2308		 * If the size is inconsistant in the VMIO case, we can resize
2309		 * the buffer.  This might lead to B_CACHE getting set or
2310		 * cleared.  If the size has not changed, B_CACHE remains
2311		 * unchanged from its previous state.
2312		 */
2313
2314		if (bp->b_bcount != size)
2315			allocbuf(bp, size);
2316
2317		KASSERT(bp->b_offset != NOOFFSET,
2318		    ("getblk: no buffer offset"));
2319
2320		/*
2321		 * A buffer with B_DELWRI set and B_CACHE clear must
2322		 * be committed before we can return the buffer in
2323		 * order to prevent the caller from issuing a read
2324		 * ( due to B_CACHE not being set ) and overwriting
2325		 * it.
2326		 *
2327		 * Most callers, including NFS and FFS, need this to
2328		 * operate properly either because they assume they
2329		 * can issue a read if B_CACHE is not set, or because
2330		 * ( for example ) an uncached B_DELWRI might loop due
2331		 * to softupdates re-dirtying the buffer.  In the latter
2332		 * case, B_CACHE is set after the first write completes,
2333		 * preventing further loops.
2334		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2335		 * above while extending the buffer, we cannot allow the
2336		 * buffer to remain with B_CACHE set after the write
2337		 * completes or it will represent a corrupt state.  To
2338		 * deal with this we set B_NOCACHE to scrap the buffer
2339		 * after the write.
2340		 *
2341		 * We might be able to do something fancy, like setting
2342		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2343		 * so the below call doesn't set B_CACHE, but that gets real
2344		 * confusing.  This is much easier.
2345		 */
2346
2347		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2348			bp->b_flags |= B_NOCACHE;
2349			BUF_WRITE(bp);
2350			goto loop;
2351		}
2352
2353		splx(s);
2354		bp->b_flags &= ~B_DONE;
2355	} else {
2356		/*
2357		 * Buffer is not in-core, create new buffer.  The buffer
2358		 * returned by getnewbuf() is locked.  Note that the returned
2359		 * buffer is also considered valid (not marked B_INVAL).
2360		 */
2361		int bsize, maxsize, vmio;
2362		off_t offset;
2363
2364		if (vn_isdisk(vp, NULL))
2365			bsize = DEV_BSIZE;
2366		else if (vp->v_mountedhere)
2367			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2368		else if (vp->v_mount)
2369			bsize = vp->v_mount->mnt_stat.f_iosize;
2370		else
2371			bsize = size;
2372
2373		offset = blkno * bsize;
2374		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2375		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2376		maxsize = imax(maxsize, bsize);
2377
2378		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2379			if (slpflag || slptimeo) {
2380				splx(s);
2381				return NULL;
2382			}
2383			goto loop;
2384		}
2385
2386		/*
2387		 * This code is used to make sure that a buffer is not
2388		 * created while the getnewbuf routine is blocked.
2389		 * This can be a problem whether the vnode is locked or not.
2390		 * If the buffer is created out from under us, we have to
2391		 * throw away the one we just created.  There is now window
2392		 * race because we are safely running at splbio() from the
2393		 * point of the duplicate buffer creation through to here,
2394		 * and we've locked the buffer.
2395		 */
2396		if (gbincore(vp, blkno)) {
2397			bp->b_flags |= B_INVAL;
2398			brelse(bp);
2399			goto loop;
2400		}
2401
2402		/*
2403		 * Insert the buffer into the hash, so that it can
2404		 * be found by incore.
2405		 */
2406		bp->b_blkno = bp->b_lblkno = blkno;
2407		bp->b_offset = offset;
2408
2409		bgetvp(vp, bp);
2410		LIST_REMOVE(bp, b_hash);
2411		bh = bufhash(vp, blkno);
2412		LIST_INSERT_HEAD(bh, bp, b_hash);
2413
2414		/*
2415		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2416		 * buffer size starts out as 0, B_CACHE will be set by
2417		 * allocbuf() for the VMIO case prior to it testing the
2418		 * backing store for validity.
2419		 */
2420
2421		if (vmio) {
2422			bp->b_flags |= B_VMIO;
2423#if defined(VFS_BIO_DEBUG)
2424			if (vp->v_type != VREG)
2425				printf("getblk: vmioing file type %d???\n", vp->v_type);
2426#endif
2427			VOP_GETVOBJECT(vp, &bp->b_object);
2428			vm_object_reference(bp->b_object);
2429		} else {
2430			bp->b_flags &= ~B_VMIO;
2431			bp->b_object = NULL;
2432		}
2433
2434		allocbuf(bp, size);
2435
2436		splx(s);
2437		bp->b_flags &= ~B_DONE;
2438	}
2439	return (bp);
2440}
2441
2442/*
2443 * Get an empty, disassociated buffer of given size.  The buffer is initially
2444 * set to B_INVAL.
2445 */
2446struct buf *
2447geteblk(int size)
2448{
2449	struct buf *bp;
2450	int s;
2451	int maxsize;
2452
2453	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2454
2455	s = splbio();
2456	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2457	splx(s);
2458	allocbuf(bp, size);
2459	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2460	return (bp);
2461}
2462
2463
2464/*
2465 * This code constitutes the buffer memory from either anonymous system
2466 * memory (in the case of non-VMIO operations) or from an associated
2467 * VM object (in the case of VMIO operations).  This code is able to
2468 * resize a buffer up or down.
2469 *
2470 * Note that this code is tricky, and has many complications to resolve
2471 * deadlock or inconsistant data situations.  Tread lightly!!!
2472 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2473 * the caller.  Calling this code willy nilly can result in the loss of data.
2474 *
2475 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2476 * B_CACHE for the non-VMIO case.
2477 */
2478
2479int
2480allocbuf(struct buf *bp, int size)
2481{
2482	int newbsize, mbsize;
2483	int i;
2484
2485	GIANT_REQUIRED;
2486
2487	if (BUF_REFCNT(bp) == 0)
2488		panic("allocbuf: buffer not busy");
2489
2490	if (bp->b_kvasize < size)
2491		panic("allocbuf: buffer too small");
2492
2493	if ((bp->b_flags & B_VMIO) == 0) {
2494		caddr_t origbuf;
2495		int origbufsize;
2496		/*
2497		 * Just get anonymous memory from the kernel.  Don't
2498		 * mess with B_CACHE.
2499		 */
2500		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2501		if (bp->b_flags & B_MALLOC)
2502			newbsize = mbsize;
2503		else
2504			newbsize = round_page(size);
2505
2506		if (newbsize < bp->b_bufsize) {
2507			/*
2508			 * malloced buffers are not shrunk
2509			 */
2510			if (bp->b_flags & B_MALLOC) {
2511				if (newbsize) {
2512					bp->b_bcount = size;
2513				} else {
2514					free(bp->b_data, M_BIOBUF);
2515					if (bp->b_bufsize) {
2516						bufmallocspace -= bp->b_bufsize;
2517						bufspacewakeup();
2518						bp->b_bufsize = 0;
2519					}
2520					bp->b_data = bp->b_kvabase;
2521					bp->b_bcount = 0;
2522					bp->b_flags &= ~B_MALLOC;
2523				}
2524				return 1;
2525			}
2526			vm_hold_free_pages(
2527			    bp,
2528			    (vm_offset_t) bp->b_data + newbsize,
2529			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2530		} else if (newbsize > bp->b_bufsize) {
2531			/*
2532			 * We only use malloced memory on the first allocation.
2533			 * and revert to page-allocated memory when the buffer
2534			 * grows.
2535			 */
2536			if ( (bufmallocspace < maxbufmallocspace) &&
2537				(bp->b_bufsize == 0) &&
2538				(mbsize <= PAGE_SIZE/2)) {
2539
2540				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2541				bp->b_bufsize = mbsize;
2542				bp->b_bcount = size;
2543				bp->b_flags |= B_MALLOC;
2544				bufmallocspace += mbsize;
2545				return 1;
2546			}
2547			origbuf = NULL;
2548			origbufsize = 0;
2549			/*
2550			 * If the buffer is growing on its other-than-first allocation,
2551			 * then we revert to the page-allocation scheme.
2552			 */
2553			if (bp->b_flags & B_MALLOC) {
2554				origbuf = bp->b_data;
2555				origbufsize = bp->b_bufsize;
2556				bp->b_data = bp->b_kvabase;
2557				if (bp->b_bufsize) {
2558					bufmallocspace -= bp->b_bufsize;
2559					bufspacewakeup();
2560					bp->b_bufsize = 0;
2561				}
2562				bp->b_flags &= ~B_MALLOC;
2563				newbsize = round_page(newbsize);
2564			}
2565			vm_hold_load_pages(
2566			    bp,
2567			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2568			    (vm_offset_t) bp->b_data + newbsize);
2569			if (origbuf) {
2570				bcopy(origbuf, bp->b_data, origbufsize);
2571				free(origbuf, M_BIOBUF);
2572			}
2573		}
2574	} else {
2575		vm_page_t m;
2576		int desiredpages;
2577
2578		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2579		desiredpages = (size == 0) ? 0 :
2580			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2581
2582		if (bp->b_flags & B_MALLOC)
2583			panic("allocbuf: VMIO buffer can't be malloced");
2584		/*
2585		 * Set B_CACHE initially if buffer is 0 length or will become
2586		 * 0-length.
2587		 */
2588		if (size == 0 || bp->b_bufsize == 0)
2589			bp->b_flags |= B_CACHE;
2590
2591		if (newbsize < bp->b_bufsize) {
2592			/*
2593			 * DEV_BSIZE aligned new buffer size is less then the
2594			 * DEV_BSIZE aligned existing buffer size.  Figure out
2595			 * if we have to remove any pages.
2596			 */
2597			if (desiredpages < bp->b_npages) {
2598				for (i = desiredpages; i < bp->b_npages; i++) {
2599					/*
2600					 * the page is not freed here -- it
2601					 * is the responsibility of
2602					 * vnode_pager_setsize
2603					 */
2604					m = bp->b_pages[i];
2605					KASSERT(m != bogus_page,
2606					    ("allocbuf: bogus page found"));
2607					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2608						;
2609
2610					bp->b_pages[i] = NULL;
2611					vm_page_unwire(m, 0);
2612				}
2613				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2614				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2615				bp->b_npages = desiredpages;
2616			}
2617		} else if (size > bp->b_bcount) {
2618			/*
2619			 * We are growing the buffer, possibly in a
2620			 * byte-granular fashion.
2621			 */
2622			struct vnode *vp;
2623			vm_object_t obj;
2624			vm_offset_t toff;
2625			vm_offset_t tinc;
2626
2627			/*
2628			 * Step 1, bring in the VM pages from the object,
2629			 * allocating them if necessary.  We must clear
2630			 * B_CACHE if these pages are not valid for the
2631			 * range covered by the buffer.
2632			 */
2633
2634			vp = bp->b_vp;
2635			obj = bp->b_object;
2636
2637			while (bp->b_npages < desiredpages) {
2638				vm_page_t m;
2639				vm_pindex_t pi;
2640
2641				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2642				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2643					/*
2644					 * note: must allocate system pages
2645					 * since blocking here could intefere
2646					 * with paging I/O, no matter which
2647					 * process we are.
2648					 */
2649					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2650					if (m == NULL) {
2651						VM_WAIT;
2652						vm_pageout_deficit += desiredpages - bp->b_npages;
2653					} else {
2654						vm_page_wire(m);
2655						vm_page_wakeup(m);
2656						bp->b_flags &= ~B_CACHE;
2657						bp->b_pages[bp->b_npages] = m;
2658						++bp->b_npages;
2659					}
2660					continue;
2661				}
2662
2663				/*
2664				 * We found a page.  If we have to sleep on it,
2665				 * retry because it might have gotten freed out
2666				 * from under us.
2667				 *
2668				 * We can only test PG_BUSY here.  Blocking on
2669				 * m->busy might lead to a deadlock:
2670				 *
2671				 *  vm_fault->getpages->cluster_read->allocbuf
2672				 *
2673				 */
2674
2675				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2676					continue;
2677
2678				/*
2679				 * We have a good page.  Should we wakeup the
2680				 * page daemon?
2681				 */
2682				if ((curproc != pageproc) &&
2683				    ((m->queue - m->pc) == PQ_CACHE) &&
2684				    ((cnt.v_free_count + cnt.v_cache_count) <
2685					(cnt.v_free_min + cnt.v_cache_min))) {
2686					pagedaemon_wakeup();
2687				}
2688				vm_page_flag_clear(m, PG_ZERO);
2689				vm_page_wire(m);
2690				bp->b_pages[bp->b_npages] = m;
2691				++bp->b_npages;
2692			}
2693
2694			/*
2695			 * Step 2.  We've loaded the pages into the buffer,
2696			 * we have to figure out if we can still have B_CACHE
2697			 * set.  Note that B_CACHE is set according to the
2698			 * byte-granular range ( bcount and size ), new the
2699			 * aligned range ( newbsize ).
2700			 *
2701			 * The VM test is against m->valid, which is DEV_BSIZE
2702			 * aligned.  Needless to say, the validity of the data
2703			 * needs to also be DEV_BSIZE aligned.  Note that this
2704			 * fails with NFS if the server or some other client
2705			 * extends the file's EOF.  If our buffer is resized,
2706			 * B_CACHE may remain set! XXX
2707			 */
2708
2709			toff = bp->b_bcount;
2710			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2711
2712			while ((bp->b_flags & B_CACHE) && toff < size) {
2713				vm_pindex_t pi;
2714
2715				if (tinc > (size - toff))
2716					tinc = size - toff;
2717
2718				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2719				    PAGE_SHIFT;
2720
2721				vfs_buf_test_cache(
2722				    bp,
2723				    bp->b_offset,
2724				    toff,
2725				    tinc,
2726				    bp->b_pages[pi]
2727				);
2728				toff += tinc;
2729				tinc = PAGE_SIZE;
2730			}
2731
2732			/*
2733			 * Step 3, fixup the KVM pmap.  Remember that
2734			 * bp->b_data is relative to bp->b_offset, but
2735			 * bp->b_offset may be offset into the first page.
2736			 */
2737
2738			bp->b_data = (caddr_t)
2739			    trunc_page((vm_offset_t)bp->b_data);
2740			pmap_qenter(
2741			    (vm_offset_t)bp->b_data,
2742			    bp->b_pages,
2743			    bp->b_npages
2744			);
2745
2746			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2747			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2748		}
2749	}
2750	if (newbsize < bp->b_bufsize)
2751		bufspacewakeup();
2752	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2753	bp->b_bcount = size;		/* requested buffer size	*/
2754	return 1;
2755}
2756
2757/*
2758 *	bufwait:
2759 *
2760 *	Wait for buffer I/O completion, returning error status.  The buffer
2761 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2762 *	error and cleared.
2763 */
2764int
2765bufwait(register struct buf * bp)
2766{
2767	int s;
2768
2769	s = splbio();
2770	while ((bp->b_flags & B_DONE) == 0) {
2771		if (bp->b_iocmd == BIO_READ)
2772			tsleep(bp, PRIBIO, "biord", 0);
2773		else
2774			tsleep(bp, PRIBIO, "biowr", 0);
2775	}
2776	splx(s);
2777	if (bp->b_flags & B_EINTR) {
2778		bp->b_flags &= ~B_EINTR;
2779		return (EINTR);
2780	}
2781	if (bp->b_ioflags & BIO_ERROR) {
2782		return (bp->b_error ? bp->b_error : EIO);
2783	} else {
2784		return (0);
2785	}
2786}
2787
2788 /*
2789  * Call back function from struct bio back up to struct buf.
2790  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2791  */
2792void
2793bufdonebio(struct bio *bp)
2794{
2795	bufdone(bp->bio_caller2);
2796}
2797
2798/*
2799 *	bufdone:
2800 *
2801 *	Finish I/O on a buffer, optionally calling a completion function.
2802 *	This is usually called from an interrupt so process blocking is
2803 *	not allowed.
2804 *
2805 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2806 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2807 *	assuming B_INVAL is clear.
2808 *
2809 *	For the VMIO case, we set B_CACHE if the op was a read and no
2810 *	read error occured, or if the op was a write.  B_CACHE is never
2811 *	set if the buffer is invalid or otherwise uncacheable.
2812 *
2813 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2814 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2815 *	in the biodone routine.
2816 */
2817void
2818bufdone(struct buf *bp)
2819{
2820	int s;
2821	void    (*biodone)(struct buf *);
2822
2823	GIANT_REQUIRED;
2824
2825	s = splbio();
2826
2827	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2828	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2829
2830	bp->b_flags |= B_DONE;
2831	runningbufwakeup(bp);
2832
2833	if (bp->b_iocmd == BIO_DELETE) {
2834		brelse(bp);
2835		splx(s);
2836		return;
2837	}
2838
2839	if (bp->b_iocmd == BIO_WRITE) {
2840		vwakeup(bp);
2841	}
2842
2843	/* call optional completion function if requested */
2844	if (bp->b_iodone != NULL) {
2845		biodone = bp->b_iodone;
2846		bp->b_iodone = NULL;
2847		(*biodone) (bp);
2848		splx(s);
2849		return;
2850	}
2851	if (LIST_FIRST(&bp->b_dep) != NULL)
2852		buf_complete(bp);
2853
2854	if (bp->b_flags & B_VMIO) {
2855		int i;
2856		vm_ooffset_t foff;
2857		vm_page_t m;
2858		vm_object_t obj;
2859		int iosize;
2860		struct vnode *vp = bp->b_vp;
2861
2862		obj = bp->b_object;
2863
2864#if defined(VFS_BIO_DEBUG)
2865		if (vp->v_usecount == 0) {
2866			panic("biodone: zero vnode ref count");
2867		}
2868
2869		if ((vp->v_flag & VOBJBUF) == 0) {
2870			panic("biodone: vnode is not setup for merged cache");
2871		}
2872#endif
2873
2874		foff = bp->b_offset;
2875		KASSERT(bp->b_offset != NOOFFSET,
2876		    ("biodone: no buffer offset"));
2877
2878#if defined(VFS_BIO_DEBUG)
2879		if (obj->paging_in_progress < bp->b_npages) {
2880			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2881			    obj->paging_in_progress, bp->b_npages);
2882		}
2883#endif
2884
2885		/*
2886		 * Set B_CACHE if the op was a normal read and no error
2887		 * occured.  B_CACHE is set for writes in the b*write()
2888		 * routines.
2889		 */
2890		iosize = bp->b_bcount - bp->b_resid;
2891		if (bp->b_iocmd == BIO_READ &&
2892		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2893		    !(bp->b_ioflags & BIO_ERROR)) {
2894			bp->b_flags |= B_CACHE;
2895		}
2896
2897		for (i = 0; i < bp->b_npages; i++) {
2898			int bogusflag = 0;
2899			int resid;
2900
2901			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2902			if (resid > iosize)
2903				resid = iosize;
2904
2905			/*
2906			 * cleanup bogus pages, restoring the originals
2907			 */
2908			m = bp->b_pages[i];
2909			if (m == bogus_page) {
2910				bogusflag = 1;
2911				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2912				if (m == NULL)
2913					panic("biodone: page disappeared!");
2914				bp->b_pages[i] = m;
2915				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2916			}
2917#if defined(VFS_BIO_DEBUG)
2918			if (OFF_TO_IDX(foff) != m->pindex) {
2919				printf(
2920"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2921				    (unsigned long)foff, m->pindex);
2922			}
2923#endif
2924
2925			/*
2926			 * In the write case, the valid and clean bits are
2927			 * already changed correctly ( see bdwrite() ), so we
2928			 * only need to do this here in the read case.
2929			 */
2930			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2931				vfs_page_set_valid(bp, foff, i, m);
2932			}
2933			vm_page_flag_clear(m, PG_ZERO);
2934
2935			/*
2936			 * when debugging new filesystems or buffer I/O methods, this
2937			 * is the most common error that pops up.  if you see this, you
2938			 * have not set the page busy flag correctly!!!
2939			 */
2940			if (m->busy == 0) {
2941				printf("biodone: page busy < 0, "
2942				    "pindex: %d, foff: 0x(%x,%x), "
2943				    "resid: %d, index: %d\n",
2944				    (int) m->pindex, (int)(foff >> 32),
2945						(int) foff & 0xffffffff, resid, i);
2946				if (!vn_isdisk(vp, NULL))
2947					printf(" iosize: %ld, lblkno: %jd, flags: 0x%lx, npages: %d\n",
2948					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2949					    (intmax_t) bp->b_lblkno,
2950					    bp->b_flags, bp->b_npages);
2951				else
2952					printf(" VDEV, lblkno: %jd, flags: 0x%lx, npages: %d\n",
2953					    (intmax_t) bp->b_lblkno,
2954					    bp->b_flags, bp->b_npages);
2955				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2956				    m->valid, m->dirty, m->wire_count);
2957				panic("biodone: page busy < 0\n");
2958			}
2959			vm_page_io_finish(m);
2960			vm_object_pip_subtract(obj, 1);
2961			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2962			iosize -= resid;
2963		}
2964		if (obj)
2965			vm_object_pip_wakeupn(obj, 0);
2966	}
2967
2968	/*
2969	 * For asynchronous completions, release the buffer now. The brelse
2970	 * will do a wakeup there if necessary - so no need to do a wakeup
2971	 * here in the async case. The sync case always needs to do a wakeup.
2972	 */
2973
2974	if (bp->b_flags & B_ASYNC) {
2975		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2976			brelse(bp);
2977		else
2978			bqrelse(bp);
2979	} else {
2980		wakeup(bp);
2981	}
2982	splx(s);
2983}
2984
2985/*
2986 * This routine is called in lieu of iodone in the case of
2987 * incomplete I/O.  This keeps the busy status for pages
2988 * consistant.
2989 */
2990void
2991vfs_unbusy_pages(struct buf * bp)
2992{
2993	int i;
2994
2995	GIANT_REQUIRED;
2996
2997	runningbufwakeup(bp);
2998	if (bp->b_flags & B_VMIO) {
2999		vm_object_t obj;
3000
3001		obj = bp->b_object;
3002
3003		for (i = 0; i < bp->b_npages; i++) {
3004			vm_page_t m = bp->b_pages[i];
3005
3006			if (m == bogus_page) {
3007				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3008				if (!m) {
3009					panic("vfs_unbusy_pages: page missing\n");
3010				}
3011				bp->b_pages[i] = m;
3012				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3013			}
3014			vm_object_pip_subtract(obj, 1);
3015			vm_page_flag_clear(m, PG_ZERO);
3016			vm_page_io_finish(m);
3017		}
3018		vm_object_pip_wakeupn(obj, 0);
3019	}
3020}
3021
3022/*
3023 * vfs_page_set_valid:
3024 *
3025 *	Set the valid bits in a page based on the supplied offset.   The
3026 *	range is restricted to the buffer's size.
3027 *
3028 *	This routine is typically called after a read completes.
3029 */
3030static void
3031vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3032{
3033	vm_ooffset_t soff, eoff;
3034
3035	GIANT_REQUIRED;
3036	/*
3037	 * Start and end offsets in buffer.  eoff - soff may not cross a
3038	 * page boundry or cross the end of the buffer.  The end of the
3039	 * buffer, in this case, is our file EOF, not the allocation size
3040	 * of the buffer.
3041	 */
3042	soff = off;
3043	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3044	if (eoff > bp->b_offset + bp->b_bcount)
3045		eoff = bp->b_offset + bp->b_bcount;
3046
3047	/*
3048	 * Set valid range.  This is typically the entire buffer and thus the
3049	 * entire page.
3050	 */
3051	if (eoff > soff) {
3052		vm_page_set_validclean(
3053		    m,
3054		   (vm_offset_t) (soff & PAGE_MASK),
3055		   (vm_offset_t) (eoff - soff)
3056		);
3057	}
3058}
3059
3060/*
3061 * This routine is called before a device strategy routine.
3062 * It is used to tell the VM system that paging I/O is in
3063 * progress, and treat the pages associated with the buffer
3064 * almost as being PG_BUSY.  Also the object paging_in_progress
3065 * flag is handled to make sure that the object doesn't become
3066 * inconsistant.
3067 *
3068 * Since I/O has not been initiated yet, certain buffer flags
3069 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3070 * and should be ignored.
3071 */
3072void
3073vfs_busy_pages(struct buf * bp, int clear_modify)
3074{
3075	int i, bogus;
3076
3077	GIANT_REQUIRED;
3078
3079	if (bp->b_flags & B_VMIO) {
3080		vm_object_t obj;
3081		vm_ooffset_t foff;
3082
3083		obj = bp->b_object;
3084		foff = bp->b_offset;
3085		KASSERT(bp->b_offset != NOOFFSET,
3086		    ("vfs_busy_pages: no buffer offset"));
3087		vfs_setdirty(bp);
3088
3089retry:
3090		for (i = 0; i < bp->b_npages; i++) {
3091			vm_page_t m = bp->b_pages[i];
3092			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3093				goto retry;
3094		}
3095
3096		bogus = 0;
3097		for (i = 0; i < bp->b_npages; i++) {
3098			vm_page_t m = bp->b_pages[i];
3099
3100			vm_page_flag_clear(m, PG_ZERO);
3101			if ((bp->b_flags & B_CLUSTER) == 0) {
3102				vm_object_pip_add(obj, 1);
3103				vm_page_io_start(m);
3104			}
3105
3106			/*
3107			 * When readying a buffer for a read ( i.e
3108			 * clear_modify == 0 ), it is important to do
3109			 * bogus_page replacement for valid pages in
3110			 * partially instantiated buffers.  Partially
3111			 * instantiated buffers can, in turn, occur when
3112			 * reconstituting a buffer from its VM backing store
3113			 * base.  We only have to do this if B_CACHE is
3114			 * clear ( which causes the I/O to occur in the
3115			 * first place ).  The replacement prevents the read
3116			 * I/O from overwriting potentially dirty VM-backed
3117			 * pages.  XXX bogus page replacement is, uh, bogus.
3118			 * It may not work properly with small-block devices.
3119			 * We need to find a better way.
3120			 */
3121
3122			vm_page_protect(m, VM_PROT_NONE);
3123			if (clear_modify)
3124				vfs_page_set_valid(bp, foff, i, m);
3125			else if (m->valid == VM_PAGE_BITS_ALL &&
3126				(bp->b_flags & B_CACHE) == 0) {
3127				bp->b_pages[i] = bogus_page;
3128				bogus++;
3129			}
3130			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3131		}
3132		if (bogus)
3133			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3134	}
3135}
3136
3137/*
3138 * Tell the VM system that the pages associated with this buffer
3139 * are clean.  This is used for delayed writes where the data is
3140 * going to go to disk eventually without additional VM intevention.
3141 *
3142 * Note that while we only really need to clean through to b_bcount, we
3143 * just go ahead and clean through to b_bufsize.
3144 */
3145static void
3146vfs_clean_pages(struct buf * bp)
3147{
3148	int i;
3149
3150	GIANT_REQUIRED;
3151
3152	if (bp->b_flags & B_VMIO) {
3153		vm_ooffset_t foff;
3154
3155		foff = bp->b_offset;
3156		KASSERT(bp->b_offset != NOOFFSET,
3157		    ("vfs_clean_pages: no buffer offset"));
3158		for (i = 0; i < bp->b_npages; i++) {
3159			vm_page_t m = bp->b_pages[i];
3160			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3161			vm_ooffset_t eoff = noff;
3162
3163			if (eoff > bp->b_offset + bp->b_bufsize)
3164				eoff = bp->b_offset + bp->b_bufsize;
3165			vfs_page_set_valid(bp, foff, i, m);
3166			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3167			foff = noff;
3168		}
3169	}
3170}
3171
3172/*
3173 *	vfs_bio_set_validclean:
3174 *
3175 *	Set the range within the buffer to valid and clean.  The range is
3176 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3177 *	itself may be offset from the beginning of the first page.
3178 *
3179 */
3180
3181void
3182vfs_bio_set_validclean(struct buf *bp, int base, int size)
3183{
3184	if (bp->b_flags & B_VMIO) {
3185		int i;
3186		int n;
3187
3188		/*
3189		 * Fixup base to be relative to beginning of first page.
3190		 * Set initial n to be the maximum number of bytes in the
3191		 * first page that can be validated.
3192		 */
3193
3194		base += (bp->b_offset & PAGE_MASK);
3195		n = PAGE_SIZE - (base & PAGE_MASK);
3196
3197		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3198			vm_page_t m = bp->b_pages[i];
3199
3200			if (n > size)
3201				n = size;
3202
3203			vm_page_set_validclean(m, base & PAGE_MASK, n);
3204			base += n;
3205			size -= n;
3206			n = PAGE_SIZE;
3207		}
3208	}
3209}
3210
3211/*
3212 *	vfs_bio_clrbuf:
3213 *
3214 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3215 *	to clear BIO_ERROR and B_INVAL.
3216 *
3217 *	Note that while we only theoretically need to clear through b_bcount,
3218 *	we go ahead and clear through b_bufsize.
3219 */
3220
3221void
3222vfs_bio_clrbuf(struct buf *bp)
3223{
3224	int i, mask = 0;
3225	caddr_t sa, ea;
3226
3227	GIANT_REQUIRED;
3228
3229	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3230		bp->b_flags &= ~B_INVAL;
3231		bp->b_ioflags &= ~BIO_ERROR;
3232		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3233		    (bp->b_offset & PAGE_MASK) == 0) {
3234			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3235			if ((bp->b_pages[0]->valid & mask) == mask) {
3236				bp->b_resid = 0;
3237				return;
3238			}
3239			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3240			    ((bp->b_pages[0]->valid & mask) == 0)) {
3241				bzero(bp->b_data, bp->b_bufsize);
3242				bp->b_pages[0]->valid |= mask;
3243				bp->b_resid = 0;
3244				return;
3245			}
3246		}
3247		ea = sa = bp->b_data;
3248		for(i=0;i<bp->b_npages;i++,sa=ea) {
3249			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3250			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3251			ea = (caddr_t)(vm_offset_t)ulmin(
3252			    (u_long)(vm_offset_t)ea,
3253			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3254			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3255			if ((bp->b_pages[i]->valid & mask) == mask)
3256				continue;
3257			if ((bp->b_pages[i]->valid & mask) == 0) {
3258				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3259					bzero(sa, ea - sa);
3260				}
3261			} else {
3262				for (; sa < ea; sa += DEV_BSIZE, j++) {
3263					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3264						(bp->b_pages[i]->valid & (1<<j)) == 0)
3265						bzero(sa, DEV_BSIZE);
3266				}
3267			}
3268			bp->b_pages[i]->valid |= mask;
3269			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3270		}
3271		bp->b_resid = 0;
3272	} else {
3273		clrbuf(bp);
3274	}
3275}
3276
3277/*
3278 * vm_hold_load_pages and vm_hold_free_pages get pages into
3279 * a buffers address space.  The pages are anonymous and are
3280 * not associated with a file object.
3281 */
3282static void
3283vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3284{
3285	vm_offset_t pg;
3286	vm_page_t p;
3287	int index;
3288
3289	GIANT_REQUIRED;
3290
3291	to = round_page(to);
3292	from = round_page(from);
3293	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3294
3295	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3296tryagain:
3297		/*
3298		 * note: must allocate system pages since blocking here
3299		 * could intefere with paging I/O, no matter which
3300		 * process we are.
3301		 */
3302		p = vm_page_alloc(kernel_object,
3303			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3304		    VM_ALLOC_SYSTEM);
3305		if (!p) {
3306			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3307			VM_WAIT;
3308			goto tryagain;
3309		}
3310		vm_page_wire(p);
3311		p->valid = VM_PAGE_BITS_ALL;
3312		vm_page_flag_clear(p, PG_ZERO);
3313		pmap_qenter(pg, &p, 1);
3314		bp->b_pages[index] = p;
3315		vm_page_wakeup(p);
3316	}
3317	bp->b_npages = index;
3318}
3319
3320/* Return pages associated with this buf to the vm system */
3321void
3322vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3323{
3324	vm_offset_t pg;
3325	vm_page_t p;
3326	int index, newnpages;
3327
3328	GIANT_REQUIRED;
3329
3330	from = round_page(from);
3331	to = round_page(to);
3332	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3333
3334	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3335		p = bp->b_pages[index];
3336		if (p && (index < bp->b_npages)) {
3337			if (p->busy) {
3338				printf(
3339			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3340				    (intmax_t)bp->b_blkno,
3341				    (intmax_t)bp->b_lblkno);
3342			}
3343			bp->b_pages[index] = NULL;
3344			pmap_qremove(pg, 1);
3345			vm_page_busy(p);
3346			vm_page_unwire(p, 0);
3347			vm_page_free(p);
3348		}
3349	}
3350	bp->b_npages = newnpages;
3351}
3352
3353
3354#include "opt_ddb.h"
3355#ifdef DDB
3356#include <ddb/ddb.h>
3357
3358/* DDB command to show buffer data */
3359DB_SHOW_COMMAND(buffer, db_show_buffer)
3360{
3361	/* get args */
3362	struct buf *bp = (struct buf *)addr;
3363
3364	if (!have_addr) {
3365		db_printf("usage: show buffer <addr>\n");
3366		return;
3367	}
3368
3369	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3370	db_printf(
3371	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3372	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd, b_pblkno = %jd\n",
3373	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3374	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3375	    (intmax_t)bp->b_blkno, (intmax_t)bp->b_pblkno);
3376	if (bp->b_npages) {
3377		int i;
3378		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3379		for (i = 0; i < bp->b_npages; i++) {
3380			vm_page_t m;
3381			m = bp->b_pages[i];
3382			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3383			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3384			if ((i + 1) < bp->b_npages)
3385				db_printf(",");
3386		}
3387		db_printf("\n");
3388	}
3389}
3390#endif /* DDB */
3391