vfs_bio.c revision 91367
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 91367 2002-02-27 09:51:33Z peter $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct	buf_ops buf_ops_bio = {
62	"buf_ops_bio",
63	bwrite
64};
65
66struct buf *buf;		/* buffer header pool */
67struct swqueue bswlist;
68struct mtx buftimelock;		/* Interlock on setting prio and timo */
69
70static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71		vm_offset_t to);
72static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73		vm_offset_t to);
74static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75			       int pageno, vm_page_t m);
76static void vfs_clean_pages(struct buf * bp);
77static void vfs_setdirty(struct buf *bp);
78static void vfs_vmio_release(struct buf *bp);
79static void vfs_backgroundwritedone(struct buf *bp);
80static int flushbufqueues(void);
81
82static int bd_request;
83
84static void buf_daemon __P((void));
85/*
86 * bogus page -- for I/O to/from partially complete buffers
87 * this is a temporary solution to the problem, but it is not
88 * really that bad.  it would be better to split the buffer
89 * for input in the case of buffers partially already in memory,
90 * but the code is intricate enough already.
91 */
92vm_page_t bogus_page;
93int vmiodirenable = TRUE;
94int runningbufspace;
95static vm_offset_t bogus_offset;
96
97static int bufspace, maxbufspace,
98	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100static int needsbuffer;
101static int lorunningspace, hirunningspace, runningbufreq;
102static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103static int numfreebuffers, lofreebuffers, hifreebuffers;
104static int getnewbufcalls;
105static int getnewbufrestarts;
106
107SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108	&numdirtybuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110	&lodirtybuffers, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112	&hidirtybuffers, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114	&numfreebuffers, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116	&lofreebuffers, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118	&hifreebuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120	&runningbufspace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122	&lorunningspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124	&hirunningspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126	&maxbufspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128	&hibufspace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130	&lobufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134	&maxbufmallocspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136	&bufmallocspace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138	&getnewbufcalls, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140	&getnewbufrestarts, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142	&vmiodirenable, 0, "");
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144	&bufdefragcnt, 0, "");
145SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146	&buffreekvacnt, 0, "");
147SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148	&bufreusecnt, 0, "");
149
150static int bufhashmask;
151static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153char *buf_wmesg = BUF_WMESG;
154
155extern int vm_swap_size;
156
157#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161
162/*
163 * Buffer hash table code.  Note that the logical block scans linearly, which
164 * gives us some L1 cache locality.
165 */
166
167static __inline
168struct bufhashhdr *
169bufhash(struct vnode *vnp, daddr_t bn)
170{
171	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172}
173
174/*
175 *	numdirtywakeup:
176 *
177 *	If someone is blocked due to there being too many dirty buffers,
178 *	and numdirtybuffers is now reasonable, wake them up.
179 */
180
181static __inline void
182numdirtywakeup(int level)
183{
184	if (numdirtybuffers <= level) {
185		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187			wakeup(&needsbuffer);
188		}
189	}
190}
191
192/*
193 *	bufspacewakeup:
194 *
195 *	Called when buffer space is potentially available for recovery.
196 *	getnewbuf() will block on this flag when it is unable to free
197 *	sufficient buffer space.  Buffer space becomes recoverable when
198 *	bp's get placed back in the queues.
199 */
200
201static __inline void
202bufspacewakeup(void)
203{
204	/*
205	 * If someone is waiting for BUF space, wake them up.  Even
206	 * though we haven't freed the kva space yet, the waiting
207	 * process will be able to now.
208	 */
209	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211		wakeup(&needsbuffer);
212	}
213}
214
215/*
216 * runningbufwakeup() - in-progress I/O accounting.
217 *
218 */
219static __inline void
220runningbufwakeup(struct buf *bp)
221{
222	if (bp->b_runningbufspace) {
223		runningbufspace -= bp->b_runningbufspace;
224		bp->b_runningbufspace = 0;
225		if (runningbufreq && runningbufspace <= lorunningspace) {
226			runningbufreq = 0;
227			wakeup(&runningbufreq);
228		}
229	}
230}
231
232/*
233 *	bufcountwakeup:
234 *
235 *	Called when a buffer has been added to one of the free queues to
236 *	account for the buffer and to wakeup anyone waiting for free buffers.
237 *	This typically occurs when large amounts of metadata are being handled
238 *	by the buffer cache ( else buffer space runs out first, usually ).
239 */
240
241static __inline void
242bufcountwakeup(void)
243{
244	++numfreebuffers;
245	if (needsbuffer) {
246		needsbuffer &= ~VFS_BIO_NEED_ANY;
247		if (numfreebuffers >= hifreebuffers)
248			needsbuffer &= ~VFS_BIO_NEED_FREE;
249		wakeup(&needsbuffer);
250	}
251}
252
253/*
254 *	waitrunningbufspace()
255 *
256 *	runningbufspace is a measure of the amount of I/O currently
257 *	running.  This routine is used in async-write situations to
258 *	prevent creating huge backups of pending writes to a device.
259 *	Only asynchronous writes are governed by this function.
260 *
261 *	Reads will adjust runningbufspace, but will not block based on it.
262 *	The read load has a side effect of reducing the allowed write load.
263 *
264 *	This does NOT turn an async write into a sync write.  It waits
265 *	for earlier writes to complete and generally returns before the
266 *	caller's write has reached the device.
267 */
268static __inline void
269waitrunningbufspace(void)
270{
271	/*
272	 * XXX race against wakeup interrupt, currently
273	 * protected by Giant.  FIXME!
274	 */
275	while (runningbufspace > hirunningspace) {
276		++runningbufreq;
277		tsleep(&runningbufreq, PVM, "wdrain", 0);
278	}
279}
280
281
282/*
283 *	vfs_buf_test_cache:
284 *
285 *	Called when a buffer is extended.  This function clears the B_CACHE
286 *	bit if the newly extended portion of the buffer does not contain
287 *	valid data.
288 */
289static __inline__
290void
291vfs_buf_test_cache(struct buf *bp,
292		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
293		  vm_page_t m)
294{
295	GIANT_REQUIRED;
296
297	if (bp->b_flags & B_CACHE) {
298		int base = (foff + off) & PAGE_MASK;
299		if (vm_page_is_valid(m, base, size) == 0)
300			bp->b_flags &= ~B_CACHE;
301	}
302}
303
304static __inline__
305void
306bd_wakeup(int dirtybuflevel)
307{
308	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
309		bd_request = 1;
310		wakeup(&bd_request);
311	}
312}
313
314/*
315 * bd_speedup - speedup the buffer cache flushing code
316 */
317
318static __inline__
319void
320bd_speedup(void)
321{
322	bd_wakeup(1);
323}
324
325/*
326 * Calculating buffer cache scaling values and reserve space for buffer
327 * headers.  This is called during low level kernel initialization and
328 * may be called more then once.  We CANNOT write to the memory area
329 * being reserved at this time.
330 */
331caddr_t
332kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
333{
334	/*
335	 * physmem_est is in pages.  Convert it to kilobytes (assumes
336	 * PAGE_SIZE is >= 1K)
337	 */
338	physmem_est = physmem_est * (PAGE_SIZE / 1024);
339
340	/*
341	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
342	 * For the first 64MB of ram nominally allocate sufficient buffers to
343	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
344	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
345	 * the buffer cache we limit the eventual kva reservation to
346	 * maxbcache bytes.
347	 *
348	 * factor represents the 1/4 x ram conversion.
349	 */
350	if (nbuf == 0) {
351		int factor = 4 * BKVASIZE / 1024;
352
353		nbuf = 50;
354		if (physmem_est > 4096)
355			nbuf += min((physmem_est - 4096) / factor,
356			    65536 / factor);
357		if (physmem_est > 65536)
358			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
359
360		if (maxbcache && nbuf > maxbcache / BKVASIZE)
361			nbuf = maxbcache / BKVASIZE;
362	}
363
364#if 0
365	/*
366	 * Do not allow the buffer_map to be more then 1/2 the size of the
367	 * kernel_map.
368	 */
369	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
370	    (BKVASIZE * 2)) {
371		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
372		    (BKVASIZE * 2);
373		printf("Warning: nbufs capped at %d\n", nbuf);
374	}
375#endif
376
377	/*
378	 * swbufs are used as temporary holders for I/O, such as paging I/O.
379	 * We have no less then 16 and no more then 256.
380	 */
381	nswbuf = max(min(nbuf/4, 256), 16);
382
383	/*
384	 * Reserve space for the buffer cache buffers
385	 */
386	swbuf = (void *)v;
387	v = (caddr_t)(swbuf + nswbuf);
388	buf = (void *)v;
389	v = (caddr_t)(buf + nbuf);
390
391	/*
392	 * Calculate the hash table size and reserve space
393	 */
394	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
395		;
396	bufhashtbl = (void *)v;
397	v = (caddr_t)(bufhashtbl + bufhashmask);
398	--bufhashmask;
399
400	return(v);
401}
402
403void
404bufinit(void)
405{
406	struct buf *bp;
407	int i;
408
409	GIANT_REQUIRED;
410
411	TAILQ_INIT(&bswlist);
412	LIST_INIT(&invalhash);
413	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
414
415	for (i = 0; i <= bufhashmask; i++)
416		LIST_INIT(&bufhashtbl[i]);
417
418	/* next, make a null set of free lists */
419	for (i = 0; i < BUFFER_QUEUES; i++)
420		TAILQ_INIT(&bufqueues[i]);
421
422	/* finally, initialize each buffer header and stick on empty q */
423	for (i = 0; i < nbuf; i++) {
424		bp = &buf[i];
425		bzero(bp, sizeof *bp);
426		bp->b_flags = B_INVAL;	/* we're just an empty header */
427		bp->b_dev = NODEV;
428		bp->b_rcred = NOCRED;
429		bp->b_wcred = NOCRED;
430		bp->b_qindex = QUEUE_EMPTY;
431		bp->b_xflags = 0;
432		LIST_INIT(&bp->b_dep);
433		BUF_LOCKINIT(bp);
434		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
435		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
436	}
437
438	/*
439	 * maxbufspace is the absolute maximum amount of buffer space we are
440	 * allowed to reserve in KVM and in real terms.  The absolute maximum
441	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
442	 * used by most other processes.  The differential is required to
443	 * ensure that buf_daemon is able to run when other processes might
444	 * be blocked waiting for buffer space.
445	 *
446	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
447	 * this may result in KVM fragmentation which is not handled optimally
448	 * by the system.
449	 */
450	maxbufspace = nbuf * BKVASIZE;
451	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
452	lobufspace = hibufspace - MAXBSIZE;
453
454	lorunningspace = 512 * 1024;
455	hirunningspace = 1024 * 1024;
456
457/*
458 * Limit the amount of malloc memory since it is wired permanently into
459 * the kernel space.  Even though this is accounted for in the buffer
460 * allocation, we don't want the malloced region to grow uncontrolled.
461 * The malloc scheme improves memory utilization significantly on average
462 * (small) directories.
463 */
464	maxbufmallocspace = hibufspace / 20;
465
466/*
467 * Reduce the chance of a deadlock occuring by limiting the number
468 * of delayed-write dirty buffers we allow to stack up.
469 */
470	hidirtybuffers = nbuf / 4 + 20;
471	numdirtybuffers = 0;
472/*
473 * To support extreme low-memory systems, make sure hidirtybuffers cannot
474 * eat up all available buffer space.  This occurs when our minimum cannot
475 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
476 * BKVASIZE'd (8K) buffers.
477 */
478	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
479		hidirtybuffers >>= 1;
480	}
481	lodirtybuffers = hidirtybuffers / 2;
482
483/*
484 * Try to keep the number of free buffers in the specified range,
485 * and give special processes (e.g. like buf_daemon) access to an
486 * emergency reserve.
487 */
488	lofreebuffers = nbuf / 18 + 5;
489	hifreebuffers = 2 * lofreebuffers;
490	numfreebuffers = nbuf;
491
492/*
493 * Maximum number of async ops initiated per buf_daemon loop.  This is
494 * somewhat of a hack at the moment, we really need to limit ourselves
495 * based on the number of bytes of I/O in-transit that were initiated
496 * from buf_daemon.
497 */
498
499	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
500	bogus_page = vm_page_alloc(kernel_object,
501			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
502			VM_ALLOC_NORMAL);
503	cnt.v_wire_count++;
504}
505
506/*
507 * bfreekva() - free the kva allocation for a buffer.
508 *
509 *	Must be called at splbio() or higher as this is the only locking for
510 *	buffer_map.
511 *
512 *	Since this call frees up buffer space, we call bufspacewakeup().
513 */
514static void
515bfreekva(struct buf * bp)
516{
517	GIANT_REQUIRED;
518
519	if (bp->b_kvasize) {
520		++buffreekvacnt;
521		bufspace -= bp->b_kvasize;
522		vm_map_delete(buffer_map,
523		    (vm_offset_t) bp->b_kvabase,
524		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
525		);
526		bp->b_kvasize = 0;
527		bufspacewakeup();
528	}
529}
530
531/*
532 *	bremfree:
533 *
534 *	Remove the buffer from the appropriate free list.
535 */
536void
537bremfree(struct buf * bp)
538{
539	int s = splbio();
540	int old_qindex = bp->b_qindex;
541
542	GIANT_REQUIRED;
543
544	if (bp->b_qindex != QUEUE_NONE) {
545		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
546		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
547		bp->b_qindex = QUEUE_NONE;
548	} else {
549		if (BUF_REFCNT(bp) <= 1)
550			panic("bremfree: removing a buffer not on a queue");
551	}
552
553	/*
554	 * Fixup numfreebuffers count.  If the buffer is invalid or not
555	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
556	 * the buffer was free and we must decrement numfreebuffers.
557	 */
558	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
559		switch(old_qindex) {
560		case QUEUE_DIRTY:
561		case QUEUE_CLEAN:
562		case QUEUE_EMPTY:
563		case QUEUE_EMPTYKVA:
564			--numfreebuffers;
565			break;
566		default:
567			break;
568		}
569	}
570	splx(s);
571}
572
573
574/*
575 * Get a buffer with the specified data.  Look in the cache first.  We
576 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
577 * is set, the buffer is valid and we do not have to do anything ( see
578 * getblk() ).  This is really just a special case of breadn().
579 */
580int
581bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
582    struct buf ** bpp)
583{
584
585	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
586}
587
588/*
589 * Operates like bread, but also starts asynchronous I/O on
590 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
591 * to initiating I/O . If B_CACHE is set, the buffer is valid
592 * and we do not have to do anything.
593 */
594int
595breadn(struct vnode * vp, daddr_t blkno, int size,
596    daddr_t * rablkno, int *rabsize,
597    int cnt, struct ucred * cred, struct buf ** bpp)
598{
599	struct buf *bp, *rabp;
600	int i;
601	int rv = 0, readwait = 0;
602
603	*bpp = bp = getblk(vp, blkno, size, 0, 0);
604
605	/* if not found in cache, do some I/O */
606	if ((bp->b_flags & B_CACHE) == 0) {
607		if (curthread != PCPU_GET(idlethread))
608			curthread->td_proc->p_stats->p_ru.ru_inblock++;
609		bp->b_iocmd = BIO_READ;
610		bp->b_flags &= ~B_INVAL;
611		bp->b_ioflags &= ~BIO_ERROR;
612		if (bp->b_rcred == NOCRED && cred != NOCRED)
613			bp->b_rcred = crhold(cred);
614		vfs_busy_pages(bp, 0);
615		VOP_STRATEGY(vp, bp);
616		++readwait;
617	}
618
619	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
620		if (inmem(vp, *rablkno))
621			continue;
622		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
623
624		if ((rabp->b_flags & B_CACHE) == 0) {
625			if (curthread != PCPU_GET(idlethread))
626				curthread->td_proc->p_stats->p_ru.ru_inblock++;
627			rabp->b_flags |= B_ASYNC;
628			rabp->b_flags &= ~B_INVAL;
629			rabp->b_ioflags &= ~BIO_ERROR;
630			rabp->b_iocmd = BIO_READ;
631			if (rabp->b_rcred == NOCRED && cred != NOCRED)
632				rabp->b_rcred = crhold(cred);
633			vfs_busy_pages(rabp, 0);
634			BUF_KERNPROC(rabp);
635			VOP_STRATEGY(vp, rabp);
636		} else {
637			brelse(rabp);
638		}
639	}
640
641	if (readwait) {
642		rv = bufwait(bp);
643	}
644	return (rv);
645}
646
647/*
648 * Write, release buffer on completion.  (Done by iodone
649 * if async).  Do not bother writing anything if the buffer
650 * is invalid.
651 *
652 * Note that we set B_CACHE here, indicating that buffer is
653 * fully valid and thus cacheable.  This is true even of NFS
654 * now so we set it generally.  This could be set either here
655 * or in biodone() since the I/O is synchronous.  We put it
656 * here.
657 */
658
659int dobkgrdwrite = 1;
660SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
661
662int
663bwrite(struct buf * bp)
664{
665	int oldflags, s;
666	struct buf *newbp;
667
668	if (bp->b_flags & B_INVAL) {
669		brelse(bp);
670		return (0);
671	}
672
673	oldflags = bp->b_flags;
674
675	if (BUF_REFCNT(bp) == 0)
676		panic("bwrite: buffer is not busy???");
677	s = splbio();
678	/*
679	 * If a background write is already in progress, delay
680	 * writing this block if it is asynchronous. Otherwise
681	 * wait for the background write to complete.
682	 */
683	if (bp->b_xflags & BX_BKGRDINPROG) {
684		if (bp->b_flags & B_ASYNC) {
685			splx(s);
686			bdwrite(bp);
687			return (0);
688		}
689		bp->b_xflags |= BX_BKGRDWAIT;
690		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
691		if (bp->b_xflags & BX_BKGRDINPROG)
692			panic("bwrite: still writing");
693	}
694
695	/* Mark the buffer clean */
696	bundirty(bp);
697
698	/*
699	 * If this buffer is marked for background writing and we
700	 * do not have to wait for it, make a copy and write the
701	 * copy so as to leave this buffer ready for further use.
702	 *
703	 * This optimization eats a lot of memory.  If we have a page
704	 * or buffer shortfall we can't do it.
705	 */
706	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
707	    (bp->b_flags & B_ASYNC) &&
708	    !vm_page_count_severe() &&
709	    !buf_dirty_count_severe()) {
710		if (bp->b_iodone != NULL) {
711			printf("bp->b_iodone = %p\n", bp->b_iodone);
712			panic("bwrite: need chained iodone");
713		}
714
715		/* get a new block */
716		newbp = geteblk(bp->b_bufsize);
717
718		/* set it to be identical to the old block */
719		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
720		bgetvp(bp->b_vp, newbp);
721		newbp->b_lblkno = bp->b_lblkno;
722		newbp->b_blkno = bp->b_blkno;
723		newbp->b_offset = bp->b_offset;
724		newbp->b_iodone = vfs_backgroundwritedone;
725		newbp->b_flags |= B_ASYNC;
726		newbp->b_flags &= ~B_INVAL;
727
728		/* move over the dependencies */
729		if (LIST_FIRST(&bp->b_dep) != NULL)
730			buf_movedeps(bp, newbp);
731
732		/*
733		 * Initiate write on the copy, release the original to
734		 * the B_LOCKED queue so that it cannot go away until
735		 * the background write completes. If not locked it could go
736		 * away and then be reconstituted while it was being written.
737		 * If the reconstituted buffer were written, we could end up
738		 * with two background copies being written at the same time.
739		 */
740		bp->b_xflags |= BX_BKGRDINPROG;
741		bp->b_flags |= B_LOCKED;
742		bqrelse(bp);
743		bp = newbp;
744	}
745
746	bp->b_flags &= ~B_DONE;
747	bp->b_ioflags &= ~BIO_ERROR;
748	bp->b_flags |= B_WRITEINPROG | B_CACHE;
749	bp->b_iocmd = BIO_WRITE;
750
751	bp->b_vp->v_numoutput++;
752	vfs_busy_pages(bp, 1);
753
754	/*
755	 * Normal bwrites pipeline writes
756	 */
757	bp->b_runningbufspace = bp->b_bufsize;
758	runningbufspace += bp->b_runningbufspace;
759
760	if (curthread != PCPU_GET(idlethread))
761		curthread->td_proc->p_stats->p_ru.ru_oublock++;
762	splx(s);
763	if (oldflags & B_ASYNC)
764		BUF_KERNPROC(bp);
765	BUF_STRATEGY(bp);
766
767	if ((oldflags & B_ASYNC) == 0) {
768		int rtval = bufwait(bp);
769		brelse(bp);
770		return (rtval);
771	} else if ((oldflags & B_NOWDRAIN) == 0) {
772		/*
773		 * don't allow the async write to saturate the I/O
774		 * system.  Deadlocks can occur only if a device strategy
775		 * routine (like in MD) turns around and issues another
776		 * high-level write, in which case B_NOWDRAIN is expected
777		 * to be set.  Otherwise we will not deadlock here because
778		 * we are blocking waiting for I/O that is already in-progress
779		 * to complete.
780		 */
781		waitrunningbufspace();
782	}
783
784	return (0);
785}
786
787/*
788 * Complete a background write started from bwrite.
789 */
790static void
791vfs_backgroundwritedone(bp)
792	struct buf *bp;
793{
794	struct buf *origbp;
795
796	/*
797	 * Find the original buffer that we are writing.
798	 */
799	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
800		panic("backgroundwritedone: lost buffer");
801	/*
802	 * Process dependencies then return any unfinished ones.
803	 */
804	if (LIST_FIRST(&bp->b_dep) != NULL)
805		buf_complete(bp);
806	if (LIST_FIRST(&bp->b_dep) != NULL)
807		buf_movedeps(bp, origbp);
808	/*
809	 * Clear the BX_BKGRDINPROG flag in the original buffer
810	 * and awaken it if it is waiting for the write to complete.
811	 * If BX_BKGRDINPROG is not set in the original buffer it must
812	 * have been released and re-instantiated - which is not legal.
813	 */
814	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
815	origbp->b_xflags &= ~BX_BKGRDINPROG;
816	if (origbp->b_xflags & BX_BKGRDWAIT) {
817		origbp->b_xflags &= ~BX_BKGRDWAIT;
818		wakeup(&origbp->b_xflags);
819	}
820	/*
821	 * Clear the B_LOCKED flag and remove it from the locked
822	 * queue if it currently resides there.
823	 */
824	origbp->b_flags &= ~B_LOCKED;
825	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
826		bremfree(origbp);
827		bqrelse(origbp);
828	}
829	/*
830	 * This buffer is marked B_NOCACHE, so when it is released
831	 * by biodone, it will be tossed. We mark it with BIO_READ
832	 * to avoid biodone doing a second vwakeup.
833	 */
834	bp->b_flags |= B_NOCACHE;
835	bp->b_iocmd = BIO_READ;
836	bp->b_flags &= ~(B_CACHE | B_DONE);
837	bp->b_iodone = 0;
838	bufdone(bp);
839}
840
841/*
842 * Delayed write. (Buffer is marked dirty).  Do not bother writing
843 * anything if the buffer is marked invalid.
844 *
845 * Note that since the buffer must be completely valid, we can safely
846 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
847 * biodone() in order to prevent getblk from writing the buffer
848 * out synchronously.
849 */
850void
851bdwrite(struct buf * bp)
852{
853	GIANT_REQUIRED;
854
855	if (BUF_REFCNT(bp) == 0)
856		panic("bdwrite: buffer is not busy");
857
858	if (bp->b_flags & B_INVAL) {
859		brelse(bp);
860		return;
861	}
862	bdirty(bp);
863
864	/*
865	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
866	 * true even of NFS now.
867	 */
868	bp->b_flags |= B_CACHE;
869
870	/*
871	 * This bmap keeps the system from needing to do the bmap later,
872	 * perhaps when the system is attempting to do a sync.  Since it
873	 * is likely that the indirect block -- or whatever other datastructure
874	 * that the filesystem needs is still in memory now, it is a good
875	 * thing to do this.  Note also, that if the pageout daemon is
876	 * requesting a sync -- there might not be enough memory to do
877	 * the bmap then...  So, this is important to do.
878	 */
879	if (bp->b_lblkno == bp->b_blkno) {
880		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
881	}
882
883	/*
884	 * Set the *dirty* buffer range based upon the VM system dirty pages.
885	 */
886	vfs_setdirty(bp);
887
888	/*
889	 * We need to do this here to satisfy the vnode_pager and the
890	 * pageout daemon, so that it thinks that the pages have been
891	 * "cleaned".  Note that since the pages are in a delayed write
892	 * buffer -- the VFS layer "will" see that the pages get written
893	 * out on the next sync, or perhaps the cluster will be completed.
894	 */
895	vfs_clean_pages(bp);
896	bqrelse(bp);
897
898	/*
899	 * Wakeup the buffer flushing daemon if we have a lot of dirty
900	 * buffers (midpoint between our recovery point and our stall
901	 * point).
902	 */
903	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
904
905	/*
906	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
907	 * due to the softdep code.
908	 */
909}
910
911/*
912 *	bdirty:
913 *
914 *	Turn buffer into delayed write request.  We must clear BIO_READ and
915 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
916 *	itself to properly update it in the dirty/clean lists.  We mark it
917 *	B_DONE to ensure that any asynchronization of the buffer properly
918 *	clears B_DONE ( else a panic will occur later ).
919 *
920 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
921 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
922 *	should only be called if the buffer is known-good.
923 *
924 *	Since the buffer is not on a queue, we do not update the numfreebuffers
925 *	count.
926 *
927 *	Must be called at splbio().
928 *	The buffer must be on QUEUE_NONE.
929 */
930void
931bdirty(bp)
932	struct buf *bp;
933{
934	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
935	bp->b_flags &= ~(B_RELBUF);
936	bp->b_iocmd = BIO_WRITE;
937
938	if ((bp->b_flags & B_DELWRI) == 0) {
939		bp->b_flags |= B_DONE | B_DELWRI;
940		reassignbuf(bp, bp->b_vp);
941		++numdirtybuffers;
942		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
943	}
944}
945
946/*
947 *	bundirty:
948 *
949 *	Clear B_DELWRI for buffer.
950 *
951 *	Since the buffer is not on a queue, we do not update the numfreebuffers
952 *	count.
953 *
954 *	Must be called at splbio().
955 *	The buffer must be on QUEUE_NONE.
956 */
957
958void
959bundirty(bp)
960	struct buf *bp;
961{
962	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
963
964	if (bp->b_flags & B_DELWRI) {
965		bp->b_flags &= ~B_DELWRI;
966		reassignbuf(bp, bp->b_vp);
967		--numdirtybuffers;
968		numdirtywakeup(lodirtybuffers);
969	}
970	/*
971	 * Since it is now being written, we can clear its deferred write flag.
972	 */
973	bp->b_flags &= ~B_DEFERRED;
974}
975
976/*
977 *	bawrite:
978 *
979 *	Asynchronous write.  Start output on a buffer, but do not wait for
980 *	it to complete.  The buffer is released when the output completes.
981 *
982 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
983 *	B_INVAL buffers.  Not us.
984 */
985void
986bawrite(struct buf * bp)
987{
988	bp->b_flags |= B_ASYNC;
989	(void) BUF_WRITE(bp);
990}
991
992/*
993 *	bwillwrite:
994 *
995 *	Called prior to the locking of any vnodes when we are expecting to
996 *	write.  We do not want to starve the buffer cache with too many
997 *	dirty buffers so we block here.  By blocking prior to the locking
998 *	of any vnodes we attempt to avoid the situation where a locked vnode
999 *	prevents the various system daemons from flushing related buffers.
1000 */
1001
1002void
1003bwillwrite(void)
1004{
1005	if (numdirtybuffers >= hidirtybuffers) {
1006		int s;
1007
1008		s = splbio();
1009		while (numdirtybuffers >= hidirtybuffers) {
1010			bd_wakeup(1);
1011			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1012			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1013		}
1014		splx(s);
1015	}
1016}
1017
1018/*
1019 * Return true if we have too many dirty buffers.
1020 */
1021int
1022buf_dirty_count_severe(void)
1023{
1024	return(numdirtybuffers >= hidirtybuffers);
1025}
1026
1027/*
1028 *	brelse:
1029 *
1030 *	Release a busy buffer and, if requested, free its resources.  The
1031 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1032 *	to be accessed later as a cache entity or reused for other purposes.
1033 */
1034void
1035brelse(struct buf * bp)
1036{
1037	int s;
1038
1039	GIANT_REQUIRED;
1040
1041	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1042
1043	s = splbio();
1044
1045	if (bp->b_flags & B_LOCKED)
1046		bp->b_ioflags &= ~BIO_ERROR;
1047
1048	if (bp->b_iocmd == BIO_WRITE &&
1049	    (bp->b_ioflags & BIO_ERROR) &&
1050	    !(bp->b_flags & B_INVAL)) {
1051		/*
1052		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1053		 * pages from being scrapped.  If B_INVAL is set then
1054		 * this case is not run and the next case is run to
1055		 * destroy the buffer.  B_INVAL can occur if the buffer
1056		 * is outside the range supported by the underlying device.
1057		 */
1058		bp->b_ioflags &= ~BIO_ERROR;
1059		bdirty(bp);
1060	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1061	    (bp->b_ioflags & BIO_ERROR) ||
1062	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1063		/*
1064		 * Either a failed I/O or we were asked to free or not
1065		 * cache the buffer.
1066		 */
1067		bp->b_flags |= B_INVAL;
1068		if (LIST_FIRST(&bp->b_dep) != NULL)
1069			buf_deallocate(bp);
1070		if (bp->b_flags & B_DELWRI) {
1071			--numdirtybuffers;
1072			numdirtywakeup(lodirtybuffers);
1073		}
1074		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1075		if ((bp->b_flags & B_VMIO) == 0) {
1076			if (bp->b_bufsize)
1077				allocbuf(bp, 0);
1078			if (bp->b_vp)
1079				brelvp(bp);
1080		}
1081	}
1082
1083	/*
1084	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1085	 * is called with B_DELWRI set, the underlying pages may wind up
1086	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1087	 * because pages associated with a B_DELWRI bp are marked clean.
1088	 *
1089	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1090	 * if B_DELWRI is set.
1091	 *
1092	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1093	 * on pages to return pages to the VM page queues.
1094	 */
1095	if (bp->b_flags & B_DELWRI)
1096		bp->b_flags &= ~B_RELBUF;
1097	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1098		bp->b_flags |= B_RELBUF;
1099
1100	/*
1101	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1102	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1103	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1104	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1105	 *
1106	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1107	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1108	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1109	 *
1110	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1111	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1112	 * the commit state and we cannot afford to lose the buffer. If the
1113	 * buffer has a background write in progress, we need to keep it
1114	 * around to prevent it from being reconstituted and starting a second
1115	 * background write.
1116	 */
1117	if ((bp->b_flags & B_VMIO)
1118	    && !(bp->b_vp->v_tag == VT_NFS &&
1119		 !vn_isdisk(bp->b_vp, NULL) &&
1120		 (bp->b_flags & B_DELWRI))
1121	    ) {
1122
1123		int i, j, resid;
1124		vm_page_t m;
1125		off_t foff;
1126		vm_pindex_t poff;
1127		vm_object_t obj;
1128		struct vnode *vp;
1129
1130		vp = bp->b_vp;
1131
1132		/*
1133		 * Get the base offset and length of the buffer.  Note that
1134		 * in the VMIO case if the buffer block size is not
1135		 * page-aligned then b_data pointer may not be page-aligned.
1136		 * But our b_pages[] array *IS* page aligned.
1137		 *
1138		 * block sizes less then DEV_BSIZE (usually 512) are not
1139		 * supported due to the page granularity bits (m->valid,
1140		 * m->dirty, etc...).
1141		 *
1142		 * See man buf(9) for more information
1143		 */
1144		resid = bp->b_bufsize;
1145		foff = bp->b_offset;
1146
1147		for (i = 0; i < bp->b_npages; i++) {
1148			int had_bogus = 0;
1149
1150			m = bp->b_pages[i];
1151			vm_page_flag_clear(m, PG_ZERO);
1152
1153			/*
1154			 * If we hit a bogus page, fixup *all* the bogus pages
1155			 * now.
1156			 */
1157			if (m == bogus_page) {
1158				VOP_GETVOBJECT(vp, &obj);
1159				poff = OFF_TO_IDX(bp->b_offset);
1160				had_bogus = 1;
1161
1162				for (j = i; j < bp->b_npages; j++) {
1163					vm_page_t mtmp;
1164					mtmp = bp->b_pages[j];
1165					if (mtmp == bogus_page) {
1166						mtmp = vm_page_lookup(obj, poff + j);
1167						if (!mtmp) {
1168							panic("brelse: page missing\n");
1169						}
1170						bp->b_pages[j] = mtmp;
1171					}
1172				}
1173
1174				if ((bp->b_flags & B_INVAL) == 0) {
1175					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1176				}
1177				m = bp->b_pages[i];
1178			}
1179			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1180				int poffset = foff & PAGE_MASK;
1181				int presid = resid > (PAGE_SIZE - poffset) ?
1182					(PAGE_SIZE - poffset) : resid;
1183
1184				KASSERT(presid >= 0, ("brelse: extra page"));
1185				vm_page_set_invalid(m, poffset, presid);
1186				if (had_bogus)
1187					printf("avoided corruption bug in bogus_page/brelse code\n");
1188			}
1189			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1190			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1191		}
1192
1193		if (bp->b_flags & (B_INVAL | B_RELBUF))
1194			vfs_vmio_release(bp);
1195
1196	} else if (bp->b_flags & B_VMIO) {
1197
1198		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1199			vfs_vmio_release(bp);
1200		}
1201
1202	}
1203
1204	if (bp->b_qindex != QUEUE_NONE)
1205		panic("brelse: free buffer onto another queue???");
1206	if (BUF_REFCNT(bp) > 1) {
1207		/* do not release to free list */
1208		BUF_UNLOCK(bp);
1209		splx(s);
1210		return;
1211	}
1212
1213	/* enqueue */
1214
1215	/* buffers with no memory */
1216	if (bp->b_bufsize == 0) {
1217		bp->b_flags |= B_INVAL;
1218		bp->b_xflags &= ~BX_BKGRDWRITE;
1219		if (bp->b_xflags & BX_BKGRDINPROG)
1220			panic("losing buffer 1");
1221		if (bp->b_kvasize) {
1222			bp->b_qindex = QUEUE_EMPTYKVA;
1223		} else {
1224			bp->b_qindex = QUEUE_EMPTY;
1225		}
1226		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1227		LIST_REMOVE(bp, b_hash);
1228		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1229		bp->b_dev = NODEV;
1230	/* buffers with junk contents */
1231	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1232		bp->b_flags |= B_INVAL;
1233		bp->b_xflags &= ~BX_BKGRDWRITE;
1234		if (bp->b_xflags & BX_BKGRDINPROG)
1235			panic("losing buffer 2");
1236		bp->b_qindex = QUEUE_CLEAN;
1237		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1238		LIST_REMOVE(bp, b_hash);
1239		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1240		bp->b_dev = NODEV;
1241
1242	/* buffers that are locked */
1243	} else if (bp->b_flags & B_LOCKED) {
1244		bp->b_qindex = QUEUE_LOCKED;
1245		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1246
1247	/* remaining buffers */
1248	} else {
1249		if (bp->b_flags & B_DELWRI)
1250			bp->b_qindex = QUEUE_DIRTY;
1251		else
1252			bp->b_qindex = QUEUE_CLEAN;
1253		if (bp->b_flags & B_AGE)
1254			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1255		else
1256			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1257	}
1258
1259	/*
1260	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1261	 * on the correct queue.
1262	 */
1263	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1264		bp->b_flags &= ~B_DELWRI;
1265		--numdirtybuffers;
1266		numdirtywakeup(lodirtybuffers);
1267	}
1268
1269	/*
1270	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1271	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1272	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1273	 * if B_INVAL is set ).
1274	 */
1275
1276	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1277		bufcountwakeup();
1278
1279	/*
1280	 * Something we can maybe free or reuse
1281	 */
1282	if (bp->b_bufsize || bp->b_kvasize)
1283		bufspacewakeup();
1284
1285	/* unlock */
1286	BUF_UNLOCK(bp);
1287	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1288			B_DIRECT | B_NOWDRAIN);
1289	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1290		panic("brelse: not dirty");
1291	splx(s);
1292}
1293
1294/*
1295 * Release a buffer back to the appropriate queue but do not try to free
1296 * it.  The buffer is expected to be used again soon.
1297 *
1298 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1299 * biodone() to requeue an async I/O on completion.  It is also used when
1300 * known good buffers need to be requeued but we think we may need the data
1301 * again soon.
1302 *
1303 * XXX we should be able to leave the B_RELBUF hint set on completion.
1304 */
1305void
1306bqrelse(struct buf * bp)
1307{
1308	int s;
1309
1310	s = splbio();
1311
1312	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1313
1314	if (bp->b_qindex != QUEUE_NONE)
1315		panic("bqrelse: free buffer onto another queue???");
1316	if (BUF_REFCNT(bp) > 1) {
1317		/* do not release to free list */
1318		BUF_UNLOCK(bp);
1319		splx(s);
1320		return;
1321	}
1322	if (bp->b_flags & B_LOCKED) {
1323		bp->b_ioflags &= ~BIO_ERROR;
1324		bp->b_qindex = QUEUE_LOCKED;
1325		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1326		/* buffers with stale but valid contents */
1327	} else if (bp->b_flags & B_DELWRI) {
1328		bp->b_qindex = QUEUE_DIRTY;
1329		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1330	} else if (vm_page_count_severe()) {
1331		/*
1332		 * We are too low on memory, we have to try to free the
1333		 * buffer (most importantly: the wired pages making up its
1334		 * backing store) *now*.
1335		 */
1336		splx(s);
1337		brelse(bp);
1338		return;
1339	} else {
1340		bp->b_qindex = QUEUE_CLEAN;
1341		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1342	}
1343
1344	if ((bp->b_flags & B_LOCKED) == 0 &&
1345	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1346		bufcountwakeup();
1347	}
1348
1349	/*
1350	 * Something we can maybe free or reuse.
1351	 */
1352	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1353		bufspacewakeup();
1354
1355	/* unlock */
1356	BUF_UNLOCK(bp);
1357	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1358	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1359		panic("bqrelse: not dirty");
1360	splx(s);
1361}
1362
1363static void
1364vfs_vmio_release(bp)
1365	struct buf *bp;
1366{
1367	int i;
1368	vm_page_t m;
1369
1370	GIANT_REQUIRED;
1371
1372	for (i = 0; i < bp->b_npages; i++) {
1373		m = bp->b_pages[i];
1374		bp->b_pages[i] = NULL;
1375		/*
1376		 * In order to keep page LRU ordering consistent, put
1377		 * everything on the inactive queue.
1378		 */
1379		vm_page_unwire(m, 0);
1380		/*
1381		 * We don't mess with busy pages, it is
1382		 * the responsibility of the process that
1383		 * busied the pages to deal with them.
1384		 */
1385		if ((m->flags & PG_BUSY) || (m->busy != 0))
1386			continue;
1387
1388		if (m->wire_count == 0) {
1389			vm_page_flag_clear(m, PG_ZERO);
1390			/*
1391			 * Might as well free the page if we can and it has
1392			 * no valid data.  We also free the page if the
1393			 * buffer was used for direct I/O
1394			 */
1395			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1396				vm_page_busy(m);
1397				vm_page_protect(m, VM_PROT_NONE);
1398				vm_page_free(m);
1399			} else if (bp->b_flags & B_DIRECT) {
1400				vm_page_try_to_free(m);
1401			} else if (vm_page_count_severe()) {
1402				vm_page_try_to_cache(m);
1403			}
1404		}
1405	}
1406	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1407
1408	if (bp->b_bufsize) {
1409		bufspacewakeup();
1410		bp->b_bufsize = 0;
1411	}
1412	bp->b_npages = 0;
1413	bp->b_flags &= ~B_VMIO;
1414	if (bp->b_vp)
1415		brelvp(bp);
1416}
1417
1418/*
1419 * Check to see if a block is currently memory resident.
1420 */
1421struct buf *
1422gbincore(struct vnode * vp, daddr_t blkno)
1423{
1424	struct buf *bp;
1425	struct bufhashhdr *bh;
1426
1427	bh = bufhash(vp, blkno);
1428
1429	/* Search hash chain */
1430	LIST_FOREACH(bp, bh, b_hash) {
1431		/* hit */
1432		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1433		    (bp->b_flags & B_INVAL) == 0) {
1434			break;
1435		}
1436	}
1437	return (bp);
1438}
1439
1440/*
1441 *	vfs_bio_awrite:
1442 *
1443 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1444 *	This is much better then the old way of writing only one buffer at
1445 *	a time.  Note that we may not be presented with the buffers in the
1446 *	correct order, so we search for the cluster in both directions.
1447 */
1448int
1449vfs_bio_awrite(struct buf * bp)
1450{
1451	int i;
1452	int j;
1453	daddr_t lblkno = bp->b_lblkno;
1454	struct vnode *vp = bp->b_vp;
1455	int s;
1456	int ncl;
1457	struct buf *bpa;
1458	int nwritten;
1459	int size;
1460	int maxcl;
1461
1462	s = splbio();
1463	/*
1464	 * right now we support clustered writing only to regular files.  If
1465	 * we find a clusterable block we could be in the middle of a cluster
1466	 * rather then at the beginning.
1467	 */
1468	if ((vp->v_type == VREG) &&
1469	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1470	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1471
1472		size = vp->v_mount->mnt_stat.f_iosize;
1473		maxcl = MAXPHYS / size;
1474
1475		for (i = 1; i < maxcl; i++) {
1476			if ((bpa = gbincore(vp, lblkno + i)) &&
1477			    BUF_REFCNT(bpa) == 0 &&
1478			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1479			    (B_DELWRI | B_CLUSTEROK)) &&
1480			    (bpa->b_bufsize == size)) {
1481				if ((bpa->b_blkno == bpa->b_lblkno) ||
1482				    (bpa->b_blkno !=
1483				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1484					break;
1485			} else {
1486				break;
1487			}
1488		}
1489		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1490			if ((bpa = gbincore(vp, lblkno - j)) &&
1491			    BUF_REFCNT(bpa) == 0 &&
1492			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1493			    (B_DELWRI | B_CLUSTEROK)) &&
1494			    (bpa->b_bufsize == size)) {
1495				if ((bpa->b_blkno == bpa->b_lblkno) ||
1496				    (bpa->b_blkno !=
1497				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1498					break;
1499			} else {
1500				break;
1501			}
1502		}
1503		--j;
1504		ncl = i + j;
1505		/*
1506		 * this is a possible cluster write
1507		 */
1508		if (ncl != 1) {
1509			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1510			splx(s);
1511			return nwritten;
1512		}
1513	}
1514
1515	BUF_LOCK(bp, LK_EXCLUSIVE);
1516	bremfree(bp);
1517	bp->b_flags |= B_ASYNC;
1518
1519	splx(s);
1520	/*
1521	 * default (old) behavior, writing out only one block
1522	 *
1523	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1524	 */
1525	nwritten = bp->b_bufsize;
1526	(void) BUF_WRITE(bp);
1527
1528	return nwritten;
1529}
1530
1531/*
1532 *	getnewbuf:
1533 *
1534 *	Find and initialize a new buffer header, freeing up existing buffers
1535 *	in the bufqueues as necessary.  The new buffer is returned locked.
1536 *
1537 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1538 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1539 *
1540 *	We block if:
1541 *		We have insufficient buffer headers
1542 *		We have insufficient buffer space
1543 *		buffer_map is too fragmented ( space reservation fails )
1544 *		If we have to flush dirty buffers ( but we try to avoid this )
1545 *
1546 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1547 *	Instead we ask the buf daemon to do it for us.  We attempt to
1548 *	avoid piecemeal wakeups of the pageout daemon.
1549 */
1550
1551static struct buf *
1552getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1553{
1554	struct buf *bp;
1555	struct buf *nbp;
1556	int defrag = 0;
1557	int nqindex;
1558	static int flushingbufs;
1559
1560	GIANT_REQUIRED;
1561
1562	/*
1563	 * We can't afford to block since we might be holding a vnode lock,
1564	 * which may prevent system daemons from running.  We deal with
1565	 * low-memory situations by proactively returning memory and running
1566	 * async I/O rather then sync I/O.
1567	 */
1568
1569	++getnewbufcalls;
1570	--getnewbufrestarts;
1571restart:
1572	++getnewbufrestarts;
1573
1574	/*
1575	 * Setup for scan.  If we do not have enough free buffers,
1576	 * we setup a degenerate case that immediately fails.  Note
1577	 * that if we are specially marked process, we are allowed to
1578	 * dip into our reserves.
1579	 *
1580	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1581	 *
1582	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1583	 * However, there are a number of cases (defragging, reusing, ...)
1584	 * where we cannot backup.
1585	 */
1586	nqindex = QUEUE_EMPTYKVA;
1587	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1588
1589	if (nbp == NULL) {
1590		/*
1591		 * If no EMPTYKVA buffers and we are either
1592		 * defragging or reusing, locate a CLEAN buffer
1593		 * to free or reuse.  If bufspace useage is low
1594		 * skip this step so we can allocate a new buffer.
1595		 */
1596		if (defrag || bufspace >= lobufspace) {
1597			nqindex = QUEUE_CLEAN;
1598			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1599		}
1600
1601		/*
1602		 * If we could not find or were not allowed to reuse a
1603		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1604		 * buffer.  We can only use an EMPTY buffer if allocating
1605		 * its KVA would not otherwise run us out of buffer space.
1606		 */
1607		if (nbp == NULL && defrag == 0 &&
1608		    bufspace + maxsize < hibufspace) {
1609			nqindex = QUEUE_EMPTY;
1610			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1611		}
1612	}
1613
1614	/*
1615	 * Run scan, possibly freeing data and/or kva mappings on the fly
1616	 * depending.
1617	 */
1618
1619	while ((bp = nbp) != NULL) {
1620		int qindex = nqindex;
1621
1622		/*
1623		 * Calculate next bp ( we can only use it if we do not block
1624		 * or do other fancy things ).
1625		 */
1626		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1627			switch(qindex) {
1628			case QUEUE_EMPTY:
1629				nqindex = QUEUE_EMPTYKVA;
1630				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1631					break;
1632				/* fall through */
1633			case QUEUE_EMPTYKVA:
1634				nqindex = QUEUE_CLEAN;
1635				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1636					break;
1637				/* fall through */
1638			case QUEUE_CLEAN:
1639				/*
1640				 * nbp is NULL.
1641				 */
1642				break;
1643			}
1644		}
1645
1646		/*
1647		 * Sanity Checks
1648		 */
1649		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1650
1651		/*
1652		 * Note: we no longer distinguish between VMIO and non-VMIO
1653		 * buffers.
1654		 */
1655
1656		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1657
1658		/*
1659		 * If we are defragging then we need a buffer with
1660		 * b_kvasize != 0.  XXX this situation should no longer
1661		 * occur, if defrag is non-zero the buffer's b_kvasize
1662		 * should also be non-zero at this point.  XXX
1663		 */
1664		if (defrag && bp->b_kvasize == 0) {
1665			printf("Warning: defrag empty buffer %p\n", bp);
1666			continue;
1667		}
1668
1669		/*
1670		 * Start freeing the bp.  This is somewhat involved.  nbp
1671		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1672		 */
1673
1674		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1675			panic("getnewbuf: locked buf");
1676		bremfree(bp);
1677
1678		if (qindex == QUEUE_CLEAN) {
1679			if (bp->b_flags & B_VMIO) {
1680				bp->b_flags &= ~B_ASYNC;
1681				vfs_vmio_release(bp);
1682			}
1683			if (bp->b_vp)
1684				brelvp(bp);
1685		}
1686
1687		/*
1688		 * NOTE:  nbp is now entirely invalid.  We can only restart
1689		 * the scan from this point on.
1690		 *
1691		 * Get the rest of the buffer freed up.  b_kva* is still
1692		 * valid after this operation.
1693		 */
1694
1695		if (bp->b_rcred != NOCRED) {
1696			crfree(bp->b_rcred);
1697			bp->b_rcred = NOCRED;
1698		}
1699		if (bp->b_wcred != NOCRED) {
1700			crfree(bp->b_wcred);
1701			bp->b_wcred = NOCRED;
1702		}
1703		if (LIST_FIRST(&bp->b_dep) != NULL)
1704			buf_deallocate(bp);
1705		if (bp->b_xflags & BX_BKGRDINPROG)
1706			panic("losing buffer 3");
1707		LIST_REMOVE(bp, b_hash);
1708		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1709
1710		if (bp->b_bufsize)
1711			allocbuf(bp, 0);
1712
1713		bp->b_flags = 0;
1714		bp->b_ioflags = 0;
1715		bp->b_xflags = 0;
1716		bp->b_dev = NODEV;
1717		bp->b_vp = NULL;
1718		bp->b_blkno = bp->b_lblkno = 0;
1719		bp->b_offset = NOOFFSET;
1720		bp->b_iodone = 0;
1721		bp->b_error = 0;
1722		bp->b_resid = 0;
1723		bp->b_bcount = 0;
1724		bp->b_npages = 0;
1725		bp->b_dirtyoff = bp->b_dirtyend = 0;
1726		bp->b_magic = B_MAGIC_BIO;
1727		bp->b_op = &buf_ops_bio;
1728
1729		LIST_INIT(&bp->b_dep);
1730
1731		/*
1732		 * If we are defragging then free the buffer.
1733		 */
1734		if (defrag) {
1735			bp->b_flags |= B_INVAL;
1736			bfreekva(bp);
1737			brelse(bp);
1738			defrag = 0;
1739			goto restart;
1740		}
1741
1742		/*
1743		 * If we are overcomitted then recover the buffer and its
1744		 * KVM space.  This occurs in rare situations when multiple
1745		 * processes are blocked in getnewbuf() or allocbuf().
1746		 */
1747		if (bufspace >= hibufspace)
1748			flushingbufs = 1;
1749		if (flushingbufs && bp->b_kvasize != 0) {
1750			bp->b_flags |= B_INVAL;
1751			bfreekva(bp);
1752			brelse(bp);
1753			goto restart;
1754		}
1755		if (bufspace < lobufspace)
1756			flushingbufs = 0;
1757		break;
1758	}
1759
1760	/*
1761	 * If we exhausted our list, sleep as appropriate.  We may have to
1762	 * wakeup various daemons and write out some dirty buffers.
1763	 *
1764	 * Generally we are sleeping due to insufficient buffer space.
1765	 */
1766
1767	if (bp == NULL) {
1768		int flags;
1769		char *waitmsg;
1770
1771		if (defrag) {
1772			flags = VFS_BIO_NEED_BUFSPACE;
1773			waitmsg = "nbufkv";
1774		} else if (bufspace >= hibufspace) {
1775			waitmsg = "nbufbs";
1776			flags = VFS_BIO_NEED_BUFSPACE;
1777		} else {
1778			waitmsg = "newbuf";
1779			flags = VFS_BIO_NEED_ANY;
1780		}
1781
1782		bd_speedup();	/* heeeelp */
1783
1784		needsbuffer |= flags;
1785		while (needsbuffer & flags) {
1786			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1787			    waitmsg, slptimeo))
1788				return (NULL);
1789		}
1790	} else {
1791		/*
1792		 * We finally have a valid bp.  We aren't quite out of the
1793		 * woods, we still have to reserve kva space.  In order
1794		 * to keep fragmentation sane we only allocate kva in
1795		 * BKVASIZE chunks.
1796		 */
1797		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1798
1799		if (maxsize != bp->b_kvasize) {
1800			vm_offset_t addr = 0;
1801
1802			bfreekva(bp);
1803
1804			if (vm_map_findspace(buffer_map,
1805				vm_map_min(buffer_map), maxsize, &addr)) {
1806				/*
1807				 * Uh oh.  Buffer map is to fragmented.  We
1808				 * must defragment the map.
1809				 */
1810				++bufdefragcnt;
1811				defrag = 1;
1812				bp->b_flags |= B_INVAL;
1813				brelse(bp);
1814				goto restart;
1815			}
1816			if (addr) {
1817				vm_map_insert(buffer_map, NULL, 0,
1818					addr, addr + maxsize,
1819					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1820
1821				bp->b_kvabase = (caddr_t) addr;
1822				bp->b_kvasize = maxsize;
1823				bufspace += bp->b_kvasize;
1824				++bufreusecnt;
1825			}
1826		}
1827		bp->b_data = bp->b_kvabase;
1828	}
1829	return(bp);
1830}
1831
1832/*
1833 *	buf_daemon:
1834 *
1835 *	buffer flushing daemon.  Buffers are normally flushed by the
1836 *	update daemon but if it cannot keep up this process starts to
1837 *	take the load in an attempt to prevent getnewbuf() from blocking.
1838 */
1839
1840static struct proc *bufdaemonproc;
1841
1842static struct kproc_desc buf_kp = {
1843	"bufdaemon",
1844	buf_daemon,
1845	&bufdaemonproc
1846};
1847SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1848
1849static void
1850buf_daemon()
1851{
1852	int s;
1853
1854	mtx_lock(&Giant);
1855
1856	/*
1857	 * This process needs to be suspended prior to shutdown sync.
1858	 */
1859	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1860	    SHUTDOWN_PRI_LAST);
1861
1862	/*
1863	 * This process is allowed to take the buffer cache to the limit
1864	 */
1865	s = splbio();
1866
1867	for (;;) {
1868		kthread_suspend_check(bufdaemonproc);
1869
1870		bd_request = 0;
1871
1872		/*
1873		 * Do the flush.  Limit the amount of in-transit I/O we
1874		 * allow to build up, otherwise we would completely saturate
1875		 * the I/O system.  Wakeup any waiting processes before we
1876		 * normally would so they can run in parallel with our drain.
1877		 */
1878		while (numdirtybuffers > lodirtybuffers) {
1879			if (flushbufqueues() == 0)
1880				break;
1881			waitrunningbufspace();
1882			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1883		}
1884
1885		/*
1886		 * Only clear bd_request if we have reached our low water
1887		 * mark.  The buf_daemon normally waits 5 seconds and
1888		 * then incrementally flushes any dirty buffers that have
1889		 * built up, within reason.
1890		 *
1891		 * If we were unable to hit our low water mark and couldn't
1892		 * find any flushable buffers, we sleep half a second.
1893		 * Otherwise we loop immediately.
1894		 */
1895		if (numdirtybuffers <= lodirtybuffers) {
1896			/*
1897			 * We reached our low water mark, reset the
1898			 * request and sleep until we are needed again.
1899			 * The sleep is just so the suspend code works.
1900			 */
1901			bd_request = 0;
1902			tsleep(&bd_request, PVM, "psleep", hz);
1903		} else {
1904			/*
1905			 * We couldn't find any flushable dirty buffers but
1906			 * still have too many dirty buffers, we
1907			 * have to sleep and try again.  (rare)
1908			 */
1909			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1910		}
1911	}
1912}
1913
1914/*
1915 *	flushbufqueues:
1916 *
1917 *	Try to flush a buffer in the dirty queue.  We must be careful to
1918 *	free up B_INVAL buffers instead of write them, which NFS is
1919 *	particularly sensitive to.
1920 */
1921
1922static int
1923flushbufqueues(void)
1924{
1925	struct buf *bp;
1926	int r = 0;
1927
1928	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1929
1930	while (bp) {
1931		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1932		if ((bp->b_flags & B_DELWRI) != 0 &&
1933		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1934			if (bp->b_flags & B_INVAL) {
1935				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1936					panic("flushbufqueues: locked buf");
1937				bremfree(bp);
1938				brelse(bp);
1939				++r;
1940				break;
1941			}
1942			if (LIST_FIRST(&bp->b_dep) != NULL &&
1943			    (bp->b_flags & B_DEFERRED) == 0 &&
1944			    buf_countdeps(bp, 0)) {
1945				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1946				    bp, b_freelist);
1947				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1948				    bp, b_freelist);
1949				bp->b_flags |= B_DEFERRED;
1950				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1951				continue;
1952			}
1953			vfs_bio_awrite(bp);
1954			++r;
1955			break;
1956		}
1957		bp = TAILQ_NEXT(bp, b_freelist);
1958	}
1959	return (r);
1960}
1961
1962/*
1963 * Check to see if a block is currently memory resident.
1964 */
1965struct buf *
1966incore(struct vnode * vp, daddr_t blkno)
1967{
1968	struct buf *bp;
1969
1970	int s = splbio();
1971	bp = gbincore(vp, blkno);
1972	splx(s);
1973	return (bp);
1974}
1975
1976/*
1977 * Returns true if no I/O is needed to access the
1978 * associated VM object.  This is like incore except
1979 * it also hunts around in the VM system for the data.
1980 */
1981
1982int
1983inmem(struct vnode * vp, daddr_t blkno)
1984{
1985	vm_object_t obj;
1986	vm_offset_t toff, tinc, size;
1987	vm_page_t m;
1988	vm_ooffset_t off;
1989
1990	GIANT_REQUIRED;
1991
1992	if (incore(vp, blkno))
1993		return 1;
1994	if (vp->v_mount == NULL)
1995		return 0;
1996	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1997		return 0;
1998
1999	size = PAGE_SIZE;
2000	if (size > vp->v_mount->mnt_stat.f_iosize)
2001		size = vp->v_mount->mnt_stat.f_iosize;
2002	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2003
2004	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2005		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2006		if (!m)
2007			goto notinmem;
2008		tinc = size;
2009		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2010			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2011		if (vm_page_is_valid(m,
2012		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2013			goto notinmem;
2014	}
2015	return 1;
2016
2017notinmem:
2018	return (0);
2019}
2020
2021/*
2022 *	vfs_setdirty:
2023 *
2024 *	Sets the dirty range for a buffer based on the status of the dirty
2025 *	bits in the pages comprising the buffer.
2026 *
2027 *	The range is limited to the size of the buffer.
2028 *
2029 *	This routine is primarily used by NFS, but is generalized for the
2030 *	B_VMIO case.
2031 */
2032static void
2033vfs_setdirty(struct buf *bp)
2034{
2035	int i;
2036	vm_object_t object;
2037
2038	GIANT_REQUIRED;
2039	/*
2040	 * Degenerate case - empty buffer
2041	 */
2042
2043	if (bp->b_bufsize == 0)
2044		return;
2045
2046	/*
2047	 * We qualify the scan for modified pages on whether the
2048	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2049	 * is not cleared simply by protecting pages off.
2050	 */
2051
2052	if ((bp->b_flags & B_VMIO) == 0)
2053		return;
2054
2055	object = bp->b_pages[0]->object;
2056
2057	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2058		printf("Warning: object %p writeable but not mightbedirty\n", object);
2059	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2060		printf("Warning: object %p mightbedirty but not writeable\n", object);
2061
2062	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2063		vm_offset_t boffset;
2064		vm_offset_t eoffset;
2065
2066		/*
2067		 * test the pages to see if they have been modified directly
2068		 * by users through the VM system.
2069		 */
2070		for (i = 0; i < bp->b_npages; i++) {
2071			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2072			vm_page_test_dirty(bp->b_pages[i]);
2073		}
2074
2075		/*
2076		 * Calculate the encompassing dirty range, boffset and eoffset,
2077		 * (eoffset - boffset) bytes.
2078		 */
2079
2080		for (i = 0; i < bp->b_npages; i++) {
2081			if (bp->b_pages[i]->dirty)
2082				break;
2083		}
2084		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2085
2086		for (i = bp->b_npages - 1; i >= 0; --i) {
2087			if (bp->b_pages[i]->dirty) {
2088				break;
2089			}
2090		}
2091		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2092
2093		/*
2094		 * Fit it to the buffer.
2095		 */
2096
2097		if (eoffset > bp->b_bcount)
2098			eoffset = bp->b_bcount;
2099
2100		/*
2101		 * If we have a good dirty range, merge with the existing
2102		 * dirty range.
2103		 */
2104
2105		if (boffset < eoffset) {
2106			if (bp->b_dirtyoff > boffset)
2107				bp->b_dirtyoff = boffset;
2108			if (bp->b_dirtyend < eoffset)
2109				bp->b_dirtyend = eoffset;
2110		}
2111	}
2112}
2113
2114/*
2115 *	getblk:
2116 *
2117 *	Get a block given a specified block and offset into a file/device.
2118 *	The buffers B_DONE bit will be cleared on return, making it almost
2119 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2120 *	return.  The caller should clear B_INVAL prior to initiating a
2121 *	READ.
2122 *
2123 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2124 *	an existing buffer.
2125 *
2126 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2127 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2128 *	and then cleared based on the backing VM.  If the previous buffer is
2129 *	non-0-sized but invalid, B_CACHE will be cleared.
2130 *
2131 *	If getblk() must create a new buffer, the new buffer is returned with
2132 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2133 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2134 *	backing VM.
2135 *
2136 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2137 *	B_CACHE bit is clear.
2138 *
2139 *	What this means, basically, is that the caller should use B_CACHE to
2140 *	determine whether the buffer is fully valid or not and should clear
2141 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2142 *	the buffer by loading its data area with something, the caller needs
2143 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2144 *	the caller should set B_CACHE ( as an optimization ), else the caller
2145 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2146 *	a write attempt or if it was a successfull read.  If the caller
2147 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2148 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2149 */
2150struct buf *
2151getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2152{
2153	struct buf *bp;
2154	int s;
2155	struct bufhashhdr *bh;
2156
2157	if (size > MAXBSIZE)
2158		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2159
2160	s = splbio();
2161loop:
2162	/*
2163	 * Block if we are low on buffers.   Certain processes are allowed
2164	 * to completely exhaust the buffer cache.
2165         *
2166         * If this check ever becomes a bottleneck it may be better to
2167         * move it into the else, when gbincore() fails.  At the moment
2168         * it isn't a problem.
2169	 *
2170	 * XXX remove if 0 sections (clean this up after its proven)
2171         */
2172	if (numfreebuffers == 0) {
2173		if (curthread == PCPU_GET(idlethread))
2174			return NULL;
2175		needsbuffer |= VFS_BIO_NEED_ANY;
2176	}
2177
2178	if ((bp = gbincore(vp, blkno))) {
2179		/*
2180		 * Buffer is in-core.  If the buffer is not busy, it must
2181		 * be on a queue.
2182		 */
2183
2184		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2185			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2186			    "getblk", slpflag, slptimeo) == ENOLCK)
2187				goto loop;
2188			splx(s);
2189			return (struct buf *) NULL;
2190		}
2191
2192		/*
2193		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2194		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2195		 * and for a VMIO buffer B_CACHE is adjusted according to the
2196		 * backing VM cache.
2197		 */
2198		if (bp->b_flags & B_INVAL)
2199			bp->b_flags &= ~B_CACHE;
2200		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2201			bp->b_flags |= B_CACHE;
2202		bremfree(bp);
2203
2204		/*
2205		 * check for size inconsistancies for non-VMIO case.
2206		 */
2207
2208		if (bp->b_bcount != size) {
2209			if ((bp->b_flags & B_VMIO) == 0 ||
2210			    (size > bp->b_kvasize)) {
2211				if (bp->b_flags & B_DELWRI) {
2212					bp->b_flags |= B_NOCACHE;
2213					BUF_WRITE(bp);
2214				} else {
2215					if ((bp->b_flags & B_VMIO) &&
2216					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2217						bp->b_flags |= B_RELBUF;
2218						brelse(bp);
2219					} else {
2220						bp->b_flags |= B_NOCACHE;
2221						BUF_WRITE(bp);
2222					}
2223				}
2224				goto loop;
2225			}
2226		}
2227
2228		/*
2229		 * If the size is inconsistant in the VMIO case, we can resize
2230		 * the buffer.  This might lead to B_CACHE getting set or
2231		 * cleared.  If the size has not changed, B_CACHE remains
2232		 * unchanged from its previous state.
2233		 */
2234
2235		if (bp->b_bcount != size)
2236			allocbuf(bp, size);
2237
2238		KASSERT(bp->b_offset != NOOFFSET,
2239		    ("getblk: no buffer offset"));
2240
2241		/*
2242		 * A buffer with B_DELWRI set and B_CACHE clear must
2243		 * be committed before we can return the buffer in
2244		 * order to prevent the caller from issuing a read
2245		 * ( due to B_CACHE not being set ) and overwriting
2246		 * it.
2247		 *
2248		 * Most callers, including NFS and FFS, need this to
2249		 * operate properly either because they assume they
2250		 * can issue a read if B_CACHE is not set, or because
2251		 * ( for example ) an uncached B_DELWRI might loop due
2252		 * to softupdates re-dirtying the buffer.  In the latter
2253		 * case, B_CACHE is set after the first write completes,
2254		 * preventing further loops.
2255		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2256		 * above while extending the buffer, we cannot allow the
2257		 * buffer to remain with B_CACHE set after the write
2258		 * completes or it will represent a corrupt state.  To
2259		 * deal with this we set B_NOCACHE to scrap the buffer
2260		 * after the write.
2261		 *
2262		 * We might be able to do something fancy, like setting
2263		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2264		 * so the below call doesn't set B_CACHE, but that gets real
2265		 * confusing.  This is much easier.
2266		 */
2267
2268		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2269			bp->b_flags |= B_NOCACHE;
2270			BUF_WRITE(bp);
2271			goto loop;
2272		}
2273
2274		splx(s);
2275		bp->b_flags &= ~B_DONE;
2276	} else {
2277		/*
2278		 * Buffer is not in-core, create new buffer.  The buffer
2279		 * returned by getnewbuf() is locked.  Note that the returned
2280		 * buffer is also considered valid (not marked B_INVAL).
2281		 */
2282		int bsize, maxsize, vmio;
2283		off_t offset;
2284
2285		if (vn_isdisk(vp, NULL))
2286			bsize = DEV_BSIZE;
2287		else if (vp->v_mountedhere)
2288			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2289		else if (vp->v_mount)
2290			bsize = vp->v_mount->mnt_stat.f_iosize;
2291		else
2292			bsize = size;
2293
2294		offset = (off_t)blkno * bsize;
2295		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2296		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2297		maxsize = imax(maxsize, bsize);
2298
2299		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2300			if (slpflag || slptimeo) {
2301				splx(s);
2302				return NULL;
2303			}
2304			goto loop;
2305		}
2306
2307		/*
2308		 * This code is used to make sure that a buffer is not
2309		 * created while the getnewbuf routine is blocked.
2310		 * This can be a problem whether the vnode is locked or not.
2311		 * If the buffer is created out from under us, we have to
2312		 * throw away the one we just created.  There is now window
2313		 * race because we are safely running at splbio() from the
2314		 * point of the duplicate buffer creation through to here,
2315		 * and we've locked the buffer.
2316		 */
2317		if (gbincore(vp, blkno)) {
2318			bp->b_flags |= B_INVAL;
2319			brelse(bp);
2320			goto loop;
2321		}
2322
2323		/*
2324		 * Insert the buffer into the hash, so that it can
2325		 * be found by incore.
2326		 */
2327		bp->b_blkno = bp->b_lblkno = blkno;
2328		bp->b_offset = offset;
2329
2330		bgetvp(vp, bp);
2331		LIST_REMOVE(bp, b_hash);
2332		bh = bufhash(vp, blkno);
2333		LIST_INSERT_HEAD(bh, bp, b_hash);
2334
2335		/*
2336		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2337		 * buffer size starts out as 0, B_CACHE will be set by
2338		 * allocbuf() for the VMIO case prior to it testing the
2339		 * backing store for validity.
2340		 */
2341
2342		if (vmio) {
2343			bp->b_flags |= B_VMIO;
2344#if defined(VFS_BIO_DEBUG)
2345			if (vp->v_type != VREG)
2346				printf("getblk: vmioing file type %d???\n", vp->v_type);
2347#endif
2348		} else {
2349			bp->b_flags &= ~B_VMIO;
2350		}
2351
2352		allocbuf(bp, size);
2353
2354		splx(s);
2355		bp->b_flags &= ~B_DONE;
2356	}
2357	return (bp);
2358}
2359
2360/*
2361 * Get an empty, disassociated buffer of given size.  The buffer is initially
2362 * set to B_INVAL.
2363 */
2364struct buf *
2365geteblk(int size)
2366{
2367	struct buf *bp;
2368	int s;
2369	int maxsize;
2370
2371	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2372
2373	s = splbio();
2374	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2375	splx(s);
2376	allocbuf(bp, size);
2377	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2378	return (bp);
2379}
2380
2381
2382/*
2383 * This code constitutes the buffer memory from either anonymous system
2384 * memory (in the case of non-VMIO operations) or from an associated
2385 * VM object (in the case of VMIO operations).  This code is able to
2386 * resize a buffer up or down.
2387 *
2388 * Note that this code is tricky, and has many complications to resolve
2389 * deadlock or inconsistant data situations.  Tread lightly!!!
2390 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2391 * the caller.  Calling this code willy nilly can result in the loss of data.
2392 *
2393 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2394 * B_CACHE for the non-VMIO case.
2395 */
2396
2397int
2398allocbuf(struct buf *bp, int size)
2399{
2400	int newbsize, mbsize;
2401	int i;
2402
2403	GIANT_REQUIRED;
2404
2405	if (BUF_REFCNT(bp) == 0)
2406		panic("allocbuf: buffer not busy");
2407
2408	if (bp->b_kvasize < size)
2409		panic("allocbuf: buffer too small");
2410
2411	if ((bp->b_flags & B_VMIO) == 0) {
2412		caddr_t origbuf;
2413		int origbufsize;
2414		/*
2415		 * Just get anonymous memory from the kernel.  Don't
2416		 * mess with B_CACHE.
2417		 */
2418		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2419#if !defined(NO_B_MALLOC)
2420		if (bp->b_flags & B_MALLOC)
2421			newbsize = mbsize;
2422		else
2423#endif
2424			newbsize = round_page(size);
2425
2426		if (newbsize < bp->b_bufsize) {
2427#if !defined(NO_B_MALLOC)
2428			/*
2429			 * malloced buffers are not shrunk
2430			 */
2431			if (bp->b_flags & B_MALLOC) {
2432				if (newbsize) {
2433					bp->b_bcount = size;
2434				} else {
2435					free(bp->b_data, M_BIOBUF);
2436					if (bp->b_bufsize) {
2437						bufmallocspace -= bp->b_bufsize;
2438						bufspacewakeup();
2439						bp->b_bufsize = 0;
2440					}
2441					bp->b_data = bp->b_kvabase;
2442					bp->b_bcount = 0;
2443					bp->b_flags &= ~B_MALLOC;
2444				}
2445				return 1;
2446			}
2447#endif
2448			vm_hold_free_pages(
2449			    bp,
2450			    (vm_offset_t) bp->b_data + newbsize,
2451			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2452		} else if (newbsize > bp->b_bufsize) {
2453#if !defined(NO_B_MALLOC)
2454			/*
2455			 * We only use malloced memory on the first allocation.
2456			 * and revert to page-allocated memory when the buffer
2457			 * grows.
2458			 */
2459			if ( (bufmallocspace < maxbufmallocspace) &&
2460				(bp->b_bufsize == 0) &&
2461				(mbsize <= PAGE_SIZE/2)) {
2462
2463				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2464				bp->b_bufsize = mbsize;
2465				bp->b_bcount = size;
2466				bp->b_flags |= B_MALLOC;
2467				bufmallocspace += mbsize;
2468				return 1;
2469			}
2470#endif
2471			origbuf = NULL;
2472			origbufsize = 0;
2473#if !defined(NO_B_MALLOC)
2474			/*
2475			 * If the buffer is growing on its other-than-first allocation,
2476			 * then we revert to the page-allocation scheme.
2477			 */
2478			if (bp->b_flags & B_MALLOC) {
2479				origbuf = bp->b_data;
2480				origbufsize = bp->b_bufsize;
2481				bp->b_data = bp->b_kvabase;
2482				if (bp->b_bufsize) {
2483					bufmallocspace -= bp->b_bufsize;
2484					bufspacewakeup();
2485					bp->b_bufsize = 0;
2486				}
2487				bp->b_flags &= ~B_MALLOC;
2488				newbsize = round_page(newbsize);
2489			}
2490#endif
2491			vm_hold_load_pages(
2492			    bp,
2493			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2494			    (vm_offset_t) bp->b_data + newbsize);
2495#if !defined(NO_B_MALLOC)
2496			if (origbuf) {
2497				bcopy(origbuf, bp->b_data, origbufsize);
2498				free(origbuf, M_BIOBUF);
2499			}
2500#endif
2501		}
2502	} else {
2503		vm_page_t m;
2504		int desiredpages;
2505
2506		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2507		desiredpages = (size == 0) ? 0 :
2508			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2509
2510#if !defined(NO_B_MALLOC)
2511		if (bp->b_flags & B_MALLOC)
2512			panic("allocbuf: VMIO buffer can't be malloced");
2513#endif
2514		/*
2515		 * Set B_CACHE initially if buffer is 0 length or will become
2516		 * 0-length.
2517		 */
2518		if (size == 0 || bp->b_bufsize == 0)
2519			bp->b_flags |= B_CACHE;
2520
2521		if (newbsize < bp->b_bufsize) {
2522			/*
2523			 * DEV_BSIZE aligned new buffer size is less then the
2524			 * DEV_BSIZE aligned existing buffer size.  Figure out
2525			 * if we have to remove any pages.
2526			 */
2527			if (desiredpages < bp->b_npages) {
2528				for (i = desiredpages; i < bp->b_npages; i++) {
2529					/*
2530					 * the page is not freed here -- it
2531					 * is the responsibility of
2532					 * vnode_pager_setsize
2533					 */
2534					m = bp->b_pages[i];
2535					KASSERT(m != bogus_page,
2536					    ("allocbuf: bogus page found"));
2537					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2538						;
2539
2540					bp->b_pages[i] = NULL;
2541					vm_page_unwire(m, 0);
2542				}
2543				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2544				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2545				bp->b_npages = desiredpages;
2546			}
2547		} else if (size > bp->b_bcount) {
2548			/*
2549			 * We are growing the buffer, possibly in a
2550			 * byte-granular fashion.
2551			 */
2552			struct vnode *vp;
2553			vm_object_t obj;
2554			vm_offset_t toff;
2555			vm_offset_t tinc;
2556
2557			/*
2558			 * Step 1, bring in the VM pages from the object,
2559			 * allocating them if necessary.  We must clear
2560			 * B_CACHE if these pages are not valid for the
2561			 * range covered by the buffer.
2562			 */
2563
2564			vp = bp->b_vp;
2565			VOP_GETVOBJECT(vp, &obj);
2566
2567			while (bp->b_npages < desiredpages) {
2568				vm_page_t m;
2569				vm_pindex_t pi;
2570
2571				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2572				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2573					/*
2574					 * note: must allocate system pages
2575					 * since blocking here could intefere
2576					 * with paging I/O, no matter which
2577					 * process we are.
2578					 */
2579					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2580					if (m == NULL) {
2581						VM_WAIT;
2582						vm_pageout_deficit += desiredpages - bp->b_npages;
2583					} else {
2584						vm_page_wire(m);
2585						vm_page_wakeup(m);
2586						bp->b_flags &= ~B_CACHE;
2587						bp->b_pages[bp->b_npages] = m;
2588						++bp->b_npages;
2589					}
2590					continue;
2591				}
2592
2593				/*
2594				 * We found a page.  If we have to sleep on it,
2595				 * retry because it might have gotten freed out
2596				 * from under us.
2597				 *
2598				 * We can only test PG_BUSY here.  Blocking on
2599				 * m->busy might lead to a deadlock:
2600				 *
2601				 *  vm_fault->getpages->cluster_read->allocbuf
2602				 *
2603				 */
2604
2605				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2606					continue;
2607
2608				/*
2609				 * We have a good page.  Should we wakeup the
2610				 * page daemon?
2611				 */
2612				if ((curproc != pageproc) &&
2613				    ((m->queue - m->pc) == PQ_CACHE) &&
2614				    ((cnt.v_free_count + cnt.v_cache_count) <
2615					(cnt.v_free_min + cnt.v_cache_min))) {
2616					pagedaemon_wakeup();
2617				}
2618				vm_page_flag_clear(m, PG_ZERO);
2619				vm_page_wire(m);
2620				bp->b_pages[bp->b_npages] = m;
2621				++bp->b_npages;
2622			}
2623
2624			/*
2625			 * Step 2.  We've loaded the pages into the buffer,
2626			 * we have to figure out if we can still have B_CACHE
2627			 * set.  Note that B_CACHE is set according to the
2628			 * byte-granular range ( bcount and size ), new the
2629			 * aligned range ( newbsize ).
2630			 *
2631			 * The VM test is against m->valid, which is DEV_BSIZE
2632			 * aligned.  Needless to say, the validity of the data
2633			 * needs to also be DEV_BSIZE aligned.  Note that this
2634			 * fails with NFS if the server or some other client
2635			 * extends the file's EOF.  If our buffer is resized,
2636			 * B_CACHE may remain set! XXX
2637			 */
2638
2639			toff = bp->b_bcount;
2640			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2641
2642			while ((bp->b_flags & B_CACHE) && toff < size) {
2643				vm_pindex_t pi;
2644
2645				if (tinc > (size - toff))
2646					tinc = size - toff;
2647
2648				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2649				    PAGE_SHIFT;
2650
2651				vfs_buf_test_cache(
2652				    bp,
2653				    bp->b_offset,
2654				    toff,
2655				    tinc,
2656				    bp->b_pages[pi]
2657				);
2658				toff += tinc;
2659				tinc = PAGE_SIZE;
2660			}
2661
2662			/*
2663			 * Step 3, fixup the KVM pmap.  Remember that
2664			 * bp->b_data is relative to bp->b_offset, but
2665			 * bp->b_offset may be offset into the first page.
2666			 */
2667
2668			bp->b_data = (caddr_t)
2669			    trunc_page((vm_offset_t)bp->b_data);
2670			pmap_qenter(
2671			    (vm_offset_t)bp->b_data,
2672			    bp->b_pages,
2673			    bp->b_npages
2674			);
2675
2676			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2677			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2678		}
2679	}
2680	if (newbsize < bp->b_bufsize)
2681		bufspacewakeup();
2682	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2683	bp->b_bcount = size;		/* requested buffer size	*/
2684	return 1;
2685}
2686
2687/*
2688 *	bufwait:
2689 *
2690 *	Wait for buffer I/O completion, returning error status.  The buffer
2691 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2692 *	error and cleared.
2693 */
2694int
2695bufwait(register struct buf * bp)
2696{
2697	int s;
2698
2699	s = splbio();
2700	while ((bp->b_flags & B_DONE) == 0) {
2701		if (bp->b_iocmd == BIO_READ)
2702			tsleep(bp, PRIBIO, "biord", 0);
2703		else
2704			tsleep(bp, PRIBIO, "biowr", 0);
2705	}
2706	splx(s);
2707	if (bp->b_flags & B_EINTR) {
2708		bp->b_flags &= ~B_EINTR;
2709		return (EINTR);
2710	}
2711	if (bp->b_ioflags & BIO_ERROR) {
2712		return (bp->b_error ? bp->b_error : EIO);
2713	} else {
2714		return (0);
2715	}
2716}
2717
2718 /*
2719  * Call back function from struct bio back up to struct buf.
2720  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2721  */
2722void
2723bufdonebio(struct bio *bp)
2724{
2725	bufdone(bp->bio_caller2);
2726}
2727
2728/*
2729 *	bufdone:
2730 *
2731 *	Finish I/O on a buffer, optionally calling a completion function.
2732 *	This is usually called from an interrupt so process blocking is
2733 *	not allowed.
2734 *
2735 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2736 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2737 *	assuming B_INVAL is clear.
2738 *
2739 *	For the VMIO case, we set B_CACHE if the op was a read and no
2740 *	read error occured, or if the op was a write.  B_CACHE is never
2741 *	set if the buffer is invalid or otherwise uncacheable.
2742 *
2743 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2744 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2745 *	in the biodone routine.
2746 */
2747void
2748bufdone(struct buf *bp)
2749{
2750	int s, error;
2751	void    (*biodone) __P((struct buf *));
2752
2753	GIANT_REQUIRED;
2754
2755	s = splbio();
2756
2757	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2758	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2759
2760	bp->b_flags |= B_DONE;
2761	runningbufwakeup(bp);
2762
2763	if (bp->b_iocmd == BIO_DELETE) {
2764		brelse(bp);
2765		splx(s);
2766		return;
2767	}
2768
2769	if (bp->b_iocmd == BIO_WRITE) {
2770		vwakeup(bp);
2771	}
2772
2773	/* call optional completion function if requested */
2774	if (bp->b_iodone != NULL) {
2775		biodone = bp->b_iodone;
2776		bp->b_iodone = NULL;
2777		(*biodone) (bp);
2778		splx(s);
2779		return;
2780	}
2781	if (LIST_FIRST(&bp->b_dep) != NULL)
2782		buf_complete(bp);
2783
2784	if (bp->b_flags & B_VMIO) {
2785		int i;
2786		vm_ooffset_t foff;
2787		vm_page_t m;
2788		vm_object_t obj;
2789		int iosize;
2790		struct vnode *vp = bp->b_vp;
2791
2792		error = VOP_GETVOBJECT(vp, &obj);
2793
2794#if defined(VFS_BIO_DEBUG)
2795		if (vp->v_usecount == 0) {
2796			panic("biodone: zero vnode ref count");
2797		}
2798
2799		if (error) {
2800			panic("biodone: missing VM object");
2801		}
2802
2803		if ((vp->v_flag & VOBJBUF) == 0) {
2804			panic("biodone: vnode is not setup for merged cache");
2805		}
2806#endif
2807
2808		foff = bp->b_offset;
2809		KASSERT(bp->b_offset != NOOFFSET,
2810		    ("biodone: no buffer offset"));
2811
2812		if (error) {
2813			panic("biodone: no object");
2814		}
2815#if defined(VFS_BIO_DEBUG)
2816		if (obj->paging_in_progress < bp->b_npages) {
2817			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2818			    obj->paging_in_progress, bp->b_npages);
2819		}
2820#endif
2821
2822		/*
2823		 * Set B_CACHE if the op was a normal read and no error
2824		 * occured.  B_CACHE is set for writes in the b*write()
2825		 * routines.
2826		 */
2827		iosize = bp->b_bcount - bp->b_resid;
2828		if (bp->b_iocmd == BIO_READ &&
2829		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2830		    !(bp->b_ioflags & BIO_ERROR)) {
2831			bp->b_flags |= B_CACHE;
2832		}
2833
2834		for (i = 0; i < bp->b_npages; i++) {
2835			int bogusflag = 0;
2836			int resid;
2837
2838			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2839			if (resid > iosize)
2840				resid = iosize;
2841
2842			/*
2843			 * cleanup bogus pages, restoring the originals
2844			 */
2845			m = bp->b_pages[i];
2846			if (m == bogus_page) {
2847				bogusflag = 1;
2848				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2849				if (m == NULL)
2850					panic("biodone: page disappeared!");
2851				bp->b_pages[i] = m;
2852				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2853			}
2854#if defined(VFS_BIO_DEBUG)
2855			if (OFF_TO_IDX(foff) != m->pindex) {
2856				printf(
2857"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2858				    (unsigned long)foff, m->pindex);
2859			}
2860#endif
2861
2862			/*
2863			 * In the write case, the valid and clean bits are
2864			 * already changed correctly ( see bdwrite() ), so we
2865			 * only need to do this here in the read case.
2866			 */
2867			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2868				vfs_page_set_valid(bp, foff, i, m);
2869			}
2870			vm_page_flag_clear(m, PG_ZERO);
2871
2872			/*
2873			 * when debugging new filesystems or buffer I/O methods, this
2874			 * is the most common error that pops up.  if you see this, you
2875			 * have not set the page busy flag correctly!!!
2876			 */
2877			if (m->busy == 0) {
2878				printf("biodone: page busy < 0, "
2879				    "pindex: %d, foff: 0x(%x,%x), "
2880				    "resid: %d, index: %d\n",
2881				    (int) m->pindex, (int)(foff >> 32),
2882						(int) foff & 0xffffffff, resid, i);
2883				if (!vn_isdisk(vp, NULL))
2884					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2885					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2886					    (int) bp->b_lblkno,
2887					    bp->b_flags, bp->b_npages);
2888				else
2889					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2890					    (int) bp->b_lblkno,
2891					    bp->b_flags, bp->b_npages);
2892				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2893				    m->valid, m->dirty, m->wire_count);
2894				panic("biodone: page busy < 0\n");
2895			}
2896			vm_page_io_finish(m);
2897			vm_object_pip_subtract(obj, 1);
2898			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2899			iosize -= resid;
2900		}
2901		if (obj)
2902			vm_object_pip_wakeupn(obj, 0);
2903	}
2904
2905	/*
2906	 * For asynchronous completions, release the buffer now. The brelse
2907	 * will do a wakeup there if necessary - so no need to do a wakeup
2908	 * here in the async case. The sync case always needs to do a wakeup.
2909	 */
2910
2911	if (bp->b_flags & B_ASYNC) {
2912		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2913			brelse(bp);
2914		else
2915			bqrelse(bp);
2916	} else {
2917		wakeup(bp);
2918	}
2919	splx(s);
2920}
2921
2922/*
2923 * This routine is called in lieu of iodone in the case of
2924 * incomplete I/O.  This keeps the busy status for pages
2925 * consistant.
2926 */
2927void
2928vfs_unbusy_pages(struct buf * bp)
2929{
2930	int i;
2931
2932	GIANT_REQUIRED;
2933
2934	runningbufwakeup(bp);
2935	if (bp->b_flags & B_VMIO) {
2936		struct vnode *vp = bp->b_vp;
2937		vm_object_t obj;
2938
2939		VOP_GETVOBJECT(vp, &obj);
2940
2941		for (i = 0; i < bp->b_npages; i++) {
2942			vm_page_t m = bp->b_pages[i];
2943
2944			if (m == bogus_page) {
2945				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2946				if (!m) {
2947					panic("vfs_unbusy_pages: page missing\n");
2948				}
2949				bp->b_pages[i] = m;
2950				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2951			}
2952			vm_object_pip_subtract(obj, 1);
2953			vm_page_flag_clear(m, PG_ZERO);
2954			vm_page_io_finish(m);
2955		}
2956		vm_object_pip_wakeupn(obj, 0);
2957	}
2958}
2959
2960/*
2961 * vfs_page_set_valid:
2962 *
2963 *	Set the valid bits in a page based on the supplied offset.   The
2964 *	range is restricted to the buffer's size.
2965 *
2966 *	This routine is typically called after a read completes.
2967 */
2968static void
2969vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2970{
2971	vm_ooffset_t soff, eoff;
2972
2973	GIANT_REQUIRED;
2974	/*
2975	 * Start and end offsets in buffer.  eoff - soff may not cross a
2976	 * page boundry or cross the end of the buffer.  The end of the
2977	 * buffer, in this case, is our file EOF, not the allocation size
2978	 * of the buffer.
2979	 */
2980	soff = off;
2981	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2982	if (eoff > bp->b_offset + bp->b_bcount)
2983		eoff = bp->b_offset + bp->b_bcount;
2984
2985	/*
2986	 * Set valid range.  This is typically the entire buffer and thus the
2987	 * entire page.
2988	 */
2989	if (eoff > soff) {
2990		vm_page_set_validclean(
2991		    m,
2992		   (vm_offset_t) (soff & PAGE_MASK),
2993		   (vm_offset_t) (eoff - soff)
2994		);
2995	}
2996}
2997
2998/*
2999 * This routine is called before a device strategy routine.
3000 * It is used to tell the VM system that paging I/O is in
3001 * progress, and treat the pages associated with the buffer
3002 * almost as being PG_BUSY.  Also the object paging_in_progress
3003 * flag is handled to make sure that the object doesn't become
3004 * inconsistant.
3005 *
3006 * Since I/O has not been initiated yet, certain buffer flags
3007 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3008 * and should be ignored.
3009 */
3010void
3011vfs_busy_pages(struct buf * bp, int clear_modify)
3012{
3013	int i, bogus;
3014
3015	GIANT_REQUIRED;
3016
3017	if (bp->b_flags & B_VMIO) {
3018		struct vnode *vp = bp->b_vp;
3019		vm_object_t obj;
3020		vm_ooffset_t foff;
3021
3022		VOP_GETVOBJECT(vp, &obj);
3023		foff = bp->b_offset;
3024		KASSERT(bp->b_offset != NOOFFSET,
3025		    ("vfs_busy_pages: no buffer offset"));
3026		vfs_setdirty(bp);
3027
3028retry:
3029		for (i = 0; i < bp->b_npages; i++) {
3030			vm_page_t m = bp->b_pages[i];
3031			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3032				goto retry;
3033		}
3034
3035		bogus = 0;
3036		for (i = 0; i < bp->b_npages; i++) {
3037			vm_page_t m = bp->b_pages[i];
3038
3039			vm_page_flag_clear(m, PG_ZERO);
3040			if ((bp->b_flags & B_CLUSTER) == 0) {
3041				vm_object_pip_add(obj, 1);
3042				vm_page_io_start(m);
3043			}
3044
3045			/*
3046			 * When readying a buffer for a read ( i.e
3047			 * clear_modify == 0 ), it is important to do
3048			 * bogus_page replacement for valid pages in
3049			 * partially instantiated buffers.  Partially
3050			 * instantiated buffers can, in turn, occur when
3051			 * reconstituting a buffer from its VM backing store
3052			 * base.  We only have to do this if B_CACHE is
3053			 * clear ( which causes the I/O to occur in the
3054			 * first place ).  The replacement prevents the read
3055			 * I/O from overwriting potentially dirty VM-backed
3056			 * pages.  XXX bogus page replacement is, uh, bogus.
3057			 * It may not work properly with small-block devices.
3058			 * We need to find a better way.
3059			 */
3060
3061			vm_page_protect(m, VM_PROT_NONE);
3062			if (clear_modify)
3063				vfs_page_set_valid(bp, foff, i, m);
3064			else if (m->valid == VM_PAGE_BITS_ALL &&
3065				(bp->b_flags & B_CACHE) == 0) {
3066				bp->b_pages[i] = bogus_page;
3067				bogus++;
3068			}
3069			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3070		}
3071		if (bogus)
3072			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3073	}
3074}
3075
3076/*
3077 * Tell the VM system that the pages associated with this buffer
3078 * are clean.  This is used for delayed writes where the data is
3079 * going to go to disk eventually without additional VM intevention.
3080 *
3081 * Note that while we only really need to clean through to b_bcount, we
3082 * just go ahead and clean through to b_bufsize.
3083 */
3084static void
3085vfs_clean_pages(struct buf * bp)
3086{
3087	int i;
3088
3089	GIANT_REQUIRED;
3090
3091	if (bp->b_flags & B_VMIO) {
3092		vm_ooffset_t foff;
3093
3094		foff = bp->b_offset;
3095		KASSERT(bp->b_offset != NOOFFSET,
3096		    ("vfs_clean_pages: no buffer offset"));
3097		for (i = 0; i < bp->b_npages; i++) {
3098			vm_page_t m = bp->b_pages[i];
3099			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3100			vm_ooffset_t eoff = noff;
3101
3102			if (eoff > bp->b_offset + bp->b_bufsize)
3103				eoff = bp->b_offset + bp->b_bufsize;
3104			vfs_page_set_valid(bp, foff, i, m);
3105			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3106			foff = noff;
3107		}
3108	}
3109}
3110
3111/*
3112 *	vfs_bio_set_validclean:
3113 *
3114 *	Set the range within the buffer to valid and clean.  The range is
3115 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3116 *	itself may be offset from the beginning of the first page.
3117 *
3118 */
3119
3120void
3121vfs_bio_set_validclean(struct buf *bp, int base, int size)
3122{
3123	if (bp->b_flags & B_VMIO) {
3124		int i;
3125		int n;
3126
3127		/*
3128		 * Fixup base to be relative to beginning of first page.
3129		 * Set initial n to be the maximum number of bytes in the
3130		 * first page that can be validated.
3131		 */
3132
3133		base += (bp->b_offset & PAGE_MASK);
3134		n = PAGE_SIZE - (base & PAGE_MASK);
3135
3136		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3137			vm_page_t m = bp->b_pages[i];
3138
3139			if (n > size)
3140				n = size;
3141
3142			vm_page_set_validclean(m, base & PAGE_MASK, n);
3143			base += n;
3144			size -= n;
3145			n = PAGE_SIZE;
3146		}
3147	}
3148}
3149
3150/*
3151 *	vfs_bio_clrbuf:
3152 *
3153 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3154 *	to clear BIO_ERROR and B_INVAL.
3155 *
3156 *	Note that while we only theoretically need to clear through b_bcount,
3157 *	we go ahead and clear through b_bufsize.
3158 */
3159
3160void
3161vfs_bio_clrbuf(struct buf *bp) {
3162	int i, mask = 0;
3163	caddr_t sa, ea;
3164
3165	GIANT_REQUIRED;
3166
3167	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3168		bp->b_flags &= ~B_INVAL;
3169		bp->b_ioflags &= ~BIO_ERROR;
3170		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3171		    (bp->b_offset & PAGE_MASK) == 0) {
3172			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3173			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3174			    ((bp->b_pages[0]->valid & mask) != mask)) {
3175				bzero(bp->b_data, bp->b_bufsize);
3176			}
3177			bp->b_pages[0]->valid |= mask;
3178			bp->b_resid = 0;
3179			return;
3180		}
3181		ea = sa = bp->b_data;
3182		for(i=0;i<bp->b_npages;i++,sa=ea) {
3183			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3184			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3185			ea = (caddr_t)(vm_offset_t)ulmin(
3186			    (u_long)(vm_offset_t)ea,
3187			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3188			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3189			if ((bp->b_pages[i]->valid & mask) == mask)
3190				continue;
3191			if ((bp->b_pages[i]->valid & mask) == 0) {
3192				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3193					bzero(sa, ea - sa);
3194				}
3195			} else {
3196				for (; sa < ea; sa += DEV_BSIZE, j++) {
3197					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3198						(bp->b_pages[i]->valid & (1<<j)) == 0)
3199						bzero(sa, DEV_BSIZE);
3200				}
3201			}
3202			bp->b_pages[i]->valid |= mask;
3203			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3204		}
3205		bp->b_resid = 0;
3206	} else {
3207		clrbuf(bp);
3208	}
3209}
3210
3211/*
3212 * vm_hold_load_pages and vm_hold_free_pages get pages into
3213 * a buffers address space.  The pages are anonymous and are
3214 * not associated with a file object.
3215 */
3216static void
3217vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3218{
3219	vm_offset_t pg;
3220	vm_page_t p;
3221	int index;
3222
3223	GIANT_REQUIRED;
3224
3225	to = round_page(to);
3226	from = round_page(from);
3227	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3228
3229	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3230tryagain:
3231		/*
3232		 * note: must allocate system pages since blocking here
3233		 * could intefere with paging I/O, no matter which
3234		 * process we are.
3235		 */
3236		p = vm_page_alloc(kernel_object,
3237			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3238		    VM_ALLOC_SYSTEM);
3239		if (!p) {
3240			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3241			VM_WAIT;
3242			goto tryagain;
3243		}
3244		vm_page_wire(p);
3245		p->valid = VM_PAGE_BITS_ALL;
3246		vm_page_flag_clear(p, PG_ZERO);
3247		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3248		bp->b_pages[index] = p;
3249		vm_page_wakeup(p);
3250	}
3251	bp->b_npages = index;
3252}
3253
3254void
3255vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3256{
3257	vm_offset_t pg;
3258	vm_page_t p;
3259	int index, newnpages;
3260
3261	GIANT_REQUIRED;
3262
3263	from = round_page(from);
3264	to = round_page(to);
3265	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3266
3267	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3268		p = bp->b_pages[index];
3269		if (p && (index < bp->b_npages)) {
3270			if (p->busy) {
3271				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3272					bp->b_blkno, bp->b_lblkno);
3273			}
3274			bp->b_pages[index] = NULL;
3275			pmap_kremove(pg);
3276			vm_page_busy(p);
3277			vm_page_unwire(p, 0);
3278			vm_page_free(p);
3279		}
3280	}
3281	bp->b_npages = newnpages;
3282}
3283
3284
3285#include "opt_ddb.h"
3286#ifdef DDB
3287#include <ddb/ddb.h>
3288
3289DB_SHOW_COMMAND(buffer, db_show_buffer)
3290{
3291	/* get args */
3292	struct buf *bp = (struct buf *)addr;
3293
3294	if (!have_addr) {
3295		db_printf("usage: show buffer <addr>\n");
3296		return;
3297	}
3298
3299	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3300	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3301		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3302		  "b_blkno = %d, b_pblkno = %d\n",
3303		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3304		  major(bp->b_dev), minor(bp->b_dev),
3305		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3306	if (bp->b_npages) {
3307		int i;
3308		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3309		for (i = 0; i < bp->b_npages; i++) {
3310			vm_page_t m;
3311			m = bp->b_pages[i];
3312			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3313			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3314			if ((i + 1) < bp->b_npages)
3315				db_printf(",");
3316		}
3317		db_printf("\n");
3318	}
3319}
3320#endif /* DDB */
3321