vfs_bio.c revision 86194
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 86194 2001-11-08 18:09:18Z dillon $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct	buf_ops buf_ops_bio = {
62	"buf_ops_bio",
63	bwrite
64};
65
66struct buf *buf;		/* buffer header pool */
67struct swqueue bswlist;
68struct mtx buftimelock;		/* Interlock on setting prio and timo */
69
70static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71		vm_offset_t to);
72static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73		vm_offset_t to);
74static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75			       int pageno, vm_page_t m);
76static void vfs_clean_pages(struct buf * bp);
77static void vfs_setdirty(struct buf *bp);
78static void vfs_vmio_release(struct buf *bp);
79static void vfs_backgroundwritedone(struct buf *bp);
80static int flushbufqueues(void);
81
82static int bd_request;
83
84static void buf_daemon __P((void));
85/*
86 * bogus page -- for I/O to/from partially complete buffers
87 * this is a temporary solution to the problem, but it is not
88 * really that bad.  it would be better to split the buffer
89 * for input in the case of buffers partially already in memory,
90 * but the code is intricate enough already.
91 */
92vm_page_t bogus_page;
93int vmiodirenable = TRUE;
94int runningbufspace;
95static vm_offset_t bogus_offset;
96
97static int bufspace, maxbufspace,
98	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100static int needsbuffer;
101static int lorunningspace, hirunningspace, runningbufreq;
102static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103static int numfreebuffers, lofreebuffers, hifreebuffers;
104static int getnewbufcalls;
105static int getnewbufrestarts;
106
107SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108	&numdirtybuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110	&lodirtybuffers, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112	&hidirtybuffers, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114	&numfreebuffers, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116	&lofreebuffers, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118	&hifreebuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120	&runningbufspace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122	&lorunningspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124	&hirunningspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126	&maxbufspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128	&hibufspace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130	&lobufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134	&maxbufmallocspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136	&bufmallocspace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138	&getnewbufcalls, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140	&getnewbufrestarts, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142	&vmiodirenable, 0, "");
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144	&bufdefragcnt, 0, "");
145SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146	&buffreekvacnt, 0, "");
147SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148	&bufreusecnt, 0, "");
149
150static int bufhashmask;
151static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153char *buf_wmesg = BUF_WMESG;
154
155extern int vm_swap_size;
156
157#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161
162/*
163 * Buffer hash table code.  Note that the logical block scans linearly, which
164 * gives us some L1 cache locality.
165 */
166
167static __inline
168struct bufhashhdr *
169bufhash(struct vnode *vnp, daddr_t bn)
170{
171	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172}
173
174/*
175 *	numdirtywakeup:
176 *
177 *	If someone is blocked due to there being too many dirty buffers,
178 *	and numdirtybuffers is now reasonable, wake them up.
179 */
180
181static __inline void
182numdirtywakeup(int level)
183{
184	if (numdirtybuffers <= level) {
185		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187			wakeup(&needsbuffer);
188		}
189	}
190}
191
192/*
193 *	bufspacewakeup:
194 *
195 *	Called when buffer space is potentially available for recovery.
196 *	getnewbuf() will block on this flag when it is unable to free
197 *	sufficient buffer space.  Buffer space becomes recoverable when
198 *	bp's get placed back in the queues.
199 */
200
201static __inline void
202bufspacewakeup(void)
203{
204	/*
205	 * If someone is waiting for BUF space, wake them up.  Even
206	 * though we haven't freed the kva space yet, the waiting
207	 * process will be able to now.
208	 */
209	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211		wakeup(&needsbuffer);
212	}
213}
214
215/*
216 * runningbufwakeup() - in-progress I/O accounting.
217 *
218 */
219static __inline void
220runningbufwakeup(struct buf *bp)
221{
222	if (bp->b_runningbufspace) {
223		runningbufspace -= bp->b_runningbufspace;
224		bp->b_runningbufspace = 0;
225		if (runningbufreq && runningbufspace <= lorunningspace) {
226			runningbufreq = 0;
227			wakeup(&runningbufreq);
228		}
229	}
230}
231
232/*
233 *	bufcountwakeup:
234 *
235 *	Called when a buffer has been added to one of the free queues to
236 *	account for the buffer and to wakeup anyone waiting for free buffers.
237 *	This typically occurs when large amounts of metadata are being handled
238 *	by the buffer cache ( else buffer space runs out first, usually ).
239 */
240
241static __inline void
242bufcountwakeup(void)
243{
244	++numfreebuffers;
245	if (needsbuffer) {
246		needsbuffer &= ~VFS_BIO_NEED_ANY;
247		if (numfreebuffers >= hifreebuffers)
248			needsbuffer &= ~VFS_BIO_NEED_FREE;
249		wakeup(&needsbuffer);
250	}
251}
252
253/*
254 *	waitrunningbufspace()
255 *
256 *	runningbufspace is a measure of the amount of I/O currently
257 *	running.  This routine is used in async-write situations to
258 *	prevent creating huge backups of pending writes to a device.
259 *	Only asynchronous writes are governed by this function.
260 *
261 *	Reads will adjust runningbufspace, but will not block based on it.
262 *	The read load has a side effect of reducing the allowed write load.
263 *
264 *	This does NOT turn an async write into a sync write.  It waits
265 *	for earlier writes to complete and generally returns before the
266 *	caller's write has reached the device.
267 */
268static __inline void
269waitrunningbufspace(void)
270{
271	/*
272	 * XXX race against wakeup interrupt, currently
273	 * protected by Giant.  FIXME!
274	 */
275	while (runningbufspace > hirunningspace) {
276		++runningbufreq;
277		tsleep(&runningbufreq, PVM, "wdrain", 0);
278	}
279}
280
281
282/*
283 *	vfs_buf_test_cache:
284 *
285 *	Called when a buffer is extended.  This function clears the B_CACHE
286 *	bit if the newly extended portion of the buffer does not contain
287 *	valid data.
288 */
289static __inline__
290void
291vfs_buf_test_cache(struct buf *bp,
292		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
293		  vm_page_t m)
294{
295	GIANT_REQUIRED;
296
297	if (bp->b_flags & B_CACHE) {
298		int base = (foff + off) & PAGE_MASK;
299		if (vm_page_is_valid(m, base, size) == 0)
300			bp->b_flags &= ~B_CACHE;
301	}
302}
303
304static __inline__
305void
306bd_wakeup(int dirtybuflevel)
307{
308	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
309		bd_request = 1;
310		wakeup(&bd_request);
311	}
312}
313
314/*
315 * bd_speedup - speedup the buffer cache flushing code
316 */
317
318static __inline__
319void
320bd_speedup(void)
321{
322	bd_wakeup(1);
323}
324
325/*
326 * Calculating buffer cache scaling values and reserve space for buffer
327 * headers.  This is called during low level kernel initialization and
328 * may be called more then once.  We CANNOT write to the memory area
329 * being reserved at this time.
330 */
331caddr_t
332kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
333{
334	/*
335	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
336	 * For the first 64MB of ram nominally allocate sufficient buffers to
337	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
338	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
339	 * the buffer cache we limit the eventual kva reservation to
340	 * maxbcache bytes.
341	 *
342	 * factor represents the 1/4 x ram conversion.
343	 */
344	if (nbuf == 0) {
345		int factor = 4 * BKVASIZE / PAGE_SIZE;
346
347		nbuf = 50;
348		if (physmem_est > 1024)
349			nbuf += min((physmem_est - 1024) / factor,
350			    16384 / factor);
351		if (physmem_est > 16384)
352			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
353
354		if (maxbcache && nbuf > maxbcache / BKVASIZE)
355			nbuf = maxbcache / BKVASIZE;
356	}
357
358#if 0
359	/*
360	 * Do not allow the buffer_map to be more then 1/2 the size of the
361	 * kernel_map.
362	 */
363	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
364	    (BKVASIZE * 2)) {
365		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
366		    (BKVASIZE * 2);
367		printf("Warning: nbufs capped at %d\n", nbuf);
368	}
369#endif
370
371	/*
372	 * swbufs are used as temporary holders for I/O, such as paging I/O.
373	 * We have no less then 16 and no more then 256.
374	 */
375	nswbuf = max(min(nbuf/4, 256), 16);
376
377	/*
378	 * Reserve space for the buffer cache buffers
379	 */
380	swbuf = (void *)v;
381	v = (caddr_t)(swbuf + nswbuf);
382	buf = (void *)v;
383	v = (caddr_t)(buf + nbuf);
384
385	/*
386	 * Calculate the hash table size and reserve space
387	 */
388	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
389		;
390	bufhashtbl = (void *)v;
391	v = (caddr_t)(bufhashtbl + bufhashmask);
392	--bufhashmask;
393
394	return(v);
395}
396
397void
398bufinit(void)
399{
400	struct buf *bp;
401	int i;
402
403	GIANT_REQUIRED;
404
405	TAILQ_INIT(&bswlist);
406	LIST_INIT(&invalhash);
407	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
408
409	for (i = 0; i <= bufhashmask; i++)
410		LIST_INIT(&bufhashtbl[i]);
411
412	/* next, make a null set of free lists */
413	for (i = 0; i < BUFFER_QUEUES; i++)
414		TAILQ_INIT(&bufqueues[i]);
415
416	/* finally, initialize each buffer header and stick on empty q */
417	for (i = 0; i < nbuf; i++) {
418		bp = &buf[i];
419		bzero(bp, sizeof *bp);
420		bp->b_flags = B_INVAL;	/* we're just an empty header */
421		bp->b_dev = NODEV;
422		bp->b_rcred = NOCRED;
423		bp->b_wcred = NOCRED;
424		bp->b_qindex = QUEUE_EMPTY;
425		bp->b_xflags = 0;
426		LIST_INIT(&bp->b_dep);
427		BUF_LOCKINIT(bp);
428		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
429		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
430	}
431
432	/*
433	 * maxbufspace is the absolute maximum amount of buffer space we are
434	 * allowed to reserve in KVM and in real terms.  The absolute maximum
435	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
436	 * used by most other processes.  The differential is required to
437	 * ensure that buf_daemon is able to run when other processes might
438	 * be blocked waiting for buffer space.
439	 *
440	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
441	 * this may result in KVM fragmentation which is not handled optimally
442	 * by the system.
443	 */
444	maxbufspace = nbuf * BKVASIZE;
445	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
446	lobufspace = hibufspace - MAXBSIZE;
447
448	lorunningspace = 512 * 1024;
449	hirunningspace = 1024 * 1024;
450
451/*
452 * Limit the amount of malloc memory since it is wired permanently into
453 * the kernel space.  Even though this is accounted for in the buffer
454 * allocation, we don't want the malloced region to grow uncontrolled.
455 * The malloc scheme improves memory utilization significantly on average
456 * (small) directories.
457 */
458	maxbufmallocspace = hibufspace / 20;
459
460/*
461 * Reduce the chance of a deadlock occuring by limiting the number
462 * of delayed-write dirty buffers we allow to stack up.
463 */
464	hidirtybuffers = nbuf / 4 + 20;
465	numdirtybuffers = 0;
466/*
467 * To support extreme low-memory systems, make sure hidirtybuffers cannot
468 * eat up all available buffer space.  This occurs when our minimum cannot
469 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
470 * BKVASIZE'd (8K) buffers.
471 */
472	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
473		hidirtybuffers >>= 1;
474	}
475	lodirtybuffers = hidirtybuffers / 2;
476
477/*
478 * Try to keep the number of free buffers in the specified range,
479 * and give special processes (e.g. like buf_daemon) access to an
480 * emergency reserve.
481 */
482	lofreebuffers = nbuf / 18 + 5;
483	hifreebuffers = 2 * lofreebuffers;
484	numfreebuffers = nbuf;
485
486/*
487 * Maximum number of async ops initiated per buf_daemon loop.  This is
488 * somewhat of a hack at the moment, we really need to limit ourselves
489 * based on the number of bytes of I/O in-transit that were initiated
490 * from buf_daemon.
491 */
492
493	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
494	bogus_page = vm_page_alloc(kernel_object,
495			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
496			VM_ALLOC_NORMAL);
497	cnt.v_wire_count++;
498}
499
500/*
501 * bfreekva() - free the kva allocation for a buffer.
502 *
503 *	Must be called at splbio() or higher as this is the only locking for
504 *	buffer_map.
505 *
506 *	Since this call frees up buffer space, we call bufspacewakeup().
507 */
508static void
509bfreekva(struct buf * bp)
510{
511	GIANT_REQUIRED;
512
513	if (bp->b_kvasize) {
514		++buffreekvacnt;
515		bufspace -= bp->b_kvasize;
516		vm_map_delete(buffer_map,
517		    (vm_offset_t) bp->b_kvabase,
518		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
519		);
520		bp->b_kvasize = 0;
521		bufspacewakeup();
522	}
523}
524
525/*
526 *	bremfree:
527 *
528 *	Remove the buffer from the appropriate free list.
529 */
530void
531bremfree(struct buf * bp)
532{
533	int s = splbio();
534	int old_qindex = bp->b_qindex;
535
536	GIANT_REQUIRED;
537
538	if (bp->b_qindex != QUEUE_NONE) {
539		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
540		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
541		bp->b_qindex = QUEUE_NONE;
542	} else {
543		if (BUF_REFCNT(bp) <= 1)
544			panic("bremfree: removing a buffer not on a queue");
545	}
546
547	/*
548	 * Fixup numfreebuffers count.  If the buffer is invalid or not
549	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
550	 * the buffer was free and we must decrement numfreebuffers.
551	 */
552	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
553		switch(old_qindex) {
554		case QUEUE_DIRTY:
555		case QUEUE_CLEAN:
556		case QUEUE_EMPTY:
557		case QUEUE_EMPTYKVA:
558			--numfreebuffers;
559			break;
560		default:
561			break;
562		}
563	}
564	splx(s);
565}
566
567
568/*
569 * Get a buffer with the specified data.  Look in the cache first.  We
570 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
571 * is set, the buffer is valid and we do not have to do anything ( see
572 * getblk() ).  This is really just a special case of breadn().
573 */
574int
575bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
576    struct buf ** bpp)
577{
578
579	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
580}
581
582/*
583 * Operates like bread, but also starts asynchronous I/O on
584 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
585 * to initiating I/O . If B_CACHE is set, the buffer is valid
586 * and we do not have to do anything.
587 */
588int
589breadn(struct vnode * vp, daddr_t blkno, int size,
590    daddr_t * rablkno, int *rabsize,
591    int cnt, struct ucred * cred, struct buf ** bpp)
592{
593	struct buf *bp, *rabp;
594	int i;
595	int rv = 0, readwait = 0;
596
597	*bpp = bp = getblk(vp, blkno, size, 0, 0);
598
599	/* if not found in cache, do some I/O */
600	if ((bp->b_flags & B_CACHE) == 0) {
601		if (curthread != PCPU_GET(idlethread))
602			curthread->td_proc->p_stats->p_ru.ru_inblock++;
603		bp->b_iocmd = BIO_READ;
604		bp->b_flags &= ~B_INVAL;
605		bp->b_ioflags &= ~BIO_ERROR;
606		if (bp->b_rcred == NOCRED && cred != NOCRED)
607			bp->b_rcred = crhold(cred);
608		vfs_busy_pages(bp, 0);
609		VOP_STRATEGY(vp, bp);
610		++readwait;
611	}
612
613	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
614		if (inmem(vp, *rablkno))
615			continue;
616		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
617
618		if ((rabp->b_flags & B_CACHE) == 0) {
619			if (curthread != PCPU_GET(idlethread))
620				curthread->td_proc->p_stats->p_ru.ru_inblock++;
621			rabp->b_flags |= B_ASYNC;
622			rabp->b_flags &= ~B_INVAL;
623			rabp->b_ioflags &= ~BIO_ERROR;
624			rabp->b_iocmd = BIO_READ;
625			if (rabp->b_rcred == NOCRED && cred != NOCRED)
626				rabp->b_rcred = crhold(cred);
627			vfs_busy_pages(rabp, 0);
628			BUF_KERNPROC(rabp);
629			VOP_STRATEGY(vp, rabp);
630		} else {
631			brelse(rabp);
632		}
633	}
634
635	if (readwait) {
636		rv = bufwait(bp);
637	}
638	return (rv);
639}
640
641/*
642 * Write, release buffer on completion.  (Done by iodone
643 * if async).  Do not bother writing anything if the buffer
644 * is invalid.
645 *
646 * Note that we set B_CACHE here, indicating that buffer is
647 * fully valid and thus cacheable.  This is true even of NFS
648 * now so we set it generally.  This could be set either here
649 * or in biodone() since the I/O is synchronous.  We put it
650 * here.
651 */
652
653int dobkgrdwrite = 1;
654SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
655
656int
657bwrite(struct buf * bp)
658{
659	int oldflags, s;
660	struct buf *newbp;
661
662	if (bp->b_flags & B_INVAL) {
663		brelse(bp);
664		return (0);
665	}
666
667	oldflags = bp->b_flags;
668
669	if (BUF_REFCNT(bp) == 0)
670		panic("bwrite: buffer is not busy???");
671	s = splbio();
672	/*
673	 * If a background write is already in progress, delay
674	 * writing this block if it is asynchronous. Otherwise
675	 * wait for the background write to complete.
676	 */
677	if (bp->b_xflags & BX_BKGRDINPROG) {
678		if (bp->b_flags & B_ASYNC) {
679			splx(s);
680			bdwrite(bp);
681			return (0);
682		}
683		bp->b_xflags |= BX_BKGRDWAIT;
684		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
685		if (bp->b_xflags & BX_BKGRDINPROG)
686			panic("bwrite: still writing");
687	}
688
689	/* Mark the buffer clean */
690	bundirty(bp);
691
692	/*
693	 * If this buffer is marked for background writing and we
694	 * do not have to wait for it, make a copy and write the
695	 * copy so as to leave this buffer ready for further use.
696	 *
697	 * This optimization eats a lot of memory.  If we have a page
698	 * or buffer shortfall we can't do it.
699	 */
700	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
701	    (bp->b_flags & B_ASYNC) &&
702	    !vm_page_count_severe() &&
703	    !buf_dirty_count_severe()) {
704		if (bp->b_iodone != NULL) {
705			printf("bp->b_iodone = %p\n", bp->b_iodone);
706			panic("bwrite: need chained iodone");
707		}
708
709		/* get a new block */
710		newbp = geteblk(bp->b_bufsize);
711
712		/* set it to be identical to the old block */
713		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
714		bgetvp(bp->b_vp, newbp);
715		newbp->b_lblkno = bp->b_lblkno;
716		newbp->b_blkno = bp->b_blkno;
717		newbp->b_offset = bp->b_offset;
718		newbp->b_iodone = vfs_backgroundwritedone;
719		newbp->b_flags |= B_ASYNC;
720		newbp->b_flags &= ~B_INVAL;
721
722		/* move over the dependencies */
723		if (LIST_FIRST(&bp->b_dep) != NULL)
724			buf_movedeps(bp, newbp);
725
726		/*
727		 * Initiate write on the copy, release the original to
728		 * the B_LOCKED queue so that it cannot go away until
729		 * the background write completes. If not locked it could go
730		 * away and then be reconstituted while it was being written.
731		 * If the reconstituted buffer were written, we could end up
732		 * with two background copies being written at the same time.
733		 */
734		bp->b_xflags |= BX_BKGRDINPROG;
735		bp->b_flags |= B_LOCKED;
736		bqrelse(bp);
737		bp = newbp;
738	}
739
740	bp->b_flags &= ~B_DONE;
741	bp->b_ioflags &= ~BIO_ERROR;
742	bp->b_flags |= B_WRITEINPROG | B_CACHE;
743	bp->b_iocmd = BIO_WRITE;
744
745	bp->b_vp->v_numoutput++;
746	vfs_busy_pages(bp, 1);
747
748	/*
749	 * Normal bwrites pipeline writes
750	 */
751	bp->b_runningbufspace = bp->b_bufsize;
752	runningbufspace += bp->b_runningbufspace;
753
754	if (curthread != PCPU_GET(idlethread))
755		curthread->td_proc->p_stats->p_ru.ru_oublock++;
756	splx(s);
757	if (oldflags & B_ASYNC)
758		BUF_KERNPROC(bp);
759	BUF_STRATEGY(bp);
760
761	if ((oldflags & B_ASYNC) == 0) {
762		int rtval = bufwait(bp);
763		brelse(bp);
764		return (rtval);
765	} else if ((oldflags & B_NOWDRAIN) == 0) {
766		/*
767		 * don't allow the async write to saturate the I/O
768		 * system.  Deadlocks can occur only if a device strategy
769		 * routine (like in MD) turns around and issues another
770		 * high-level write, in which case B_NOWDRAIN is expected
771		 * to be set.  Otherwise we will not deadlock here because
772		 * we are blocking waiting for I/O that is already in-progress
773		 * to complete.
774		 */
775		waitrunningbufspace();
776	}
777
778	return (0);
779}
780
781/*
782 * Complete a background write started from bwrite.
783 */
784static void
785vfs_backgroundwritedone(bp)
786	struct buf *bp;
787{
788	struct buf *origbp;
789
790	/*
791	 * Find the original buffer that we are writing.
792	 */
793	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
794		panic("backgroundwritedone: lost buffer");
795	/*
796	 * Process dependencies then return any unfinished ones.
797	 */
798	if (LIST_FIRST(&bp->b_dep) != NULL)
799		buf_complete(bp);
800	if (LIST_FIRST(&bp->b_dep) != NULL)
801		buf_movedeps(bp, origbp);
802	/*
803	 * Clear the BX_BKGRDINPROG flag in the original buffer
804	 * and awaken it if it is waiting for the write to complete.
805	 * If BX_BKGRDINPROG is not set in the original buffer it must
806	 * have been released and re-instantiated - which is not legal.
807	 */
808	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
809	origbp->b_xflags &= ~BX_BKGRDINPROG;
810	if (origbp->b_xflags & BX_BKGRDWAIT) {
811		origbp->b_xflags &= ~BX_BKGRDWAIT;
812		wakeup(&origbp->b_xflags);
813	}
814	/*
815	 * Clear the B_LOCKED flag and remove it from the locked
816	 * queue if it currently resides there.
817	 */
818	origbp->b_flags &= ~B_LOCKED;
819	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
820		bremfree(origbp);
821		bqrelse(origbp);
822	}
823	/*
824	 * This buffer is marked B_NOCACHE, so when it is released
825	 * by biodone, it will be tossed. We mark it with BIO_READ
826	 * to avoid biodone doing a second vwakeup.
827	 */
828	bp->b_flags |= B_NOCACHE;
829	bp->b_iocmd = BIO_READ;
830	bp->b_flags &= ~(B_CACHE | B_DONE);
831	bp->b_iodone = 0;
832	bufdone(bp);
833}
834
835/*
836 * Delayed write. (Buffer is marked dirty).  Do not bother writing
837 * anything if the buffer is marked invalid.
838 *
839 * Note that since the buffer must be completely valid, we can safely
840 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
841 * biodone() in order to prevent getblk from writing the buffer
842 * out synchronously.
843 */
844void
845bdwrite(struct buf * bp)
846{
847	GIANT_REQUIRED;
848
849	if (BUF_REFCNT(bp) == 0)
850		panic("bdwrite: buffer is not busy");
851
852	if (bp->b_flags & B_INVAL) {
853		brelse(bp);
854		return;
855	}
856	bdirty(bp);
857
858	/*
859	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
860	 * true even of NFS now.
861	 */
862	bp->b_flags |= B_CACHE;
863
864	/*
865	 * This bmap keeps the system from needing to do the bmap later,
866	 * perhaps when the system is attempting to do a sync.  Since it
867	 * is likely that the indirect block -- or whatever other datastructure
868	 * that the filesystem needs is still in memory now, it is a good
869	 * thing to do this.  Note also, that if the pageout daemon is
870	 * requesting a sync -- there might not be enough memory to do
871	 * the bmap then...  So, this is important to do.
872	 */
873	if (bp->b_lblkno == bp->b_blkno) {
874		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
875	}
876
877	/*
878	 * Set the *dirty* buffer range based upon the VM system dirty pages.
879	 */
880	vfs_setdirty(bp);
881
882	/*
883	 * We need to do this here to satisfy the vnode_pager and the
884	 * pageout daemon, so that it thinks that the pages have been
885	 * "cleaned".  Note that since the pages are in a delayed write
886	 * buffer -- the VFS layer "will" see that the pages get written
887	 * out on the next sync, or perhaps the cluster will be completed.
888	 */
889	vfs_clean_pages(bp);
890	bqrelse(bp);
891
892	/*
893	 * Wakeup the buffer flushing daemon if we have a lot of dirty
894	 * buffers (midpoint between our recovery point and our stall
895	 * point).
896	 */
897	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
898
899	/*
900	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
901	 * due to the softdep code.
902	 */
903}
904
905/*
906 *	bdirty:
907 *
908 *	Turn buffer into delayed write request.  We must clear BIO_READ and
909 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
910 *	itself to properly update it in the dirty/clean lists.  We mark it
911 *	B_DONE to ensure that any asynchronization of the buffer properly
912 *	clears B_DONE ( else a panic will occur later ).
913 *
914 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
915 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
916 *	should only be called if the buffer is known-good.
917 *
918 *	Since the buffer is not on a queue, we do not update the numfreebuffers
919 *	count.
920 *
921 *	Must be called at splbio().
922 *	The buffer must be on QUEUE_NONE.
923 */
924void
925bdirty(bp)
926	struct buf *bp;
927{
928	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
929	bp->b_flags &= ~(B_RELBUF);
930	bp->b_iocmd = BIO_WRITE;
931
932	if ((bp->b_flags & B_DELWRI) == 0) {
933		bp->b_flags |= B_DONE | B_DELWRI;
934		reassignbuf(bp, bp->b_vp);
935		++numdirtybuffers;
936		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
937	}
938}
939
940/*
941 *	bundirty:
942 *
943 *	Clear B_DELWRI for buffer.
944 *
945 *	Since the buffer is not on a queue, we do not update the numfreebuffers
946 *	count.
947 *
948 *	Must be called at splbio().
949 *	The buffer must be on QUEUE_NONE.
950 */
951
952void
953bundirty(bp)
954	struct buf *bp;
955{
956	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
957
958	if (bp->b_flags & B_DELWRI) {
959		bp->b_flags &= ~B_DELWRI;
960		reassignbuf(bp, bp->b_vp);
961		--numdirtybuffers;
962		numdirtywakeup(lodirtybuffers);
963	}
964	/*
965	 * Since it is now being written, we can clear its deferred write flag.
966	 */
967	bp->b_flags &= ~B_DEFERRED;
968}
969
970/*
971 *	bawrite:
972 *
973 *	Asynchronous write.  Start output on a buffer, but do not wait for
974 *	it to complete.  The buffer is released when the output completes.
975 *
976 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
977 *	B_INVAL buffers.  Not us.
978 */
979void
980bawrite(struct buf * bp)
981{
982	bp->b_flags |= B_ASYNC;
983	(void) BUF_WRITE(bp);
984}
985
986/*
987 *	bowrite:
988 *
989 *	Ordered write.  Start output on a buffer, and flag it so that the
990 *	device will write it in the order it was queued.  The buffer is
991 *	released when the output completes.  bwrite() ( or the VOP routine
992 *	anyway ) is responsible for handling B_INVAL buffers.
993 */
994int
995bowrite(struct buf * bp)
996{
997	bp->b_ioflags |= BIO_ORDERED;
998	bp->b_flags |= B_ASYNC;
999	return (BUF_WRITE(bp));
1000}
1001
1002/*
1003 *	bwillwrite:
1004 *
1005 *	Called prior to the locking of any vnodes when we are expecting to
1006 *	write.  We do not want to starve the buffer cache with too many
1007 *	dirty buffers so we block here.  By blocking prior to the locking
1008 *	of any vnodes we attempt to avoid the situation where a locked vnode
1009 *	prevents the various system daemons from flushing related buffers.
1010 */
1011
1012void
1013bwillwrite(void)
1014{
1015	if (numdirtybuffers >= hidirtybuffers) {
1016		int s;
1017
1018		s = splbio();
1019		while (numdirtybuffers >= hidirtybuffers) {
1020			bd_wakeup(1);
1021			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1022			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1023		}
1024		splx(s);
1025	}
1026}
1027
1028/*
1029 * Return true if we have too many dirty buffers.
1030 */
1031int
1032buf_dirty_count_severe(void)
1033{
1034	return(numdirtybuffers >= hidirtybuffers);
1035}
1036
1037/*
1038 *	brelse:
1039 *
1040 *	Release a busy buffer and, if requested, free its resources.  The
1041 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1042 *	to be accessed later as a cache entity or reused for other purposes.
1043 */
1044void
1045brelse(struct buf * bp)
1046{
1047	int s;
1048
1049	GIANT_REQUIRED;
1050
1051	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1052
1053	s = splbio();
1054
1055	if (bp->b_flags & B_LOCKED)
1056		bp->b_ioflags &= ~BIO_ERROR;
1057
1058	if (bp->b_iocmd == BIO_WRITE &&
1059	    (bp->b_ioflags & BIO_ERROR) &&
1060	    !(bp->b_flags & B_INVAL)) {
1061		/*
1062		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1063		 * pages from being scrapped.  If B_INVAL is set then
1064		 * this case is not run and the next case is run to
1065		 * destroy the buffer.  B_INVAL can occur if the buffer
1066		 * is outside the range supported by the underlying device.
1067		 */
1068		bp->b_ioflags &= ~BIO_ERROR;
1069		bdirty(bp);
1070	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1071	    (bp->b_ioflags & BIO_ERROR) ||
1072	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1073		/*
1074		 * Either a failed I/O or we were asked to free or not
1075		 * cache the buffer.
1076		 */
1077		bp->b_flags |= B_INVAL;
1078		if (LIST_FIRST(&bp->b_dep) != NULL)
1079			buf_deallocate(bp);
1080		if (bp->b_flags & B_DELWRI) {
1081			--numdirtybuffers;
1082			numdirtywakeup(lodirtybuffers);
1083		}
1084		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1085		if ((bp->b_flags & B_VMIO) == 0) {
1086			if (bp->b_bufsize)
1087				allocbuf(bp, 0);
1088			if (bp->b_vp)
1089				brelvp(bp);
1090		}
1091	}
1092
1093	/*
1094	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1095	 * is called with B_DELWRI set, the underlying pages may wind up
1096	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1097	 * because pages associated with a B_DELWRI bp are marked clean.
1098	 *
1099	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1100	 * if B_DELWRI is set.
1101	 *
1102	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1103	 * on pages to return pages to the VM page queues.
1104	 */
1105	if (bp->b_flags & B_DELWRI)
1106		bp->b_flags &= ~B_RELBUF;
1107	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1108		bp->b_flags |= B_RELBUF;
1109
1110	/*
1111	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1112	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1113	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1114	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1115	 *
1116	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1117	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1118	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1119	 *
1120	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1121	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1122	 * the commit state and we cannot afford to lose the buffer. If the
1123	 * buffer has a background write in progress, we need to keep it
1124	 * around to prevent it from being reconstituted and starting a second
1125	 * background write.
1126	 */
1127	if ((bp->b_flags & B_VMIO)
1128	    && !(bp->b_vp->v_tag == VT_NFS &&
1129		 !vn_isdisk(bp->b_vp, NULL) &&
1130		 (bp->b_flags & B_DELWRI))
1131	    ) {
1132
1133		int i, j, resid;
1134		vm_page_t m;
1135		off_t foff;
1136		vm_pindex_t poff;
1137		vm_object_t obj;
1138		struct vnode *vp;
1139
1140		vp = bp->b_vp;
1141
1142		/*
1143		 * Get the base offset and length of the buffer.  Note that
1144		 * in the VMIO case if the buffer block size is not
1145		 * page-aligned then b_data pointer may not be page-aligned.
1146		 * But our b_pages[] array *IS* page aligned.
1147		 *
1148		 * block sizes less then DEV_BSIZE (usually 512) are not
1149		 * supported due to the page granularity bits (m->valid,
1150		 * m->dirty, etc...).
1151		 *
1152		 * See man buf(9) for more information
1153		 */
1154		resid = bp->b_bufsize;
1155		foff = bp->b_offset;
1156
1157		for (i = 0; i < bp->b_npages; i++) {
1158			int had_bogus = 0;
1159
1160			m = bp->b_pages[i];
1161			vm_page_flag_clear(m, PG_ZERO);
1162
1163			/*
1164			 * If we hit a bogus page, fixup *all* the bogus pages
1165			 * now.
1166			 */
1167			if (m == bogus_page) {
1168				VOP_GETVOBJECT(vp, &obj);
1169				poff = OFF_TO_IDX(bp->b_offset);
1170				had_bogus = 1;
1171
1172				for (j = i; j < bp->b_npages; j++) {
1173					vm_page_t mtmp;
1174					mtmp = bp->b_pages[j];
1175					if (mtmp == bogus_page) {
1176						mtmp = vm_page_lookup(obj, poff + j);
1177						if (!mtmp) {
1178							panic("brelse: page missing\n");
1179						}
1180						bp->b_pages[j] = mtmp;
1181					}
1182				}
1183
1184				if ((bp->b_flags & B_INVAL) == 0) {
1185					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1186				}
1187				m = bp->b_pages[i];
1188			}
1189			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1190				int poffset = foff & PAGE_MASK;
1191				int presid = resid > (PAGE_SIZE - poffset) ?
1192					(PAGE_SIZE - poffset) : resid;
1193
1194				KASSERT(presid >= 0, ("brelse: extra page"));
1195				vm_page_set_invalid(m, poffset, presid);
1196				if (had_bogus)
1197					printf("avoided corruption bug in bogus_page/brelse code\n");
1198			}
1199			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1200			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1201		}
1202
1203		if (bp->b_flags & (B_INVAL | B_RELBUF))
1204			vfs_vmio_release(bp);
1205
1206	} else if (bp->b_flags & B_VMIO) {
1207
1208		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1209			vfs_vmio_release(bp);
1210		}
1211
1212	}
1213
1214	if (bp->b_qindex != QUEUE_NONE)
1215		panic("brelse: free buffer onto another queue???");
1216	if (BUF_REFCNT(bp) > 1) {
1217		/* do not release to free list */
1218		BUF_UNLOCK(bp);
1219		splx(s);
1220		return;
1221	}
1222
1223	/* enqueue */
1224
1225	/* buffers with no memory */
1226	if (bp->b_bufsize == 0) {
1227		bp->b_flags |= B_INVAL;
1228		bp->b_xflags &= ~BX_BKGRDWRITE;
1229		if (bp->b_xflags & BX_BKGRDINPROG)
1230			panic("losing buffer 1");
1231		if (bp->b_kvasize) {
1232			bp->b_qindex = QUEUE_EMPTYKVA;
1233		} else {
1234			bp->b_qindex = QUEUE_EMPTY;
1235		}
1236		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1237		LIST_REMOVE(bp, b_hash);
1238		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1239		bp->b_dev = NODEV;
1240	/* buffers with junk contents */
1241	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1242		bp->b_flags |= B_INVAL;
1243		bp->b_xflags &= ~BX_BKGRDWRITE;
1244		if (bp->b_xflags & BX_BKGRDINPROG)
1245			panic("losing buffer 2");
1246		bp->b_qindex = QUEUE_CLEAN;
1247		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1248		LIST_REMOVE(bp, b_hash);
1249		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1250		bp->b_dev = NODEV;
1251
1252	/* buffers that are locked */
1253	} else if (bp->b_flags & B_LOCKED) {
1254		bp->b_qindex = QUEUE_LOCKED;
1255		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1256
1257	/* remaining buffers */
1258	} else {
1259		if (bp->b_flags & B_DELWRI)
1260			bp->b_qindex = QUEUE_DIRTY;
1261		else
1262			bp->b_qindex = QUEUE_CLEAN;
1263		if (bp->b_flags & B_AGE)
1264			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1265		else
1266			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1267	}
1268
1269	/*
1270	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1271	 * on the correct queue.
1272	 */
1273	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1274		bp->b_flags &= ~B_DELWRI;
1275		--numdirtybuffers;
1276		numdirtywakeup(lodirtybuffers);
1277	}
1278
1279	/*
1280	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1281	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1282	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1283	 * if B_INVAL is set ).
1284	 */
1285
1286	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1287		bufcountwakeup();
1288
1289	/*
1290	 * Something we can maybe free or reuse
1291	 */
1292	if (bp->b_bufsize || bp->b_kvasize)
1293		bufspacewakeup();
1294
1295	/* unlock */
1296	BUF_UNLOCK(bp);
1297	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1298			B_DIRECT | B_NOWDRAIN);
1299	bp->b_ioflags &= ~BIO_ORDERED;
1300	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1301		panic("brelse: not dirty");
1302	splx(s);
1303}
1304
1305/*
1306 * Release a buffer back to the appropriate queue but do not try to free
1307 * it.  The buffer is expected to be used again soon.
1308 *
1309 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1310 * biodone() to requeue an async I/O on completion.  It is also used when
1311 * known good buffers need to be requeued but we think we may need the data
1312 * again soon.
1313 *
1314 * XXX we should be able to leave the B_RELBUF hint set on completion.
1315 */
1316void
1317bqrelse(struct buf * bp)
1318{
1319	int s;
1320
1321	s = splbio();
1322
1323	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1324
1325	if (bp->b_qindex != QUEUE_NONE)
1326		panic("bqrelse: free buffer onto another queue???");
1327	if (BUF_REFCNT(bp) > 1) {
1328		/* do not release to free list */
1329		BUF_UNLOCK(bp);
1330		splx(s);
1331		return;
1332	}
1333	if (bp->b_flags & B_LOCKED) {
1334		bp->b_ioflags &= ~BIO_ERROR;
1335		bp->b_qindex = QUEUE_LOCKED;
1336		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1337		/* buffers with stale but valid contents */
1338	} else if (bp->b_flags & B_DELWRI) {
1339		bp->b_qindex = QUEUE_DIRTY;
1340		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1341	} else if (vm_page_count_severe()) {
1342		/*
1343		 * We are too low on memory, we have to try to free the
1344		 * buffer (most importantly: the wired pages making up its
1345		 * backing store) *now*.
1346		 */
1347		splx(s);
1348		brelse(bp);
1349		return;
1350	} else {
1351		bp->b_qindex = QUEUE_CLEAN;
1352		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1353	}
1354
1355	if ((bp->b_flags & B_LOCKED) == 0 &&
1356	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1357		bufcountwakeup();
1358	}
1359
1360	/*
1361	 * Something we can maybe free or reuse.
1362	 */
1363	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1364		bufspacewakeup();
1365
1366	/* unlock */
1367	BUF_UNLOCK(bp);
1368	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1369	bp->b_ioflags &= ~BIO_ORDERED;
1370	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1371		panic("bqrelse: not dirty");
1372	splx(s);
1373}
1374
1375static void
1376vfs_vmio_release(bp)
1377	struct buf *bp;
1378{
1379	int i;
1380	vm_page_t m;
1381
1382	GIANT_REQUIRED;
1383
1384	for (i = 0; i < bp->b_npages; i++) {
1385		m = bp->b_pages[i];
1386		bp->b_pages[i] = NULL;
1387		/*
1388		 * In order to keep page LRU ordering consistent, put
1389		 * everything on the inactive queue.
1390		 */
1391		vm_page_unwire(m, 0);
1392		/*
1393		 * We don't mess with busy pages, it is
1394		 * the responsibility of the process that
1395		 * busied the pages to deal with them.
1396		 */
1397		if ((m->flags & PG_BUSY) || (m->busy != 0))
1398			continue;
1399
1400		if (m->wire_count == 0) {
1401			vm_page_flag_clear(m, PG_ZERO);
1402			/*
1403			 * Might as well free the page if we can and it has
1404			 * no valid data.  We also free the page if the
1405			 * buffer was used for direct I/O
1406			 */
1407			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1408				vm_page_busy(m);
1409				vm_page_protect(m, VM_PROT_NONE);
1410				vm_page_free(m);
1411			} else if (bp->b_flags & B_DIRECT) {
1412				vm_page_try_to_free(m);
1413			} else if (vm_page_count_severe()) {
1414				vm_page_try_to_cache(m);
1415			}
1416		}
1417	}
1418	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1419
1420	if (bp->b_bufsize) {
1421		bufspacewakeup();
1422		bp->b_bufsize = 0;
1423	}
1424	bp->b_npages = 0;
1425	bp->b_flags &= ~B_VMIO;
1426	if (bp->b_vp)
1427		brelvp(bp);
1428}
1429
1430/*
1431 * Check to see if a block is currently memory resident.
1432 */
1433struct buf *
1434gbincore(struct vnode * vp, daddr_t blkno)
1435{
1436	struct buf *bp;
1437	struct bufhashhdr *bh;
1438
1439	bh = bufhash(vp, blkno);
1440
1441	/* Search hash chain */
1442	LIST_FOREACH(bp, bh, b_hash) {
1443		/* hit */
1444		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1445		    (bp->b_flags & B_INVAL) == 0) {
1446			break;
1447		}
1448	}
1449	return (bp);
1450}
1451
1452/*
1453 *	vfs_bio_awrite:
1454 *
1455 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1456 *	This is much better then the old way of writing only one buffer at
1457 *	a time.  Note that we may not be presented with the buffers in the
1458 *	correct order, so we search for the cluster in both directions.
1459 */
1460int
1461vfs_bio_awrite(struct buf * bp)
1462{
1463	int i;
1464	int j;
1465	daddr_t lblkno = bp->b_lblkno;
1466	struct vnode *vp = bp->b_vp;
1467	int s;
1468	int ncl;
1469	struct buf *bpa;
1470	int nwritten;
1471	int size;
1472	int maxcl;
1473
1474	s = splbio();
1475	/*
1476	 * right now we support clustered writing only to regular files.  If
1477	 * we find a clusterable block we could be in the middle of a cluster
1478	 * rather then at the beginning.
1479	 */
1480	if ((vp->v_type == VREG) &&
1481	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1482	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1483
1484		size = vp->v_mount->mnt_stat.f_iosize;
1485		maxcl = MAXPHYS / size;
1486
1487		for (i = 1; i < maxcl; i++) {
1488			if ((bpa = gbincore(vp, lblkno + i)) &&
1489			    BUF_REFCNT(bpa) == 0 &&
1490			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1491			    (B_DELWRI | B_CLUSTEROK)) &&
1492			    (bpa->b_bufsize == size)) {
1493				if ((bpa->b_blkno == bpa->b_lblkno) ||
1494				    (bpa->b_blkno !=
1495				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1496					break;
1497			} else {
1498				break;
1499			}
1500		}
1501		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1502			if ((bpa = gbincore(vp, lblkno - j)) &&
1503			    BUF_REFCNT(bpa) == 0 &&
1504			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1505			    (B_DELWRI | B_CLUSTEROK)) &&
1506			    (bpa->b_bufsize == size)) {
1507				if ((bpa->b_blkno == bpa->b_lblkno) ||
1508				    (bpa->b_blkno !=
1509				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1510					break;
1511			} else {
1512				break;
1513			}
1514		}
1515		--j;
1516		ncl = i + j;
1517		/*
1518		 * this is a possible cluster write
1519		 */
1520		if (ncl != 1) {
1521			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1522			splx(s);
1523			return nwritten;
1524		}
1525	}
1526
1527	BUF_LOCK(bp, LK_EXCLUSIVE);
1528	bremfree(bp);
1529	bp->b_flags |= B_ASYNC;
1530
1531	splx(s);
1532	/*
1533	 * default (old) behavior, writing out only one block
1534	 *
1535	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1536	 */
1537	nwritten = bp->b_bufsize;
1538	(void) BUF_WRITE(bp);
1539
1540	return nwritten;
1541}
1542
1543/*
1544 *	getnewbuf:
1545 *
1546 *	Find and initialize a new buffer header, freeing up existing buffers
1547 *	in the bufqueues as necessary.  The new buffer is returned locked.
1548 *
1549 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1550 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1551 *
1552 *	We block if:
1553 *		We have insufficient buffer headers
1554 *		We have insufficient buffer space
1555 *		buffer_map is too fragmented ( space reservation fails )
1556 *		If we have to flush dirty buffers ( but we try to avoid this )
1557 *
1558 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1559 *	Instead we ask the buf daemon to do it for us.  We attempt to
1560 *	avoid piecemeal wakeups of the pageout daemon.
1561 */
1562
1563static struct buf *
1564getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1565{
1566	struct buf *bp;
1567	struct buf *nbp;
1568	int defrag = 0;
1569	int nqindex;
1570	static int flushingbufs;
1571
1572	GIANT_REQUIRED;
1573
1574	/*
1575	 * We can't afford to block since we might be holding a vnode lock,
1576	 * which may prevent system daemons from running.  We deal with
1577	 * low-memory situations by proactively returning memory and running
1578	 * async I/O rather then sync I/O.
1579	 */
1580
1581	++getnewbufcalls;
1582	--getnewbufrestarts;
1583restart:
1584	++getnewbufrestarts;
1585
1586	/*
1587	 * Setup for scan.  If we do not have enough free buffers,
1588	 * we setup a degenerate case that immediately fails.  Note
1589	 * that if we are specially marked process, we are allowed to
1590	 * dip into our reserves.
1591	 *
1592	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1593	 *
1594	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1595	 * However, there are a number of cases (defragging, reusing, ...)
1596	 * where we cannot backup.
1597	 */
1598	nqindex = QUEUE_EMPTYKVA;
1599	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1600
1601	if (nbp == NULL) {
1602		/*
1603		 * If no EMPTYKVA buffers and we are either
1604		 * defragging or reusing, locate a CLEAN buffer
1605		 * to free or reuse.  If bufspace useage is low
1606		 * skip this step so we can allocate a new buffer.
1607		 */
1608		if (defrag || bufspace >= lobufspace) {
1609			nqindex = QUEUE_CLEAN;
1610			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1611		}
1612
1613		/*
1614		 * If we could not find or were not allowed to reuse a
1615		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1616		 * buffer.  We can only use an EMPTY buffer if allocating
1617		 * its KVA would not otherwise run us out of buffer space.
1618		 */
1619		if (nbp == NULL && defrag == 0 &&
1620		    bufspace + maxsize < hibufspace) {
1621			nqindex = QUEUE_EMPTY;
1622			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1623		}
1624	}
1625
1626	/*
1627	 * Run scan, possibly freeing data and/or kva mappings on the fly
1628	 * depending.
1629	 */
1630
1631	while ((bp = nbp) != NULL) {
1632		int qindex = nqindex;
1633
1634		/*
1635		 * Calculate next bp ( we can only use it if we do not block
1636		 * or do other fancy things ).
1637		 */
1638		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1639			switch(qindex) {
1640			case QUEUE_EMPTY:
1641				nqindex = QUEUE_EMPTYKVA;
1642				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1643					break;
1644				/* fall through */
1645			case QUEUE_EMPTYKVA:
1646				nqindex = QUEUE_CLEAN;
1647				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1648					break;
1649				/* fall through */
1650			case QUEUE_CLEAN:
1651				/*
1652				 * nbp is NULL.
1653				 */
1654				break;
1655			}
1656		}
1657
1658		/*
1659		 * Sanity Checks
1660		 */
1661		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1662
1663		/*
1664		 * Note: we no longer distinguish between VMIO and non-VMIO
1665		 * buffers.
1666		 */
1667
1668		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1669
1670		/*
1671		 * If we are defragging then we need a buffer with
1672		 * b_kvasize != 0.  XXX this situation should no longer
1673		 * occur, if defrag is non-zero the buffer's b_kvasize
1674		 * should also be non-zero at this point.  XXX
1675		 */
1676		if (defrag && bp->b_kvasize == 0) {
1677			printf("Warning: defrag empty buffer %p\n", bp);
1678			continue;
1679		}
1680
1681		/*
1682		 * Start freeing the bp.  This is somewhat involved.  nbp
1683		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1684		 */
1685
1686		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1687			panic("getnewbuf: locked buf");
1688		bremfree(bp);
1689
1690		if (qindex == QUEUE_CLEAN) {
1691			if (bp->b_flags & B_VMIO) {
1692				bp->b_flags &= ~B_ASYNC;
1693				vfs_vmio_release(bp);
1694			}
1695			if (bp->b_vp)
1696				brelvp(bp);
1697		}
1698
1699		/*
1700		 * NOTE:  nbp is now entirely invalid.  We can only restart
1701		 * the scan from this point on.
1702		 *
1703		 * Get the rest of the buffer freed up.  b_kva* is still
1704		 * valid after this operation.
1705		 */
1706
1707		if (bp->b_rcred != NOCRED) {
1708			crfree(bp->b_rcred);
1709			bp->b_rcred = NOCRED;
1710		}
1711		if (bp->b_wcred != NOCRED) {
1712			crfree(bp->b_wcred);
1713			bp->b_wcred = NOCRED;
1714		}
1715		if (LIST_FIRST(&bp->b_dep) != NULL)
1716			buf_deallocate(bp);
1717		if (bp->b_xflags & BX_BKGRDINPROG)
1718			panic("losing buffer 3");
1719		LIST_REMOVE(bp, b_hash);
1720		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1721
1722		if (bp->b_bufsize)
1723			allocbuf(bp, 0);
1724
1725		bp->b_flags = 0;
1726		bp->b_ioflags = 0;
1727		bp->b_xflags = 0;
1728		bp->b_dev = NODEV;
1729		bp->b_vp = NULL;
1730		bp->b_blkno = bp->b_lblkno = 0;
1731		bp->b_offset = NOOFFSET;
1732		bp->b_iodone = 0;
1733		bp->b_error = 0;
1734		bp->b_resid = 0;
1735		bp->b_bcount = 0;
1736		bp->b_npages = 0;
1737		bp->b_dirtyoff = bp->b_dirtyend = 0;
1738		bp->b_magic = B_MAGIC_BIO;
1739		bp->b_op = &buf_ops_bio;
1740
1741		LIST_INIT(&bp->b_dep);
1742
1743		/*
1744		 * If we are defragging then free the buffer.
1745		 */
1746		if (defrag) {
1747			bp->b_flags |= B_INVAL;
1748			bfreekva(bp);
1749			brelse(bp);
1750			defrag = 0;
1751			goto restart;
1752		}
1753
1754		/*
1755		 * If we are overcomitted then recover the buffer and its
1756		 * KVM space.  This occurs in rare situations when multiple
1757		 * processes are blocked in getnewbuf() or allocbuf().
1758		 */
1759		if (bufspace >= hibufspace)
1760			flushingbufs = 1;
1761		if (flushingbufs && bp->b_kvasize != 0) {
1762			bp->b_flags |= B_INVAL;
1763			bfreekva(bp);
1764			brelse(bp);
1765			goto restart;
1766		}
1767		if (bufspace < lobufspace)
1768			flushingbufs = 0;
1769		break;
1770	}
1771
1772	/*
1773	 * If we exhausted our list, sleep as appropriate.  We may have to
1774	 * wakeup various daemons and write out some dirty buffers.
1775	 *
1776	 * Generally we are sleeping due to insufficient buffer space.
1777	 */
1778
1779	if (bp == NULL) {
1780		int flags;
1781		char *waitmsg;
1782
1783		if (defrag) {
1784			flags = VFS_BIO_NEED_BUFSPACE;
1785			waitmsg = "nbufkv";
1786		} else if (bufspace >= hibufspace) {
1787			waitmsg = "nbufbs";
1788			flags = VFS_BIO_NEED_BUFSPACE;
1789		} else {
1790			waitmsg = "newbuf";
1791			flags = VFS_BIO_NEED_ANY;
1792		}
1793
1794		bd_speedup();	/* heeeelp */
1795
1796		needsbuffer |= flags;
1797		while (needsbuffer & flags) {
1798			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1799			    waitmsg, slptimeo))
1800				return (NULL);
1801		}
1802	} else {
1803		/*
1804		 * We finally have a valid bp.  We aren't quite out of the
1805		 * woods, we still have to reserve kva space.  In order
1806		 * to keep fragmentation sane we only allocate kva in
1807		 * BKVASIZE chunks.
1808		 */
1809		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1810
1811		if (maxsize != bp->b_kvasize) {
1812			vm_offset_t addr = 0;
1813
1814			bfreekva(bp);
1815
1816			if (vm_map_findspace(buffer_map,
1817				vm_map_min(buffer_map), maxsize, &addr)) {
1818				/*
1819				 * Uh oh.  Buffer map is to fragmented.  We
1820				 * must defragment the map.
1821				 */
1822				++bufdefragcnt;
1823				defrag = 1;
1824				bp->b_flags |= B_INVAL;
1825				brelse(bp);
1826				goto restart;
1827			}
1828			if (addr) {
1829				vm_map_insert(buffer_map, NULL, 0,
1830					addr, addr + maxsize,
1831					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1832
1833				bp->b_kvabase = (caddr_t) addr;
1834				bp->b_kvasize = maxsize;
1835				bufspace += bp->b_kvasize;
1836				++bufreusecnt;
1837			}
1838		}
1839		bp->b_data = bp->b_kvabase;
1840	}
1841	return(bp);
1842}
1843
1844/*
1845 *	buf_daemon:
1846 *
1847 *	buffer flushing daemon.  Buffers are normally flushed by the
1848 *	update daemon but if it cannot keep up this process starts to
1849 *	take the load in an attempt to prevent getnewbuf() from blocking.
1850 */
1851
1852static struct proc *bufdaemonproc;
1853
1854static struct kproc_desc buf_kp = {
1855	"bufdaemon",
1856	buf_daemon,
1857	&bufdaemonproc
1858};
1859SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1860
1861static void
1862buf_daemon()
1863{
1864	int s;
1865
1866	mtx_lock(&Giant);
1867
1868	/*
1869	 * This process needs to be suspended prior to shutdown sync.
1870	 */
1871	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1872	    SHUTDOWN_PRI_LAST);
1873
1874	/*
1875	 * This process is allowed to take the buffer cache to the limit
1876	 */
1877	curproc->p_flag |= P_BUFEXHAUST;
1878	s = splbio();
1879
1880	for (;;) {
1881		kthread_suspend_check(bufdaemonproc);
1882
1883		bd_request = 0;
1884
1885		/*
1886		 * Do the flush.  Limit the amount of in-transit I/O we
1887		 * allow to build up, otherwise we would completely saturate
1888		 * the I/O system.  Wakeup any waiting processes before we
1889		 * normally would so they can run in parallel with our drain.
1890		 */
1891		while (numdirtybuffers > lodirtybuffers) {
1892			if (flushbufqueues() == 0)
1893				break;
1894			waitrunningbufspace();
1895			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1896		}
1897
1898		/*
1899		 * Only clear bd_request if we have reached our low water
1900		 * mark.  The buf_daemon normally waits 5 seconds and
1901		 * then incrementally flushes any dirty buffers that have
1902		 * built up, within reason.
1903		 *
1904		 * If we were unable to hit our low water mark and couldn't
1905		 * find any flushable buffers, we sleep half a second.
1906		 * Otherwise we loop immediately.
1907		 */
1908		if (numdirtybuffers <= lodirtybuffers) {
1909			/*
1910			 * We reached our low water mark, reset the
1911			 * request and sleep until we are needed again.
1912			 * The sleep is just so the suspend code works.
1913			 */
1914			bd_request = 0;
1915			tsleep(&bd_request, PVM, "psleep", hz);
1916		} else {
1917			/*
1918			 * We couldn't find any flushable dirty buffers but
1919			 * still have too many dirty buffers, we
1920			 * have to sleep and try again.  (rare)
1921			 */
1922			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1923		}
1924	}
1925}
1926
1927/*
1928 *	flushbufqueues:
1929 *
1930 *	Try to flush a buffer in the dirty queue.  We must be careful to
1931 *	free up B_INVAL buffers instead of write them, which NFS is
1932 *	particularly sensitive to.
1933 */
1934
1935static int
1936flushbufqueues(void)
1937{
1938	struct buf *bp;
1939	int r = 0;
1940
1941	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1942
1943	while (bp) {
1944		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1945		if ((bp->b_flags & B_DELWRI) != 0 &&
1946		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1947			if (bp->b_flags & B_INVAL) {
1948				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1949					panic("flushbufqueues: locked buf");
1950				bremfree(bp);
1951				brelse(bp);
1952				++r;
1953				break;
1954			}
1955			if (LIST_FIRST(&bp->b_dep) != NULL &&
1956			    (bp->b_flags & B_DEFERRED) == 0 &&
1957			    buf_countdeps(bp, 0)) {
1958				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1959				    bp, b_freelist);
1960				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1961				    bp, b_freelist);
1962				bp->b_flags |= B_DEFERRED;
1963				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1964				continue;
1965			}
1966			vfs_bio_awrite(bp);
1967			++r;
1968			break;
1969		}
1970		bp = TAILQ_NEXT(bp, b_freelist);
1971	}
1972	return (r);
1973}
1974
1975/*
1976 * Check to see if a block is currently memory resident.
1977 */
1978struct buf *
1979incore(struct vnode * vp, daddr_t blkno)
1980{
1981	struct buf *bp;
1982
1983	int s = splbio();
1984	bp = gbincore(vp, blkno);
1985	splx(s);
1986	return (bp);
1987}
1988
1989/*
1990 * Returns true if no I/O is needed to access the
1991 * associated VM object.  This is like incore except
1992 * it also hunts around in the VM system for the data.
1993 */
1994
1995int
1996inmem(struct vnode * vp, daddr_t blkno)
1997{
1998	vm_object_t obj;
1999	vm_offset_t toff, tinc, size;
2000	vm_page_t m;
2001	vm_ooffset_t off;
2002
2003	GIANT_REQUIRED;
2004
2005	if (incore(vp, blkno))
2006		return 1;
2007	if (vp->v_mount == NULL)
2008		return 0;
2009	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2010		return 0;
2011
2012	size = PAGE_SIZE;
2013	if (size > vp->v_mount->mnt_stat.f_iosize)
2014		size = vp->v_mount->mnt_stat.f_iosize;
2015	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2016
2017	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2018		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2019		if (!m)
2020			goto notinmem;
2021		tinc = size;
2022		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2023			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2024		if (vm_page_is_valid(m,
2025		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2026			goto notinmem;
2027	}
2028	return 1;
2029
2030notinmem:
2031	return (0);
2032}
2033
2034/*
2035 *	vfs_setdirty:
2036 *
2037 *	Sets the dirty range for a buffer based on the status of the dirty
2038 *	bits in the pages comprising the buffer.
2039 *
2040 *	The range is limited to the size of the buffer.
2041 *
2042 *	This routine is primarily used by NFS, but is generalized for the
2043 *	B_VMIO case.
2044 */
2045static void
2046vfs_setdirty(struct buf *bp)
2047{
2048	int i;
2049	vm_object_t object;
2050
2051	GIANT_REQUIRED;
2052	/*
2053	 * Degenerate case - empty buffer
2054	 */
2055
2056	if (bp->b_bufsize == 0)
2057		return;
2058
2059	/*
2060	 * We qualify the scan for modified pages on whether the
2061	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2062	 * is not cleared simply by protecting pages off.
2063	 */
2064
2065	if ((bp->b_flags & B_VMIO) == 0)
2066		return;
2067
2068	object = bp->b_pages[0]->object;
2069
2070	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2071		printf("Warning: object %p writeable but not mightbedirty\n", object);
2072	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2073		printf("Warning: object %p mightbedirty but not writeable\n", object);
2074
2075	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2076		vm_offset_t boffset;
2077		vm_offset_t eoffset;
2078
2079		/*
2080		 * test the pages to see if they have been modified directly
2081		 * by users through the VM system.
2082		 */
2083		for (i = 0; i < bp->b_npages; i++) {
2084			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2085			vm_page_test_dirty(bp->b_pages[i]);
2086		}
2087
2088		/*
2089		 * Calculate the encompassing dirty range, boffset and eoffset,
2090		 * (eoffset - boffset) bytes.
2091		 */
2092
2093		for (i = 0; i < bp->b_npages; i++) {
2094			if (bp->b_pages[i]->dirty)
2095				break;
2096		}
2097		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2098
2099		for (i = bp->b_npages - 1; i >= 0; --i) {
2100			if (bp->b_pages[i]->dirty) {
2101				break;
2102			}
2103		}
2104		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2105
2106		/*
2107		 * Fit it to the buffer.
2108		 */
2109
2110		if (eoffset > bp->b_bcount)
2111			eoffset = bp->b_bcount;
2112
2113		/*
2114		 * If we have a good dirty range, merge with the existing
2115		 * dirty range.
2116		 */
2117
2118		if (boffset < eoffset) {
2119			if (bp->b_dirtyoff > boffset)
2120				bp->b_dirtyoff = boffset;
2121			if (bp->b_dirtyend < eoffset)
2122				bp->b_dirtyend = eoffset;
2123		}
2124	}
2125}
2126
2127/*
2128 *	getblk:
2129 *
2130 *	Get a block given a specified block and offset into a file/device.
2131 *	The buffers B_DONE bit will be cleared on return, making it almost
2132 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2133 *	return.  The caller should clear B_INVAL prior to initiating a
2134 *	READ.
2135 *
2136 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2137 *	an existing buffer.
2138 *
2139 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2140 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2141 *	and then cleared based on the backing VM.  If the previous buffer is
2142 *	non-0-sized but invalid, B_CACHE will be cleared.
2143 *
2144 *	If getblk() must create a new buffer, the new buffer is returned with
2145 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2146 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2147 *	backing VM.
2148 *
2149 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2150 *	B_CACHE bit is clear.
2151 *
2152 *	What this means, basically, is that the caller should use B_CACHE to
2153 *	determine whether the buffer is fully valid or not and should clear
2154 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2155 *	the buffer by loading its data area with something, the caller needs
2156 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2157 *	the caller should set B_CACHE ( as an optimization ), else the caller
2158 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2159 *	a write attempt or if it was a successfull read.  If the caller
2160 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2161 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2162 */
2163struct buf *
2164getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2165{
2166	struct buf *bp;
2167	int s;
2168	struct bufhashhdr *bh;
2169
2170	if (size > MAXBSIZE)
2171		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2172
2173	s = splbio();
2174loop:
2175	/*
2176	 * Block if we are low on buffers.   Certain processes are allowed
2177	 * to completely exhaust the buffer cache.
2178         *
2179         * If this check ever becomes a bottleneck it may be better to
2180         * move it into the else, when gbincore() fails.  At the moment
2181         * it isn't a problem.
2182	 *
2183	 * XXX remove if 0 sections (clean this up after its proven)
2184         */
2185	if (numfreebuffers == 0) {
2186		if (curthread == PCPU_GET(idlethread))
2187			return NULL;
2188		needsbuffer |= VFS_BIO_NEED_ANY;
2189	}
2190
2191	if ((bp = gbincore(vp, blkno))) {
2192		/*
2193		 * Buffer is in-core.  If the buffer is not busy, it must
2194		 * be on a queue.
2195		 */
2196
2197		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2198			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2199			    "getblk", slpflag, slptimeo) == ENOLCK)
2200				goto loop;
2201			splx(s);
2202			return (struct buf *) NULL;
2203		}
2204
2205		/*
2206		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2207		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2208		 * and for a VMIO buffer B_CACHE is adjusted according to the
2209		 * backing VM cache.
2210		 */
2211		if (bp->b_flags & B_INVAL)
2212			bp->b_flags &= ~B_CACHE;
2213		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2214			bp->b_flags |= B_CACHE;
2215		bremfree(bp);
2216
2217		/*
2218		 * check for size inconsistancies for non-VMIO case.
2219		 */
2220
2221		if (bp->b_bcount != size) {
2222			if ((bp->b_flags & B_VMIO) == 0 ||
2223			    (size > bp->b_kvasize)) {
2224				if (bp->b_flags & B_DELWRI) {
2225					bp->b_flags |= B_NOCACHE;
2226					BUF_WRITE(bp);
2227				} else {
2228					if ((bp->b_flags & B_VMIO) &&
2229					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2230						bp->b_flags |= B_RELBUF;
2231						brelse(bp);
2232					} else {
2233						bp->b_flags |= B_NOCACHE;
2234						BUF_WRITE(bp);
2235					}
2236				}
2237				goto loop;
2238			}
2239		}
2240
2241		/*
2242		 * If the size is inconsistant in the VMIO case, we can resize
2243		 * the buffer.  This might lead to B_CACHE getting set or
2244		 * cleared.  If the size has not changed, B_CACHE remains
2245		 * unchanged from its previous state.
2246		 */
2247
2248		if (bp->b_bcount != size)
2249			allocbuf(bp, size);
2250
2251		KASSERT(bp->b_offset != NOOFFSET,
2252		    ("getblk: no buffer offset"));
2253
2254		/*
2255		 * A buffer with B_DELWRI set and B_CACHE clear must
2256		 * be committed before we can return the buffer in
2257		 * order to prevent the caller from issuing a read
2258		 * ( due to B_CACHE not being set ) and overwriting
2259		 * it.
2260		 *
2261		 * Most callers, including NFS and FFS, need this to
2262		 * operate properly either because they assume they
2263		 * can issue a read if B_CACHE is not set, or because
2264		 * ( for example ) an uncached B_DELWRI might loop due
2265		 * to softupdates re-dirtying the buffer.  In the latter
2266		 * case, B_CACHE is set after the first write completes,
2267		 * preventing further loops.
2268		 */
2269
2270		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2271			BUF_WRITE(bp);
2272			goto loop;
2273		}
2274
2275		splx(s);
2276		bp->b_flags &= ~B_DONE;
2277	} else {
2278		/*
2279		 * Buffer is not in-core, create new buffer.  The buffer
2280		 * returned by getnewbuf() is locked.  Note that the returned
2281		 * buffer is also considered valid (not marked B_INVAL).
2282		 */
2283		int bsize, maxsize, vmio;
2284		off_t offset;
2285
2286		if (vn_isdisk(vp, NULL))
2287			bsize = DEV_BSIZE;
2288		else if (vp->v_mountedhere)
2289			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2290		else if (vp->v_mount)
2291			bsize = vp->v_mount->mnt_stat.f_iosize;
2292		else
2293			bsize = size;
2294
2295		offset = (off_t)blkno * bsize;
2296		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2297		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2298		maxsize = imax(maxsize, bsize);
2299
2300		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2301			if (slpflag || slptimeo) {
2302				splx(s);
2303				return NULL;
2304			}
2305			goto loop;
2306		}
2307
2308		/*
2309		 * This code is used to make sure that a buffer is not
2310		 * created while the getnewbuf routine is blocked.
2311		 * This can be a problem whether the vnode is locked or not.
2312		 * If the buffer is created out from under us, we have to
2313		 * throw away the one we just created.  There is now window
2314		 * race because we are safely running at splbio() from the
2315		 * point of the duplicate buffer creation through to here,
2316		 * and we've locked the buffer.
2317		 */
2318		if (gbincore(vp, blkno)) {
2319			bp->b_flags |= B_INVAL;
2320			brelse(bp);
2321			goto loop;
2322		}
2323
2324		/*
2325		 * Insert the buffer into the hash, so that it can
2326		 * be found by incore.
2327		 */
2328		bp->b_blkno = bp->b_lblkno = blkno;
2329		bp->b_offset = offset;
2330
2331		bgetvp(vp, bp);
2332		LIST_REMOVE(bp, b_hash);
2333		bh = bufhash(vp, blkno);
2334		LIST_INSERT_HEAD(bh, bp, b_hash);
2335
2336		/*
2337		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2338		 * buffer size starts out as 0, B_CACHE will be set by
2339		 * allocbuf() for the VMIO case prior to it testing the
2340		 * backing store for validity.
2341		 */
2342
2343		if (vmio) {
2344			bp->b_flags |= B_VMIO;
2345#if defined(VFS_BIO_DEBUG)
2346			if (vp->v_type != VREG)
2347				printf("getblk: vmioing file type %d???\n", vp->v_type);
2348#endif
2349		} else {
2350			bp->b_flags &= ~B_VMIO;
2351		}
2352
2353		allocbuf(bp, size);
2354
2355		splx(s);
2356		bp->b_flags &= ~B_DONE;
2357	}
2358	return (bp);
2359}
2360
2361/*
2362 * Get an empty, disassociated buffer of given size.  The buffer is initially
2363 * set to B_INVAL.
2364 */
2365struct buf *
2366geteblk(int size)
2367{
2368	struct buf *bp;
2369	int s;
2370	int maxsize;
2371
2372	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2373
2374	s = splbio();
2375	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2376	splx(s);
2377	allocbuf(bp, size);
2378	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2379	return (bp);
2380}
2381
2382
2383/*
2384 * This code constitutes the buffer memory from either anonymous system
2385 * memory (in the case of non-VMIO operations) or from an associated
2386 * VM object (in the case of VMIO operations).  This code is able to
2387 * resize a buffer up or down.
2388 *
2389 * Note that this code is tricky, and has many complications to resolve
2390 * deadlock or inconsistant data situations.  Tread lightly!!!
2391 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2392 * the caller.  Calling this code willy nilly can result in the loss of data.
2393 *
2394 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2395 * B_CACHE for the non-VMIO case.
2396 */
2397
2398int
2399allocbuf(struct buf *bp, int size)
2400{
2401	int newbsize, mbsize;
2402	int i;
2403
2404	GIANT_REQUIRED;
2405
2406	if (BUF_REFCNT(bp) == 0)
2407		panic("allocbuf: buffer not busy");
2408
2409	if (bp->b_kvasize < size)
2410		panic("allocbuf: buffer too small");
2411
2412	if ((bp->b_flags & B_VMIO) == 0) {
2413		caddr_t origbuf;
2414		int origbufsize;
2415		/*
2416		 * Just get anonymous memory from the kernel.  Don't
2417		 * mess with B_CACHE.
2418		 */
2419		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2420#if !defined(NO_B_MALLOC)
2421		if (bp->b_flags & B_MALLOC)
2422			newbsize = mbsize;
2423		else
2424#endif
2425			newbsize = round_page(size);
2426
2427		if (newbsize < bp->b_bufsize) {
2428#if !defined(NO_B_MALLOC)
2429			/*
2430			 * malloced buffers are not shrunk
2431			 */
2432			if (bp->b_flags & B_MALLOC) {
2433				if (newbsize) {
2434					bp->b_bcount = size;
2435				} else {
2436					free(bp->b_data, M_BIOBUF);
2437					if (bp->b_bufsize) {
2438						bufmallocspace -= bp->b_bufsize;
2439						bufspacewakeup();
2440						bp->b_bufsize = 0;
2441					}
2442					bp->b_data = bp->b_kvabase;
2443					bp->b_bcount = 0;
2444					bp->b_flags &= ~B_MALLOC;
2445				}
2446				return 1;
2447			}
2448#endif
2449			vm_hold_free_pages(
2450			    bp,
2451			    (vm_offset_t) bp->b_data + newbsize,
2452			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2453		} else if (newbsize > bp->b_bufsize) {
2454#if !defined(NO_B_MALLOC)
2455			/*
2456			 * We only use malloced memory on the first allocation.
2457			 * and revert to page-allocated memory when the buffer
2458			 * grows.
2459			 */
2460			if ( (bufmallocspace < maxbufmallocspace) &&
2461				(bp->b_bufsize == 0) &&
2462				(mbsize <= PAGE_SIZE/2)) {
2463
2464				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2465				bp->b_bufsize = mbsize;
2466				bp->b_bcount = size;
2467				bp->b_flags |= B_MALLOC;
2468				bufmallocspace += mbsize;
2469				return 1;
2470			}
2471#endif
2472			origbuf = NULL;
2473			origbufsize = 0;
2474#if !defined(NO_B_MALLOC)
2475			/*
2476			 * If the buffer is growing on its other-than-first allocation,
2477			 * then we revert to the page-allocation scheme.
2478			 */
2479			if (bp->b_flags & B_MALLOC) {
2480				origbuf = bp->b_data;
2481				origbufsize = bp->b_bufsize;
2482				bp->b_data = bp->b_kvabase;
2483				if (bp->b_bufsize) {
2484					bufmallocspace -= bp->b_bufsize;
2485					bufspacewakeup();
2486					bp->b_bufsize = 0;
2487				}
2488				bp->b_flags &= ~B_MALLOC;
2489				newbsize = round_page(newbsize);
2490			}
2491#endif
2492			vm_hold_load_pages(
2493			    bp,
2494			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2495			    (vm_offset_t) bp->b_data + newbsize);
2496#if !defined(NO_B_MALLOC)
2497			if (origbuf) {
2498				bcopy(origbuf, bp->b_data, origbufsize);
2499				free(origbuf, M_BIOBUF);
2500			}
2501#endif
2502		}
2503	} else {
2504		vm_page_t m;
2505		int desiredpages;
2506
2507		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2508		desiredpages = (size == 0) ? 0 :
2509			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2510
2511#if !defined(NO_B_MALLOC)
2512		if (bp->b_flags & B_MALLOC)
2513			panic("allocbuf: VMIO buffer can't be malloced");
2514#endif
2515		/*
2516		 * Set B_CACHE initially if buffer is 0 length or will become
2517		 * 0-length.
2518		 */
2519		if (size == 0 || bp->b_bufsize == 0)
2520			bp->b_flags |= B_CACHE;
2521
2522		if (newbsize < bp->b_bufsize) {
2523			/*
2524			 * DEV_BSIZE aligned new buffer size is less then the
2525			 * DEV_BSIZE aligned existing buffer size.  Figure out
2526			 * if we have to remove any pages.
2527			 */
2528			if (desiredpages < bp->b_npages) {
2529				for (i = desiredpages; i < bp->b_npages; i++) {
2530					/*
2531					 * the page is not freed here -- it
2532					 * is the responsibility of
2533					 * vnode_pager_setsize
2534					 */
2535					m = bp->b_pages[i];
2536					KASSERT(m != bogus_page,
2537					    ("allocbuf: bogus page found"));
2538					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2539						;
2540
2541					bp->b_pages[i] = NULL;
2542					vm_page_unwire(m, 0);
2543				}
2544				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2545				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2546				bp->b_npages = desiredpages;
2547			}
2548		} else if (size > bp->b_bcount) {
2549			/*
2550			 * We are growing the buffer, possibly in a
2551			 * byte-granular fashion.
2552			 */
2553			struct vnode *vp;
2554			vm_object_t obj;
2555			vm_offset_t toff;
2556			vm_offset_t tinc;
2557
2558			/*
2559			 * Step 1, bring in the VM pages from the object,
2560			 * allocating them if necessary.  We must clear
2561			 * B_CACHE if these pages are not valid for the
2562			 * range covered by the buffer.
2563			 */
2564
2565			vp = bp->b_vp;
2566			VOP_GETVOBJECT(vp, &obj);
2567
2568			while (bp->b_npages < desiredpages) {
2569				vm_page_t m;
2570				vm_pindex_t pi;
2571
2572				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2573				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2574					/*
2575					 * note: must allocate system pages
2576					 * since blocking here could intefere
2577					 * with paging I/O, no matter which
2578					 * process we are.
2579					 */
2580					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2581					if (m == NULL) {
2582						VM_WAIT;
2583						vm_pageout_deficit += desiredpages - bp->b_npages;
2584					} else {
2585						vm_page_wire(m);
2586						vm_page_wakeup(m);
2587						bp->b_flags &= ~B_CACHE;
2588						bp->b_pages[bp->b_npages] = m;
2589						++bp->b_npages;
2590					}
2591					continue;
2592				}
2593
2594				/*
2595				 * We found a page.  If we have to sleep on it,
2596				 * retry because it might have gotten freed out
2597				 * from under us.
2598				 *
2599				 * We can only test PG_BUSY here.  Blocking on
2600				 * m->busy might lead to a deadlock:
2601				 *
2602				 *  vm_fault->getpages->cluster_read->allocbuf
2603				 *
2604				 */
2605
2606				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2607					continue;
2608
2609				/*
2610				 * We have a good page.  Should we wakeup the
2611				 * page daemon?
2612				 */
2613				if ((curproc != pageproc) &&
2614				    ((m->queue - m->pc) == PQ_CACHE) &&
2615				    ((cnt.v_free_count + cnt.v_cache_count) <
2616					(cnt.v_free_min + cnt.v_cache_min))) {
2617					pagedaemon_wakeup();
2618				}
2619				vm_page_flag_clear(m, PG_ZERO);
2620				vm_page_wire(m);
2621				bp->b_pages[bp->b_npages] = m;
2622				++bp->b_npages;
2623			}
2624
2625			/*
2626			 * Step 2.  We've loaded the pages into the buffer,
2627			 * we have to figure out if we can still have B_CACHE
2628			 * set.  Note that B_CACHE is set according to the
2629			 * byte-granular range ( bcount and size ), new the
2630			 * aligned range ( newbsize ).
2631			 *
2632			 * The VM test is against m->valid, which is DEV_BSIZE
2633			 * aligned.  Needless to say, the validity of the data
2634			 * needs to also be DEV_BSIZE aligned.  Note that this
2635			 * fails with NFS if the server or some other client
2636			 * extends the file's EOF.  If our buffer is resized,
2637			 * B_CACHE may remain set! XXX
2638			 */
2639
2640			toff = bp->b_bcount;
2641			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2642
2643			while ((bp->b_flags & B_CACHE) && toff < size) {
2644				vm_pindex_t pi;
2645
2646				if (tinc > (size - toff))
2647					tinc = size - toff;
2648
2649				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2650				    PAGE_SHIFT;
2651
2652				vfs_buf_test_cache(
2653				    bp,
2654				    bp->b_offset,
2655				    toff,
2656				    tinc,
2657				    bp->b_pages[pi]
2658				);
2659				toff += tinc;
2660				tinc = PAGE_SIZE;
2661			}
2662
2663			/*
2664			 * Step 3, fixup the KVM pmap.  Remember that
2665			 * bp->b_data is relative to bp->b_offset, but
2666			 * bp->b_offset may be offset into the first page.
2667			 */
2668
2669			bp->b_data = (caddr_t)
2670			    trunc_page((vm_offset_t)bp->b_data);
2671			pmap_qenter(
2672			    (vm_offset_t)bp->b_data,
2673			    bp->b_pages,
2674			    bp->b_npages
2675			);
2676
2677			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2678			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2679		}
2680	}
2681	if (newbsize < bp->b_bufsize)
2682		bufspacewakeup();
2683	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2684	bp->b_bcount = size;		/* requested buffer size	*/
2685	return 1;
2686}
2687
2688/*
2689 *	bufwait:
2690 *
2691 *	Wait for buffer I/O completion, returning error status.  The buffer
2692 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2693 *	error and cleared.
2694 */
2695int
2696bufwait(register struct buf * bp)
2697{
2698	int s;
2699
2700	s = splbio();
2701	while ((bp->b_flags & B_DONE) == 0) {
2702		if (bp->b_iocmd == BIO_READ)
2703			tsleep(bp, PRIBIO, "biord", 0);
2704		else
2705			tsleep(bp, PRIBIO, "biowr", 0);
2706	}
2707	splx(s);
2708	if (bp->b_flags & B_EINTR) {
2709		bp->b_flags &= ~B_EINTR;
2710		return (EINTR);
2711	}
2712	if (bp->b_ioflags & BIO_ERROR) {
2713		return (bp->b_error ? bp->b_error : EIO);
2714	} else {
2715		return (0);
2716	}
2717}
2718
2719 /*
2720  * Call back function from struct bio back up to struct buf.
2721  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2722  */
2723void
2724bufdonebio(struct bio *bp)
2725{
2726	bufdone(bp->bio_caller2);
2727}
2728
2729/*
2730 *	bufdone:
2731 *
2732 *	Finish I/O on a buffer, optionally calling a completion function.
2733 *	This is usually called from an interrupt so process blocking is
2734 *	not allowed.
2735 *
2736 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2737 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2738 *	assuming B_INVAL is clear.
2739 *
2740 *	For the VMIO case, we set B_CACHE if the op was a read and no
2741 *	read error occured, or if the op was a write.  B_CACHE is never
2742 *	set if the buffer is invalid or otherwise uncacheable.
2743 *
2744 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2745 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2746 *	in the biodone routine.
2747 */
2748void
2749bufdone(struct buf *bp)
2750{
2751	int s, error;
2752	void    (*biodone) __P((struct buf *));
2753
2754	GIANT_REQUIRED;
2755
2756	s = splbio();
2757
2758	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2759	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2760
2761	bp->b_flags |= B_DONE;
2762	runningbufwakeup(bp);
2763
2764	if (bp->b_iocmd == BIO_DELETE) {
2765		brelse(bp);
2766		splx(s);
2767		return;
2768	}
2769
2770	if (bp->b_iocmd == BIO_WRITE) {
2771		vwakeup(bp);
2772	}
2773
2774	/* call optional completion function if requested */
2775	if (bp->b_iodone != NULL) {
2776		biodone = bp->b_iodone;
2777		bp->b_iodone = NULL;
2778		(*biodone) (bp);
2779		splx(s);
2780		return;
2781	}
2782	if (LIST_FIRST(&bp->b_dep) != NULL)
2783		buf_complete(bp);
2784
2785	if (bp->b_flags & B_VMIO) {
2786		int i;
2787		vm_ooffset_t foff;
2788		vm_page_t m;
2789		vm_object_t obj;
2790		int iosize;
2791		struct vnode *vp = bp->b_vp;
2792
2793		error = VOP_GETVOBJECT(vp, &obj);
2794
2795#if defined(VFS_BIO_DEBUG)
2796		if (vp->v_usecount == 0) {
2797			panic("biodone: zero vnode ref count");
2798		}
2799
2800		if (error) {
2801			panic("biodone: missing VM object");
2802		}
2803
2804		if ((vp->v_flag & VOBJBUF) == 0) {
2805			panic("biodone: vnode is not setup for merged cache");
2806		}
2807#endif
2808
2809		foff = bp->b_offset;
2810		KASSERT(bp->b_offset != NOOFFSET,
2811		    ("biodone: no buffer offset"));
2812
2813		if (error) {
2814			panic("biodone: no object");
2815		}
2816#if defined(VFS_BIO_DEBUG)
2817		if (obj->paging_in_progress < bp->b_npages) {
2818			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2819			    obj->paging_in_progress, bp->b_npages);
2820		}
2821#endif
2822
2823		/*
2824		 * Set B_CACHE if the op was a normal read and no error
2825		 * occured.  B_CACHE is set for writes in the b*write()
2826		 * routines.
2827		 */
2828		iosize = bp->b_bcount - bp->b_resid;
2829		if (bp->b_iocmd == BIO_READ &&
2830		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2831		    !(bp->b_ioflags & BIO_ERROR)) {
2832			bp->b_flags |= B_CACHE;
2833		}
2834
2835		for (i = 0; i < bp->b_npages; i++) {
2836			int bogusflag = 0;
2837			int resid;
2838
2839			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2840			if (resid > iosize)
2841				resid = iosize;
2842
2843			/*
2844			 * cleanup bogus pages, restoring the originals
2845			 */
2846			m = bp->b_pages[i];
2847			if (m == bogus_page) {
2848				bogusflag = 1;
2849				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2850				if (m == NULL)
2851					panic("biodone: page disappeared!");
2852				bp->b_pages[i] = m;
2853				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2854			}
2855#if defined(VFS_BIO_DEBUG)
2856			if (OFF_TO_IDX(foff) != m->pindex) {
2857				printf(
2858"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2859				    (unsigned long)foff, m->pindex);
2860			}
2861#endif
2862
2863			/*
2864			 * In the write case, the valid and clean bits are
2865			 * already changed correctly ( see bdwrite() ), so we
2866			 * only need to do this here in the read case.
2867			 */
2868			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2869				vfs_page_set_valid(bp, foff, i, m);
2870			}
2871			vm_page_flag_clear(m, PG_ZERO);
2872
2873			/*
2874			 * when debugging new filesystems or buffer I/O methods, this
2875			 * is the most common error that pops up.  if you see this, you
2876			 * have not set the page busy flag correctly!!!
2877			 */
2878			if (m->busy == 0) {
2879				printf("biodone: page busy < 0, "
2880				    "pindex: %d, foff: 0x(%x,%x), "
2881				    "resid: %d, index: %d\n",
2882				    (int) m->pindex, (int)(foff >> 32),
2883						(int) foff & 0xffffffff, resid, i);
2884				if (!vn_isdisk(vp, NULL))
2885					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2886					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2887					    (int) bp->b_lblkno,
2888					    bp->b_flags, bp->b_npages);
2889				else
2890					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2891					    (int) bp->b_lblkno,
2892					    bp->b_flags, bp->b_npages);
2893				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2894				    m->valid, m->dirty, m->wire_count);
2895				panic("biodone: page busy < 0\n");
2896			}
2897			vm_page_io_finish(m);
2898			vm_object_pip_subtract(obj, 1);
2899			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2900			iosize -= resid;
2901		}
2902		if (obj)
2903			vm_object_pip_wakeupn(obj, 0);
2904	}
2905
2906	/*
2907	 * For asynchronous completions, release the buffer now. The brelse
2908	 * will do a wakeup there if necessary - so no need to do a wakeup
2909	 * here in the async case. The sync case always needs to do a wakeup.
2910	 */
2911
2912	if (bp->b_flags & B_ASYNC) {
2913		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2914			brelse(bp);
2915		else
2916			bqrelse(bp);
2917	} else {
2918		wakeup(bp);
2919	}
2920	splx(s);
2921}
2922
2923/*
2924 * This routine is called in lieu of iodone in the case of
2925 * incomplete I/O.  This keeps the busy status for pages
2926 * consistant.
2927 */
2928void
2929vfs_unbusy_pages(struct buf * bp)
2930{
2931	int i;
2932
2933	GIANT_REQUIRED;
2934
2935	runningbufwakeup(bp);
2936	if (bp->b_flags & B_VMIO) {
2937		struct vnode *vp = bp->b_vp;
2938		vm_object_t obj;
2939
2940		VOP_GETVOBJECT(vp, &obj);
2941
2942		for (i = 0; i < bp->b_npages; i++) {
2943			vm_page_t m = bp->b_pages[i];
2944
2945			if (m == bogus_page) {
2946				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2947				if (!m) {
2948					panic("vfs_unbusy_pages: page missing\n");
2949				}
2950				bp->b_pages[i] = m;
2951				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2952			}
2953			vm_object_pip_subtract(obj, 1);
2954			vm_page_flag_clear(m, PG_ZERO);
2955			vm_page_io_finish(m);
2956		}
2957		vm_object_pip_wakeupn(obj, 0);
2958	}
2959}
2960
2961/*
2962 * vfs_page_set_valid:
2963 *
2964 *	Set the valid bits in a page based on the supplied offset.   The
2965 *	range is restricted to the buffer's size.
2966 *
2967 *	This routine is typically called after a read completes.
2968 */
2969static void
2970vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2971{
2972	vm_ooffset_t soff, eoff;
2973
2974	GIANT_REQUIRED;
2975	/*
2976	 * Start and end offsets in buffer.  eoff - soff may not cross a
2977	 * page boundry or cross the end of the buffer.  The end of the
2978	 * buffer, in this case, is our file EOF, not the allocation size
2979	 * of the buffer.
2980	 */
2981	soff = off;
2982	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2983	if (eoff > bp->b_offset + bp->b_bcount)
2984		eoff = bp->b_offset + bp->b_bcount;
2985
2986	/*
2987	 * Set valid range.  This is typically the entire buffer and thus the
2988	 * entire page.
2989	 */
2990	if (eoff > soff) {
2991		vm_page_set_validclean(
2992		    m,
2993		   (vm_offset_t) (soff & PAGE_MASK),
2994		   (vm_offset_t) (eoff - soff)
2995		);
2996	}
2997}
2998
2999/*
3000 * This routine is called before a device strategy routine.
3001 * It is used to tell the VM system that paging I/O is in
3002 * progress, and treat the pages associated with the buffer
3003 * almost as being PG_BUSY.  Also the object paging_in_progress
3004 * flag is handled to make sure that the object doesn't become
3005 * inconsistant.
3006 *
3007 * Since I/O has not been initiated yet, certain buffer flags
3008 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3009 * and should be ignored.
3010 */
3011void
3012vfs_busy_pages(struct buf * bp, int clear_modify)
3013{
3014	int i, bogus;
3015
3016	GIANT_REQUIRED;
3017
3018	if (bp->b_flags & B_VMIO) {
3019		struct vnode *vp = bp->b_vp;
3020		vm_object_t obj;
3021		vm_ooffset_t foff;
3022
3023		VOP_GETVOBJECT(vp, &obj);
3024		foff = bp->b_offset;
3025		KASSERT(bp->b_offset != NOOFFSET,
3026		    ("vfs_busy_pages: no buffer offset"));
3027		vfs_setdirty(bp);
3028
3029retry:
3030		for (i = 0; i < bp->b_npages; i++) {
3031			vm_page_t m = bp->b_pages[i];
3032			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3033				goto retry;
3034		}
3035
3036		bogus = 0;
3037		for (i = 0; i < bp->b_npages; i++) {
3038			vm_page_t m = bp->b_pages[i];
3039
3040			vm_page_flag_clear(m, PG_ZERO);
3041			if ((bp->b_flags & B_CLUSTER) == 0) {
3042				vm_object_pip_add(obj, 1);
3043				vm_page_io_start(m);
3044			}
3045
3046			/*
3047			 * When readying a buffer for a read ( i.e
3048			 * clear_modify == 0 ), it is important to do
3049			 * bogus_page replacement for valid pages in
3050			 * partially instantiated buffers.  Partially
3051			 * instantiated buffers can, in turn, occur when
3052			 * reconstituting a buffer from its VM backing store
3053			 * base.  We only have to do this if B_CACHE is
3054			 * clear ( which causes the I/O to occur in the
3055			 * first place ).  The replacement prevents the read
3056			 * I/O from overwriting potentially dirty VM-backed
3057			 * pages.  XXX bogus page replacement is, uh, bogus.
3058			 * It may not work properly with small-block devices.
3059			 * We need to find a better way.
3060			 */
3061
3062			vm_page_protect(m, VM_PROT_NONE);
3063			if (clear_modify)
3064				vfs_page_set_valid(bp, foff, i, m);
3065			else if (m->valid == VM_PAGE_BITS_ALL &&
3066				(bp->b_flags & B_CACHE) == 0) {
3067				bp->b_pages[i] = bogus_page;
3068				bogus++;
3069			}
3070			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3071		}
3072		if (bogus)
3073			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3074	}
3075}
3076
3077/*
3078 * Tell the VM system that the pages associated with this buffer
3079 * are clean.  This is used for delayed writes where the data is
3080 * going to go to disk eventually without additional VM intevention.
3081 *
3082 * Note that while we only really need to clean through to b_bcount, we
3083 * just go ahead and clean through to b_bufsize.
3084 */
3085static void
3086vfs_clean_pages(struct buf * bp)
3087{
3088	int i;
3089
3090	GIANT_REQUIRED;
3091
3092	if (bp->b_flags & B_VMIO) {
3093		vm_ooffset_t foff;
3094
3095		foff = bp->b_offset;
3096		KASSERT(bp->b_offset != NOOFFSET,
3097		    ("vfs_clean_pages: no buffer offset"));
3098		for (i = 0; i < bp->b_npages; i++) {
3099			vm_page_t m = bp->b_pages[i];
3100			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3101			vm_ooffset_t eoff = noff;
3102
3103			if (eoff > bp->b_offset + bp->b_bufsize)
3104				eoff = bp->b_offset + bp->b_bufsize;
3105			vfs_page_set_valid(bp, foff, i, m);
3106			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3107			foff = noff;
3108		}
3109	}
3110}
3111
3112/*
3113 *	vfs_bio_set_validclean:
3114 *
3115 *	Set the range within the buffer to valid and clean.  The range is
3116 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3117 *	itself may be offset from the beginning of the first page.
3118 *
3119 */
3120
3121void
3122vfs_bio_set_validclean(struct buf *bp, int base, int size)
3123{
3124	if (bp->b_flags & B_VMIO) {
3125		int i;
3126		int n;
3127
3128		/*
3129		 * Fixup base to be relative to beginning of first page.
3130		 * Set initial n to be the maximum number of bytes in the
3131		 * first page that can be validated.
3132		 */
3133
3134		base += (bp->b_offset & PAGE_MASK);
3135		n = PAGE_SIZE - (base & PAGE_MASK);
3136
3137		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3138			vm_page_t m = bp->b_pages[i];
3139
3140			if (n > size)
3141				n = size;
3142
3143			vm_page_set_validclean(m, base & PAGE_MASK, n);
3144			base += n;
3145			size -= n;
3146			n = PAGE_SIZE;
3147		}
3148	}
3149}
3150
3151/*
3152 *	vfs_bio_clrbuf:
3153 *
3154 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3155 *	to clear BIO_ERROR and B_INVAL.
3156 *
3157 *	Note that while we only theoretically need to clear through b_bcount,
3158 *	we go ahead and clear through b_bufsize.
3159 */
3160
3161void
3162vfs_bio_clrbuf(struct buf *bp) {
3163	int i, mask = 0;
3164	caddr_t sa, ea;
3165
3166	GIANT_REQUIRED;
3167
3168	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3169		bp->b_flags &= ~B_INVAL;
3170		bp->b_ioflags &= ~BIO_ERROR;
3171		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3172		    (bp->b_offset & PAGE_MASK) == 0) {
3173			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3174			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3175			    ((bp->b_pages[0]->valid & mask) != mask)) {
3176				bzero(bp->b_data, bp->b_bufsize);
3177			}
3178			bp->b_pages[0]->valid |= mask;
3179			bp->b_resid = 0;
3180			return;
3181		}
3182		ea = sa = bp->b_data;
3183		for(i=0;i<bp->b_npages;i++,sa=ea) {
3184			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3185			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3186			ea = (caddr_t)(vm_offset_t)ulmin(
3187			    (u_long)(vm_offset_t)ea,
3188			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3189			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3190			if ((bp->b_pages[i]->valid & mask) == mask)
3191				continue;
3192			if ((bp->b_pages[i]->valid & mask) == 0) {
3193				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3194					bzero(sa, ea - sa);
3195				}
3196			} else {
3197				for (; sa < ea; sa += DEV_BSIZE, j++) {
3198					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3199						(bp->b_pages[i]->valid & (1<<j)) == 0)
3200						bzero(sa, DEV_BSIZE);
3201				}
3202			}
3203			bp->b_pages[i]->valid |= mask;
3204			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3205		}
3206		bp->b_resid = 0;
3207	} else {
3208		clrbuf(bp);
3209	}
3210}
3211
3212/*
3213 * vm_hold_load_pages and vm_hold_free_pages get pages into
3214 * a buffers address space.  The pages are anonymous and are
3215 * not associated with a file object.
3216 */
3217static void
3218vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3219{
3220	vm_offset_t pg;
3221	vm_page_t p;
3222	int index;
3223
3224	GIANT_REQUIRED;
3225
3226	to = round_page(to);
3227	from = round_page(from);
3228	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3229
3230	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3231tryagain:
3232		/*
3233		 * note: must allocate system pages since blocking here
3234		 * could intefere with paging I/O, no matter which
3235		 * process we are.
3236		 */
3237		p = vm_page_alloc(kernel_object,
3238			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3239		    VM_ALLOC_SYSTEM);
3240		if (!p) {
3241			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3242			VM_WAIT;
3243			goto tryagain;
3244		}
3245		vm_page_wire(p);
3246		p->valid = VM_PAGE_BITS_ALL;
3247		vm_page_flag_clear(p, PG_ZERO);
3248		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3249		bp->b_pages[index] = p;
3250		vm_page_wakeup(p);
3251	}
3252	bp->b_npages = index;
3253}
3254
3255void
3256vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3257{
3258	vm_offset_t pg;
3259	vm_page_t p;
3260	int index, newnpages;
3261
3262	GIANT_REQUIRED;
3263
3264	from = round_page(from);
3265	to = round_page(to);
3266	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3267
3268	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3269		p = bp->b_pages[index];
3270		if (p && (index < bp->b_npages)) {
3271			if (p->busy) {
3272				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3273					bp->b_blkno, bp->b_lblkno);
3274			}
3275			bp->b_pages[index] = NULL;
3276			pmap_kremove(pg);
3277			vm_page_busy(p);
3278			vm_page_unwire(p, 0);
3279			vm_page_free(p);
3280		}
3281	}
3282	bp->b_npages = newnpages;
3283}
3284
3285
3286#include "opt_ddb.h"
3287#ifdef DDB
3288#include <ddb/ddb.h>
3289
3290DB_SHOW_COMMAND(buffer, db_show_buffer)
3291{
3292	/* get args */
3293	struct buf *bp = (struct buf *)addr;
3294
3295	if (!have_addr) {
3296		db_printf("usage: show buffer <addr>\n");
3297		return;
3298	}
3299
3300	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3301	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3302		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3303		  "b_blkno = %d, b_pblkno = %d\n",
3304		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3305		  major(bp->b_dev), minor(bp->b_dev),
3306		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3307	if (bp->b_npages) {
3308		int i;
3309		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3310		for (i = 0; i < bp->b_npages; i++) {
3311			vm_page_t m;
3312			m = bp->b_pages[i];
3313			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3314			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3315			if ((i + 1) < bp->b_npages)
3316				db_printf(",");
3317		}
3318		db_printf("\n");
3319	}
3320}
3321#endif /* DDB */
3322