vfs_bio.c revision 91700
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 91700 2002-03-05 18:20:58Z eivind $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct	buf_ops buf_ops_bio = {
62	"buf_ops_bio",
63	bwrite
64};
65
66/*
67 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
68 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
69 */
70struct buf *buf;		/* buffer header pool */
71struct mtx buftimelock;		/* Interlock on setting prio and timo */
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
78			       int pageno, vm_page_t m);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82static void vfs_backgroundwritedone(struct buf *bp);
83static int flushbufqueues(void);
84static void buf_daemon __P((void));
85
86int vmiodirenable = TRUE;
87SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
88    "Use the VM system for directory writes");
89int runningbufspace;
90SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
91    "Amount of presently outstanding async buffer io");
92static int bufspace;
93SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
94    "KVA memory used for bufs");
95static int maxbufspace;
96SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
97    "Maximum allowed value of bufspace (including buf_daemon)");
98static int bufmallocspace;
99SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
100    "Amount of malloced memory for buffers");
101static int maxbufmallocspace;
102SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
103    "Maximum amount of malloced memory for buffers");
104static int lobufspace;
105SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
106    "Minimum amount of buffers we want to have");
107static int hibufspace;
108SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
109    "Maximum allowed value of bufspace (excluding buf_daemon)");
110static int bufreusecnt;
111SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
112    "Number of times we have reused a buffer");
113static int buffreekvacnt;
114SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
115    "Number of times we have freed the KVA space from some buffer");
116static int bufdefragcnt;
117SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
118    "Number of times we have had to repeat buffer allocation to defragment");
119static int lorunningspace;
120SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
121    "Minimum preferred space used for in-progress I/O");
122static int hirunningspace;
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
124    "Maximum amount of space to use for in-progress I/O");
125static int numdirtybuffers;
126SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
127    "Number of buffers that are dirty (has unwritten changes) at the moment");
128static int lodirtybuffers;
129SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
130    "How many buffers we want to have free before bufdaemon can sleep");
131static int hidirtybuffers;
132SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
133    "When the number of dirty buffers is considered severe");
134static int numfreebuffers;
135SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
136    "Number of free buffers");
137static int lofreebuffers;
138SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
139   "XXX Unused");
140static int hifreebuffers;
141SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
142   "XXX Complicatedly unused");
143static int getnewbufcalls;
144SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
145   "Number of calls to getnewbuf");
146static int getnewbufrestarts;
147SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
148    "Number of times getnewbuf has had to restart a buffer aquisition");
149static int dobkgrdwrite = 1;
150SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
151    "Do background writes (honoring the BX_BKGRDWRITE flag)?");
152
153/*
154 * Wakeup point for bufdaemon, as well as indicator of whether it is already
155 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
156 * is idling.
157 */
158static int bd_request;
159
160/*
161 * bogus page -- for I/O to/from partially complete buffers
162 * this is a temporary solution to the problem, but it is not
163 * really that bad.  it would be better to split the buffer
164 * for input in the case of buffers partially already in memory,
165 * but the code is intricate enough already.
166 */
167vm_page_t bogus_page;
168
169/*
170 * Offset for bogus_page.
171 * XXX bogus_offset should be local to bufinit
172 */
173static vm_offset_t bogus_offset;
174
175/*
176 * Synchronization (sleep/wakeup) variable for active buffer space requests.
177 * Set when wait starts, cleared prior to wakeup().
178 * Used in runningbufwakeup() and waitrunningbufspace().
179 */
180static int runningbufreq;
181
182/*
183 * Synchronization (sleep/wakeup) variable for buffer requests.
184 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
185 * by and/or.
186 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
187 * getnewbuf(), and getblk().
188 */
189static int needsbuffer;
190
191/*
192 * Mask for index into the buffer hash table, which needs to be power of 2 in
193 * size.  Set in kern_vfs_bio_buffer_alloc.
194 */
195static int bufhashmask;
196
197/*
198 * Hash table for all buffers, with a linked list hanging from each table
199 * entry.  Set in kern_vfs_bio_buffer_alloc, initialized in buf_init.
200 */
201static LIST_HEAD(bufhashhdr, buf) *bufhashtbl;
202
203/*
204 * Somewhere to store buffers when they are not in another list, to always
205 * have them in a list (and thus being able to use the same set of operations
206 * on them.)
207 */
208static struct bufhashhdr invalhash;
209
210/*
211 * Definitions for the buffer free lists.
212 */
213#define BUFFER_QUEUES	6	/* number of free buffer queues */
214
215#define QUEUE_NONE	0	/* on no queue */
216#define QUEUE_LOCKED	1	/* locked buffers */
217#define QUEUE_CLEAN	2	/* non-B_DELWRI buffers */
218#define QUEUE_DIRTY	3	/* B_DELWRI buffers */
219#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
220#define QUEUE_EMPTY	5	/* empty buffer headers */
221
222/* Queues for free buffers with various properties */
223static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
224/*
225 * Single global constant for BUF_WMESG, to avoid getting multiple references.
226 * buf_wmesg is referred from macros.
227 */
228const char *buf_wmesg = BUF_WMESG;
229
230#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
231#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
232#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
233#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
234
235/*
236 * Buffer hash table code.  Note that the logical block scans linearly, which
237 * gives us some L1 cache locality.
238 */
239
240static __inline
241struct bufhashhdr *
242bufhash(struct vnode *vnp, daddr_t bn)
243{
244	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
245}
246
247/*
248 *	numdirtywakeup:
249 *
250 *	If someone is blocked due to there being too many dirty buffers,
251 *	and numdirtybuffers is now reasonable, wake them up.
252 */
253
254static __inline void
255numdirtywakeup(int level)
256{
257	if (numdirtybuffers <= level) {
258		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
259			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
260			wakeup(&needsbuffer);
261		}
262	}
263}
264
265/*
266 *	bufspacewakeup:
267 *
268 *	Called when buffer space is potentially available for recovery.
269 *	getnewbuf() will block on this flag when it is unable to free
270 *	sufficient buffer space.  Buffer space becomes recoverable when
271 *	bp's get placed back in the queues.
272 */
273
274static __inline void
275bufspacewakeup(void)
276{
277	/*
278	 * If someone is waiting for BUF space, wake them up.  Even
279	 * though we haven't freed the kva space yet, the waiting
280	 * process will be able to now.
281	 */
282	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
283		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
284		wakeup(&needsbuffer);
285	}
286}
287
288/*
289 * runningbufwakeup() - in-progress I/O accounting.
290 *
291 */
292static __inline void
293runningbufwakeup(struct buf *bp)
294{
295	if (bp->b_runningbufspace) {
296		runningbufspace -= bp->b_runningbufspace;
297		bp->b_runningbufspace = 0;
298		if (runningbufreq && runningbufspace <= lorunningspace) {
299			runningbufreq = 0;
300			wakeup(&runningbufreq);
301		}
302	}
303}
304
305/*
306 *	bufcountwakeup:
307 *
308 *	Called when a buffer has been added to one of the free queues to
309 *	account for the buffer and to wakeup anyone waiting for free buffers.
310 *	This typically occurs when large amounts of metadata are being handled
311 *	by the buffer cache ( else buffer space runs out first, usually ).
312 */
313
314static __inline void
315bufcountwakeup(void)
316{
317	++numfreebuffers;
318	if (needsbuffer) {
319		needsbuffer &= ~VFS_BIO_NEED_ANY;
320		if (numfreebuffers >= hifreebuffers)
321			needsbuffer &= ~VFS_BIO_NEED_FREE;
322		wakeup(&needsbuffer);
323	}
324}
325
326/*
327 *	waitrunningbufspace()
328 *
329 *	runningbufspace is a measure of the amount of I/O currently
330 *	running.  This routine is used in async-write situations to
331 *	prevent creating huge backups of pending writes to a device.
332 *	Only asynchronous writes are governed by this function.
333 *
334 *	Reads will adjust runningbufspace, but will not block based on it.
335 *	The read load has a side effect of reducing the allowed write load.
336 *
337 *	This does NOT turn an async write into a sync write.  It waits
338 *	for earlier writes to complete and generally returns before the
339 *	caller's write has reached the device.
340 */
341static __inline void
342waitrunningbufspace(void)
343{
344	/*
345	 * XXX race against wakeup interrupt, currently
346	 * protected by Giant.  FIXME!
347	 */
348	while (runningbufspace > hirunningspace) {
349		++runningbufreq;
350		tsleep(&runningbufreq, PVM, "wdrain", 0);
351	}
352}
353
354
355/*
356 *	vfs_buf_test_cache:
357 *
358 *	Called when a buffer is extended.  This function clears the B_CACHE
359 *	bit if the newly extended portion of the buffer does not contain
360 *	valid data.
361 */
362static __inline__
363void
364vfs_buf_test_cache(struct buf *bp,
365		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
366		  vm_page_t m)
367{
368	GIANT_REQUIRED;
369
370	if (bp->b_flags & B_CACHE) {
371		int base = (foff + off) & PAGE_MASK;
372		if (vm_page_is_valid(m, base, size) == 0)
373			bp->b_flags &= ~B_CACHE;
374	}
375}
376
377/* Wake up the buffer deamon if necessary */
378static __inline__
379void
380bd_wakeup(int dirtybuflevel)
381{
382	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
383		bd_request = 1;
384		wakeup(&bd_request);
385	}
386}
387
388/*
389 * bd_speedup - speedup the buffer cache flushing code
390 */
391
392static __inline__
393void
394bd_speedup(void)
395{
396	bd_wakeup(1);
397}
398
399/*
400 * Calculating buffer cache scaling values and reserve space for buffer
401 * headers.  This is called during low level kernel initialization and
402 * may be called more then once.  We CANNOT write to the memory area
403 * being reserved at this time.
404 */
405caddr_t
406kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
407{
408	/*
409	 * physmem_est is in pages.  Convert it to kilobytes (assumes
410	 * PAGE_SIZE is >= 1K)
411	 */
412	physmem_est = physmem_est * (PAGE_SIZE / 1024);
413
414	/*
415	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
416	 * For the first 64MB of ram nominally allocate sufficient buffers to
417	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
418	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
419	 * the buffer cache we limit the eventual kva reservation to
420	 * maxbcache bytes.
421	 *
422	 * factor represents the 1/4 x ram conversion.
423	 */
424	if (nbuf == 0) {
425		int factor = 4 * BKVASIZE / 1024;
426
427		nbuf = 50;
428		if (physmem_est > 4096)
429			nbuf += min((physmem_est - 4096) / factor,
430			    65536 / factor);
431		if (physmem_est > 65536)
432			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
433
434		if (maxbcache && nbuf > maxbcache / BKVASIZE)
435			nbuf = maxbcache / BKVASIZE;
436	}
437
438#if 0
439	/*
440	 * Do not allow the buffer_map to be more then 1/2 the size of the
441	 * kernel_map.
442	 */
443	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
444	    (BKVASIZE * 2)) {
445		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
446		    (BKVASIZE * 2);
447		printf("Warning: nbufs capped at %d\n", nbuf);
448	}
449#endif
450
451	/*
452	 * swbufs are used as temporary holders for I/O, such as paging I/O.
453	 * We have no less then 16 and no more then 256.
454	 */
455	nswbuf = max(min(nbuf/4, 256), 16);
456
457	/*
458	 * Reserve space for the buffer cache buffers
459	 */
460	swbuf = (void *)v;
461	v = (caddr_t)(swbuf + nswbuf);
462	buf = (void *)v;
463	v = (caddr_t)(buf + nbuf);
464
465	/*
466	 * Calculate the hash table size and reserve space
467	 */
468	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
469		;
470	bufhashtbl = (void *)v;
471	v = (caddr_t)(bufhashtbl + bufhashmask);
472	--bufhashmask;
473
474	return(v);
475}
476
477/* Initialize the buffer subsystem.  Called before use of any buffers. */
478void
479bufinit(void)
480{
481	struct buf *bp;
482	int i;
483
484	GIANT_REQUIRED;
485
486	LIST_INIT(&invalhash);
487	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
488
489	for (i = 0; i <= bufhashmask; i++)
490		LIST_INIT(&bufhashtbl[i]);
491
492	/* next, make a null set of free lists */
493	for (i = 0; i < BUFFER_QUEUES; i++)
494		TAILQ_INIT(&bufqueues[i]);
495
496	/* finally, initialize each buffer header and stick on empty q */
497	for (i = 0; i < nbuf; i++) {
498		bp = &buf[i];
499		bzero(bp, sizeof *bp);
500		bp->b_flags = B_INVAL;	/* we're just an empty header */
501		bp->b_dev = NODEV;
502		bp->b_rcred = NOCRED;
503		bp->b_wcred = NOCRED;
504		bp->b_qindex = QUEUE_EMPTY;
505		bp->b_xflags = 0;
506		LIST_INIT(&bp->b_dep);
507		BUF_LOCKINIT(bp);
508		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
509		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
510	}
511
512	/*
513	 * maxbufspace is the absolute maximum amount of buffer space we are
514	 * allowed to reserve in KVM and in real terms.  The absolute maximum
515	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
516	 * used by most other processes.  The differential is required to
517	 * ensure that buf_daemon is able to run when other processes might
518	 * be blocked waiting for buffer space.
519	 *
520	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
521	 * this may result in KVM fragmentation which is not handled optimally
522	 * by the system.
523	 */
524	maxbufspace = nbuf * BKVASIZE;
525	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
526	lobufspace = hibufspace - MAXBSIZE;
527
528	lorunningspace = 512 * 1024;
529	hirunningspace = 1024 * 1024;
530
531/*
532 * Limit the amount of malloc memory since it is wired permanently into
533 * the kernel space.  Even though this is accounted for in the buffer
534 * allocation, we don't want the malloced region to grow uncontrolled.
535 * The malloc scheme improves memory utilization significantly on average
536 * (small) directories.
537 */
538	maxbufmallocspace = hibufspace / 20;
539
540/*
541 * Reduce the chance of a deadlock occuring by limiting the number
542 * of delayed-write dirty buffers we allow to stack up.
543 */
544	hidirtybuffers = nbuf / 4 + 20;
545	numdirtybuffers = 0;
546/*
547 * To support extreme low-memory systems, make sure hidirtybuffers cannot
548 * eat up all available buffer space.  This occurs when our minimum cannot
549 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
550 * BKVASIZE'd (8K) buffers.
551 */
552	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
553		hidirtybuffers >>= 1;
554	}
555	lodirtybuffers = hidirtybuffers / 2;
556
557/*
558 * Try to keep the number of free buffers in the specified range,
559 * and give special processes (e.g. like buf_daemon) access to an
560 * emergency reserve.
561 */
562	lofreebuffers = nbuf / 18 + 5;
563	hifreebuffers = 2 * lofreebuffers;
564	numfreebuffers = nbuf;
565
566/*
567 * Maximum number of async ops initiated per buf_daemon loop.  This is
568 * somewhat of a hack at the moment, we really need to limit ourselves
569 * based on the number of bytes of I/O in-transit that were initiated
570 * from buf_daemon.
571 */
572
573	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
574	bogus_page = vm_page_alloc(kernel_object,
575			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
576			VM_ALLOC_NORMAL);
577	cnt.v_wire_count++;
578}
579
580/*
581 * bfreekva() - free the kva allocation for a buffer.
582 *
583 *	Must be called at splbio() or higher as this is the only locking for
584 *	buffer_map.
585 *
586 *	Since this call frees up buffer space, we call bufspacewakeup().
587 */
588static void
589bfreekva(struct buf * bp)
590{
591	GIANT_REQUIRED;
592
593	if (bp->b_kvasize) {
594		++buffreekvacnt;
595		bufspace -= bp->b_kvasize;
596		vm_map_delete(buffer_map,
597		    (vm_offset_t) bp->b_kvabase,
598		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
599		);
600		bp->b_kvasize = 0;
601		bufspacewakeup();
602	}
603}
604
605/*
606 *	bremfree:
607 *
608 *	Remove the buffer from the appropriate free list.
609 */
610void
611bremfree(struct buf * bp)
612{
613	int s = splbio();
614	int old_qindex = bp->b_qindex;
615
616	GIANT_REQUIRED;
617
618	if (bp->b_qindex != QUEUE_NONE) {
619		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
620		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
621		bp->b_qindex = QUEUE_NONE;
622	} else {
623		if (BUF_REFCNT(bp) <= 1)
624			panic("bremfree: removing a buffer not on a queue");
625	}
626
627	/*
628	 * Fixup numfreebuffers count.  If the buffer is invalid or not
629	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
630	 * the buffer was free and we must decrement numfreebuffers.
631	 */
632	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
633		switch(old_qindex) {
634		case QUEUE_DIRTY:
635		case QUEUE_CLEAN:
636		case QUEUE_EMPTY:
637		case QUEUE_EMPTYKVA:
638			--numfreebuffers;
639			break;
640		default:
641			break;
642		}
643	}
644	splx(s);
645}
646
647
648/*
649 * Get a buffer with the specified data.  Look in the cache first.  We
650 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
651 * is set, the buffer is valid and we do not have to do anything ( see
652 * getblk() ).  This is really just a special case of breadn().
653 */
654int
655bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
656    struct buf ** bpp)
657{
658
659	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
660}
661
662/*
663 * Operates like bread, but also starts asynchronous I/O on
664 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
665 * to initiating I/O . If B_CACHE is set, the buffer is valid
666 * and we do not have to do anything.
667 */
668int
669breadn(struct vnode * vp, daddr_t blkno, int size,
670    daddr_t * rablkno, int *rabsize,
671    int cnt, struct ucred * cred, struct buf ** bpp)
672{
673	struct buf *bp, *rabp;
674	int i;
675	int rv = 0, readwait = 0;
676
677	*bpp = bp = getblk(vp, blkno, size, 0, 0);
678
679	/* if not found in cache, do some I/O */
680	if ((bp->b_flags & B_CACHE) == 0) {
681		if (curthread != PCPU_GET(idlethread))
682			curthread->td_proc->p_stats->p_ru.ru_inblock++;
683		bp->b_iocmd = BIO_READ;
684		bp->b_flags &= ~B_INVAL;
685		bp->b_ioflags &= ~BIO_ERROR;
686		if (bp->b_rcred == NOCRED && cred != NOCRED)
687			bp->b_rcred = crhold(cred);
688		vfs_busy_pages(bp, 0);
689		VOP_STRATEGY(vp, bp);
690		++readwait;
691	}
692
693	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
694		if (inmem(vp, *rablkno))
695			continue;
696		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
697
698		if ((rabp->b_flags & B_CACHE) == 0) {
699			if (curthread != PCPU_GET(idlethread))
700				curthread->td_proc->p_stats->p_ru.ru_inblock++;
701			rabp->b_flags |= B_ASYNC;
702			rabp->b_flags &= ~B_INVAL;
703			rabp->b_ioflags &= ~BIO_ERROR;
704			rabp->b_iocmd = BIO_READ;
705			if (rabp->b_rcred == NOCRED && cred != NOCRED)
706				rabp->b_rcred = crhold(cred);
707			vfs_busy_pages(rabp, 0);
708			BUF_KERNPROC(rabp);
709			VOP_STRATEGY(vp, rabp);
710		} else {
711			brelse(rabp);
712		}
713	}
714
715	if (readwait) {
716		rv = bufwait(bp);
717	}
718	return (rv);
719}
720
721/*
722 * Write, release buffer on completion.  (Done by iodone
723 * if async).  Do not bother writing anything if the buffer
724 * is invalid.
725 *
726 * Note that we set B_CACHE here, indicating that buffer is
727 * fully valid and thus cacheable.  This is true even of NFS
728 * now so we set it generally.  This could be set either here
729 * or in biodone() since the I/O is synchronous.  We put it
730 * here.
731 */
732
733int
734bwrite(struct buf * bp)
735{
736	int oldflags, s;
737	struct buf *newbp;
738
739	if (bp->b_flags & B_INVAL) {
740		brelse(bp);
741		return (0);
742	}
743
744	oldflags = bp->b_flags;
745
746	if (BUF_REFCNT(bp) == 0)
747		panic("bwrite: buffer is not busy???");
748	s = splbio();
749	/*
750	 * If a background write is already in progress, delay
751	 * writing this block if it is asynchronous. Otherwise
752	 * wait for the background write to complete.
753	 */
754	if (bp->b_xflags & BX_BKGRDINPROG) {
755		if (bp->b_flags & B_ASYNC) {
756			splx(s);
757			bdwrite(bp);
758			return (0);
759		}
760		bp->b_xflags |= BX_BKGRDWAIT;
761		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
762		if (bp->b_xflags & BX_BKGRDINPROG)
763			panic("bwrite: still writing");
764	}
765
766	/* Mark the buffer clean */
767	bundirty(bp);
768
769	/*
770	 * If this buffer is marked for background writing and we
771	 * do not have to wait for it, make a copy and write the
772	 * copy so as to leave this buffer ready for further use.
773	 *
774	 * This optimization eats a lot of memory.  If we have a page
775	 * or buffer shortfall we can't do it.
776	 */
777	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
778	    (bp->b_flags & B_ASYNC) &&
779	    !vm_page_count_severe() &&
780	    !buf_dirty_count_severe()) {
781		if (bp->b_iodone != NULL) {
782			printf("bp->b_iodone = %p\n", bp->b_iodone);
783			panic("bwrite: need chained iodone");
784		}
785
786		/* get a new block */
787		newbp = geteblk(bp->b_bufsize);
788
789		/* set it to be identical to the old block */
790		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
791		bgetvp(bp->b_vp, newbp);
792		newbp->b_lblkno = bp->b_lblkno;
793		newbp->b_blkno = bp->b_blkno;
794		newbp->b_offset = bp->b_offset;
795		newbp->b_iodone = vfs_backgroundwritedone;
796		newbp->b_flags |= B_ASYNC;
797		newbp->b_flags &= ~B_INVAL;
798
799		/* move over the dependencies */
800		if (LIST_FIRST(&bp->b_dep) != NULL)
801			buf_movedeps(bp, newbp);
802
803		/*
804		 * Initiate write on the copy, release the original to
805		 * the B_LOCKED queue so that it cannot go away until
806		 * the background write completes. If not locked it could go
807		 * away and then be reconstituted while it was being written.
808		 * If the reconstituted buffer were written, we could end up
809		 * with two background copies being written at the same time.
810		 */
811		bp->b_xflags |= BX_BKGRDINPROG;
812		bp->b_flags |= B_LOCKED;
813		bqrelse(bp);
814		bp = newbp;
815	}
816
817	bp->b_flags &= ~B_DONE;
818	bp->b_ioflags &= ~BIO_ERROR;
819	bp->b_flags |= B_WRITEINPROG | B_CACHE;
820	bp->b_iocmd = BIO_WRITE;
821
822	bp->b_vp->v_numoutput++;
823	vfs_busy_pages(bp, 1);
824
825	/*
826	 * Normal bwrites pipeline writes
827	 */
828	bp->b_runningbufspace = bp->b_bufsize;
829	runningbufspace += bp->b_runningbufspace;
830
831	if (curthread != PCPU_GET(idlethread))
832		curthread->td_proc->p_stats->p_ru.ru_oublock++;
833	splx(s);
834	if (oldflags & B_ASYNC)
835		BUF_KERNPROC(bp);
836	BUF_STRATEGY(bp);
837
838	if ((oldflags & B_ASYNC) == 0) {
839		int rtval = bufwait(bp);
840		brelse(bp);
841		return (rtval);
842	} else if ((oldflags & B_NOWDRAIN) == 0) {
843		/*
844		 * don't allow the async write to saturate the I/O
845		 * system.  Deadlocks can occur only if a device strategy
846		 * routine (like in MD) turns around and issues another
847		 * high-level write, in which case B_NOWDRAIN is expected
848		 * to be set.  Otherwise we will not deadlock here because
849		 * we are blocking waiting for I/O that is already in-progress
850		 * to complete.
851		 */
852		waitrunningbufspace();
853	}
854
855	return (0);
856}
857
858/*
859 * Complete a background write started from bwrite.
860 */
861static void
862vfs_backgroundwritedone(bp)
863	struct buf *bp;
864{
865	struct buf *origbp;
866
867	/*
868	 * Find the original buffer that we are writing.
869	 */
870	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
871		panic("backgroundwritedone: lost buffer");
872	/*
873	 * Process dependencies then return any unfinished ones.
874	 */
875	if (LIST_FIRST(&bp->b_dep) != NULL)
876		buf_complete(bp);
877	if (LIST_FIRST(&bp->b_dep) != NULL)
878		buf_movedeps(bp, origbp);
879	/*
880	 * Clear the BX_BKGRDINPROG flag in the original buffer
881	 * and awaken it if it is waiting for the write to complete.
882	 * If BX_BKGRDINPROG is not set in the original buffer it must
883	 * have been released and re-instantiated - which is not legal.
884	 */
885	KASSERT((origbp->b_xflags & BX_BKGRDINPROG),
886	    ("backgroundwritedone: lost buffer2"));
887	origbp->b_xflags &= ~BX_BKGRDINPROG;
888	if (origbp->b_xflags & BX_BKGRDWAIT) {
889		origbp->b_xflags &= ~BX_BKGRDWAIT;
890		wakeup(&origbp->b_xflags);
891	}
892	/*
893	 * Clear the B_LOCKED flag and remove it from the locked
894	 * queue if it currently resides there.
895	 */
896	origbp->b_flags &= ~B_LOCKED;
897	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
898		bremfree(origbp);
899		bqrelse(origbp);
900	}
901	/*
902	 * This buffer is marked B_NOCACHE, so when it is released
903	 * by biodone, it will be tossed. We mark it with BIO_READ
904	 * to avoid biodone doing a second vwakeup.
905	 */
906	bp->b_flags |= B_NOCACHE;
907	bp->b_iocmd = BIO_READ;
908	bp->b_flags &= ~(B_CACHE | B_DONE);
909	bp->b_iodone = 0;
910	bufdone(bp);
911}
912
913/*
914 * Delayed write. (Buffer is marked dirty).  Do not bother writing
915 * anything if the buffer is marked invalid.
916 *
917 * Note that since the buffer must be completely valid, we can safely
918 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
919 * biodone() in order to prevent getblk from writing the buffer
920 * out synchronously.
921 */
922void
923bdwrite(struct buf * bp)
924{
925	GIANT_REQUIRED;
926
927	if (BUF_REFCNT(bp) == 0)
928		panic("bdwrite: buffer is not busy");
929
930	if (bp->b_flags & B_INVAL) {
931		brelse(bp);
932		return;
933	}
934	bdirty(bp);
935
936	/*
937	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
938	 * true even of NFS now.
939	 */
940	bp->b_flags |= B_CACHE;
941
942	/*
943	 * This bmap keeps the system from needing to do the bmap later,
944	 * perhaps when the system is attempting to do a sync.  Since it
945	 * is likely that the indirect block -- or whatever other datastructure
946	 * that the filesystem needs is still in memory now, it is a good
947	 * thing to do this.  Note also, that if the pageout daemon is
948	 * requesting a sync -- there might not be enough memory to do
949	 * the bmap then...  So, this is important to do.
950	 */
951	if (bp->b_lblkno == bp->b_blkno) {
952		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
953	}
954
955	/*
956	 * Set the *dirty* buffer range based upon the VM system dirty pages.
957	 */
958	vfs_setdirty(bp);
959
960	/*
961	 * We need to do this here to satisfy the vnode_pager and the
962	 * pageout daemon, so that it thinks that the pages have been
963	 * "cleaned".  Note that since the pages are in a delayed write
964	 * buffer -- the VFS layer "will" see that the pages get written
965	 * out on the next sync, or perhaps the cluster will be completed.
966	 */
967	vfs_clean_pages(bp);
968	bqrelse(bp);
969
970	/*
971	 * Wakeup the buffer flushing daemon if we have a lot of dirty
972	 * buffers (midpoint between our recovery point and our stall
973	 * point).
974	 */
975	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
976
977	/*
978	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
979	 * due to the softdep code.
980	 */
981}
982
983/*
984 *	bdirty:
985 *
986 *	Turn buffer into delayed write request.  We must clear BIO_READ and
987 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
988 *	itself to properly update it in the dirty/clean lists.  We mark it
989 *	B_DONE to ensure that any asynchronization of the buffer properly
990 *	clears B_DONE ( else a panic will occur later ).
991 *
992 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
993 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
994 *	should only be called if the buffer is known-good.
995 *
996 *	Since the buffer is not on a queue, we do not update the numfreebuffers
997 *	count.
998 *
999 *	Must be called at splbio().
1000 *	The buffer must be on QUEUE_NONE.
1001 */
1002void
1003bdirty(bp)
1004	struct buf *bp;
1005{
1006	KASSERT(bp->b_qindex == QUEUE_NONE,
1007	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1008	bp->b_flags &= ~(B_RELBUF);
1009	bp->b_iocmd = BIO_WRITE;
1010
1011	if ((bp->b_flags & B_DELWRI) == 0) {
1012		bp->b_flags |= B_DONE | B_DELWRI;
1013		reassignbuf(bp, bp->b_vp);
1014		++numdirtybuffers;
1015		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1016	}
1017}
1018
1019/*
1020 *	bundirty:
1021 *
1022 *	Clear B_DELWRI for buffer.
1023 *
1024 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1025 *	count.
1026 *
1027 *	Must be called at splbio().
1028 *	The buffer must be on QUEUE_NONE.
1029 */
1030
1031void
1032bundirty(bp)
1033	struct buf *bp;
1034{
1035	KASSERT(bp->b_qindex == QUEUE_NONE,
1036	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1037
1038	if (bp->b_flags & B_DELWRI) {
1039		bp->b_flags &= ~B_DELWRI;
1040		reassignbuf(bp, bp->b_vp);
1041		--numdirtybuffers;
1042		numdirtywakeup(lodirtybuffers);
1043	}
1044	/*
1045	 * Since it is now being written, we can clear its deferred write flag.
1046	 */
1047	bp->b_flags &= ~B_DEFERRED;
1048}
1049
1050/*
1051 *	bawrite:
1052 *
1053 *	Asynchronous write.  Start output on a buffer, but do not wait for
1054 *	it to complete.  The buffer is released when the output completes.
1055 *
1056 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1057 *	B_INVAL buffers.  Not us.
1058 */
1059void
1060bawrite(struct buf * bp)
1061{
1062	bp->b_flags |= B_ASYNC;
1063	(void) BUF_WRITE(bp);
1064}
1065
1066/*
1067 *	bwillwrite:
1068 *
1069 *	Called prior to the locking of any vnodes when we are expecting to
1070 *	write.  We do not want to starve the buffer cache with too many
1071 *	dirty buffers so we block here.  By blocking prior to the locking
1072 *	of any vnodes we attempt to avoid the situation where a locked vnode
1073 *	prevents the various system daemons from flushing related buffers.
1074 */
1075
1076void
1077bwillwrite(void)
1078{
1079	if (numdirtybuffers >= hidirtybuffers) {
1080		int s;
1081
1082		s = splbio();
1083		while (numdirtybuffers >= hidirtybuffers) {
1084			bd_wakeup(1);
1085			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1086			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1087		}
1088		splx(s);
1089	}
1090}
1091
1092/*
1093 * Return true if we have too many dirty buffers.
1094 */
1095int
1096buf_dirty_count_severe(void)
1097{
1098	return(numdirtybuffers >= hidirtybuffers);
1099}
1100
1101/*
1102 *	brelse:
1103 *
1104 *	Release a busy buffer and, if requested, free its resources.  The
1105 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1106 *	to be accessed later as a cache entity or reused for other purposes.
1107 */
1108void
1109brelse(struct buf * bp)
1110{
1111	int s;
1112
1113	GIANT_REQUIRED;
1114
1115	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1116	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1117
1118	s = splbio();
1119
1120	if (bp->b_flags & B_LOCKED)
1121		bp->b_ioflags &= ~BIO_ERROR;
1122
1123	if (bp->b_iocmd == BIO_WRITE &&
1124	    (bp->b_ioflags & BIO_ERROR) &&
1125	    !(bp->b_flags & B_INVAL)) {
1126		/*
1127		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1128		 * pages from being scrapped.  If B_INVAL is set then
1129		 * this case is not run and the next case is run to
1130		 * destroy the buffer.  B_INVAL can occur if the buffer
1131		 * is outside the range supported by the underlying device.
1132		 */
1133		bp->b_ioflags &= ~BIO_ERROR;
1134		bdirty(bp);
1135	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1136	    (bp->b_ioflags & BIO_ERROR) ||
1137	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1138		/*
1139		 * Either a failed I/O or we were asked to free or not
1140		 * cache the buffer.
1141		 */
1142		bp->b_flags |= B_INVAL;
1143		if (LIST_FIRST(&bp->b_dep) != NULL)
1144			buf_deallocate(bp);
1145		if (bp->b_flags & B_DELWRI) {
1146			--numdirtybuffers;
1147			numdirtywakeup(lodirtybuffers);
1148		}
1149		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1150		if ((bp->b_flags & B_VMIO) == 0) {
1151			if (bp->b_bufsize)
1152				allocbuf(bp, 0);
1153			if (bp->b_vp)
1154				brelvp(bp);
1155		}
1156	}
1157
1158	/*
1159	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1160	 * is called with B_DELWRI set, the underlying pages may wind up
1161	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1162	 * because pages associated with a B_DELWRI bp are marked clean.
1163	 *
1164	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1165	 * if B_DELWRI is set.
1166	 *
1167	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1168	 * on pages to return pages to the VM page queues.
1169	 */
1170	if (bp->b_flags & B_DELWRI)
1171		bp->b_flags &= ~B_RELBUF;
1172	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1173		bp->b_flags |= B_RELBUF;
1174
1175	/*
1176	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1177	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1178	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1179	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1180	 *
1181	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1182	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1183	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1184	 *
1185	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1186	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1187	 * the commit state and we cannot afford to lose the buffer. If the
1188	 * buffer has a background write in progress, we need to keep it
1189	 * around to prevent it from being reconstituted and starting a second
1190	 * background write.
1191	 */
1192	if ((bp->b_flags & B_VMIO)
1193	    && !(bp->b_vp->v_tag == VT_NFS &&
1194		 !vn_isdisk(bp->b_vp, NULL) &&
1195		 (bp->b_flags & B_DELWRI))
1196	    ) {
1197
1198		int i, j, resid;
1199		vm_page_t m;
1200		off_t foff;
1201		vm_pindex_t poff;
1202		vm_object_t obj;
1203		struct vnode *vp;
1204
1205		vp = bp->b_vp;
1206
1207		/*
1208		 * Get the base offset and length of the buffer.  Note that
1209		 * in the VMIO case if the buffer block size is not
1210		 * page-aligned then b_data pointer may not be page-aligned.
1211		 * But our b_pages[] array *IS* page aligned.
1212		 *
1213		 * block sizes less then DEV_BSIZE (usually 512) are not
1214		 * supported due to the page granularity bits (m->valid,
1215		 * m->dirty, etc...).
1216		 *
1217		 * See man buf(9) for more information
1218		 */
1219		resid = bp->b_bufsize;
1220		foff = bp->b_offset;
1221
1222		for (i = 0; i < bp->b_npages; i++) {
1223			int had_bogus = 0;
1224
1225			m = bp->b_pages[i];
1226			vm_page_flag_clear(m, PG_ZERO);
1227
1228			/*
1229			 * If we hit a bogus page, fixup *all* the bogus pages
1230			 * now.
1231			 */
1232			if (m == bogus_page) {
1233				VOP_GETVOBJECT(vp, &obj);
1234				poff = OFF_TO_IDX(bp->b_offset);
1235				had_bogus = 1;
1236
1237				for (j = i; j < bp->b_npages; j++) {
1238					vm_page_t mtmp;
1239					mtmp = bp->b_pages[j];
1240					if (mtmp == bogus_page) {
1241						mtmp = vm_page_lookup(obj, poff + j);
1242						if (!mtmp) {
1243							panic("brelse: page missing\n");
1244						}
1245						bp->b_pages[j] = mtmp;
1246					}
1247				}
1248
1249				if ((bp->b_flags & B_INVAL) == 0) {
1250					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1251				}
1252				m = bp->b_pages[i];
1253			}
1254			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1255				int poffset = foff & PAGE_MASK;
1256				int presid = resid > (PAGE_SIZE - poffset) ?
1257					(PAGE_SIZE - poffset) : resid;
1258
1259				KASSERT(presid >= 0, ("brelse: extra page"));
1260				vm_page_set_invalid(m, poffset, presid);
1261				if (had_bogus)
1262					printf("avoided corruption bug in bogus_page/brelse code\n");
1263			}
1264			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1265			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1266		}
1267
1268		if (bp->b_flags & (B_INVAL | B_RELBUF))
1269			vfs_vmio_release(bp);
1270
1271	} else if (bp->b_flags & B_VMIO) {
1272
1273		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1274			vfs_vmio_release(bp);
1275		}
1276
1277	}
1278
1279	if (bp->b_qindex != QUEUE_NONE)
1280		panic("brelse: free buffer onto another queue???");
1281	if (BUF_REFCNT(bp) > 1) {
1282		/* do not release to free list */
1283		BUF_UNLOCK(bp);
1284		splx(s);
1285		return;
1286	}
1287
1288	/* enqueue */
1289
1290	/* buffers with no memory */
1291	if (bp->b_bufsize == 0) {
1292		bp->b_flags |= B_INVAL;
1293		bp->b_xflags &= ~BX_BKGRDWRITE;
1294		if (bp->b_xflags & BX_BKGRDINPROG)
1295			panic("losing buffer 1");
1296		if (bp->b_kvasize) {
1297			bp->b_qindex = QUEUE_EMPTYKVA;
1298		} else {
1299			bp->b_qindex = QUEUE_EMPTY;
1300		}
1301		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1302		LIST_REMOVE(bp, b_hash);
1303		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1304		bp->b_dev = NODEV;
1305	/* buffers with junk contents */
1306	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1307	    (bp->b_ioflags & BIO_ERROR)) {
1308		bp->b_flags |= B_INVAL;
1309		bp->b_xflags &= ~BX_BKGRDWRITE;
1310		if (bp->b_xflags & BX_BKGRDINPROG)
1311			panic("losing buffer 2");
1312		bp->b_qindex = QUEUE_CLEAN;
1313		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1314		LIST_REMOVE(bp, b_hash);
1315		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1316		bp->b_dev = NODEV;
1317
1318	/* buffers that are locked */
1319	} else if (bp->b_flags & B_LOCKED) {
1320		bp->b_qindex = QUEUE_LOCKED;
1321		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1322
1323	/* remaining buffers */
1324	} else {
1325		if (bp->b_flags & B_DELWRI)
1326			bp->b_qindex = QUEUE_DIRTY;
1327		else
1328			bp->b_qindex = QUEUE_CLEAN;
1329		if (bp->b_flags & B_AGE)
1330			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1331		else
1332			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1333	}
1334
1335	/*
1336	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1337	 * on the correct queue.
1338	 */
1339	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1340		bp->b_flags &= ~B_DELWRI;
1341		--numdirtybuffers;
1342		numdirtywakeup(lodirtybuffers);
1343	}
1344
1345	/*
1346	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1347	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1348	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1349	 * if B_INVAL is set ).
1350	 */
1351
1352	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1353		bufcountwakeup();
1354
1355	/*
1356	 * Something we can maybe free or reuse
1357	 */
1358	if (bp->b_bufsize || bp->b_kvasize)
1359		bufspacewakeup();
1360
1361	/* unlock */
1362	BUF_UNLOCK(bp);
1363	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1364			B_DIRECT | B_NOWDRAIN);
1365	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1366		panic("brelse: not dirty");
1367	splx(s);
1368}
1369
1370/*
1371 * Release a buffer back to the appropriate queue but do not try to free
1372 * it.  The buffer is expected to be used again soon.
1373 *
1374 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1375 * biodone() to requeue an async I/O on completion.  It is also used when
1376 * known good buffers need to be requeued but we think we may need the data
1377 * again soon.
1378 *
1379 * XXX we should be able to leave the B_RELBUF hint set on completion.
1380 */
1381void
1382bqrelse(struct buf * bp)
1383{
1384	int s;
1385
1386	s = splbio();
1387
1388	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1389
1390	if (bp->b_qindex != QUEUE_NONE)
1391		panic("bqrelse: free buffer onto another queue???");
1392	if (BUF_REFCNT(bp) > 1) {
1393		/* do not release to free list */
1394		BUF_UNLOCK(bp);
1395		splx(s);
1396		return;
1397	}
1398	if (bp->b_flags & B_LOCKED) {
1399		bp->b_ioflags &= ~BIO_ERROR;
1400		bp->b_qindex = QUEUE_LOCKED;
1401		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1402		/* buffers with stale but valid contents */
1403	} else if (bp->b_flags & B_DELWRI) {
1404		bp->b_qindex = QUEUE_DIRTY;
1405		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1406	} else if (vm_page_count_severe()) {
1407		/*
1408		 * We are too low on memory, we have to try to free the
1409		 * buffer (most importantly: the wired pages making up its
1410		 * backing store) *now*.
1411		 */
1412		splx(s);
1413		brelse(bp);
1414		return;
1415	} else {
1416		bp->b_qindex = QUEUE_CLEAN;
1417		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1418	}
1419
1420	if ((bp->b_flags & B_LOCKED) == 0 &&
1421	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1422		bufcountwakeup();
1423	}
1424
1425	/*
1426	 * Something we can maybe free or reuse.
1427	 */
1428	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1429		bufspacewakeup();
1430
1431	/* unlock */
1432	BUF_UNLOCK(bp);
1433	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1434	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1435		panic("bqrelse: not dirty");
1436	splx(s);
1437}
1438
1439/* Give pages used by the bp back to the VM system (where possible) */
1440static void
1441vfs_vmio_release(bp)
1442	struct buf *bp;
1443{
1444	int i;
1445	vm_page_t m;
1446
1447	GIANT_REQUIRED;
1448
1449	for (i = 0; i < bp->b_npages; i++) {
1450		m = bp->b_pages[i];
1451		bp->b_pages[i] = NULL;
1452		/*
1453		 * In order to keep page LRU ordering consistent, put
1454		 * everything on the inactive queue.
1455		 */
1456		vm_page_unwire(m, 0);
1457		/*
1458		 * We don't mess with busy pages, it is
1459		 * the responsibility of the process that
1460		 * busied the pages to deal with them.
1461		 */
1462		if ((m->flags & PG_BUSY) || (m->busy != 0))
1463			continue;
1464
1465		if (m->wire_count == 0) {
1466			vm_page_flag_clear(m, PG_ZERO);
1467			/*
1468			 * Might as well free the page if we can and it has
1469			 * no valid data.  We also free the page if the
1470			 * buffer was used for direct I/O
1471			 */
1472			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1473			    m->hold_count == 0) {
1474				vm_page_busy(m);
1475				vm_page_protect(m, VM_PROT_NONE);
1476				vm_page_free(m);
1477			} else if (bp->b_flags & B_DIRECT) {
1478				vm_page_try_to_free(m);
1479			} else if (vm_page_count_severe()) {
1480				vm_page_try_to_cache(m);
1481			}
1482		}
1483	}
1484	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1485
1486	if (bp->b_bufsize) {
1487		bufspacewakeup();
1488		bp->b_bufsize = 0;
1489	}
1490	bp->b_npages = 0;
1491	bp->b_flags &= ~B_VMIO;
1492	if (bp->b_vp)
1493		brelvp(bp);
1494}
1495
1496/*
1497 * Check to see if a block is currently memory resident.
1498 */
1499struct buf *
1500gbincore(struct vnode * vp, daddr_t blkno)
1501{
1502	struct buf *bp;
1503	struct bufhashhdr *bh;
1504
1505	bh = bufhash(vp, blkno);
1506
1507	/* Search hash chain */
1508	LIST_FOREACH(bp, bh, b_hash) {
1509		/* hit */
1510		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1511		    (bp->b_flags & B_INVAL) == 0) {
1512			break;
1513		}
1514	}
1515	return (bp);
1516}
1517
1518/*
1519 *	vfs_bio_awrite:
1520 *
1521 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1522 *	This is much better then the old way of writing only one buffer at
1523 *	a time.  Note that we may not be presented with the buffers in the
1524 *	correct order, so we search for the cluster in both directions.
1525 */
1526int
1527vfs_bio_awrite(struct buf * bp)
1528{
1529	int i;
1530	int j;
1531	daddr_t lblkno = bp->b_lblkno;
1532	struct vnode *vp = bp->b_vp;
1533	int s;
1534	int ncl;
1535	struct buf *bpa;
1536	int nwritten;
1537	int size;
1538	int maxcl;
1539
1540	s = splbio();
1541	/*
1542	 * right now we support clustered writing only to regular files.  If
1543	 * we find a clusterable block we could be in the middle of a cluster
1544	 * rather then at the beginning.
1545	 */
1546	if ((vp->v_type == VREG) &&
1547	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1548	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1549
1550		size = vp->v_mount->mnt_stat.f_iosize;
1551		maxcl = MAXPHYS / size;
1552
1553		for (i = 1; i < maxcl; i++) {
1554			if ((bpa = gbincore(vp, lblkno + i)) &&
1555			    BUF_REFCNT(bpa) == 0 &&
1556			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1557			    (B_DELWRI | B_CLUSTEROK)) &&
1558			    (bpa->b_bufsize == size)) {
1559				if ((bpa->b_blkno == bpa->b_lblkno) ||
1560				    (bpa->b_blkno !=
1561				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1562					break;
1563			} else {
1564				break;
1565			}
1566		}
1567		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1568			if ((bpa = gbincore(vp, lblkno - j)) &&
1569			    BUF_REFCNT(bpa) == 0 &&
1570			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1571			    (B_DELWRI | B_CLUSTEROK)) &&
1572			    (bpa->b_bufsize == size)) {
1573				if ((bpa->b_blkno == bpa->b_lblkno) ||
1574				    (bpa->b_blkno !=
1575				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1576					break;
1577			} else {
1578				break;
1579			}
1580		}
1581		--j;
1582		ncl = i + j;
1583		/*
1584		 * this is a possible cluster write
1585		 */
1586		if (ncl != 1) {
1587			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1588			splx(s);
1589			return nwritten;
1590		}
1591	}
1592
1593	BUF_LOCK(bp, LK_EXCLUSIVE);
1594	bremfree(bp);
1595	bp->b_flags |= B_ASYNC;
1596
1597	splx(s);
1598	/*
1599	 * default (old) behavior, writing out only one block
1600	 *
1601	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1602	 */
1603	nwritten = bp->b_bufsize;
1604	(void) BUF_WRITE(bp);
1605
1606	return nwritten;
1607}
1608
1609/*
1610 *	getnewbuf:
1611 *
1612 *	Find and initialize a new buffer header, freeing up existing buffers
1613 *	in the bufqueues as necessary.  The new buffer is returned locked.
1614 *
1615 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1616 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1617 *
1618 *	We block if:
1619 *		We have insufficient buffer headers
1620 *		We have insufficient buffer space
1621 *		buffer_map is too fragmented ( space reservation fails )
1622 *		If we have to flush dirty buffers ( but we try to avoid this )
1623 *
1624 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1625 *	Instead we ask the buf daemon to do it for us.  We attempt to
1626 *	avoid piecemeal wakeups of the pageout daemon.
1627 */
1628
1629static struct buf *
1630getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1631{
1632	struct buf *bp;
1633	struct buf *nbp;
1634	int defrag = 0;
1635	int nqindex;
1636	static int flushingbufs;
1637
1638	GIANT_REQUIRED;
1639
1640	/*
1641	 * We can't afford to block since we might be holding a vnode lock,
1642	 * which may prevent system daemons from running.  We deal with
1643	 * low-memory situations by proactively returning memory and running
1644	 * async I/O rather then sync I/O.
1645	 */
1646
1647	++getnewbufcalls;
1648	--getnewbufrestarts;
1649restart:
1650	++getnewbufrestarts;
1651
1652	/*
1653	 * Setup for scan.  If we do not have enough free buffers,
1654	 * we setup a degenerate case that immediately fails.  Note
1655	 * that if we are specially marked process, we are allowed to
1656	 * dip into our reserves.
1657	 *
1658	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1659	 *
1660	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1661	 * However, there are a number of cases (defragging, reusing, ...)
1662	 * where we cannot backup.
1663	 */
1664	nqindex = QUEUE_EMPTYKVA;
1665	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1666
1667	if (nbp == NULL) {
1668		/*
1669		 * If no EMPTYKVA buffers and we are either
1670		 * defragging or reusing, locate a CLEAN buffer
1671		 * to free or reuse.  If bufspace useage is low
1672		 * skip this step so we can allocate a new buffer.
1673		 */
1674		if (defrag || bufspace >= lobufspace) {
1675			nqindex = QUEUE_CLEAN;
1676			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1677		}
1678
1679		/*
1680		 * If we could not find or were not allowed to reuse a
1681		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1682		 * buffer.  We can only use an EMPTY buffer if allocating
1683		 * its KVA would not otherwise run us out of buffer space.
1684		 */
1685		if (nbp == NULL && defrag == 0 &&
1686		    bufspace + maxsize < hibufspace) {
1687			nqindex = QUEUE_EMPTY;
1688			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1689		}
1690	}
1691
1692	/*
1693	 * Run scan, possibly freeing data and/or kva mappings on the fly
1694	 * depending.
1695	 */
1696
1697	while ((bp = nbp) != NULL) {
1698		int qindex = nqindex;
1699
1700		/*
1701		 * Calculate next bp ( we can only use it if we do not block
1702		 * or do other fancy things ).
1703		 */
1704		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1705			switch(qindex) {
1706			case QUEUE_EMPTY:
1707				nqindex = QUEUE_EMPTYKVA;
1708				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1709					break;
1710				/* fall through */
1711			case QUEUE_EMPTYKVA:
1712				nqindex = QUEUE_CLEAN;
1713				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1714					break;
1715				/* fall through */
1716			case QUEUE_CLEAN:
1717				/*
1718				 * nbp is NULL.
1719				 */
1720				break;
1721			}
1722		}
1723
1724		/*
1725		 * Sanity Checks
1726		 */
1727		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1728
1729		/*
1730		 * Note: we no longer distinguish between VMIO and non-VMIO
1731		 * buffers.
1732		 */
1733
1734		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1735
1736		/*
1737		 * If we are defragging then we need a buffer with
1738		 * b_kvasize != 0.  XXX this situation should no longer
1739		 * occur, if defrag is non-zero the buffer's b_kvasize
1740		 * should also be non-zero at this point.  XXX
1741		 */
1742		if (defrag && bp->b_kvasize == 0) {
1743			printf("Warning: defrag empty buffer %p\n", bp);
1744			continue;
1745		}
1746
1747		/*
1748		 * Start freeing the bp.  This is somewhat involved.  nbp
1749		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1750		 */
1751
1752		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1753			panic("getnewbuf: locked buf");
1754		bremfree(bp);
1755
1756		if (qindex == QUEUE_CLEAN) {
1757			if (bp->b_flags & B_VMIO) {
1758				bp->b_flags &= ~B_ASYNC;
1759				vfs_vmio_release(bp);
1760			}
1761			if (bp->b_vp)
1762				brelvp(bp);
1763		}
1764
1765		/*
1766		 * NOTE:  nbp is now entirely invalid.  We can only restart
1767		 * the scan from this point on.
1768		 *
1769		 * Get the rest of the buffer freed up.  b_kva* is still
1770		 * valid after this operation.
1771		 */
1772
1773		if (bp->b_rcred != NOCRED) {
1774			crfree(bp->b_rcred);
1775			bp->b_rcred = NOCRED;
1776		}
1777		if (bp->b_wcred != NOCRED) {
1778			crfree(bp->b_wcred);
1779			bp->b_wcred = NOCRED;
1780		}
1781		if (LIST_FIRST(&bp->b_dep) != NULL)
1782			buf_deallocate(bp);
1783		if (bp->b_xflags & BX_BKGRDINPROG)
1784			panic("losing buffer 3");
1785		LIST_REMOVE(bp, b_hash);
1786		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1787
1788		if (bp->b_bufsize)
1789			allocbuf(bp, 0);
1790
1791		bp->b_flags = 0;
1792		bp->b_ioflags = 0;
1793		bp->b_xflags = 0;
1794		bp->b_dev = NODEV;
1795		bp->b_vp = NULL;
1796		bp->b_blkno = bp->b_lblkno = 0;
1797		bp->b_offset = NOOFFSET;
1798		bp->b_iodone = 0;
1799		bp->b_error = 0;
1800		bp->b_resid = 0;
1801		bp->b_bcount = 0;
1802		bp->b_npages = 0;
1803		bp->b_dirtyoff = bp->b_dirtyend = 0;
1804		bp->b_magic = B_MAGIC_BIO;
1805		bp->b_op = &buf_ops_bio;
1806
1807		LIST_INIT(&bp->b_dep);
1808
1809		/*
1810		 * If we are defragging then free the buffer.
1811		 */
1812		if (defrag) {
1813			bp->b_flags |= B_INVAL;
1814			bfreekva(bp);
1815			brelse(bp);
1816			defrag = 0;
1817			goto restart;
1818		}
1819
1820		/*
1821		 * If we are overcomitted then recover the buffer and its
1822		 * KVM space.  This occurs in rare situations when multiple
1823		 * processes are blocked in getnewbuf() or allocbuf().
1824		 */
1825		if (bufspace >= hibufspace)
1826			flushingbufs = 1;
1827		if (flushingbufs && bp->b_kvasize != 0) {
1828			bp->b_flags |= B_INVAL;
1829			bfreekva(bp);
1830			brelse(bp);
1831			goto restart;
1832		}
1833		if (bufspace < lobufspace)
1834			flushingbufs = 0;
1835		break;
1836	}
1837
1838	/*
1839	 * If we exhausted our list, sleep as appropriate.  We may have to
1840	 * wakeup various daemons and write out some dirty buffers.
1841	 *
1842	 * Generally we are sleeping due to insufficient buffer space.
1843	 */
1844
1845	if (bp == NULL) {
1846		int flags;
1847		char *waitmsg;
1848
1849		if (defrag) {
1850			flags = VFS_BIO_NEED_BUFSPACE;
1851			waitmsg = "nbufkv";
1852		} else if (bufspace >= hibufspace) {
1853			waitmsg = "nbufbs";
1854			flags = VFS_BIO_NEED_BUFSPACE;
1855		} else {
1856			waitmsg = "newbuf";
1857			flags = VFS_BIO_NEED_ANY;
1858		}
1859
1860		bd_speedup();	/* heeeelp */
1861
1862		needsbuffer |= flags;
1863		while (needsbuffer & flags) {
1864			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1865			    waitmsg, slptimeo))
1866				return (NULL);
1867		}
1868	} else {
1869		/*
1870		 * We finally have a valid bp.  We aren't quite out of the
1871		 * woods, we still have to reserve kva space.  In order
1872		 * to keep fragmentation sane we only allocate kva in
1873		 * BKVASIZE chunks.
1874		 */
1875		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1876
1877		if (maxsize != bp->b_kvasize) {
1878			vm_offset_t addr = 0;
1879
1880			bfreekva(bp);
1881
1882			if (vm_map_findspace(buffer_map,
1883				vm_map_min(buffer_map), maxsize, &addr)) {
1884				/*
1885				 * Uh oh.  Buffer map is to fragmented.  We
1886				 * must defragment the map.
1887				 */
1888				++bufdefragcnt;
1889				defrag = 1;
1890				bp->b_flags |= B_INVAL;
1891				brelse(bp);
1892				goto restart;
1893			}
1894			if (addr) {
1895				vm_map_insert(buffer_map, NULL, 0,
1896					addr, addr + maxsize,
1897					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1898
1899				bp->b_kvabase = (caddr_t) addr;
1900				bp->b_kvasize = maxsize;
1901				bufspace += bp->b_kvasize;
1902				++bufreusecnt;
1903			}
1904		}
1905		bp->b_data = bp->b_kvabase;
1906	}
1907	return(bp);
1908}
1909
1910/*
1911 *	buf_daemon:
1912 *
1913 *	buffer flushing daemon.  Buffers are normally flushed by the
1914 *	update daemon but if it cannot keep up this process starts to
1915 *	take the load in an attempt to prevent getnewbuf() from blocking.
1916 */
1917
1918static struct proc *bufdaemonproc;
1919
1920static struct kproc_desc buf_kp = {
1921	"bufdaemon",
1922	buf_daemon,
1923	&bufdaemonproc
1924};
1925SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1926
1927static void
1928buf_daemon()
1929{
1930	int s;
1931
1932	mtx_lock(&Giant);
1933
1934	/*
1935	 * This process needs to be suspended prior to shutdown sync.
1936	 */
1937	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1938	    SHUTDOWN_PRI_LAST);
1939
1940	/*
1941	 * This process is allowed to take the buffer cache to the limit
1942	 */
1943	s = splbio();
1944
1945	for (;;) {
1946		kthread_suspend_check(bufdaemonproc);
1947
1948		bd_request = 0;
1949
1950		/*
1951		 * Do the flush.  Limit the amount of in-transit I/O we
1952		 * allow to build up, otherwise we would completely saturate
1953		 * the I/O system.  Wakeup any waiting processes before we
1954		 * normally would so they can run in parallel with our drain.
1955		 */
1956		while (numdirtybuffers > lodirtybuffers) {
1957			if (flushbufqueues() == 0)
1958				break;
1959			waitrunningbufspace();
1960			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1961		}
1962
1963		/*
1964		 * Only clear bd_request if we have reached our low water
1965		 * mark.  The buf_daemon normally waits 1 second and
1966		 * then incrementally flushes any dirty buffers that have
1967		 * built up, within reason.
1968		 *
1969		 * If we were unable to hit our low water mark and couldn't
1970		 * find any flushable buffers, we sleep half a second.
1971		 * Otherwise we loop immediately.
1972		 */
1973		if (numdirtybuffers <= lodirtybuffers) {
1974			/*
1975			 * We reached our low water mark, reset the
1976			 * request and sleep until we are needed again.
1977			 * The sleep is just so the suspend code works.
1978			 */
1979			bd_request = 0;
1980			tsleep(&bd_request, PVM, "psleep", hz);
1981		} else {
1982			/*
1983			 * We couldn't find any flushable dirty buffers but
1984			 * still have too many dirty buffers, we
1985			 * have to sleep and try again.  (rare)
1986			 */
1987			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1988		}
1989	}
1990}
1991
1992/*
1993 *	flushbufqueues:
1994 *
1995 *	Try to flush a buffer in the dirty queue.  We must be careful to
1996 *	free up B_INVAL buffers instead of write them, which NFS is
1997 *	particularly sensitive to.
1998 */
1999
2000static int
2001flushbufqueues(void)
2002{
2003	struct buf *bp;
2004	int r = 0;
2005
2006	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2007
2008	while (bp) {
2009		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
2010		if ((bp->b_flags & B_DELWRI) != 0 &&
2011		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
2012			if (bp->b_flags & B_INVAL) {
2013				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2014					panic("flushbufqueues: locked buf");
2015				bremfree(bp);
2016				brelse(bp);
2017				++r;
2018				break;
2019			}
2020			if (LIST_FIRST(&bp->b_dep) != NULL &&
2021			    (bp->b_flags & B_DEFERRED) == 0 &&
2022			    buf_countdeps(bp, 0)) {
2023				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
2024				    bp, b_freelist);
2025				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
2026				    bp, b_freelist);
2027				bp->b_flags |= B_DEFERRED;
2028				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2029				continue;
2030			}
2031			vfs_bio_awrite(bp);
2032			++r;
2033			break;
2034		}
2035		bp = TAILQ_NEXT(bp, b_freelist);
2036	}
2037	return (r);
2038}
2039
2040/*
2041 * Check to see if a block is currently memory resident.
2042 */
2043struct buf *
2044incore(struct vnode * vp, daddr_t blkno)
2045{
2046	struct buf *bp;
2047
2048	int s = splbio();
2049	bp = gbincore(vp, blkno);
2050	splx(s);
2051	return (bp);
2052}
2053
2054/*
2055 * Returns true if no I/O is needed to access the
2056 * associated VM object.  This is like incore except
2057 * it also hunts around in the VM system for the data.
2058 */
2059
2060int
2061inmem(struct vnode * vp, daddr_t blkno)
2062{
2063	vm_object_t obj;
2064	vm_offset_t toff, tinc, size;
2065	vm_page_t m;
2066	vm_ooffset_t off;
2067
2068	GIANT_REQUIRED;
2069
2070	if (incore(vp, blkno))
2071		return 1;
2072	if (vp->v_mount == NULL)
2073		return 0;
2074	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2075		return 0;
2076
2077	size = PAGE_SIZE;
2078	if (size > vp->v_mount->mnt_stat.f_iosize)
2079		size = vp->v_mount->mnt_stat.f_iosize;
2080	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2081
2082	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2083		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2084		if (!m)
2085			goto notinmem;
2086		tinc = size;
2087		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2088			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2089		if (vm_page_is_valid(m,
2090		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2091			goto notinmem;
2092	}
2093	return 1;
2094
2095notinmem:
2096	return (0);
2097}
2098
2099/*
2100 *	vfs_setdirty:
2101 *
2102 *	Sets the dirty range for a buffer based on the status of the dirty
2103 *	bits in the pages comprising the buffer.
2104 *
2105 *	The range is limited to the size of the buffer.
2106 *
2107 *	This routine is primarily used by NFS, but is generalized for the
2108 *	B_VMIO case.
2109 */
2110static void
2111vfs_setdirty(struct buf *bp)
2112{
2113	int i;
2114	vm_object_t object;
2115
2116	GIANT_REQUIRED;
2117	/*
2118	 * Degenerate case - empty buffer
2119	 */
2120
2121	if (bp->b_bufsize == 0)
2122		return;
2123
2124	/*
2125	 * We qualify the scan for modified pages on whether the
2126	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2127	 * is not cleared simply by protecting pages off.
2128	 */
2129
2130	if ((bp->b_flags & B_VMIO) == 0)
2131		return;
2132
2133	object = bp->b_pages[0]->object;
2134
2135	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2136		printf("Warning: object %p writeable but not mightbedirty\n", object);
2137	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2138		printf("Warning: object %p mightbedirty but not writeable\n", object);
2139
2140	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2141		vm_offset_t boffset;
2142		vm_offset_t eoffset;
2143
2144		/*
2145		 * test the pages to see if they have been modified directly
2146		 * by users through the VM system.
2147		 */
2148		for (i = 0; i < bp->b_npages; i++) {
2149			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2150			vm_page_test_dirty(bp->b_pages[i]);
2151		}
2152
2153		/*
2154		 * Calculate the encompassing dirty range, boffset and eoffset,
2155		 * (eoffset - boffset) bytes.
2156		 */
2157
2158		for (i = 0; i < bp->b_npages; i++) {
2159			if (bp->b_pages[i]->dirty)
2160				break;
2161		}
2162		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2163
2164		for (i = bp->b_npages - 1; i >= 0; --i) {
2165			if (bp->b_pages[i]->dirty) {
2166				break;
2167			}
2168		}
2169		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2170
2171		/*
2172		 * Fit it to the buffer.
2173		 */
2174
2175		if (eoffset > bp->b_bcount)
2176			eoffset = bp->b_bcount;
2177
2178		/*
2179		 * If we have a good dirty range, merge with the existing
2180		 * dirty range.
2181		 */
2182
2183		if (boffset < eoffset) {
2184			if (bp->b_dirtyoff > boffset)
2185				bp->b_dirtyoff = boffset;
2186			if (bp->b_dirtyend < eoffset)
2187				bp->b_dirtyend = eoffset;
2188		}
2189	}
2190}
2191
2192/*
2193 *	getblk:
2194 *
2195 *	Get a block given a specified block and offset into a file/device.
2196 *	The buffers B_DONE bit will be cleared on return, making it almost
2197 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2198 *	return.  The caller should clear B_INVAL prior to initiating a
2199 *	READ.
2200 *
2201 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2202 *	an existing buffer.
2203 *
2204 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2205 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2206 *	and then cleared based on the backing VM.  If the previous buffer is
2207 *	non-0-sized but invalid, B_CACHE will be cleared.
2208 *
2209 *	If getblk() must create a new buffer, the new buffer is returned with
2210 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2211 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2212 *	backing VM.
2213 *
2214 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2215 *	B_CACHE bit is clear.
2216 *
2217 *	What this means, basically, is that the caller should use B_CACHE to
2218 *	determine whether the buffer is fully valid or not and should clear
2219 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2220 *	the buffer by loading its data area with something, the caller needs
2221 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2222 *	the caller should set B_CACHE ( as an optimization ), else the caller
2223 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2224 *	a write attempt or if it was a successfull read.  If the caller
2225 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2226 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2227 */
2228struct buf *
2229getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2230{
2231	struct buf *bp;
2232	int s;
2233	struct bufhashhdr *bh;
2234
2235	if (size > MAXBSIZE)
2236		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2237
2238	s = splbio();
2239loop:
2240	/*
2241	 * Block if we are low on buffers.   Certain processes are allowed
2242	 * to completely exhaust the buffer cache.
2243         *
2244         * If this check ever becomes a bottleneck it may be better to
2245         * move it into the else, when gbincore() fails.  At the moment
2246         * it isn't a problem.
2247	 *
2248	 * XXX remove if 0 sections (clean this up after its proven)
2249         */
2250	if (numfreebuffers == 0) {
2251		if (curthread == PCPU_GET(idlethread))
2252			return NULL;
2253		needsbuffer |= VFS_BIO_NEED_ANY;
2254	}
2255
2256	if ((bp = gbincore(vp, blkno))) {
2257		/*
2258		 * Buffer is in-core.  If the buffer is not busy, it must
2259		 * be on a queue.
2260		 */
2261
2262		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2263			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2264			    "getblk", slpflag, slptimeo) == ENOLCK)
2265				goto loop;
2266			splx(s);
2267			return (struct buf *) NULL;
2268		}
2269
2270		/*
2271		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2272		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2273		 * and for a VMIO buffer B_CACHE is adjusted according to the
2274		 * backing VM cache.
2275		 */
2276		if (bp->b_flags & B_INVAL)
2277			bp->b_flags &= ~B_CACHE;
2278		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2279			bp->b_flags |= B_CACHE;
2280		bremfree(bp);
2281
2282		/*
2283		 * check for size inconsistancies for non-VMIO case.
2284		 */
2285
2286		if (bp->b_bcount != size) {
2287			if ((bp->b_flags & B_VMIO) == 0 ||
2288			    (size > bp->b_kvasize)) {
2289				if (bp->b_flags & B_DELWRI) {
2290					bp->b_flags |= B_NOCACHE;
2291					BUF_WRITE(bp);
2292				} else {
2293					if ((bp->b_flags & B_VMIO) &&
2294					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2295						bp->b_flags |= B_RELBUF;
2296						brelse(bp);
2297					} else {
2298						bp->b_flags |= B_NOCACHE;
2299						BUF_WRITE(bp);
2300					}
2301				}
2302				goto loop;
2303			}
2304		}
2305
2306		/*
2307		 * If the size is inconsistant in the VMIO case, we can resize
2308		 * the buffer.  This might lead to B_CACHE getting set or
2309		 * cleared.  If the size has not changed, B_CACHE remains
2310		 * unchanged from its previous state.
2311		 */
2312
2313		if (bp->b_bcount != size)
2314			allocbuf(bp, size);
2315
2316		KASSERT(bp->b_offset != NOOFFSET,
2317		    ("getblk: no buffer offset"));
2318
2319		/*
2320		 * A buffer with B_DELWRI set and B_CACHE clear must
2321		 * be committed before we can return the buffer in
2322		 * order to prevent the caller from issuing a read
2323		 * ( due to B_CACHE not being set ) and overwriting
2324		 * it.
2325		 *
2326		 * Most callers, including NFS and FFS, need this to
2327		 * operate properly either because they assume they
2328		 * can issue a read if B_CACHE is not set, or because
2329		 * ( for example ) an uncached B_DELWRI might loop due
2330		 * to softupdates re-dirtying the buffer.  In the latter
2331		 * case, B_CACHE is set after the first write completes,
2332		 * preventing further loops.
2333		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2334		 * above while extending the buffer, we cannot allow the
2335		 * buffer to remain with B_CACHE set after the write
2336		 * completes or it will represent a corrupt state.  To
2337		 * deal with this we set B_NOCACHE to scrap the buffer
2338		 * after the write.
2339		 *
2340		 * We might be able to do something fancy, like setting
2341		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2342		 * so the below call doesn't set B_CACHE, but that gets real
2343		 * confusing.  This is much easier.
2344		 */
2345
2346		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2347			bp->b_flags |= B_NOCACHE;
2348			BUF_WRITE(bp);
2349			goto loop;
2350		}
2351
2352		splx(s);
2353		bp->b_flags &= ~B_DONE;
2354	} else {
2355		/*
2356		 * Buffer is not in-core, create new buffer.  The buffer
2357		 * returned by getnewbuf() is locked.  Note that the returned
2358		 * buffer is also considered valid (not marked B_INVAL).
2359		 */
2360		int bsize, maxsize, vmio;
2361		off_t offset;
2362
2363		if (vn_isdisk(vp, NULL))
2364			bsize = DEV_BSIZE;
2365		else if (vp->v_mountedhere)
2366			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2367		else if (vp->v_mount)
2368			bsize = vp->v_mount->mnt_stat.f_iosize;
2369		else
2370			bsize = size;
2371
2372		offset = (off_t)blkno * bsize;
2373		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2374		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2375		maxsize = imax(maxsize, bsize);
2376
2377		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2378			if (slpflag || slptimeo) {
2379				splx(s);
2380				return NULL;
2381			}
2382			goto loop;
2383		}
2384
2385		/*
2386		 * This code is used to make sure that a buffer is not
2387		 * created while the getnewbuf routine is blocked.
2388		 * This can be a problem whether the vnode is locked or not.
2389		 * If the buffer is created out from under us, we have to
2390		 * throw away the one we just created.  There is now window
2391		 * race because we are safely running at splbio() from the
2392		 * point of the duplicate buffer creation through to here,
2393		 * and we've locked the buffer.
2394		 */
2395		if (gbincore(vp, blkno)) {
2396			bp->b_flags |= B_INVAL;
2397			brelse(bp);
2398			goto loop;
2399		}
2400
2401		/*
2402		 * Insert the buffer into the hash, so that it can
2403		 * be found by incore.
2404		 */
2405		bp->b_blkno = bp->b_lblkno = blkno;
2406		bp->b_offset = offset;
2407
2408		bgetvp(vp, bp);
2409		LIST_REMOVE(bp, b_hash);
2410		bh = bufhash(vp, blkno);
2411		LIST_INSERT_HEAD(bh, bp, b_hash);
2412
2413		/*
2414		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2415		 * buffer size starts out as 0, B_CACHE will be set by
2416		 * allocbuf() for the VMIO case prior to it testing the
2417		 * backing store for validity.
2418		 */
2419
2420		if (vmio) {
2421			bp->b_flags |= B_VMIO;
2422#if defined(VFS_BIO_DEBUG)
2423			if (vp->v_type != VREG)
2424				printf("getblk: vmioing file type %d???\n", vp->v_type);
2425#endif
2426		} else {
2427			bp->b_flags &= ~B_VMIO;
2428		}
2429
2430		allocbuf(bp, size);
2431
2432		splx(s);
2433		bp->b_flags &= ~B_DONE;
2434	}
2435	return (bp);
2436}
2437
2438/*
2439 * Get an empty, disassociated buffer of given size.  The buffer is initially
2440 * set to B_INVAL.
2441 */
2442struct buf *
2443geteblk(int size)
2444{
2445	struct buf *bp;
2446	int s;
2447	int maxsize;
2448
2449	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2450
2451	s = splbio();
2452	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2453	splx(s);
2454	allocbuf(bp, size);
2455	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2456	return (bp);
2457}
2458
2459
2460/*
2461 * This code constitutes the buffer memory from either anonymous system
2462 * memory (in the case of non-VMIO operations) or from an associated
2463 * VM object (in the case of VMIO operations).  This code is able to
2464 * resize a buffer up or down.
2465 *
2466 * Note that this code is tricky, and has many complications to resolve
2467 * deadlock or inconsistant data situations.  Tread lightly!!!
2468 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2469 * the caller.  Calling this code willy nilly can result in the loss of data.
2470 *
2471 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2472 * B_CACHE for the non-VMIO case.
2473 */
2474
2475int
2476allocbuf(struct buf *bp, int size)
2477{
2478	int newbsize, mbsize;
2479	int i;
2480
2481	GIANT_REQUIRED;
2482
2483	if (BUF_REFCNT(bp) == 0)
2484		panic("allocbuf: buffer not busy");
2485
2486	if (bp->b_kvasize < size)
2487		panic("allocbuf: buffer too small");
2488
2489	if ((bp->b_flags & B_VMIO) == 0) {
2490		caddr_t origbuf;
2491		int origbufsize;
2492		/*
2493		 * Just get anonymous memory from the kernel.  Don't
2494		 * mess with B_CACHE.
2495		 */
2496		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2497#if !defined(NO_B_MALLOC)
2498		if (bp->b_flags & B_MALLOC)
2499			newbsize = mbsize;
2500		else
2501#endif
2502			newbsize = round_page(size);
2503
2504		if (newbsize < bp->b_bufsize) {
2505#if !defined(NO_B_MALLOC)
2506			/*
2507			 * malloced buffers are not shrunk
2508			 */
2509			if (bp->b_flags & B_MALLOC) {
2510				if (newbsize) {
2511					bp->b_bcount = size;
2512				} else {
2513					free(bp->b_data, M_BIOBUF);
2514					if (bp->b_bufsize) {
2515						bufmallocspace -= bp->b_bufsize;
2516						bufspacewakeup();
2517						bp->b_bufsize = 0;
2518					}
2519					bp->b_data = bp->b_kvabase;
2520					bp->b_bcount = 0;
2521					bp->b_flags &= ~B_MALLOC;
2522				}
2523				return 1;
2524			}
2525#endif
2526			vm_hold_free_pages(
2527			    bp,
2528			    (vm_offset_t) bp->b_data + newbsize,
2529			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2530		} else if (newbsize > bp->b_bufsize) {
2531#if !defined(NO_B_MALLOC)
2532			/*
2533			 * We only use malloced memory on the first allocation.
2534			 * and revert to page-allocated memory when the buffer
2535			 * grows.
2536			 */
2537			if ( (bufmallocspace < maxbufmallocspace) &&
2538				(bp->b_bufsize == 0) &&
2539				(mbsize <= PAGE_SIZE/2)) {
2540
2541				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2542				bp->b_bufsize = mbsize;
2543				bp->b_bcount = size;
2544				bp->b_flags |= B_MALLOC;
2545				bufmallocspace += mbsize;
2546				return 1;
2547			}
2548#endif
2549			origbuf = NULL;
2550			origbufsize = 0;
2551#if !defined(NO_B_MALLOC)
2552			/*
2553			 * If the buffer is growing on its other-than-first allocation,
2554			 * then we revert to the page-allocation scheme.
2555			 */
2556			if (bp->b_flags & B_MALLOC) {
2557				origbuf = bp->b_data;
2558				origbufsize = bp->b_bufsize;
2559				bp->b_data = bp->b_kvabase;
2560				if (bp->b_bufsize) {
2561					bufmallocspace -= bp->b_bufsize;
2562					bufspacewakeup();
2563					bp->b_bufsize = 0;
2564				}
2565				bp->b_flags &= ~B_MALLOC;
2566				newbsize = round_page(newbsize);
2567			}
2568#endif
2569			vm_hold_load_pages(
2570			    bp,
2571			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2572			    (vm_offset_t) bp->b_data + newbsize);
2573#if !defined(NO_B_MALLOC)
2574			if (origbuf) {
2575				bcopy(origbuf, bp->b_data, origbufsize);
2576				free(origbuf, M_BIOBUF);
2577			}
2578#endif
2579		}
2580	} else {
2581		vm_page_t m;
2582		int desiredpages;
2583
2584		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2585		desiredpages = (size == 0) ? 0 :
2586			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2587
2588#if !defined(NO_B_MALLOC)
2589		if (bp->b_flags & B_MALLOC)
2590			panic("allocbuf: VMIO buffer can't be malloced");
2591#endif
2592		/*
2593		 * Set B_CACHE initially if buffer is 0 length or will become
2594		 * 0-length.
2595		 */
2596		if (size == 0 || bp->b_bufsize == 0)
2597			bp->b_flags |= B_CACHE;
2598
2599		if (newbsize < bp->b_bufsize) {
2600			/*
2601			 * DEV_BSIZE aligned new buffer size is less then the
2602			 * DEV_BSIZE aligned existing buffer size.  Figure out
2603			 * if we have to remove any pages.
2604			 */
2605			if (desiredpages < bp->b_npages) {
2606				for (i = desiredpages; i < bp->b_npages; i++) {
2607					/*
2608					 * the page is not freed here -- it
2609					 * is the responsibility of
2610					 * vnode_pager_setsize
2611					 */
2612					m = bp->b_pages[i];
2613					KASSERT(m != bogus_page,
2614					    ("allocbuf: bogus page found"));
2615					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2616						;
2617
2618					bp->b_pages[i] = NULL;
2619					vm_page_unwire(m, 0);
2620				}
2621				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2622				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2623				bp->b_npages = desiredpages;
2624			}
2625		} else if (size > bp->b_bcount) {
2626			/*
2627			 * We are growing the buffer, possibly in a
2628			 * byte-granular fashion.
2629			 */
2630			struct vnode *vp;
2631			vm_object_t obj;
2632			vm_offset_t toff;
2633			vm_offset_t tinc;
2634
2635			/*
2636			 * Step 1, bring in the VM pages from the object,
2637			 * allocating them if necessary.  We must clear
2638			 * B_CACHE if these pages are not valid for the
2639			 * range covered by the buffer.
2640			 */
2641
2642			vp = bp->b_vp;
2643			VOP_GETVOBJECT(vp, &obj);
2644
2645			while (bp->b_npages < desiredpages) {
2646				vm_page_t m;
2647				vm_pindex_t pi;
2648
2649				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2650				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2651					/*
2652					 * note: must allocate system pages
2653					 * since blocking here could intefere
2654					 * with paging I/O, no matter which
2655					 * process we are.
2656					 */
2657					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2658					if (m == NULL) {
2659						VM_WAIT;
2660						vm_pageout_deficit += desiredpages - bp->b_npages;
2661					} else {
2662						vm_page_wire(m);
2663						vm_page_wakeup(m);
2664						bp->b_flags &= ~B_CACHE;
2665						bp->b_pages[bp->b_npages] = m;
2666						++bp->b_npages;
2667					}
2668					continue;
2669				}
2670
2671				/*
2672				 * We found a page.  If we have to sleep on it,
2673				 * retry because it might have gotten freed out
2674				 * from under us.
2675				 *
2676				 * We can only test PG_BUSY here.  Blocking on
2677				 * m->busy might lead to a deadlock:
2678				 *
2679				 *  vm_fault->getpages->cluster_read->allocbuf
2680				 *
2681				 */
2682
2683				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2684					continue;
2685
2686				/*
2687				 * We have a good page.  Should we wakeup the
2688				 * page daemon?
2689				 */
2690				if ((curproc != pageproc) &&
2691				    ((m->queue - m->pc) == PQ_CACHE) &&
2692				    ((cnt.v_free_count + cnt.v_cache_count) <
2693					(cnt.v_free_min + cnt.v_cache_min))) {
2694					pagedaemon_wakeup();
2695				}
2696				vm_page_flag_clear(m, PG_ZERO);
2697				vm_page_wire(m);
2698				bp->b_pages[bp->b_npages] = m;
2699				++bp->b_npages;
2700			}
2701
2702			/*
2703			 * Step 2.  We've loaded the pages into the buffer,
2704			 * we have to figure out if we can still have B_CACHE
2705			 * set.  Note that B_CACHE is set according to the
2706			 * byte-granular range ( bcount and size ), new the
2707			 * aligned range ( newbsize ).
2708			 *
2709			 * The VM test is against m->valid, which is DEV_BSIZE
2710			 * aligned.  Needless to say, the validity of the data
2711			 * needs to also be DEV_BSIZE aligned.  Note that this
2712			 * fails with NFS if the server or some other client
2713			 * extends the file's EOF.  If our buffer is resized,
2714			 * B_CACHE may remain set! XXX
2715			 */
2716
2717			toff = bp->b_bcount;
2718			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2719
2720			while ((bp->b_flags & B_CACHE) && toff < size) {
2721				vm_pindex_t pi;
2722
2723				if (tinc > (size - toff))
2724					tinc = size - toff;
2725
2726				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2727				    PAGE_SHIFT;
2728
2729				vfs_buf_test_cache(
2730				    bp,
2731				    bp->b_offset,
2732				    toff,
2733				    tinc,
2734				    bp->b_pages[pi]
2735				);
2736				toff += tinc;
2737				tinc = PAGE_SIZE;
2738			}
2739
2740			/*
2741			 * Step 3, fixup the KVM pmap.  Remember that
2742			 * bp->b_data is relative to bp->b_offset, but
2743			 * bp->b_offset may be offset into the first page.
2744			 */
2745
2746			bp->b_data = (caddr_t)
2747			    trunc_page((vm_offset_t)bp->b_data);
2748			pmap_qenter(
2749			    (vm_offset_t)bp->b_data,
2750			    bp->b_pages,
2751			    bp->b_npages
2752			);
2753
2754			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2755			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2756		}
2757	}
2758	if (newbsize < bp->b_bufsize)
2759		bufspacewakeup();
2760	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2761	bp->b_bcount = size;		/* requested buffer size	*/
2762	return 1;
2763}
2764
2765/*
2766 *	bufwait:
2767 *
2768 *	Wait for buffer I/O completion, returning error status.  The buffer
2769 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2770 *	error and cleared.
2771 */
2772int
2773bufwait(register struct buf * bp)
2774{
2775	int s;
2776
2777	s = splbio();
2778	while ((bp->b_flags & B_DONE) == 0) {
2779		if (bp->b_iocmd == BIO_READ)
2780			tsleep(bp, PRIBIO, "biord", 0);
2781		else
2782			tsleep(bp, PRIBIO, "biowr", 0);
2783	}
2784	splx(s);
2785	if (bp->b_flags & B_EINTR) {
2786		bp->b_flags &= ~B_EINTR;
2787		return (EINTR);
2788	}
2789	if (bp->b_ioflags & BIO_ERROR) {
2790		return (bp->b_error ? bp->b_error : EIO);
2791	} else {
2792		return (0);
2793	}
2794}
2795
2796 /*
2797  * Call back function from struct bio back up to struct buf.
2798  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2799  */
2800void
2801bufdonebio(struct bio *bp)
2802{
2803	bufdone(bp->bio_caller2);
2804}
2805
2806/*
2807 *	bufdone:
2808 *
2809 *	Finish I/O on a buffer, optionally calling a completion function.
2810 *	This is usually called from an interrupt so process blocking is
2811 *	not allowed.
2812 *
2813 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2814 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2815 *	assuming B_INVAL is clear.
2816 *
2817 *	For the VMIO case, we set B_CACHE if the op was a read and no
2818 *	read error occured, or if the op was a write.  B_CACHE is never
2819 *	set if the buffer is invalid or otherwise uncacheable.
2820 *
2821 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2822 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2823 *	in the biodone routine.
2824 */
2825void
2826bufdone(struct buf *bp)
2827{
2828	int s, error;
2829	void    (*biodone) __P((struct buf *));
2830
2831	GIANT_REQUIRED;
2832
2833	s = splbio();
2834
2835	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2836	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2837
2838	bp->b_flags |= B_DONE;
2839	runningbufwakeup(bp);
2840
2841	if (bp->b_iocmd == BIO_DELETE) {
2842		brelse(bp);
2843		splx(s);
2844		return;
2845	}
2846
2847	if (bp->b_iocmd == BIO_WRITE) {
2848		vwakeup(bp);
2849	}
2850
2851	/* call optional completion function if requested */
2852	if (bp->b_iodone != NULL) {
2853		biodone = bp->b_iodone;
2854		bp->b_iodone = NULL;
2855		(*biodone) (bp);
2856		splx(s);
2857		return;
2858	}
2859	if (LIST_FIRST(&bp->b_dep) != NULL)
2860		buf_complete(bp);
2861
2862	if (bp->b_flags & B_VMIO) {
2863		int i;
2864		vm_ooffset_t foff;
2865		vm_page_t m;
2866		vm_object_t obj;
2867		int iosize;
2868		struct vnode *vp = bp->b_vp;
2869
2870		error = VOP_GETVOBJECT(vp, &obj);
2871
2872#if defined(VFS_BIO_DEBUG)
2873		if (vp->v_usecount == 0) {
2874			panic("biodone: zero vnode ref count");
2875		}
2876
2877		if (error) {
2878			panic("biodone: missing VM object");
2879		}
2880
2881		if ((vp->v_flag & VOBJBUF) == 0) {
2882			panic("biodone: vnode is not setup for merged cache");
2883		}
2884#endif
2885
2886		foff = bp->b_offset;
2887		KASSERT(bp->b_offset != NOOFFSET,
2888		    ("biodone: no buffer offset"));
2889
2890		if (error) {
2891			panic("biodone: no object");
2892		}
2893#if defined(VFS_BIO_DEBUG)
2894		if (obj->paging_in_progress < bp->b_npages) {
2895			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2896			    obj->paging_in_progress, bp->b_npages);
2897		}
2898#endif
2899
2900		/*
2901		 * Set B_CACHE if the op was a normal read and no error
2902		 * occured.  B_CACHE is set for writes in the b*write()
2903		 * routines.
2904		 */
2905		iosize = bp->b_bcount - bp->b_resid;
2906		if (bp->b_iocmd == BIO_READ &&
2907		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2908		    !(bp->b_ioflags & BIO_ERROR)) {
2909			bp->b_flags |= B_CACHE;
2910		}
2911
2912		for (i = 0; i < bp->b_npages; i++) {
2913			int bogusflag = 0;
2914			int resid;
2915
2916			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2917			if (resid > iosize)
2918				resid = iosize;
2919
2920			/*
2921			 * cleanup bogus pages, restoring the originals
2922			 */
2923			m = bp->b_pages[i];
2924			if (m == bogus_page) {
2925				bogusflag = 1;
2926				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2927				if (m == NULL)
2928					panic("biodone: page disappeared!");
2929				bp->b_pages[i] = m;
2930				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2931			}
2932#if defined(VFS_BIO_DEBUG)
2933			if (OFF_TO_IDX(foff) != m->pindex) {
2934				printf(
2935"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2936				    (unsigned long)foff, m->pindex);
2937			}
2938#endif
2939
2940			/*
2941			 * In the write case, the valid and clean bits are
2942			 * already changed correctly ( see bdwrite() ), so we
2943			 * only need to do this here in the read case.
2944			 */
2945			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2946				vfs_page_set_valid(bp, foff, i, m);
2947			}
2948			vm_page_flag_clear(m, PG_ZERO);
2949
2950			/*
2951			 * when debugging new filesystems or buffer I/O methods, this
2952			 * is the most common error that pops up.  if you see this, you
2953			 * have not set the page busy flag correctly!!!
2954			 */
2955			if (m->busy == 0) {
2956				printf("biodone: page busy < 0, "
2957				    "pindex: %d, foff: 0x(%x,%x), "
2958				    "resid: %d, index: %d\n",
2959				    (int) m->pindex, (int)(foff >> 32),
2960						(int) foff & 0xffffffff, resid, i);
2961				if (!vn_isdisk(vp, NULL))
2962					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2963					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2964					    (int) bp->b_lblkno,
2965					    bp->b_flags, bp->b_npages);
2966				else
2967					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2968					    (int) bp->b_lblkno,
2969					    bp->b_flags, bp->b_npages);
2970				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2971				    m->valid, m->dirty, m->wire_count);
2972				panic("biodone: page busy < 0\n");
2973			}
2974			vm_page_io_finish(m);
2975			vm_object_pip_subtract(obj, 1);
2976			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2977			iosize -= resid;
2978		}
2979		if (obj)
2980			vm_object_pip_wakeupn(obj, 0);
2981	}
2982
2983	/*
2984	 * For asynchronous completions, release the buffer now. The brelse
2985	 * will do a wakeup there if necessary - so no need to do a wakeup
2986	 * here in the async case. The sync case always needs to do a wakeup.
2987	 */
2988
2989	if (bp->b_flags & B_ASYNC) {
2990		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2991			brelse(bp);
2992		else
2993			bqrelse(bp);
2994	} else {
2995		wakeup(bp);
2996	}
2997	splx(s);
2998}
2999
3000/*
3001 * This routine is called in lieu of iodone in the case of
3002 * incomplete I/O.  This keeps the busy status for pages
3003 * consistant.
3004 */
3005void
3006vfs_unbusy_pages(struct buf * bp)
3007{
3008	int i;
3009
3010	GIANT_REQUIRED;
3011
3012	runningbufwakeup(bp);
3013	if (bp->b_flags & B_VMIO) {
3014		struct vnode *vp = bp->b_vp;
3015		vm_object_t obj;
3016
3017		VOP_GETVOBJECT(vp, &obj);
3018
3019		for (i = 0; i < bp->b_npages; i++) {
3020			vm_page_t m = bp->b_pages[i];
3021
3022			if (m == bogus_page) {
3023				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3024				if (!m) {
3025					panic("vfs_unbusy_pages: page missing\n");
3026				}
3027				bp->b_pages[i] = m;
3028				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3029			}
3030			vm_object_pip_subtract(obj, 1);
3031			vm_page_flag_clear(m, PG_ZERO);
3032			vm_page_io_finish(m);
3033		}
3034		vm_object_pip_wakeupn(obj, 0);
3035	}
3036}
3037
3038/*
3039 * vfs_page_set_valid:
3040 *
3041 *	Set the valid bits in a page based on the supplied offset.   The
3042 *	range is restricted to the buffer's size.
3043 *
3044 *	This routine is typically called after a read completes.
3045 */
3046static void
3047vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3048{
3049	vm_ooffset_t soff, eoff;
3050
3051	GIANT_REQUIRED;
3052	/*
3053	 * Start and end offsets in buffer.  eoff - soff may not cross a
3054	 * page boundry or cross the end of the buffer.  The end of the
3055	 * buffer, in this case, is our file EOF, not the allocation size
3056	 * of the buffer.
3057	 */
3058	soff = off;
3059	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3060	if (eoff > bp->b_offset + bp->b_bcount)
3061		eoff = bp->b_offset + bp->b_bcount;
3062
3063	/*
3064	 * Set valid range.  This is typically the entire buffer and thus the
3065	 * entire page.
3066	 */
3067	if (eoff > soff) {
3068		vm_page_set_validclean(
3069		    m,
3070		   (vm_offset_t) (soff & PAGE_MASK),
3071		   (vm_offset_t) (eoff - soff)
3072		);
3073	}
3074}
3075
3076/*
3077 * This routine is called before a device strategy routine.
3078 * It is used to tell the VM system that paging I/O is in
3079 * progress, and treat the pages associated with the buffer
3080 * almost as being PG_BUSY.  Also the object paging_in_progress
3081 * flag is handled to make sure that the object doesn't become
3082 * inconsistant.
3083 *
3084 * Since I/O has not been initiated yet, certain buffer flags
3085 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3086 * and should be ignored.
3087 */
3088void
3089vfs_busy_pages(struct buf * bp, int clear_modify)
3090{
3091	int i, bogus;
3092
3093	GIANT_REQUIRED;
3094
3095	if (bp->b_flags & B_VMIO) {
3096		struct vnode *vp = bp->b_vp;
3097		vm_object_t obj;
3098		vm_ooffset_t foff;
3099
3100		VOP_GETVOBJECT(vp, &obj);
3101		foff = bp->b_offset;
3102		KASSERT(bp->b_offset != NOOFFSET,
3103		    ("vfs_busy_pages: no buffer offset"));
3104		vfs_setdirty(bp);
3105
3106retry:
3107		for (i = 0; i < bp->b_npages; i++) {
3108			vm_page_t m = bp->b_pages[i];
3109			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3110				goto retry;
3111		}
3112
3113		bogus = 0;
3114		for (i = 0; i < bp->b_npages; i++) {
3115			vm_page_t m = bp->b_pages[i];
3116
3117			vm_page_flag_clear(m, PG_ZERO);
3118			if ((bp->b_flags & B_CLUSTER) == 0) {
3119				vm_object_pip_add(obj, 1);
3120				vm_page_io_start(m);
3121			}
3122
3123			/*
3124			 * When readying a buffer for a read ( i.e
3125			 * clear_modify == 0 ), it is important to do
3126			 * bogus_page replacement for valid pages in
3127			 * partially instantiated buffers.  Partially
3128			 * instantiated buffers can, in turn, occur when
3129			 * reconstituting a buffer from its VM backing store
3130			 * base.  We only have to do this if B_CACHE is
3131			 * clear ( which causes the I/O to occur in the
3132			 * first place ).  The replacement prevents the read
3133			 * I/O from overwriting potentially dirty VM-backed
3134			 * pages.  XXX bogus page replacement is, uh, bogus.
3135			 * It may not work properly with small-block devices.
3136			 * We need to find a better way.
3137			 */
3138
3139			vm_page_protect(m, VM_PROT_NONE);
3140			if (clear_modify)
3141				vfs_page_set_valid(bp, foff, i, m);
3142			else if (m->valid == VM_PAGE_BITS_ALL &&
3143				(bp->b_flags & B_CACHE) == 0) {
3144				bp->b_pages[i] = bogus_page;
3145				bogus++;
3146			}
3147			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3148		}
3149		if (bogus)
3150			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3151	}
3152}
3153
3154/*
3155 * Tell the VM system that the pages associated with this buffer
3156 * are clean.  This is used for delayed writes where the data is
3157 * going to go to disk eventually without additional VM intevention.
3158 *
3159 * Note that while we only really need to clean through to b_bcount, we
3160 * just go ahead and clean through to b_bufsize.
3161 */
3162static void
3163vfs_clean_pages(struct buf * bp)
3164{
3165	int i;
3166
3167	GIANT_REQUIRED;
3168
3169	if (bp->b_flags & B_VMIO) {
3170		vm_ooffset_t foff;
3171
3172		foff = bp->b_offset;
3173		KASSERT(bp->b_offset != NOOFFSET,
3174		    ("vfs_clean_pages: no buffer offset"));
3175		for (i = 0; i < bp->b_npages; i++) {
3176			vm_page_t m = bp->b_pages[i];
3177			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3178			vm_ooffset_t eoff = noff;
3179
3180			if (eoff > bp->b_offset + bp->b_bufsize)
3181				eoff = bp->b_offset + bp->b_bufsize;
3182			vfs_page_set_valid(bp, foff, i, m);
3183			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3184			foff = noff;
3185		}
3186	}
3187}
3188
3189/*
3190 *	vfs_bio_set_validclean:
3191 *
3192 *	Set the range within the buffer to valid and clean.  The range is
3193 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3194 *	itself may be offset from the beginning of the first page.
3195 *
3196 */
3197
3198void
3199vfs_bio_set_validclean(struct buf *bp, int base, int size)
3200{
3201	if (bp->b_flags & B_VMIO) {
3202		int i;
3203		int n;
3204
3205		/*
3206		 * Fixup base to be relative to beginning of first page.
3207		 * Set initial n to be the maximum number of bytes in the
3208		 * first page that can be validated.
3209		 */
3210
3211		base += (bp->b_offset & PAGE_MASK);
3212		n = PAGE_SIZE - (base & PAGE_MASK);
3213
3214		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3215			vm_page_t m = bp->b_pages[i];
3216
3217			if (n > size)
3218				n = size;
3219
3220			vm_page_set_validclean(m, base & PAGE_MASK, n);
3221			base += n;
3222			size -= n;
3223			n = PAGE_SIZE;
3224		}
3225	}
3226}
3227
3228/*
3229 *	vfs_bio_clrbuf:
3230 *
3231 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3232 *	to clear BIO_ERROR and B_INVAL.
3233 *
3234 *	Note that while we only theoretically need to clear through b_bcount,
3235 *	we go ahead and clear through b_bufsize.
3236 */
3237
3238void
3239vfs_bio_clrbuf(struct buf *bp) {
3240	int i, mask = 0;
3241	caddr_t sa, ea;
3242
3243	GIANT_REQUIRED;
3244
3245	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3246		bp->b_flags &= ~B_INVAL;
3247		bp->b_ioflags &= ~BIO_ERROR;
3248		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3249		    (bp->b_offset & PAGE_MASK) == 0) {
3250			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3251			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3252			    ((bp->b_pages[0]->valid & mask) != mask)) {
3253				bzero(bp->b_data, bp->b_bufsize);
3254			}
3255			bp->b_pages[0]->valid |= mask;
3256			bp->b_resid = 0;
3257			return;
3258		}
3259		ea = sa = bp->b_data;
3260		for(i=0;i<bp->b_npages;i++,sa=ea) {
3261			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3262			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3263			ea = (caddr_t)(vm_offset_t)ulmin(
3264			    (u_long)(vm_offset_t)ea,
3265			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3266			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3267			if ((bp->b_pages[i]->valid & mask) == mask)
3268				continue;
3269			if ((bp->b_pages[i]->valid & mask) == 0) {
3270				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3271					bzero(sa, ea - sa);
3272				}
3273			} else {
3274				for (; sa < ea; sa += DEV_BSIZE, j++) {
3275					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3276						(bp->b_pages[i]->valid & (1<<j)) == 0)
3277						bzero(sa, DEV_BSIZE);
3278				}
3279			}
3280			bp->b_pages[i]->valid |= mask;
3281			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3282		}
3283		bp->b_resid = 0;
3284	} else {
3285		clrbuf(bp);
3286	}
3287}
3288
3289/*
3290 * vm_hold_load_pages and vm_hold_free_pages get pages into
3291 * a buffers address space.  The pages are anonymous and are
3292 * not associated with a file object.
3293 */
3294static void
3295vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3296{
3297	vm_offset_t pg;
3298	vm_page_t p;
3299	int index;
3300
3301	GIANT_REQUIRED;
3302
3303	to = round_page(to);
3304	from = round_page(from);
3305	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3306
3307	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3308tryagain:
3309		/*
3310		 * note: must allocate system pages since blocking here
3311		 * could intefere with paging I/O, no matter which
3312		 * process we are.
3313		 */
3314		p = vm_page_alloc(kernel_object,
3315			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3316		    VM_ALLOC_SYSTEM);
3317		if (!p) {
3318			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3319			VM_WAIT;
3320			goto tryagain;
3321		}
3322		vm_page_wire(p);
3323		p->valid = VM_PAGE_BITS_ALL;
3324		vm_page_flag_clear(p, PG_ZERO);
3325		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3326		bp->b_pages[index] = p;
3327		vm_page_wakeup(p);
3328	}
3329	bp->b_npages = index;
3330}
3331
3332/* Return pages associated with this buf to the vm system */
3333void
3334vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3335{
3336	vm_offset_t pg;
3337	vm_page_t p;
3338	int index, newnpages;
3339
3340	GIANT_REQUIRED;
3341
3342	from = round_page(from);
3343	to = round_page(to);
3344	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3345
3346	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3347		p = bp->b_pages[index];
3348		if (p && (index < bp->b_npages)) {
3349			if (p->busy) {
3350				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3351					bp->b_blkno, bp->b_lblkno);
3352			}
3353			bp->b_pages[index] = NULL;
3354			pmap_kremove(pg);
3355			vm_page_busy(p);
3356			vm_page_unwire(p, 0);
3357			vm_page_free(p);
3358		}
3359	}
3360	bp->b_npages = newnpages;
3361}
3362
3363
3364#include "opt_ddb.h"
3365#ifdef DDB
3366#include <ddb/ddb.h>
3367
3368/* DDB command to show buffer data */
3369DB_SHOW_COMMAND(buffer, db_show_buffer)
3370{
3371	/* get args */
3372	struct buf *bp = (struct buf *)addr;
3373
3374	if (!have_addr) {
3375		db_printf("usage: show buffer <addr>\n");
3376		return;
3377	}
3378
3379	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3380	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3381		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3382		  "b_blkno = %d, b_pblkno = %d\n",
3383		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3384		  major(bp->b_dev), minor(bp->b_dev),
3385		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3386	if (bp->b_npages) {
3387		int i;
3388		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3389		for (i = 0; i < bp->b_npages; i++) {
3390			vm_page_t m;
3391			m = bp->b_pages[i];
3392			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3393			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3394			if ((i + 1) < bp->b_npages)
3395				db_printf(",");
3396		}
3397		db_printf("\n");
3398	}
3399}
3400#endif /* DDB */
3401