vfs_bio.c revision 85274
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 85274 2001-10-21 06:26:55Z dillon $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct	buf_ops buf_ops_bio = {
62	"buf_ops_bio",
63	bwrite
64};
65
66struct buf *buf;		/* buffer header pool */
67struct swqueue bswlist;
68struct mtx buftimelock;		/* Interlock on setting prio and timo */
69
70static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71		vm_offset_t to);
72static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73		vm_offset_t to);
74static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75			       int pageno, vm_page_t m);
76static void vfs_clean_pages(struct buf * bp);
77static void vfs_setdirty(struct buf *bp);
78static void vfs_vmio_release(struct buf *bp);
79static void vfs_backgroundwritedone(struct buf *bp);
80static int flushbufqueues(void);
81
82static int bd_request;
83
84static void buf_daemon __P((void));
85/*
86 * bogus page -- for I/O to/from partially complete buffers
87 * this is a temporary solution to the problem, but it is not
88 * really that bad.  it would be better to split the buffer
89 * for input in the case of buffers partially already in memory,
90 * but the code is intricate enough already.
91 */
92vm_page_t bogus_page;
93int vmiodirenable = TRUE;
94int runningbufspace;
95static vm_offset_t bogus_offset;
96
97static int bufspace, maxbufspace,
98	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100static int needsbuffer;
101static int lorunningspace, hirunningspace, runningbufreq;
102static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103static int numfreebuffers, lofreebuffers, hifreebuffers;
104static int getnewbufcalls;
105static int getnewbufrestarts;
106
107SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108	&numdirtybuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110	&lodirtybuffers, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112	&hidirtybuffers, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114	&numfreebuffers, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116	&lofreebuffers, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118	&hifreebuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120	&runningbufspace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122	&lorunningspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124	&hirunningspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126	&maxbufspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128	&hibufspace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130	&lobufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134	&maxbufmallocspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136	&bufmallocspace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138	&getnewbufcalls, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140	&getnewbufrestarts, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142	&vmiodirenable, 0, "");
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144	&bufdefragcnt, 0, "");
145SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146	&buffreekvacnt, 0, "");
147SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148	&bufreusecnt, 0, "");
149
150static int bufhashmask;
151static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153char *buf_wmesg = BUF_WMESG;
154
155extern int vm_swap_size;
156
157#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161
162/*
163 * Buffer hash table code.  Note that the logical block scans linearly, which
164 * gives us some L1 cache locality.
165 */
166
167static __inline
168struct bufhashhdr *
169bufhash(struct vnode *vnp, daddr_t bn)
170{
171	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172}
173
174/*
175 *	numdirtywakeup:
176 *
177 *	If someone is blocked due to there being too many dirty buffers,
178 *	and numdirtybuffers is now reasonable, wake them up.
179 */
180
181static __inline void
182numdirtywakeup(int level)
183{
184	if (numdirtybuffers <= level) {
185		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187			wakeup(&needsbuffer);
188		}
189	}
190}
191
192/*
193 *	bufspacewakeup:
194 *
195 *	Called when buffer space is potentially available for recovery.
196 *	getnewbuf() will block on this flag when it is unable to free
197 *	sufficient buffer space.  Buffer space becomes recoverable when
198 *	bp's get placed back in the queues.
199 */
200
201static __inline void
202bufspacewakeup(void)
203{
204	/*
205	 * If someone is waiting for BUF space, wake them up.  Even
206	 * though we haven't freed the kva space yet, the waiting
207	 * process will be able to now.
208	 */
209	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211		wakeup(&needsbuffer);
212	}
213}
214
215/*
216 * runningbufwakeup() - in-progress I/O accounting.
217 *
218 */
219static __inline void
220runningbufwakeup(struct buf *bp)
221{
222	if (bp->b_runningbufspace) {
223		runningbufspace -= bp->b_runningbufspace;
224		bp->b_runningbufspace = 0;
225		if (runningbufreq && runningbufspace <= lorunningspace) {
226			runningbufreq = 0;
227			wakeup(&runningbufreq);
228		}
229	}
230}
231
232/*
233 *	bufcountwakeup:
234 *
235 *	Called when a buffer has been added to one of the free queues to
236 *	account for the buffer and to wakeup anyone waiting for free buffers.
237 *	This typically occurs when large amounts of metadata are being handled
238 *	by the buffer cache ( else buffer space runs out first, usually ).
239 */
240
241static __inline void
242bufcountwakeup(void)
243{
244	++numfreebuffers;
245	if (needsbuffer) {
246		needsbuffer &= ~VFS_BIO_NEED_ANY;
247		if (numfreebuffers >= hifreebuffers)
248			needsbuffer &= ~VFS_BIO_NEED_FREE;
249		wakeup(&needsbuffer);
250	}
251}
252
253/*
254 *	waitrunningbufspace()
255 *
256 *	runningbufspace is a measure of the amount of I/O currently
257 *	running.  This routine is used in async-write situations to
258 *	prevent creating huge backups of pending writes to a device.
259 *	Only asynchronous writes are governed by this function.
260 *
261 *	Reads will adjust runningbufspace, but will not block based on it.
262 *	The read load has a side effect of reducing the allowed write load.
263 *
264 *	This does NOT turn an async write into a sync write.  It waits
265 *	for earlier writes to complete and generally returns before the
266 *	caller's write has reached the device.
267 */
268static __inline void
269waitrunningbufspace(void)
270{
271	while (runningbufspace > hirunningspace) {
272		++runningbufreq;
273		tsleep(&runningbufreq, PVM, "wdrain", 0);
274	}
275}
276
277
278/*
279 *	vfs_buf_test_cache:
280 *
281 *	Called when a buffer is extended.  This function clears the B_CACHE
282 *	bit if the newly extended portion of the buffer does not contain
283 *	valid data.
284 */
285static __inline__
286void
287vfs_buf_test_cache(struct buf *bp,
288		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
289		  vm_page_t m)
290{
291	GIANT_REQUIRED;
292
293	if (bp->b_flags & B_CACHE) {
294		int base = (foff + off) & PAGE_MASK;
295		if (vm_page_is_valid(m, base, size) == 0)
296			bp->b_flags &= ~B_CACHE;
297	}
298}
299
300static __inline__
301void
302bd_wakeup(int dirtybuflevel)
303{
304	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
305		bd_request = 1;
306		wakeup(&bd_request);
307	}
308}
309
310/*
311 * bd_speedup - speedup the buffer cache flushing code
312 */
313
314static __inline__
315void
316bd_speedup(void)
317{
318	bd_wakeup(1);
319}
320
321/*
322 * Calculating buffer cache scaling values and reserve space for buffer
323 * headers.  This is called during low level kernel initialization and
324 * may be called more then once.  We CANNOT write to the memory area
325 * being reserved at this time.
326 */
327caddr_t
328kern_vfs_bio_buffer_alloc(caddr_t v, int physmem_est)
329{
330	/*
331	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
332	 * For the first 64MB of ram nominally allocate sufficient buffers to
333	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
334	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
335	 * the buffer cache we limit the eventual kva reservation to
336	 * maxbcache bytes.
337	 *
338	 * factor represents the 1/4 x ram conversion.
339	 */
340	if (nbuf == 0) {
341		int factor = 4 * BKVASIZE / PAGE_SIZE;
342
343		nbuf = 50;
344		if (physmem_est > 1024)
345			nbuf += min((physmem_est - 1024) / factor,
346			    16384 / factor);
347		if (physmem_est > 16384)
348			nbuf += (physmem_est - 16384) * 2 / (factor * 5);
349
350		if (maxbcache && nbuf > maxbcache / BKVASIZE)
351			nbuf = maxbcache / BKVASIZE;
352	}
353
354#if 0
355	/*
356	 * Do not allow the buffer_map to be more then 1/2 the size of the
357	 * kernel_map.
358	 */
359	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
360	    (BKVASIZE * 2)) {
361		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
362		    (BKVASIZE * 2);
363		printf("Warning: nbufs capped at %d\n", nbuf);
364	}
365#endif
366
367	/*
368	 * swbufs are used as temporary holders for I/O, such as paging I/O.
369	 * We have no less then 16 and no more then 256.
370	 */
371	nswbuf = max(min(nbuf/4, 256), 16);
372
373	/*
374	 * Reserve space for the buffer cache buffers
375	 */
376	swbuf = (void *)v;
377	v = (caddr_t)(swbuf + nswbuf);
378	buf = (void *)v;
379	v = (caddr_t)(buf + nbuf);
380
381	/*
382	 * Calculate the hash table size and reserve space
383	 */
384	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
385		;
386	bufhashtbl = (void *)v;
387	v = (caddr_t)(bufhashtbl + bufhashmask);
388	--bufhashmask;
389
390	return(v);
391}
392
393void
394bufinit(void)
395{
396	struct buf *bp;
397	int i;
398
399	GIANT_REQUIRED;
400
401	TAILQ_INIT(&bswlist);
402	LIST_INIT(&invalhash);
403	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
404
405	for (i = 0; i <= bufhashmask; i++)
406		LIST_INIT(&bufhashtbl[i]);
407
408	/* next, make a null set of free lists */
409	for (i = 0; i < BUFFER_QUEUES; i++)
410		TAILQ_INIT(&bufqueues[i]);
411
412	/* finally, initialize each buffer header and stick on empty q */
413	for (i = 0; i < nbuf; i++) {
414		bp = &buf[i];
415		bzero(bp, sizeof *bp);
416		bp->b_flags = B_INVAL;	/* we're just an empty header */
417		bp->b_dev = NODEV;
418		bp->b_rcred = NOCRED;
419		bp->b_wcred = NOCRED;
420		bp->b_qindex = QUEUE_EMPTY;
421		bp->b_xflags = 0;
422		LIST_INIT(&bp->b_dep);
423		BUF_LOCKINIT(bp);
424		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
425		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
426	}
427
428	/*
429	 * maxbufspace is the absolute maximum amount of buffer space we are
430	 * allowed to reserve in KVM and in real terms.  The absolute maximum
431	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
432	 * used by most other processes.  The differential is required to
433	 * ensure that buf_daemon is able to run when other processes might
434	 * be blocked waiting for buffer space.
435	 *
436	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
437	 * this may result in KVM fragmentation which is not handled optimally
438	 * by the system.
439	 */
440	maxbufspace = nbuf * BKVASIZE;
441	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
442	lobufspace = hibufspace - MAXBSIZE;
443
444	lorunningspace = 512 * 1024;
445	hirunningspace = 1024 * 1024;
446
447/*
448 * Limit the amount of malloc memory since it is wired permanently into
449 * the kernel space.  Even though this is accounted for in the buffer
450 * allocation, we don't want the malloced region to grow uncontrolled.
451 * The malloc scheme improves memory utilization significantly on average
452 * (small) directories.
453 */
454	maxbufmallocspace = hibufspace / 20;
455
456/*
457 * Reduce the chance of a deadlock occuring by limiting the number
458 * of delayed-write dirty buffers we allow to stack up.
459 */
460	hidirtybuffers = nbuf / 4 + 20;
461	numdirtybuffers = 0;
462/*
463 * To support extreme low-memory systems, make sure hidirtybuffers cannot
464 * eat up all available buffer space.  This occurs when our minimum cannot
465 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
466 * BKVASIZE'd (8K) buffers.
467 */
468	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
469		hidirtybuffers >>= 1;
470	}
471	lodirtybuffers = hidirtybuffers / 2;
472
473/*
474 * Try to keep the number of free buffers in the specified range,
475 * and give special processes (e.g. like buf_daemon) access to an
476 * emergency reserve.
477 */
478	lofreebuffers = nbuf / 18 + 5;
479	hifreebuffers = 2 * lofreebuffers;
480	numfreebuffers = nbuf;
481
482/*
483 * Maximum number of async ops initiated per buf_daemon loop.  This is
484 * somewhat of a hack at the moment, we really need to limit ourselves
485 * based on the number of bytes of I/O in-transit that were initiated
486 * from buf_daemon.
487 */
488
489	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
490	bogus_page = vm_page_alloc(kernel_object,
491			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
492			VM_ALLOC_NORMAL);
493	cnt.v_wire_count++;
494}
495
496/*
497 * bfreekva() - free the kva allocation for a buffer.
498 *
499 *	Must be called at splbio() or higher as this is the only locking for
500 *	buffer_map.
501 *
502 *	Since this call frees up buffer space, we call bufspacewakeup().
503 */
504static void
505bfreekva(struct buf * bp)
506{
507	GIANT_REQUIRED;
508
509	if (bp->b_kvasize) {
510		++buffreekvacnt;
511		bufspace -= bp->b_kvasize;
512		vm_map_delete(buffer_map,
513		    (vm_offset_t) bp->b_kvabase,
514		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
515		);
516		bp->b_kvasize = 0;
517		bufspacewakeup();
518	}
519}
520
521/*
522 *	bremfree:
523 *
524 *	Remove the buffer from the appropriate free list.
525 */
526void
527bremfree(struct buf * bp)
528{
529	int s = splbio();
530	int old_qindex = bp->b_qindex;
531
532	GIANT_REQUIRED;
533
534	if (bp->b_qindex != QUEUE_NONE) {
535		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
536		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
537		bp->b_qindex = QUEUE_NONE;
538	} else {
539		if (BUF_REFCNT(bp) <= 1)
540			panic("bremfree: removing a buffer not on a queue");
541	}
542
543	/*
544	 * Fixup numfreebuffers count.  If the buffer is invalid or not
545	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
546	 * the buffer was free and we must decrement numfreebuffers.
547	 */
548	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
549		switch(old_qindex) {
550		case QUEUE_DIRTY:
551		case QUEUE_CLEAN:
552		case QUEUE_EMPTY:
553		case QUEUE_EMPTYKVA:
554			--numfreebuffers;
555			break;
556		default:
557			break;
558		}
559	}
560	splx(s);
561}
562
563
564/*
565 * Get a buffer with the specified data.  Look in the cache first.  We
566 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
567 * is set, the buffer is valid and we do not have to do anything ( see
568 * getblk() ).  This is really just a special case of breadn().
569 */
570int
571bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
572    struct buf ** bpp)
573{
574
575	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
576}
577
578/*
579 * Operates like bread, but also starts asynchronous I/O on
580 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
581 * to initiating I/O . If B_CACHE is set, the buffer is valid
582 * and we do not have to do anything.
583 */
584int
585breadn(struct vnode * vp, daddr_t blkno, int size,
586    daddr_t * rablkno, int *rabsize,
587    int cnt, struct ucred * cred, struct buf ** bpp)
588{
589	struct buf *bp, *rabp;
590	int i;
591	int rv = 0, readwait = 0;
592
593	*bpp = bp = getblk(vp, blkno, size, 0, 0);
594
595	/* if not found in cache, do some I/O */
596	if ((bp->b_flags & B_CACHE) == 0) {
597		if (curthread != PCPU_GET(idlethread))
598			curthread->td_proc->p_stats->p_ru.ru_inblock++;
599		bp->b_iocmd = BIO_READ;
600		bp->b_flags &= ~B_INVAL;
601		bp->b_ioflags &= ~BIO_ERROR;
602		if (bp->b_rcred == NOCRED && cred != NOCRED)
603			bp->b_rcred = crhold(cred);
604		vfs_busy_pages(bp, 0);
605		VOP_STRATEGY(vp, bp);
606		++readwait;
607	}
608
609	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
610		if (inmem(vp, *rablkno))
611			continue;
612		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
613
614		if ((rabp->b_flags & B_CACHE) == 0) {
615			if (curthread != PCPU_GET(idlethread))
616				curthread->td_proc->p_stats->p_ru.ru_inblock++;
617			rabp->b_flags |= B_ASYNC;
618			rabp->b_flags &= ~B_INVAL;
619			rabp->b_ioflags &= ~BIO_ERROR;
620			rabp->b_iocmd = BIO_READ;
621			if (rabp->b_rcred == NOCRED && cred != NOCRED)
622				rabp->b_rcred = crhold(cred);
623			vfs_busy_pages(rabp, 0);
624			BUF_KERNPROC(rabp);
625			VOP_STRATEGY(vp, rabp);
626		} else {
627			brelse(rabp);
628		}
629	}
630
631	if (readwait) {
632		rv = bufwait(bp);
633	}
634	return (rv);
635}
636
637/*
638 * Write, release buffer on completion.  (Done by iodone
639 * if async).  Do not bother writing anything if the buffer
640 * is invalid.
641 *
642 * Note that we set B_CACHE here, indicating that buffer is
643 * fully valid and thus cacheable.  This is true even of NFS
644 * now so we set it generally.  This could be set either here
645 * or in biodone() since the I/O is synchronous.  We put it
646 * here.
647 */
648
649int dobkgrdwrite = 1;
650SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
651
652int
653bwrite(struct buf * bp)
654{
655	int oldflags, s;
656	struct buf *newbp;
657
658	if (bp->b_flags & B_INVAL) {
659		brelse(bp);
660		return (0);
661	}
662
663	oldflags = bp->b_flags;
664
665	if (BUF_REFCNT(bp) == 0)
666		panic("bwrite: buffer is not busy???");
667	s = splbio();
668	/*
669	 * If a background write is already in progress, delay
670	 * writing this block if it is asynchronous. Otherwise
671	 * wait for the background write to complete.
672	 */
673	if (bp->b_xflags & BX_BKGRDINPROG) {
674		if (bp->b_flags & B_ASYNC) {
675			splx(s);
676			bdwrite(bp);
677			return (0);
678		}
679		bp->b_xflags |= BX_BKGRDWAIT;
680		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
681		if (bp->b_xflags & BX_BKGRDINPROG)
682			panic("bwrite: still writing");
683	}
684
685	/* Mark the buffer clean */
686	bundirty(bp);
687
688	/*
689	 * If this buffer is marked for background writing and we
690	 * do not have to wait for it, make a copy and write the
691	 * copy so as to leave this buffer ready for further use.
692	 *
693	 * This optimization eats a lot of memory.  If we have a page
694	 * or buffer shortfall we can't do it.
695	 */
696	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
697	    (bp->b_flags & B_ASYNC) &&
698	    !vm_page_count_severe() &&
699	    !buf_dirty_count_severe()) {
700		if (bp->b_iodone != NULL) {
701			printf("bp->b_iodone = %p\n", bp->b_iodone);
702			panic("bwrite: need chained iodone");
703		}
704
705		/* get a new block */
706		newbp = geteblk(bp->b_bufsize);
707
708		/* set it to be identical to the old block */
709		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
710		bgetvp(bp->b_vp, newbp);
711		newbp->b_lblkno = bp->b_lblkno;
712		newbp->b_blkno = bp->b_blkno;
713		newbp->b_offset = bp->b_offset;
714		newbp->b_iodone = vfs_backgroundwritedone;
715		newbp->b_flags |= B_ASYNC;
716		newbp->b_flags &= ~B_INVAL;
717
718		/* move over the dependencies */
719		if (LIST_FIRST(&bp->b_dep) != NULL)
720			buf_movedeps(bp, newbp);
721
722		/*
723		 * Initiate write on the copy, release the original to
724		 * the B_LOCKED queue so that it cannot go away until
725		 * the background write completes. If not locked it could go
726		 * away and then be reconstituted while it was being written.
727		 * If the reconstituted buffer were written, we could end up
728		 * with two background copies being written at the same time.
729		 */
730		bp->b_xflags |= BX_BKGRDINPROG;
731		bp->b_flags |= B_LOCKED;
732		bqrelse(bp);
733		bp = newbp;
734	}
735
736	bp->b_flags &= ~B_DONE;
737	bp->b_ioflags &= ~BIO_ERROR;
738	bp->b_flags |= B_WRITEINPROG | B_CACHE;
739	bp->b_iocmd = BIO_WRITE;
740
741	bp->b_vp->v_numoutput++;
742	vfs_busy_pages(bp, 1);
743
744	/*
745	 * Normal bwrites pipeline writes
746	 */
747	bp->b_runningbufspace = bp->b_bufsize;
748	runningbufspace += bp->b_runningbufspace;
749
750	if (curthread != PCPU_GET(idlethread))
751		curthread->td_proc->p_stats->p_ru.ru_oublock++;
752	splx(s);
753	if (oldflags & B_ASYNC)
754		BUF_KERNPROC(bp);
755	BUF_STRATEGY(bp);
756
757	if ((oldflags & B_ASYNC) == 0) {
758		int rtval = bufwait(bp);
759		brelse(bp);
760		return (rtval);
761	} else {
762		/*
763		 * don't allow the async write to saturate the I/O
764		 * system.  There is no chance of deadlock here because
765		 * we are blocking on I/O that is already in-progress.
766		 */
767		waitrunningbufspace();
768	}
769
770	return (0);
771}
772
773/*
774 * Complete a background write started from bwrite.
775 */
776static void
777vfs_backgroundwritedone(bp)
778	struct buf *bp;
779{
780	struct buf *origbp;
781
782	/*
783	 * Find the original buffer that we are writing.
784	 */
785	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
786		panic("backgroundwritedone: lost buffer");
787	/*
788	 * Process dependencies then return any unfinished ones.
789	 */
790	if (LIST_FIRST(&bp->b_dep) != NULL)
791		buf_complete(bp);
792	if (LIST_FIRST(&bp->b_dep) != NULL)
793		buf_movedeps(bp, origbp);
794	/*
795	 * Clear the BX_BKGRDINPROG flag in the original buffer
796	 * and awaken it if it is waiting for the write to complete.
797	 * If BX_BKGRDINPROG is not set in the original buffer it must
798	 * have been released and re-instantiated - which is not legal.
799	 */
800	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
801	origbp->b_xflags &= ~BX_BKGRDINPROG;
802	if (origbp->b_xflags & BX_BKGRDWAIT) {
803		origbp->b_xflags &= ~BX_BKGRDWAIT;
804		wakeup(&origbp->b_xflags);
805	}
806	/*
807	 * Clear the B_LOCKED flag and remove it from the locked
808	 * queue if it currently resides there.
809	 */
810	origbp->b_flags &= ~B_LOCKED;
811	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
812		bremfree(origbp);
813		bqrelse(origbp);
814	}
815	/*
816	 * This buffer is marked B_NOCACHE, so when it is released
817	 * by biodone, it will be tossed. We mark it with BIO_READ
818	 * to avoid biodone doing a second vwakeup.
819	 */
820	bp->b_flags |= B_NOCACHE;
821	bp->b_iocmd = BIO_READ;
822	bp->b_flags &= ~(B_CACHE | B_DONE);
823	bp->b_iodone = 0;
824	bufdone(bp);
825}
826
827/*
828 * Delayed write. (Buffer is marked dirty).  Do not bother writing
829 * anything if the buffer is marked invalid.
830 *
831 * Note that since the buffer must be completely valid, we can safely
832 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
833 * biodone() in order to prevent getblk from writing the buffer
834 * out synchronously.
835 */
836void
837bdwrite(struct buf * bp)
838{
839	GIANT_REQUIRED;
840
841	if (BUF_REFCNT(bp) == 0)
842		panic("bdwrite: buffer is not busy");
843
844	if (bp->b_flags & B_INVAL) {
845		brelse(bp);
846		return;
847	}
848	bdirty(bp);
849
850	/*
851	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
852	 * true even of NFS now.
853	 */
854	bp->b_flags |= B_CACHE;
855
856	/*
857	 * This bmap keeps the system from needing to do the bmap later,
858	 * perhaps when the system is attempting to do a sync.  Since it
859	 * is likely that the indirect block -- or whatever other datastructure
860	 * that the filesystem needs is still in memory now, it is a good
861	 * thing to do this.  Note also, that if the pageout daemon is
862	 * requesting a sync -- there might not be enough memory to do
863	 * the bmap then...  So, this is important to do.
864	 */
865	if (bp->b_lblkno == bp->b_blkno) {
866		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
867	}
868
869	/*
870	 * Set the *dirty* buffer range based upon the VM system dirty pages.
871	 */
872	vfs_setdirty(bp);
873
874	/*
875	 * We need to do this here to satisfy the vnode_pager and the
876	 * pageout daemon, so that it thinks that the pages have been
877	 * "cleaned".  Note that since the pages are in a delayed write
878	 * buffer -- the VFS layer "will" see that the pages get written
879	 * out on the next sync, or perhaps the cluster will be completed.
880	 */
881	vfs_clean_pages(bp);
882	bqrelse(bp);
883
884	/*
885	 * Wakeup the buffer flushing daemon if we have a lot of dirty
886	 * buffers (midpoint between our recovery point and our stall
887	 * point).
888	 */
889	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
890
891	/*
892	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
893	 * due to the softdep code.
894	 */
895}
896
897/*
898 *	bdirty:
899 *
900 *	Turn buffer into delayed write request.  We must clear BIO_READ and
901 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
902 *	itself to properly update it in the dirty/clean lists.  We mark it
903 *	B_DONE to ensure that any asynchronization of the buffer properly
904 *	clears B_DONE ( else a panic will occur later ).
905 *
906 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
907 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
908 *	should only be called if the buffer is known-good.
909 *
910 *	Since the buffer is not on a queue, we do not update the numfreebuffers
911 *	count.
912 *
913 *	Must be called at splbio().
914 *	The buffer must be on QUEUE_NONE.
915 */
916void
917bdirty(bp)
918	struct buf *bp;
919{
920	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
921	bp->b_flags &= ~(B_RELBUF);
922	bp->b_iocmd = BIO_WRITE;
923
924	if ((bp->b_flags & B_DELWRI) == 0) {
925		bp->b_flags |= B_DONE | B_DELWRI;
926		reassignbuf(bp, bp->b_vp);
927		++numdirtybuffers;
928		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
929	}
930}
931
932/*
933 *	bundirty:
934 *
935 *	Clear B_DELWRI for buffer.
936 *
937 *	Since the buffer is not on a queue, we do not update the numfreebuffers
938 *	count.
939 *
940 *	Must be called at splbio().
941 *	The buffer must be on QUEUE_NONE.
942 */
943
944void
945bundirty(bp)
946	struct buf *bp;
947{
948	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
949
950	if (bp->b_flags & B_DELWRI) {
951		bp->b_flags &= ~B_DELWRI;
952		reassignbuf(bp, bp->b_vp);
953		--numdirtybuffers;
954		numdirtywakeup(lodirtybuffers);
955	}
956	/*
957	 * Since it is now being written, we can clear its deferred write flag.
958	 */
959	bp->b_flags &= ~B_DEFERRED;
960}
961
962/*
963 *	bawrite:
964 *
965 *	Asynchronous write.  Start output on a buffer, but do not wait for
966 *	it to complete.  The buffer is released when the output completes.
967 *
968 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
969 *	B_INVAL buffers.  Not us.
970 */
971void
972bawrite(struct buf * bp)
973{
974	bp->b_flags |= B_ASYNC;
975	(void) BUF_WRITE(bp);
976}
977
978/*
979 *	bowrite:
980 *
981 *	Ordered write.  Start output on a buffer, and flag it so that the
982 *	device will write it in the order it was queued.  The buffer is
983 *	released when the output completes.  bwrite() ( or the VOP routine
984 *	anyway ) is responsible for handling B_INVAL buffers.
985 */
986int
987bowrite(struct buf * bp)
988{
989	bp->b_ioflags |= BIO_ORDERED;
990	bp->b_flags |= B_ASYNC;
991	return (BUF_WRITE(bp));
992}
993
994/*
995 *	bwillwrite:
996 *
997 *	Called prior to the locking of any vnodes when we are expecting to
998 *	write.  We do not want to starve the buffer cache with too many
999 *	dirty buffers so we block here.  By blocking prior to the locking
1000 *	of any vnodes we attempt to avoid the situation where a locked vnode
1001 *	prevents the various system daemons from flushing related buffers.
1002 */
1003
1004void
1005bwillwrite(void)
1006{
1007	if (numdirtybuffers >= hidirtybuffers) {
1008		int s;
1009
1010		s = splbio();
1011		while (numdirtybuffers >= hidirtybuffers) {
1012			bd_wakeup(1);
1013			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1014			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
1015		}
1016		splx(s);
1017	}
1018}
1019
1020/*
1021 * Return true if we have too many dirty buffers.
1022 */
1023int
1024buf_dirty_count_severe(void)
1025{
1026	return(numdirtybuffers >= hidirtybuffers);
1027}
1028
1029/*
1030 *	brelse:
1031 *
1032 *	Release a busy buffer and, if requested, free its resources.  The
1033 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1034 *	to be accessed later as a cache entity or reused for other purposes.
1035 */
1036void
1037brelse(struct buf * bp)
1038{
1039	int s;
1040
1041	GIANT_REQUIRED;
1042
1043	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1044
1045	s = splbio();
1046
1047	if (bp->b_flags & B_LOCKED)
1048		bp->b_ioflags &= ~BIO_ERROR;
1049
1050	if (bp->b_iocmd == BIO_WRITE &&
1051	    (bp->b_ioflags & BIO_ERROR) &&
1052	    !(bp->b_flags & B_INVAL)) {
1053		/*
1054		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1055		 * pages from being scrapped.  If B_INVAL is set then
1056		 * this case is not run and the next case is run to
1057		 * destroy the buffer.  B_INVAL can occur if the buffer
1058		 * is outside the range supported by the underlying device.
1059		 */
1060		bp->b_ioflags &= ~BIO_ERROR;
1061		bdirty(bp);
1062	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1063	    (bp->b_ioflags & BIO_ERROR) ||
1064	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1065		/*
1066		 * Either a failed I/O or we were asked to free or not
1067		 * cache the buffer.
1068		 */
1069		bp->b_flags |= B_INVAL;
1070		if (LIST_FIRST(&bp->b_dep) != NULL)
1071			buf_deallocate(bp);
1072		if (bp->b_flags & B_DELWRI) {
1073			--numdirtybuffers;
1074			numdirtywakeup(lodirtybuffers);
1075		}
1076		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1077		if ((bp->b_flags & B_VMIO) == 0) {
1078			if (bp->b_bufsize)
1079				allocbuf(bp, 0);
1080			if (bp->b_vp)
1081				brelvp(bp);
1082		}
1083	}
1084
1085	/*
1086	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1087	 * is called with B_DELWRI set, the underlying pages may wind up
1088	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1089	 * because pages associated with a B_DELWRI bp are marked clean.
1090	 *
1091	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1092	 * if B_DELWRI is set.
1093	 *
1094	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1095	 * on pages to return pages to the VM page queues.
1096	 */
1097	if (bp->b_flags & B_DELWRI)
1098		bp->b_flags &= ~B_RELBUF;
1099	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1100		bp->b_flags |= B_RELBUF;
1101
1102	/*
1103	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1104	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1105	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1106	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1107	 *
1108	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1109	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1110	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1111	 *
1112	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1113	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1114	 * the commit state and we cannot afford to lose the buffer. If the
1115	 * buffer has a background write in progress, we need to keep it
1116	 * around to prevent it from being reconstituted and starting a second
1117	 * background write.
1118	 */
1119	if ((bp->b_flags & B_VMIO)
1120	    && !(bp->b_vp->v_tag == VT_NFS &&
1121		 !vn_isdisk(bp->b_vp, NULL) &&
1122		 (bp->b_flags & B_DELWRI))
1123	    ) {
1124
1125		int i, j, resid;
1126		vm_page_t m;
1127		off_t foff;
1128		vm_pindex_t poff;
1129		vm_object_t obj;
1130		struct vnode *vp;
1131
1132		vp = bp->b_vp;
1133
1134		/*
1135		 * Get the base offset and length of the buffer.  Note that
1136		 * in the VMIO case if the buffer block size is not
1137		 * page-aligned then b_data pointer may not be page-aligned.
1138		 * But our b_pages[] array *IS* page aligned.
1139		 *
1140		 * block sizes less then DEV_BSIZE (usually 512) are not
1141		 * supported due to the page granularity bits (m->valid,
1142		 * m->dirty, etc...).
1143		 *
1144		 * See man buf(9) for more information
1145		 */
1146		resid = bp->b_bufsize;
1147		foff = bp->b_offset;
1148
1149		for (i = 0; i < bp->b_npages; i++) {
1150			int had_bogus = 0;
1151
1152			m = bp->b_pages[i];
1153			vm_page_flag_clear(m, PG_ZERO);
1154
1155			/*
1156			 * If we hit a bogus page, fixup *all* the bogus pages
1157			 * now.
1158			 */
1159			if (m == bogus_page) {
1160				VOP_GETVOBJECT(vp, &obj);
1161				poff = OFF_TO_IDX(bp->b_offset);
1162				had_bogus = 1;
1163
1164				for (j = i; j < bp->b_npages; j++) {
1165					vm_page_t mtmp;
1166					mtmp = bp->b_pages[j];
1167					if (mtmp == bogus_page) {
1168						mtmp = vm_page_lookup(obj, poff + j);
1169						if (!mtmp) {
1170							panic("brelse: page missing\n");
1171						}
1172						bp->b_pages[j] = mtmp;
1173					}
1174				}
1175
1176				if ((bp->b_flags & B_INVAL) == 0) {
1177					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1178				}
1179				m = bp->b_pages[i];
1180			}
1181			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1182				int poffset = foff & PAGE_MASK;
1183				int presid = resid > (PAGE_SIZE - poffset) ?
1184					(PAGE_SIZE - poffset) : resid;
1185
1186				KASSERT(presid >= 0, ("brelse: extra page"));
1187				vm_page_set_invalid(m, poffset, presid);
1188				if (had_bogus)
1189					printf("avoided corruption bug in bogus_page/brelse code\n");
1190			}
1191			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1192			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1193		}
1194
1195		if (bp->b_flags & (B_INVAL | B_RELBUF))
1196			vfs_vmio_release(bp);
1197
1198	} else if (bp->b_flags & B_VMIO) {
1199
1200		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1201			vfs_vmio_release(bp);
1202		}
1203
1204	}
1205
1206	if (bp->b_qindex != QUEUE_NONE)
1207		panic("brelse: free buffer onto another queue???");
1208	if (BUF_REFCNT(bp) > 1) {
1209		/* do not release to free list */
1210		BUF_UNLOCK(bp);
1211		splx(s);
1212		return;
1213	}
1214
1215	/* enqueue */
1216
1217	/* buffers with no memory */
1218	if (bp->b_bufsize == 0) {
1219		bp->b_flags |= B_INVAL;
1220		bp->b_xflags &= ~BX_BKGRDWRITE;
1221		if (bp->b_xflags & BX_BKGRDINPROG)
1222			panic("losing buffer 1");
1223		if (bp->b_kvasize) {
1224			bp->b_qindex = QUEUE_EMPTYKVA;
1225		} else {
1226			bp->b_qindex = QUEUE_EMPTY;
1227		}
1228		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1229		LIST_REMOVE(bp, b_hash);
1230		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1231		bp->b_dev = NODEV;
1232	/* buffers with junk contents */
1233	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1234		bp->b_flags |= B_INVAL;
1235		bp->b_xflags &= ~BX_BKGRDWRITE;
1236		if (bp->b_xflags & BX_BKGRDINPROG)
1237			panic("losing buffer 2");
1238		bp->b_qindex = QUEUE_CLEAN;
1239		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1240		LIST_REMOVE(bp, b_hash);
1241		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1242		bp->b_dev = NODEV;
1243
1244	/* buffers that are locked */
1245	} else if (bp->b_flags & B_LOCKED) {
1246		bp->b_qindex = QUEUE_LOCKED;
1247		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1248
1249	/* remaining buffers */
1250	} else {
1251		if (bp->b_flags & B_DELWRI)
1252			bp->b_qindex = QUEUE_DIRTY;
1253		else
1254			bp->b_qindex = QUEUE_CLEAN;
1255		if (bp->b_flags & B_AGE)
1256			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1257		else
1258			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1259	}
1260
1261	/*
1262	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1263	 * on the correct queue.
1264	 */
1265	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1266		bp->b_flags &= ~B_DELWRI;
1267		--numdirtybuffers;
1268		numdirtywakeup(lodirtybuffers);
1269	}
1270
1271	/*
1272	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1273	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1274	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1275	 * if B_INVAL is set ).
1276	 */
1277
1278	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1279		bufcountwakeup();
1280
1281	/*
1282	 * Something we can maybe free or reuse
1283	 */
1284	if (bp->b_bufsize || bp->b_kvasize)
1285		bufspacewakeup();
1286
1287	/* unlock */
1288	BUF_UNLOCK(bp);
1289	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1290	bp->b_ioflags &= ~BIO_ORDERED;
1291	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1292		panic("brelse: not dirty");
1293	splx(s);
1294}
1295
1296/*
1297 * Release a buffer back to the appropriate queue but do not try to free
1298 * it.  The buffer is expected to be used again soon.
1299 *
1300 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1301 * biodone() to requeue an async I/O on completion.  It is also used when
1302 * known good buffers need to be requeued but we think we may need the data
1303 * again soon.
1304 *
1305 * XXX we should be able to leave the B_RELBUF hint set on completion.
1306 */
1307void
1308bqrelse(struct buf * bp)
1309{
1310	int s;
1311
1312	s = splbio();
1313
1314	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1315
1316	if (bp->b_qindex != QUEUE_NONE)
1317		panic("bqrelse: free buffer onto another queue???");
1318	if (BUF_REFCNT(bp) > 1) {
1319		/* do not release to free list */
1320		BUF_UNLOCK(bp);
1321		splx(s);
1322		return;
1323	}
1324	if (bp->b_flags & B_LOCKED) {
1325		bp->b_ioflags &= ~BIO_ERROR;
1326		bp->b_qindex = QUEUE_LOCKED;
1327		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1328		/* buffers with stale but valid contents */
1329	} else if (bp->b_flags & B_DELWRI) {
1330		bp->b_qindex = QUEUE_DIRTY;
1331		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1332	} else if (vm_page_count_severe()) {
1333		/*
1334		 * We are too low on memory, we have to try to free the
1335		 * buffer (most importantly: the wired pages making up its
1336		 * backing store) *now*.
1337		 */
1338		splx(s);
1339		brelse(bp);
1340		return;
1341	} else {
1342		bp->b_qindex = QUEUE_CLEAN;
1343		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1344	}
1345
1346	if ((bp->b_flags & B_LOCKED) == 0 &&
1347	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1348		bufcountwakeup();
1349	}
1350
1351	/*
1352	 * Something we can maybe free or reuse.
1353	 */
1354	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1355		bufspacewakeup();
1356
1357	/* unlock */
1358	BUF_UNLOCK(bp);
1359	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1360	bp->b_ioflags &= ~BIO_ORDERED;
1361	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1362		panic("bqrelse: not dirty");
1363	splx(s);
1364}
1365
1366static void
1367vfs_vmio_release(bp)
1368	struct buf *bp;
1369{
1370	int i;
1371	vm_page_t m;
1372
1373	GIANT_REQUIRED;
1374
1375	for (i = 0; i < bp->b_npages; i++) {
1376		m = bp->b_pages[i];
1377		bp->b_pages[i] = NULL;
1378		/*
1379		 * In order to keep page LRU ordering consistent, put
1380		 * everything on the inactive queue.
1381		 */
1382		vm_page_unwire(m, 0);
1383		/*
1384		 * We don't mess with busy pages, it is
1385		 * the responsibility of the process that
1386		 * busied the pages to deal with them.
1387		 */
1388		if ((m->flags & PG_BUSY) || (m->busy != 0))
1389			continue;
1390
1391		if (m->wire_count == 0) {
1392			vm_page_flag_clear(m, PG_ZERO);
1393			/*
1394			 * Might as well free the page if we can and it has
1395			 * no valid data.  We also free the page if the
1396			 * buffer was used for direct I/O
1397			 */
1398			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1399				vm_page_busy(m);
1400				vm_page_protect(m, VM_PROT_NONE);
1401				vm_page_free(m);
1402			} else if (bp->b_flags & B_DIRECT) {
1403				vm_page_try_to_free(m);
1404			} else if (vm_page_count_severe()) {
1405				vm_page_try_to_cache(m);
1406			}
1407		}
1408	}
1409	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1410
1411	if (bp->b_bufsize) {
1412		bufspacewakeup();
1413		bp->b_bufsize = 0;
1414	}
1415	bp->b_npages = 0;
1416	bp->b_flags &= ~B_VMIO;
1417	if (bp->b_vp)
1418		brelvp(bp);
1419}
1420
1421/*
1422 * Check to see if a block is currently memory resident.
1423 */
1424struct buf *
1425gbincore(struct vnode * vp, daddr_t blkno)
1426{
1427	struct buf *bp;
1428	struct bufhashhdr *bh;
1429
1430	bh = bufhash(vp, blkno);
1431
1432	/* Search hash chain */
1433	LIST_FOREACH(bp, bh, b_hash) {
1434		/* hit */
1435		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1436		    (bp->b_flags & B_INVAL) == 0) {
1437			break;
1438		}
1439	}
1440	return (bp);
1441}
1442
1443/*
1444 *	vfs_bio_awrite:
1445 *
1446 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1447 *	This is much better then the old way of writing only one buffer at
1448 *	a time.  Note that we may not be presented with the buffers in the
1449 *	correct order, so we search for the cluster in both directions.
1450 */
1451int
1452vfs_bio_awrite(struct buf * bp)
1453{
1454	int i;
1455	int j;
1456	daddr_t lblkno = bp->b_lblkno;
1457	struct vnode *vp = bp->b_vp;
1458	int s;
1459	int ncl;
1460	struct buf *bpa;
1461	int nwritten;
1462	int size;
1463	int maxcl;
1464
1465	s = splbio();
1466	/*
1467	 * right now we support clustered writing only to regular files.  If
1468	 * we find a clusterable block we could be in the middle of a cluster
1469	 * rather then at the beginning.
1470	 */
1471	if ((vp->v_type == VREG) &&
1472	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1473	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1474
1475		size = vp->v_mount->mnt_stat.f_iosize;
1476		maxcl = MAXPHYS / size;
1477
1478		for (i = 1; i < maxcl; i++) {
1479			if ((bpa = gbincore(vp, lblkno + i)) &&
1480			    BUF_REFCNT(bpa) == 0 &&
1481			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1482			    (B_DELWRI | B_CLUSTEROK)) &&
1483			    (bpa->b_bufsize == size)) {
1484				if ((bpa->b_blkno == bpa->b_lblkno) ||
1485				    (bpa->b_blkno !=
1486				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1487					break;
1488			} else {
1489				break;
1490			}
1491		}
1492		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1493			if ((bpa = gbincore(vp, lblkno - j)) &&
1494			    BUF_REFCNT(bpa) == 0 &&
1495			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1496			    (B_DELWRI | B_CLUSTEROK)) &&
1497			    (bpa->b_bufsize == size)) {
1498				if ((bpa->b_blkno == bpa->b_lblkno) ||
1499				    (bpa->b_blkno !=
1500				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1501					break;
1502			} else {
1503				break;
1504			}
1505		}
1506		--j;
1507		ncl = i + j;
1508		/*
1509		 * this is a possible cluster write
1510		 */
1511		if (ncl != 1) {
1512			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1513			splx(s);
1514			return nwritten;
1515		}
1516	}
1517
1518	BUF_LOCK(bp, LK_EXCLUSIVE);
1519	bremfree(bp);
1520	bp->b_flags |= B_ASYNC;
1521
1522	splx(s);
1523	/*
1524	 * default (old) behavior, writing out only one block
1525	 *
1526	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1527	 */
1528	nwritten = bp->b_bufsize;
1529	(void) BUF_WRITE(bp);
1530
1531	return nwritten;
1532}
1533
1534/*
1535 *	getnewbuf:
1536 *
1537 *	Find and initialize a new buffer header, freeing up existing buffers
1538 *	in the bufqueues as necessary.  The new buffer is returned locked.
1539 *
1540 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1541 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1542 *
1543 *	We block if:
1544 *		We have insufficient buffer headers
1545 *		We have insufficient buffer space
1546 *		buffer_map is too fragmented ( space reservation fails )
1547 *		If we have to flush dirty buffers ( but we try to avoid this )
1548 *
1549 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1550 *	Instead we ask the buf daemon to do it for us.  We attempt to
1551 *	avoid piecemeal wakeups of the pageout daemon.
1552 */
1553
1554static struct buf *
1555getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1556{
1557	struct buf *bp;
1558	struct buf *nbp;
1559	int defrag = 0;
1560	int nqindex;
1561	static int flushingbufs;
1562
1563	GIANT_REQUIRED;
1564
1565	/*
1566	 * We can't afford to block since we might be holding a vnode lock,
1567	 * which may prevent system daemons from running.  We deal with
1568	 * low-memory situations by proactively returning memory and running
1569	 * async I/O rather then sync I/O.
1570	 */
1571
1572	++getnewbufcalls;
1573	--getnewbufrestarts;
1574restart:
1575	++getnewbufrestarts;
1576
1577	/*
1578	 * Setup for scan.  If we do not have enough free buffers,
1579	 * we setup a degenerate case that immediately fails.  Note
1580	 * that if we are specially marked process, we are allowed to
1581	 * dip into our reserves.
1582	 *
1583	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1584	 *
1585	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1586	 * However, there are a number of cases (defragging, reusing, ...)
1587	 * where we cannot backup.
1588	 */
1589	nqindex = QUEUE_EMPTYKVA;
1590	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1591
1592	if (nbp == NULL) {
1593		/*
1594		 * If no EMPTYKVA buffers and we are either
1595		 * defragging or reusing, locate a CLEAN buffer
1596		 * to free or reuse.  If bufspace useage is low
1597		 * skip this step so we can allocate a new buffer.
1598		 */
1599		if (defrag || bufspace >= lobufspace) {
1600			nqindex = QUEUE_CLEAN;
1601			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1602		}
1603
1604		/*
1605		 * If we could not find or were not allowed to reuse a
1606		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1607		 * buffer.  We can only use an EMPTY buffer if allocating
1608		 * its KVA would not otherwise run us out of buffer space.
1609		 */
1610		if (nbp == NULL && defrag == 0 &&
1611		    bufspace + maxsize < hibufspace) {
1612			nqindex = QUEUE_EMPTY;
1613			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1614		}
1615	}
1616
1617	/*
1618	 * Run scan, possibly freeing data and/or kva mappings on the fly
1619	 * depending.
1620	 */
1621
1622	while ((bp = nbp) != NULL) {
1623		int qindex = nqindex;
1624
1625		/*
1626		 * Calculate next bp ( we can only use it if we do not block
1627		 * or do other fancy things ).
1628		 */
1629		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1630			switch(qindex) {
1631			case QUEUE_EMPTY:
1632				nqindex = QUEUE_EMPTYKVA;
1633				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1634					break;
1635				/* fall through */
1636			case QUEUE_EMPTYKVA:
1637				nqindex = QUEUE_CLEAN;
1638				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1639					break;
1640				/* fall through */
1641			case QUEUE_CLEAN:
1642				/*
1643				 * nbp is NULL.
1644				 */
1645				break;
1646			}
1647		}
1648
1649		/*
1650		 * Sanity Checks
1651		 */
1652		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1653
1654		/*
1655		 * Note: we no longer distinguish between VMIO and non-VMIO
1656		 * buffers.
1657		 */
1658
1659		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1660
1661		/*
1662		 * If we are defragging then we need a buffer with
1663		 * b_kvasize != 0.  XXX this situation should no longer
1664		 * occur, if defrag is non-zero the buffer's b_kvasize
1665		 * should also be non-zero at this point.  XXX
1666		 */
1667		if (defrag && bp->b_kvasize == 0) {
1668			printf("Warning: defrag empty buffer %p\n", bp);
1669			continue;
1670		}
1671
1672		/*
1673		 * Start freeing the bp.  This is somewhat involved.  nbp
1674		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1675		 */
1676
1677		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1678			panic("getnewbuf: locked buf");
1679		bremfree(bp);
1680
1681		if (qindex == QUEUE_CLEAN) {
1682			if (bp->b_flags & B_VMIO) {
1683				bp->b_flags &= ~B_ASYNC;
1684				vfs_vmio_release(bp);
1685			}
1686			if (bp->b_vp)
1687				brelvp(bp);
1688		}
1689
1690		/*
1691		 * NOTE:  nbp is now entirely invalid.  We can only restart
1692		 * the scan from this point on.
1693		 *
1694		 * Get the rest of the buffer freed up.  b_kva* is still
1695		 * valid after this operation.
1696		 */
1697
1698		if (bp->b_rcred != NOCRED) {
1699			crfree(bp->b_rcred);
1700			bp->b_rcred = NOCRED;
1701		}
1702		if (bp->b_wcred != NOCRED) {
1703			crfree(bp->b_wcred);
1704			bp->b_wcred = NOCRED;
1705		}
1706		if (LIST_FIRST(&bp->b_dep) != NULL)
1707			buf_deallocate(bp);
1708		if (bp->b_xflags & BX_BKGRDINPROG)
1709			panic("losing buffer 3");
1710		LIST_REMOVE(bp, b_hash);
1711		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1712
1713		if (bp->b_bufsize)
1714			allocbuf(bp, 0);
1715
1716		bp->b_flags = 0;
1717		bp->b_ioflags = 0;
1718		bp->b_xflags = 0;
1719		bp->b_dev = NODEV;
1720		bp->b_vp = NULL;
1721		bp->b_blkno = bp->b_lblkno = 0;
1722		bp->b_offset = NOOFFSET;
1723		bp->b_iodone = 0;
1724		bp->b_error = 0;
1725		bp->b_resid = 0;
1726		bp->b_bcount = 0;
1727		bp->b_npages = 0;
1728		bp->b_dirtyoff = bp->b_dirtyend = 0;
1729		bp->b_magic = B_MAGIC_BIO;
1730		bp->b_op = &buf_ops_bio;
1731
1732		LIST_INIT(&bp->b_dep);
1733
1734		/*
1735		 * If we are defragging then free the buffer.
1736		 */
1737		if (defrag) {
1738			bp->b_flags |= B_INVAL;
1739			bfreekva(bp);
1740			brelse(bp);
1741			defrag = 0;
1742			goto restart;
1743		}
1744
1745		/*
1746		 * If we are overcomitted then recover the buffer and its
1747		 * KVM space.  This occurs in rare situations when multiple
1748		 * processes are blocked in getnewbuf() or allocbuf().
1749		 */
1750		if (bufspace >= hibufspace)
1751			flushingbufs = 1;
1752		if (flushingbufs && bp->b_kvasize != 0) {
1753			bp->b_flags |= B_INVAL;
1754			bfreekva(bp);
1755			brelse(bp);
1756			goto restart;
1757		}
1758		if (bufspace < lobufspace)
1759			flushingbufs = 0;
1760		break;
1761	}
1762
1763	/*
1764	 * If we exhausted our list, sleep as appropriate.  We may have to
1765	 * wakeup various daemons and write out some dirty buffers.
1766	 *
1767	 * Generally we are sleeping due to insufficient buffer space.
1768	 */
1769
1770	if (bp == NULL) {
1771		int flags;
1772		char *waitmsg;
1773
1774		if (defrag) {
1775			flags = VFS_BIO_NEED_BUFSPACE;
1776			waitmsg = "nbufkv";
1777		} else if (bufspace >= hibufspace) {
1778			waitmsg = "nbufbs";
1779			flags = VFS_BIO_NEED_BUFSPACE;
1780		} else {
1781			waitmsg = "newbuf";
1782			flags = VFS_BIO_NEED_ANY;
1783		}
1784
1785		bd_speedup();	/* heeeelp */
1786
1787		needsbuffer |= flags;
1788		while (needsbuffer & flags) {
1789			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1790			    waitmsg, slptimeo))
1791				return (NULL);
1792		}
1793	} else {
1794		/*
1795		 * We finally have a valid bp.  We aren't quite out of the
1796		 * woods, we still have to reserve kva space.  In order
1797		 * to keep fragmentation sane we only allocate kva in
1798		 * BKVASIZE chunks.
1799		 */
1800		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1801
1802		if (maxsize != bp->b_kvasize) {
1803			vm_offset_t addr = 0;
1804
1805			bfreekva(bp);
1806
1807			if (vm_map_findspace(buffer_map,
1808				vm_map_min(buffer_map), maxsize, &addr)) {
1809				/*
1810				 * Uh oh.  Buffer map is to fragmented.  We
1811				 * must defragment the map.
1812				 */
1813				++bufdefragcnt;
1814				defrag = 1;
1815				bp->b_flags |= B_INVAL;
1816				brelse(bp);
1817				goto restart;
1818			}
1819			if (addr) {
1820				vm_map_insert(buffer_map, NULL, 0,
1821					addr, addr + maxsize,
1822					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1823
1824				bp->b_kvabase = (caddr_t) addr;
1825				bp->b_kvasize = maxsize;
1826				bufspace += bp->b_kvasize;
1827				++bufreusecnt;
1828			}
1829		}
1830		bp->b_data = bp->b_kvabase;
1831	}
1832	return(bp);
1833}
1834
1835/*
1836 *	buf_daemon:
1837 *
1838 *	buffer flushing daemon.  Buffers are normally flushed by the
1839 *	update daemon but if it cannot keep up this process starts to
1840 *	take the load in an attempt to prevent getnewbuf() from blocking.
1841 */
1842
1843static struct proc *bufdaemonproc;
1844
1845static struct kproc_desc buf_kp = {
1846	"bufdaemon",
1847	buf_daemon,
1848	&bufdaemonproc
1849};
1850SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1851
1852static void
1853buf_daemon()
1854{
1855	int s;
1856
1857	mtx_lock(&Giant);
1858
1859	/*
1860	 * This process needs to be suspended prior to shutdown sync.
1861	 */
1862	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1863	    SHUTDOWN_PRI_LAST);
1864
1865	/*
1866	 * This process is allowed to take the buffer cache to the limit
1867	 */
1868	curproc->p_flag |= P_BUFEXHAUST;
1869	s = splbio();
1870
1871	for (;;) {
1872		kthread_suspend_check(bufdaemonproc);
1873
1874		bd_request = 0;
1875
1876		/*
1877		 * Do the flush.  Limit the amount of in-transit I/O we
1878		 * allow to build up, otherwise we would completely saturate
1879		 * the I/O system.  Wakeup any waiting processes before we
1880		 * normally would so they can run in parallel with our drain.
1881		 */
1882		while (numdirtybuffers > lodirtybuffers) {
1883			if (flushbufqueues() == 0)
1884				break;
1885			waitrunningbufspace();
1886			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1887		}
1888
1889		/*
1890		 * Only clear bd_request if we have reached our low water
1891		 * mark.  The buf_daemon normally waits 5 seconds and
1892		 * then incrementally flushes any dirty buffers that have
1893		 * built up, within reason.
1894		 *
1895		 * If we were unable to hit our low water mark and couldn't
1896		 * find any flushable buffers, we sleep half a second.
1897		 * Otherwise we loop immediately.
1898		 */
1899		if (numdirtybuffers <= lodirtybuffers) {
1900			/*
1901			 * We reached our low water mark, reset the
1902			 * request and sleep until we are needed again.
1903			 * The sleep is just so the suspend code works.
1904			 */
1905			bd_request = 0;
1906			tsleep(&bd_request, PVM, "psleep", hz);
1907		} else {
1908			/*
1909			 * We couldn't find any flushable dirty buffers but
1910			 * still have too many dirty buffers, we
1911			 * have to sleep and try again.  (rare)
1912			 */
1913			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1914		}
1915	}
1916}
1917
1918/*
1919 *	flushbufqueues:
1920 *
1921 *	Try to flush a buffer in the dirty queue.  We must be careful to
1922 *	free up B_INVAL buffers instead of write them, which NFS is
1923 *	particularly sensitive to.
1924 */
1925
1926static int
1927flushbufqueues(void)
1928{
1929	struct buf *bp;
1930	int r = 0;
1931
1932	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1933
1934	while (bp) {
1935		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1936		if ((bp->b_flags & B_DELWRI) != 0 &&
1937		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1938			if (bp->b_flags & B_INVAL) {
1939				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1940					panic("flushbufqueues: locked buf");
1941				bremfree(bp);
1942				brelse(bp);
1943				++r;
1944				break;
1945			}
1946			if (LIST_FIRST(&bp->b_dep) != NULL &&
1947			    (bp->b_flags & B_DEFERRED) == 0 &&
1948			    buf_countdeps(bp, 0)) {
1949				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1950				    bp, b_freelist);
1951				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1952				    bp, b_freelist);
1953				bp->b_flags |= B_DEFERRED;
1954				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1955				continue;
1956			}
1957			vfs_bio_awrite(bp);
1958			++r;
1959			break;
1960		}
1961		bp = TAILQ_NEXT(bp, b_freelist);
1962	}
1963	return (r);
1964}
1965
1966/*
1967 * Check to see if a block is currently memory resident.
1968 */
1969struct buf *
1970incore(struct vnode * vp, daddr_t blkno)
1971{
1972	struct buf *bp;
1973
1974	int s = splbio();
1975	bp = gbincore(vp, blkno);
1976	splx(s);
1977	return (bp);
1978}
1979
1980/*
1981 * Returns true if no I/O is needed to access the
1982 * associated VM object.  This is like incore except
1983 * it also hunts around in the VM system for the data.
1984 */
1985
1986int
1987inmem(struct vnode * vp, daddr_t blkno)
1988{
1989	vm_object_t obj;
1990	vm_offset_t toff, tinc, size;
1991	vm_page_t m;
1992	vm_ooffset_t off;
1993
1994	GIANT_REQUIRED;
1995
1996	if (incore(vp, blkno))
1997		return 1;
1998	if (vp->v_mount == NULL)
1999		return 0;
2000	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
2001		return 0;
2002
2003	size = PAGE_SIZE;
2004	if (size > vp->v_mount->mnt_stat.f_iosize)
2005		size = vp->v_mount->mnt_stat.f_iosize;
2006	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2007
2008	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2009		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2010		if (!m)
2011			goto notinmem;
2012		tinc = size;
2013		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2014			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2015		if (vm_page_is_valid(m,
2016		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2017			goto notinmem;
2018	}
2019	return 1;
2020
2021notinmem:
2022	return (0);
2023}
2024
2025/*
2026 *	vfs_setdirty:
2027 *
2028 *	Sets the dirty range for a buffer based on the status of the dirty
2029 *	bits in the pages comprising the buffer.
2030 *
2031 *	The range is limited to the size of the buffer.
2032 *
2033 *	This routine is primarily used by NFS, but is generalized for the
2034 *	B_VMIO case.
2035 */
2036static void
2037vfs_setdirty(struct buf *bp)
2038{
2039	int i;
2040	vm_object_t object;
2041
2042	GIANT_REQUIRED;
2043	/*
2044	 * Degenerate case - empty buffer
2045	 */
2046
2047	if (bp->b_bufsize == 0)
2048		return;
2049
2050	/*
2051	 * We qualify the scan for modified pages on whether the
2052	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2053	 * is not cleared simply by protecting pages off.
2054	 */
2055
2056	if ((bp->b_flags & B_VMIO) == 0)
2057		return;
2058
2059	object = bp->b_pages[0]->object;
2060
2061	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2062		printf("Warning: object %p writeable but not mightbedirty\n", object);
2063	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2064		printf("Warning: object %p mightbedirty but not writeable\n", object);
2065
2066	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2067		vm_offset_t boffset;
2068		vm_offset_t eoffset;
2069
2070		/*
2071		 * test the pages to see if they have been modified directly
2072		 * by users through the VM system.
2073		 */
2074		for (i = 0; i < bp->b_npages; i++) {
2075			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2076			vm_page_test_dirty(bp->b_pages[i]);
2077		}
2078
2079		/*
2080		 * Calculate the encompassing dirty range, boffset and eoffset,
2081		 * (eoffset - boffset) bytes.
2082		 */
2083
2084		for (i = 0; i < bp->b_npages; i++) {
2085			if (bp->b_pages[i]->dirty)
2086				break;
2087		}
2088		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2089
2090		for (i = bp->b_npages - 1; i >= 0; --i) {
2091			if (bp->b_pages[i]->dirty) {
2092				break;
2093			}
2094		}
2095		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2096
2097		/*
2098		 * Fit it to the buffer.
2099		 */
2100
2101		if (eoffset > bp->b_bcount)
2102			eoffset = bp->b_bcount;
2103
2104		/*
2105		 * If we have a good dirty range, merge with the existing
2106		 * dirty range.
2107		 */
2108
2109		if (boffset < eoffset) {
2110			if (bp->b_dirtyoff > boffset)
2111				bp->b_dirtyoff = boffset;
2112			if (bp->b_dirtyend < eoffset)
2113				bp->b_dirtyend = eoffset;
2114		}
2115	}
2116}
2117
2118/*
2119 *	getblk:
2120 *
2121 *	Get a block given a specified block and offset into a file/device.
2122 *	The buffers B_DONE bit will be cleared on return, making it almost
2123 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2124 *	return.  The caller should clear B_INVAL prior to initiating a
2125 *	READ.
2126 *
2127 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2128 *	an existing buffer.
2129 *
2130 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2131 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2132 *	and then cleared based on the backing VM.  If the previous buffer is
2133 *	non-0-sized but invalid, B_CACHE will be cleared.
2134 *
2135 *	If getblk() must create a new buffer, the new buffer is returned with
2136 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2137 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2138 *	backing VM.
2139 *
2140 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2141 *	B_CACHE bit is clear.
2142 *
2143 *	What this means, basically, is that the caller should use B_CACHE to
2144 *	determine whether the buffer is fully valid or not and should clear
2145 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2146 *	the buffer by loading its data area with something, the caller needs
2147 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2148 *	the caller should set B_CACHE ( as an optimization ), else the caller
2149 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2150 *	a write attempt or if it was a successfull read.  If the caller
2151 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2152 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2153 */
2154struct buf *
2155getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2156{
2157	struct buf *bp;
2158	int s;
2159	struct bufhashhdr *bh;
2160
2161	if (size > MAXBSIZE)
2162		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2163
2164	s = splbio();
2165loop:
2166	/*
2167	 * Block if we are low on buffers.   Certain processes are allowed
2168	 * to completely exhaust the buffer cache.
2169         *
2170         * If this check ever becomes a bottleneck it may be better to
2171         * move it into the else, when gbincore() fails.  At the moment
2172         * it isn't a problem.
2173	 *
2174	 * XXX remove if 0 sections (clean this up after its proven)
2175         */
2176	if (numfreebuffers == 0) {
2177		if (curthread == PCPU_GET(idlethread))
2178			return NULL;
2179		needsbuffer |= VFS_BIO_NEED_ANY;
2180	}
2181
2182	if ((bp = gbincore(vp, blkno))) {
2183		/*
2184		 * Buffer is in-core.  If the buffer is not busy, it must
2185		 * be on a queue.
2186		 */
2187
2188		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2189			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2190			    "getblk", slpflag, slptimeo) == ENOLCK)
2191				goto loop;
2192			splx(s);
2193			return (struct buf *) NULL;
2194		}
2195
2196		/*
2197		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2198		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2199		 * and for a VMIO buffer B_CACHE is adjusted according to the
2200		 * backing VM cache.
2201		 */
2202		if (bp->b_flags & B_INVAL)
2203			bp->b_flags &= ~B_CACHE;
2204		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2205			bp->b_flags |= B_CACHE;
2206		bremfree(bp);
2207
2208		/*
2209		 * check for size inconsistancies for non-VMIO case.
2210		 */
2211
2212		if (bp->b_bcount != size) {
2213			if ((bp->b_flags & B_VMIO) == 0 ||
2214			    (size > bp->b_kvasize)) {
2215				if (bp->b_flags & B_DELWRI) {
2216					bp->b_flags |= B_NOCACHE;
2217					BUF_WRITE(bp);
2218				} else {
2219					if ((bp->b_flags & B_VMIO) &&
2220					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2221						bp->b_flags |= B_RELBUF;
2222						brelse(bp);
2223					} else {
2224						bp->b_flags |= B_NOCACHE;
2225						BUF_WRITE(bp);
2226					}
2227				}
2228				goto loop;
2229			}
2230		}
2231
2232		/*
2233		 * If the size is inconsistant in the VMIO case, we can resize
2234		 * the buffer.  This might lead to B_CACHE getting set or
2235		 * cleared.  If the size has not changed, B_CACHE remains
2236		 * unchanged from its previous state.
2237		 */
2238
2239		if (bp->b_bcount != size)
2240			allocbuf(bp, size);
2241
2242		KASSERT(bp->b_offset != NOOFFSET,
2243		    ("getblk: no buffer offset"));
2244
2245		/*
2246		 * A buffer with B_DELWRI set and B_CACHE clear must
2247		 * be committed before we can return the buffer in
2248		 * order to prevent the caller from issuing a read
2249		 * ( due to B_CACHE not being set ) and overwriting
2250		 * it.
2251		 *
2252		 * Most callers, including NFS and FFS, need this to
2253		 * operate properly either because they assume they
2254		 * can issue a read if B_CACHE is not set, or because
2255		 * ( for example ) an uncached B_DELWRI might loop due
2256		 * to softupdates re-dirtying the buffer.  In the latter
2257		 * case, B_CACHE is set after the first write completes,
2258		 * preventing further loops.
2259		 */
2260
2261		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2262			BUF_WRITE(bp);
2263			goto loop;
2264		}
2265
2266		splx(s);
2267		bp->b_flags &= ~B_DONE;
2268	} else {
2269		/*
2270		 * Buffer is not in-core, create new buffer.  The buffer
2271		 * returned by getnewbuf() is locked.  Note that the returned
2272		 * buffer is also considered valid (not marked B_INVAL).
2273		 */
2274		int bsize, maxsize, vmio;
2275		off_t offset;
2276
2277		if (vn_isdisk(vp, NULL))
2278			bsize = DEV_BSIZE;
2279		else if (vp->v_mountedhere)
2280			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2281		else if (vp->v_mount)
2282			bsize = vp->v_mount->mnt_stat.f_iosize;
2283		else
2284			bsize = size;
2285
2286		offset = (off_t)blkno * bsize;
2287		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2288		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2289		maxsize = imax(maxsize, bsize);
2290
2291		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2292			if (slpflag || slptimeo) {
2293				splx(s);
2294				return NULL;
2295			}
2296			goto loop;
2297		}
2298
2299		/*
2300		 * This code is used to make sure that a buffer is not
2301		 * created while the getnewbuf routine is blocked.
2302		 * This can be a problem whether the vnode is locked or not.
2303		 * If the buffer is created out from under us, we have to
2304		 * throw away the one we just created.  There is now window
2305		 * race because we are safely running at splbio() from the
2306		 * point of the duplicate buffer creation through to here,
2307		 * and we've locked the buffer.
2308		 */
2309		if (gbincore(vp, blkno)) {
2310			bp->b_flags |= B_INVAL;
2311			brelse(bp);
2312			goto loop;
2313		}
2314
2315		/*
2316		 * Insert the buffer into the hash, so that it can
2317		 * be found by incore.
2318		 */
2319		bp->b_blkno = bp->b_lblkno = blkno;
2320		bp->b_offset = offset;
2321
2322		bgetvp(vp, bp);
2323		LIST_REMOVE(bp, b_hash);
2324		bh = bufhash(vp, blkno);
2325		LIST_INSERT_HEAD(bh, bp, b_hash);
2326
2327		/*
2328		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2329		 * buffer size starts out as 0, B_CACHE will be set by
2330		 * allocbuf() for the VMIO case prior to it testing the
2331		 * backing store for validity.
2332		 */
2333
2334		if (vmio) {
2335			bp->b_flags |= B_VMIO;
2336#if defined(VFS_BIO_DEBUG)
2337			if (vp->v_type != VREG)
2338				printf("getblk: vmioing file type %d???\n", vp->v_type);
2339#endif
2340		} else {
2341			bp->b_flags &= ~B_VMIO;
2342		}
2343
2344		allocbuf(bp, size);
2345
2346		splx(s);
2347		bp->b_flags &= ~B_DONE;
2348	}
2349	return (bp);
2350}
2351
2352/*
2353 * Get an empty, disassociated buffer of given size.  The buffer is initially
2354 * set to B_INVAL.
2355 */
2356struct buf *
2357geteblk(int size)
2358{
2359	struct buf *bp;
2360	int s;
2361	int maxsize;
2362
2363	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2364
2365	s = splbio();
2366	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2367	splx(s);
2368	allocbuf(bp, size);
2369	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2370	return (bp);
2371}
2372
2373
2374/*
2375 * This code constitutes the buffer memory from either anonymous system
2376 * memory (in the case of non-VMIO operations) or from an associated
2377 * VM object (in the case of VMIO operations).  This code is able to
2378 * resize a buffer up or down.
2379 *
2380 * Note that this code is tricky, and has many complications to resolve
2381 * deadlock or inconsistant data situations.  Tread lightly!!!
2382 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2383 * the caller.  Calling this code willy nilly can result in the loss of data.
2384 *
2385 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2386 * B_CACHE for the non-VMIO case.
2387 */
2388
2389int
2390allocbuf(struct buf *bp, int size)
2391{
2392	int newbsize, mbsize;
2393	int i;
2394
2395	GIANT_REQUIRED;
2396
2397	if (BUF_REFCNT(bp) == 0)
2398		panic("allocbuf: buffer not busy");
2399
2400	if (bp->b_kvasize < size)
2401		panic("allocbuf: buffer too small");
2402
2403	if ((bp->b_flags & B_VMIO) == 0) {
2404		caddr_t origbuf;
2405		int origbufsize;
2406		/*
2407		 * Just get anonymous memory from the kernel.  Don't
2408		 * mess with B_CACHE.
2409		 */
2410		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2411#if !defined(NO_B_MALLOC)
2412		if (bp->b_flags & B_MALLOC)
2413			newbsize = mbsize;
2414		else
2415#endif
2416			newbsize = round_page(size);
2417
2418		if (newbsize < bp->b_bufsize) {
2419#if !defined(NO_B_MALLOC)
2420			/*
2421			 * malloced buffers are not shrunk
2422			 */
2423			if (bp->b_flags & B_MALLOC) {
2424				if (newbsize) {
2425					bp->b_bcount = size;
2426				} else {
2427					free(bp->b_data, M_BIOBUF);
2428					if (bp->b_bufsize) {
2429						bufmallocspace -= bp->b_bufsize;
2430						bufspacewakeup();
2431						bp->b_bufsize = 0;
2432					}
2433					bp->b_data = bp->b_kvabase;
2434					bp->b_bcount = 0;
2435					bp->b_flags &= ~B_MALLOC;
2436				}
2437				return 1;
2438			}
2439#endif
2440			vm_hold_free_pages(
2441			    bp,
2442			    (vm_offset_t) bp->b_data + newbsize,
2443			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2444		} else if (newbsize > bp->b_bufsize) {
2445#if !defined(NO_B_MALLOC)
2446			/*
2447			 * We only use malloced memory on the first allocation.
2448			 * and revert to page-allocated memory when the buffer
2449			 * grows.
2450			 */
2451			if ( (bufmallocspace < maxbufmallocspace) &&
2452				(bp->b_bufsize == 0) &&
2453				(mbsize <= PAGE_SIZE/2)) {
2454
2455				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2456				bp->b_bufsize = mbsize;
2457				bp->b_bcount = size;
2458				bp->b_flags |= B_MALLOC;
2459				bufmallocspace += mbsize;
2460				return 1;
2461			}
2462#endif
2463			origbuf = NULL;
2464			origbufsize = 0;
2465#if !defined(NO_B_MALLOC)
2466			/*
2467			 * If the buffer is growing on its other-than-first allocation,
2468			 * then we revert to the page-allocation scheme.
2469			 */
2470			if (bp->b_flags & B_MALLOC) {
2471				origbuf = bp->b_data;
2472				origbufsize = bp->b_bufsize;
2473				bp->b_data = bp->b_kvabase;
2474				if (bp->b_bufsize) {
2475					bufmallocspace -= bp->b_bufsize;
2476					bufspacewakeup();
2477					bp->b_bufsize = 0;
2478				}
2479				bp->b_flags &= ~B_MALLOC;
2480				newbsize = round_page(newbsize);
2481			}
2482#endif
2483			vm_hold_load_pages(
2484			    bp,
2485			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2486			    (vm_offset_t) bp->b_data + newbsize);
2487#if !defined(NO_B_MALLOC)
2488			if (origbuf) {
2489				bcopy(origbuf, bp->b_data, origbufsize);
2490				free(origbuf, M_BIOBUF);
2491			}
2492#endif
2493		}
2494	} else {
2495		vm_page_t m;
2496		int desiredpages;
2497
2498		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2499		desiredpages = (size == 0) ? 0 :
2500			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2501
2502#if !defined(NO_B_MALLOC)
2503		if (bp->b_flags & B_MALLOC)
2504			panic("allocbuf: VMIO buffer can't be malloced");
2505#endif
2506		/*
2507		 * Set B_CACHE initially if buffer is 0 length or will become
2508		 * 0-length.
2509		 */
2510		if (size == 0 || bp->b_bufsize == 0)
2511			bp->b_flags |= B_CACHE;
2512
2513		if (newbsize < bp->b_bufsize) {
2514			/*
2515			 * DEV_BSIZE aligned new buffer size is less then the
2516			 * DEV_BSIZE aligned existing buffer size.  Figure out
2517			 * if we have to remove any pages.
2518			 */
2519			if (desiredpages < bp->b_npages) {
2520				for (i = desiredpages; i < bp->b_npages; i++) {
2521					/*
2522					 * the page is not freed here -- it
2523					 * is the responsibility of
2524					 * vnode_pager_setsize
2525					 */
2526					m = bp->b_pages[i];
2527					KASSERT(m != bogus_page,
2528					    ("allocbuf: bogus page found"));
2529					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2530						;
2531
2532					bp->b_pages[i] = NULL;
2533					vm_page_unwire(m, 0);
2534				}
2535				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2536				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2537				bp->b_npages = desiredpages;
2538			}
2539		} else if (size > bp->b_bcount) {
2540			/*
2541			 * We are growing the buffer, possibly in a
2542			 * byte-granular fashion.
2543			 */
2544			struct vnode *vp;
2545			vm_object_t obj;
2546			vm_offset_t toff;
2547			vm_offset_t tinc;
2548
2549			/*
2550			 * Step 1, bring in the VM pages from the object,
2551			 * allocating them if necessary.  We must clear
2552			 * B_CACHE if these pages are not valid for the
2553			 * range covered by the buffer.
2554			 */
2555
2556			vp = bp->b_vp;
2557			VOP_GETVOBJECT(vp, &obj);
2558
2559			while (bp->b_npages < desiredpages) {
2560				vm_page_t m;
2561				vm_pindex_t pi;
2562
2563				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2564				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2565					/*
2566					 * note: must allocate system pages
2567					 * since blocking here could intefere
2568					 * with paging I/O, no matter which
2569					 * process we are.
2570					 */
2571					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2572					if (m == NULL) {
2573						VM_WAIT;
2574						vm_pageout_deficit += desiredpages - bp->b_npages;
2575					} else {
2576						vm_page_wire(m);
2577						vm_page_wakeup(m);
2578						bp->b_flags &= ~B_CACHE;
2579						bp->b_pages[bp->b_npages] = m;
2580						++bp->b_npages;
2581					}
2582					continue;
2583				}
2584
2585				/*
2586				 * We found a page.  If we have to sleep on it,
2587				 * retry because it might have gotten freed out
2588				 * from under us.
2589				 *
2590				 * We can only test PG_BUSY here.  Blocking on
2591				 * m->busy might lead to a deadlock:
2592				 *
2593				 *  vm_fault->getpages->cluster_read->allocbuf
2594				 *
2595				 */
2596
2597				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2598					continue;
2599
2600				/*
2601				 * We have a good page.  Should we wakeup the
2602				 * page daemon?
2603				 */
2604				if ((curproc != pageproc) &&
2605				    ((m->queue - m->pc) == PQ_CACHE) &&
2606				    ((cnt.v_free_count + cnt.v_cache_count) <
2607					(cnt.v_free_min + cnt.v_cache_min))) {
2608					pagedaemon_wakeup();
2609				}
2610				vm_page_flag_clear(m, PG_ZERO);
2611				vm_page_wire(m);
2612				bp->b_pages[bp->b_npages] = m;
2613				++bp->b_npages;
2614			}
2615
2616			/*
2617			 * Step 2.  We've loaded the pages into the buffer,
2618			 * we have to figure out if we can still have B_CACHE
2619			 * set.  Note that B_CACHE is set according to the
2620			 * byte-granular range ( bcount and size ), new the
2621			 * aligned range ( newbsize ).
2622			 *
2623			 * The VM test is against m->valid, which is DEV_BSIZE
2624			 * aligned.  Needless to say, the validity of the data
2625			 * needs to also be DEV_BSIZE aligned.  Note that this
2626			 * fails with NFS if the server or some other client
2627			 * extends the file's EOF.  If our buffer is resized,
2628			 * B_CACHE may remain set! XXX
2629			 */
2630
2631			toff = bp->b_bcount;
2632			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2633
2634			while ((bp->b_flags & B_CACHE) && toff < size) {
2635				vm_pindex_t pi;
2636
2637				if (tinc > (size - toff))
2638					tinc = size - toff;
2639
2640				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2641				    PAGE_SHIFT;
2642
2643				vfs_buf_test_cache(
2644				    bp,
2645				    bp->b_offset,
2646				    toff,
2647				    tinc,
2648				    bp->b_pages[pi]
2649				);
2650				toff += tinc;
2651				tinc = PAGE_SIZE;
2652			}
2653
2654			/*
2655			 * Step 3, fixup the KVM pmap.  Remember that
2656			 * bp->b_data is relative to bp->b_offset, but
2657			 * bp->b_offset may be offset into the first page.
2658			 */
2659
2660			bp->b_data = (caddr_t)
2661			    trunc_page((vm_offset_t)bp->b_data);
2662			pmap_qenter(
2663			    (vm_offset_t)bp->b_data,
2664			    bp->b_pages,
2665			    bp->b_npages
2666			);
2667
2668			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2669			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2670		}
2671	}
2672	if (newbsize < bp->b_bufsize)
2673		bufspacewakeup();
2674	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2675	bp->b_bcount = size;		/* requested buffer size	*/
2676	return 1;
2677}
2678
2679/*
2680 *	bufwait:
2681 *
2682 *	Wait for buffer I/O completion, returning error status.  The buffer
2683 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2684 *	error and cleared.
2685 */
2686int
2687bufwait(register struct buf * bp)
2688{
2689	int s;
2690
2691	s = splbio();
2692	while ((bp->b_flags & B_DONE) == 0) {
2693		if (bp->b_iocmd == BIO_READ)
2694			tsleep(bp, PRIBIO, "biord", 0);
2695		else
2696			tsleep(bp, PRIBIO, "biowr", 0);
2697	}
2698	splx(s);
2699	if (bp->b_flags & B_EINTR) {
2700		bp->b_flags &= ~B_EINTR;
2701		return (EINTR);
2702	}
2703	if (bp->b_ioflags & BIO_ERROR) {
2704		return (bp->b_error ? bp->b_error : EIO);
2705	} else {
2706		return (0);
2707	}
2708}
2709
2710 /*
2711  * Call back function from struct bio back up to struct buf.
2712  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2713  */
2714void
2715bufdonebio(struct bio *bp)
2716{
2717	bufdone(bp->bio_caller2);
2718}
2719
2720/*
2721 *	bufdone:
2722 *
2723 *	Finish I/O on a buffer, optionally calling a completion function.
2724 *	This is usually called from an interrupt so process blocking is
2725 *	not allowed.
2726 *
2727 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2728 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2729 *	assuming B_INVAL is clear.
2730 *
2731 *	For the VMIO case, we set B_CACHE if the op was a read and no
2732 *	read error occured, or if the op was a write.  B_CACHE is never
2733 *	set if the buffer is invalid or otherwise uncacheable.
2734 *
2735 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2736 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2737 *	in the biodone routine.
2738 */
2739void
2740bufdone(struct buf *bp)
2741{
2742	int s, error;
2743	void    (*biodone) __P((struct buf *));
2744
2745	GIANT_REQUIRED;
2746
2747	s = splbio();
2748
2749	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2750	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2751
2752	bp->b_flags |= B_DONE;
2753	runningbufwakeup(bp);
2754
2755	if (bp->b_iocmd == BIO_DELETE) {
2756		brelse(bp);
2757		splx(s);
2758		return;
2759	}
2760
2761	if (bp->b_iocmd == BIO_WRITE) {
2762		vwakeup(bp);
2763	}
2764
2765	/* call optional completion function if requested */
2766	if (bp->b_iodone != NULL) {
2767		biodone = bp->b_iodone;
2768		bp->b_iodone = NULL;
2769		(*biodone) (bp);
2770		splx(s);
2771		return;
2772	}
2773	if (LIST_FIRST(&bp->b_dep) != NULL)
2774		buf_complete(bp);
2775
2776	if (bp->b_flags & B_VMIO) {
2777		int i;
2778		vm_ooffset_t foff;
2779		vm_page_t m;
2780		vm_object_t obj;
2781		int iosize;
2782		struct vnode *vp = bp->b_vp;
2783
2784		error = VOP_GETVOBJECT(vp, &obj);
2785
2786#if defined(VFS_BIO_DEBUG)
2787		if (vp->v_usecount == 0) {
2788			panic("biodone: zero vnode ref count");
2789		}
2790
2791		if (error) {
2792			panic("biodone: missing VM object");
2793		}
2794
2795		if ((vp->v_flag & VOBJBUF) == 0) {
2796			panic("biodone: vnode is not setup for merged cache");
2797		}
2798#endif
2799
2800		foff = bp->b_offset;
2801		KASSERT(bp->b_offset != NOOFFSET,
2802		    ("biodone: no buffer offset"));
2803
2804		if (error) {
2805			panic("biodone: no object");
2806		}
2807#if defined(VFS_BIO_DEBUG)
2808		if (obj->paging_in_progress < bp->b_npages) {
2809			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2810			    obj->paging_in_progress, bp->b_npages);
2811		}
2812#endif
2813
2814		/*
2815		 * Set B_CACHE if the op was a normal read and no error
2816		 * occured.  B_CACHE is set for writes in the b*write()
2817		 * routines.
2818		 */
2819		iosize = bp->b_bcount - bp->b_resid;
2820		if (bp->b_iocmd == BIO_READ &&
2821		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2822		    !(bp->b_ioflags & BIO_ERROR)) {
2823			bp->b_flags |= B_CACHE;
2824		}
2825
2826		for (i = 0; i < bp->b_npages; i++) {
2827			int bogusflag = 0;
2828			int resid;
2829
2830			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2831			if (resid > iosize)
2832				resid = iosize;
2833
2834			/*
2835			 * cleanup bogus pages, restoring the originals
2836			 */
2837			m = bp->b_pages[i];
2838			if (m == bogus_page) {
2839				bogusflag = 1;
2840				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2841				if (m == NULL)
2842					panic("biodone: page disappeared!");
2843				bp->b_pages[i] = m;
2844				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2845			}
2846#if defined(VFS_BIO_DEBUG)
2847			if (OFF_TO_IDX(foff) != m->pindex) {
2848				printf(
2849"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2850				    (unsigned long)foff, m->pindex);
2851			}
2852#endif
2853
2854			/*
2855			 * In the write case, the valid and clean bits are
2856			 * already changed correctly ( see bdwrite() ), so we
2857			 * only need to do this here in the read case.
2858			 */
2859			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2860				vfs_page_set_valid(bp, foff, i, m);
2861			}
2862			vm_page_flag_clear(m, PG_ZERO);
2863
2864			/*
2865			 * when debugging new filesystems or buffer I/O methods, this
2866			 * is the most common error that pops up.  if you see this, you
2867			 * have not set the page busy flag correctly!!!
2868			 */
2869			if (m->busy == 0) {
2870				printf("biodone: page busy < 0, "
2871				    "pindex: %d, foff: 0x(%x,%x), "
2872				    "resid: %d, index: %d\n",
2873				    (int) m->pindex, (int)(foff >> 32),
2874						(int) foff & 0xffffffff, resid, i);
2875				if (!vn_isdisk(vp, NULL))
2876					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2877					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2878					    (int) bp->b_lblkno,
2879					    bp->b_flags, bp->b_npages);
2880				else
2881					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2882					    (int) bp->b_lblkno,
2883					    bp->b_flags, bp->b_npages);
2884				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2885				    m->valid, m->dirty, m->wire_count);
2886				panic("biodone: page busy < 0\n");
2887			}
2888			vm_page_io_finish(m);
2889			vm_object_pip_subtract(obj, 1);
2890			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2891			iosize -= resid;
2892		}
2893		if (obj)
2894			vm_object_pip_wakeupn(obj, 0);
2895	}
2896
2897	/*
2898	 * For asynchronous completions, release the buffer now. The brelse
2899	 * will do a wakeup there if necessary - so no need to do a wakeup
2900	 * here in the async case. The sync case always needs to do a wakeup.
2901	 */
2902
2903	if (bp->b_flags & B_ASYNC) {
2904		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2905			brelse(bp);
2906		else
2907			bqrelse(bp);
2908	} else {
2909		wakeup(bp);
2910	}
2911	splx(s);
2912}
2913
2914/*
2915 * This routine is called in lieu of iodone in the case of
2916 * incomplete I/O.  This keeps the busy status for pages
2917 * consistant.
2918 */
2919void
2920vfs_unbusy_pages(struct buf * bp)
2921{
2922	int i;
2923
2924	GIANT_REQUIRED;
2925
2926	runningbufwakeup(bp);
2927	if (bp->b_flags & B_VMIO) {
2928		struct vnode *vp = bp->b_vp;
2929		vm_object_t obj;
2930
2931		VOP_GETVOBJECT(vp, &obj);
2932
2933		for (i = 0; i < bp->b_npages; i++) {
2934			vm_page_t m = bp->b_pages[i];
2935
2936			if (m == bogus_page) {
2937				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2938				if (!m) {
2939					panic("vfs_unbusy_pages: page missing\n");
2940				}
2941				bp->b_pages[i] = m;
2942				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2943			}
2944			vm_object_pip_subtract(obj, 1);
2945			vm_page_flag_clear(m, PG_ZERO);
2946			vm_page_io_finish(m);
2947		}
2948		vm_object_pip_wakeupn(obj, 0);
2949	}
2950}
2951
2952/*
2953 * vfs_page_set_valid:
2954 *
2955 *	Set the valid bits in a page based on the supplied offset.   The
2956 *	range is restricted to the buffer's size.
2957 *
2958 *	This routine is typically called after a read completes.
2959 */
2960static void
2961vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2962{
2963	vm_ooffset_t soff, eoff;
2964
2965	GIANT_REQUIRED;
2966	/*
2967	 * Start and end offsets in buffer.  eoff - soff may not cross a
2968	 * page boundry or cross the end of the buffer.  The end of the
2969	 * buffer, in this case, is our file EOF, not the allocation size
2970	 * of the buffer.
2971	 */
2972	soff = off;
2973	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2974	if (eoff > bp->b_offset + bp->b_bcount)
2975		eoff = bp->b_offset + bp->b_bcount;
2976
2977	/*
2978	 * Set valid range.  This is typically the entire buffer and thus the
2979	 * entire page.
2980	 */
2981	if (eoff > soff) {
2982		vm_page_set_validclean(
2983		    m,
2984		   (vm_offset_t) (soff & PAGE_MASK),
2985		   (vm_offset_t) (eoff - soff)
2986		);
2987	}
2988}
2989
2990/*
2991 * This routine is called before a device strategy routine.
2992 * It is used to tell the VM system that paging I/O is in
2993 * progress, and treat the pages associated with the buffer
2994 * almost as being PG_BUSY.  Also the object paging_in_progress
2995 * flag is handled to make sure that the object doesn't become
2996 * inconsistant.
2997 *
2998 * Since I/O has not been initiated yet, certain buffer flags
2999 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3000 * and should be ignored.
3001 */
3002void
3003vfs_busy_pages(struct buf * bp, int clear_modify)
3004{
3005	int i, bogus;
3006
3007	GIANT_REQUIRED;
3008
3009	if (bp->b_flags & B_VMIO) {
3010		struct vnode *vp = bp->b_vp;
3011		vm_object_t obj;
3012		vm_ooffset_t foff;
3013
3014		VOP_GETVOBJECT(vp, &obj);
3015		foff = bp->b_offset;
3016		KASSERT(bp->b_offset != NOOFFSET,
3017		    ("vfs_busy_pages: no buffer offset"));
3018		vfs_setdirty(bp);
3019
3020retry:
3021		for (i = 0; i < bp->b_npages; i++) {
3022			vm_page_t m = bp->b_pages[i];
3023			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3024				goto retry;
3025		}
3026
3027		bogus = 0;
3028		for (i = 0; i < bp->b_npages; i++) {
3029			vm_page_t m = bp->b_pages[i];
3030
3031			vm_page_flag_clear(m, PG_ZERO);
3032			if ((bp->b_flags & B_CLUSTER) == 0) {
3033				vm_object_pip_add(obj, 1);
3034				vm_page_io_start(m);
3035			}
3036
3037			/*
3038			 * When readying a buffer for a read ( i.e
3039			 * clear_modify == 0 ), it is important to do
3040			 * bogus_page replacement for valid pages in
3041			 * partially instantiated buffers.  Partially
3042			 * instantiated buffers can, in turn, occur when
3043			 * reconstituting a buffer from its VM backing store
3044			 * base.  We only have to do this if B_CACHE is
3045			 * clear ( which causes the I/O to occur in the
3046			 * first place ).  The replacement prevents the read
3047			 * I/O from overwriting potentially dirty VM-backed
3048			 * pages.  XXX bogus page replacement is, uh, bogus.
3049			 * It may not work properly with small-block devices.
3050			 * We need to find a better way.
3051			 */
3052
3053			vm_page_protect(m, VM_PROT_NONE);
3054			if (clear_modify)
3055				vfs_page_set_valid(bp, foff, i, m);
3056			else if (m->valid == VM_PAGE_BITS_ALL &&
3057				(bp->b_flags & B_CACHE) == 0) {
3058				bp->b_pages[i] = bogus_page;
3059				bogus++;
3060			}
3061			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3062		}
3063		if (bogus)
3064			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3065	}
3066}
3067
3068/*
3069 * Tell the VM system that the pages associated with this buffer
3070 * are clean.  This is used for delayed writes where the data is
3071 * going to go to disk eventually without additional VM intevention.
3072 *
3073 * Note that while we only really need to clean through to b_bcount, we
3074 * just go ahead and clean through to b_bufsize.
3075 */
3076static void
3077vfs_clean_pages(struct buf * bp)
3078{
3079	int i;
3080
3081	GIANT_REQUIRED;
3082
3083	if (bp->b_flags & B_VMIO) {
3084		vm_ooffset_t foff;
3085
3086		foff = bp->b_offset;
3087		KASSERT(bp->b_offset != NOOFFSET,
3088		    ("vfs_clean_pages: no buffer offset"));
3089		for (i = 0; i < bp->b_npages; i++) {
3090			vm_page_t m = bp->b_pages[i];
3091			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3092			vm_ooffset_t eoff = noff;
3093
3094			if (eoff > bp->b_offset + bp->b_bufsize)
3095				eoff = bp->b_offset + bp->b_bufsize;
3096			vfs_page_set_valid(bp, foff, i, m);
3097			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3098			foff = noff;
3099		}
3100	}
3101}
3102
3103/*
3104 *	vfs_bio_set_validclean:
3105 *
3106 *	Set the range within the buffer to valid and clean.  The range is
3107 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3108 *	itself may be offset from the beginning of the first page.
3109 *
3110 */
3111
3112void
3113vfs_bio_set_validclean(struct buf *bp, int base, int size)
3114{
3115	if (bp->b_flags & B_VMIO) {
3116		int i;
3117		int n;
3118
3119		/*
3120		 * Fixup base to be relative to beginning of first page.
3121		 * Set initial n to be the maximum number of bytes in the
3122		 * first page that can be validated.
3123		 */
3124
3125		base += (bp->b_offset & PAGE_MASK);
3126		n = PAGE_SIZE - (base & PAGE_MASK);
3127
3128		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3129			vm_page_t m = bp->b_pages[i];
3130
3131			if (n > size)
3132				n = size;
3133
3134			vm_page_set_validclean(m, base & PAGE_MASK, n);
3135			base += n;
3136			size -= n;
3137			n = PAGE_SIZE;
3138		}
3139	}
3140}
3141
3142/*
3143 *	vfs_bio_clrbuf:
3144 *
3145 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3146 *	to clear BIO_ERROR and B_INVAL.
3147 *
3148 *	Note that while we only theoretically need to clear through b_bcount,
3149 *	we go ahead and clear through b_bufsize.
3150 */
3151
3152void
3153vfs_bio_clrbuf(struct buf *bp) {
3154	int i, mask = 0;
3155	caddr_t sa, ea;
3156
3157	GIANT_REQUIRED;
3158
3159	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3160		bp->b_flags &= ~B_INVAL;
3161		bp->b_ioflags &= ~BIO_ERROR;
3162		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3163		    (bp->b_offset & PAGE_MASK) == 0) {
3164			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3165			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3166			    ((bp->b_pages[0]->valid & mask) != mask)) {
3167				bzero(bp->b_data, bp->b_bufsize);
3168			}
3169			bp->b_pages[0]->valid |= mask;
3170			bp->b_resid = 0;
3171			return;
3172		}
3173		ea = sa = bp->b_data;
3174		for(i=0;i<bp->b_npages;i++,sa=ea) {
3175			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3176			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3177			ea = (caddr_t)(vm_offset_t)ulmin(
3178			    (u_long)(vm_offset_t)ea,
3179			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3180			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3181			if ((bp->b_pages[i]->valid & mask) == mask)
3182				continue;
3183			if ((bp->b_pages[i]->valid & mask) == 0) {
3184				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3185					bzero(sa, ea - sa);
3186				}
3187			} else {
3188				for (; sa < ea; sa += DEV_BSIZE, j++) {
3189					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3190						(bp->b_pages[i]->valid & (1<<j)) == 0)
3191						bzero(sa, DEV_BSIZE);
3192				}
3193			}
3194			bp->b_pages[i]->valid |= mask;
3195			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3196		}
3197		bp->b_resid = 0;
3198	} else {
3199		clrbuf(bp);
3200	}
3201}
3202
3203/*
3204 * vm_hold_load_pages and vm_hold_free_pages get pages into
3205 * a buffers address space.  The pages are anonymous and are
3206 * not associated with a file object.
3207 */
3208static void
3209vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3210{
3211	vm_offset_t pg;
3212	vm_page_t p;
3213	int index;
3214
3215	GIANT_REQUIRED;
3216
3217	to = round_page(to);
3218	from = round_page(from);
3219	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3220
3221	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3222tryagain:
3223		/*
3224		 * note: must allocate system pages since blocking here
3225		 * could intefere with paging I/O, no matter which
3226		 * process we are.
3227		 */
3228		p = vm_page_alloc(kernel_object,
3229			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3230		    VM_ALLOC_SYSTEM);
3231		if (!p) {
3232			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3233			VM_WAIT;
3234			goto tryagain;
3235		}
3236		vm_page_wire(p);
3237		p->valid = VM_PAGE_BITS_ALL;
3238		vm_page_flag_clear(p, PG_ZERO);
3239		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3240		bp->b_pages[index] = p;
3241		vm_page_wakeup(p);
3242	}
3243	bp->b_npages = index;
3244}
3245
3246void
3247vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3248{
3249	vm_offset_t pg;
3250	vm_page_t p;
3251	int index, newnpages;
3252
3253	GIANT_REQUIRED;
3254
3255	from = round_page(from);
3256	to = round_page(to);
3257	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3258
3259	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3260		p = bp->b_pages[index];
3261		if (p && (index < bp->b_npages)) {
3262			if (p->busy) {
3263				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3264					bp->b_blkno, bp->b_lblkno);
3265			}
3266			bp->b_pages[index] = NULL;
3267			pmap_kremove(pg);
3268			vm_page_busy(p);
3269			vm_page_unwire(p, 0);
3270			vm_page_free(p);
3271		}
3272	}
3273	bp->b_npages = newnpages;
3274}
3275
3276
3277#include "opt_ddb.h"
3278#ifdef DDB
3279#include <ddb/ddb.h>
3280
3281DB_SHOW_COMMAND(buffer, db_show_buffer)
3282{
3283	/* get args */
3284	struct buf *bp = (struct buf *)addr;
3285
3286	if (!have_addr) {
3287		db_printf("usage: show buffer <addr>\n");
3288		return;
3289	}
3290
3291	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3292	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3293		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3294		  "b_blkno = %d, b_pblkno = %d\n",
3295		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3296		  major(bp->b_dev), minor(bp->b_dev),
3297		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3298	if (bp->b_npages) {
3299		int i;
3300		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3301		for (i = 0; i < bp->b_npages; i++) {
3302			vm_page_t m;
3303			m = bp->b_pages[i];
3304			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3305			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3306			if ((i + 1) < bp->b_npages)
3307				db_printf(",");
3308		}
3309		db_printf("\n");
3310	}
3311}
3312#endif /* DDB */
3313