vfs_bio.c revision 8456
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.43 1995/04/30 05:09:13 davidg Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#define VMIO
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/proc.h>
40#include <sys/vnode.h>
41#include <vm/vm.h>
42#include <vm/vm_kern.h>
43#include <vm/vm_pageout.h>
44#include <vm/vm_page.h>
45#include <vm/vm_object.h>
46#include <sys/buf.h>
47#include <sys/mount.h>
48#include <sys/malloc.h>
49#include <sys/resourcevar.h>
50#include <sys/proc.h>
51
52#include <miscfs/specfs/specdev.h>
53
54struct buf *buf;		/* buffer header pool */
55int nbuf;			/* number of buffer headers calculated
56				 * elsewhere */
57struct swqueue bswlist;
58
59void vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
60void vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to);
61void vfs_clean_pages(struct buf * bp);
62
63int needsbuffer;
64
65/*
66 * Internal update daemon, process 3
67 *	The variable vfs_update_wakeup allows for internal syncs.
68 */
69int vfs_update_wakeup;
70
71
72/*
73 * buffers base kva
74 */
75caddr_t buffers_kva;
76
77/*
78 * bogus page -- for I/O to/from partially complete buffers
79 * this is a temporary solution to the problem, but it is not
80 * really that bad.  it would be better to split the buffer
81 * for input in the case of buffers partially already in memory,
82 * but the code is intricate enough already.
83 */
84vm_page_t bogus_page;
85vm_offset_t bogus_offset;
86
87int bufspace, maxbufspace;
88
89/*
90 * advisory minimum for size of LRU queue or VMIO queue
91 */
92int minbuf;
93
94/*
95 * Initialize buffer headers and related structures.
96 */
97void
98bufinit()
99{
100	struct buf *bp;
101	int i;
102
103	TAILQ_INIT(&bswlist);
104	LIST_INIT(&invalhash);
105
106	/* first, make a null hash table */
107	for (i = 0; i < BUFHSZ; i++)
108		LIST_INIT(&bufhashtbl[i]);
109
110	/* next, make a null set of free lists */
111	for (i = 0; i < BUFFER_QUEUES; i++)
112		TAILQ_INIT(&bufqueues[i]);
113
114	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
115	/* finally, initialize each buffer header and stick on empty q */
116	for (i = 0; i < nbuf; i++) {
117		bp = &buf[i];
118		bzero(bp, sizeof *bp);
119		bp->b_flags = B_INVAL;	/* we're just an empty header */
120		bp->b_dev = NODEV;
121		bp->b_rcred = NOCRED;
122		bp->b_wcred = NOCRED;
123		bp->b_qindex = QUEUE_EMPTY;
124		bp->b_vnbufs.le_next = NOLIST;
125		bp->b_data = buffers_kva + i * MAXBSIZE;
126		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
127		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
128	}
129/*
130 * this will change later!!!
131 */
132	minbuf = nbuf / 3;
133	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
134
135	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
136	bogus_page = vm_page_alloc(kernel_object,
137			bogus_offset - VM_MIN_KERNEL_ADDRESS, VM_ALLOC_NORMAL);
138
139}
140
141/*
142 * remove the buffer from the appropriate free list
143 */
144void
145bremfree(struct buf * bp)
146{
147	int s = splbio();
148
149	if (bp->b_qindex != QUEUE_NONE) {
150		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
151		bp->b_qindex = QUEUE_NONE;
152	} else {
153		panic("bremfree: removing a buffer when not on a queue");
154	}
155	splx(s);
156}
157
158/*
159 * Get a buffer with the specified data.  Look in the cache first.
160 */
161int
162bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
163    struct buf ** bpp)
164{
165	struct buf *bp;
166
167	bp = getblk(vp, blkno, size, 0, 0);
168	*bpp = bp;
169
170	/* if not found in cache, do some I/O */
171	if ((bp->b_flags & B_CACHE) == 0) {
172		if (curproc != NULL)
173			curproc->p_stats->p_ru.ru_inblock++;
174		bp->b_flags |= B_READ;
175		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
176		if (bp->b_rcred == NOCRED) {
177			if (cred != NOCRED)
178				crhold(cred);
179			bp->b_rcred = cred;
180		}
181		vfs_busy_pages(bp, 0);
182		VOP_STRATEGY(bp);
183		return (biowait(bp));
184	}
185	return (0);
186}
187
188/*
189 * Operates like bread, but also starts asynchronous I/O on
190 * read-ahead blocks.
191 */
192int
193breadn(struct vnode * vp, daddr_t blkno, int size,
194    daddr_t * rablkno, int *rabsize,
195    int cnt, struct ucred * cred, struct buf ** bpp)
196{
197	struct buf *bp, *rabp;
198	int i;
199	int rv = 0, readwait = 0;
200
201	*bpp = bp = getblk(vp, blkno, size, 0, 0);
202
203	/* if not found in cache, do some I/O */
204	if ((bp->b_flags & B_CACHE) == 0) {
205		if (curproc != NULL)
206			curproc->p_stats->p_ru.ru_inblock++;
207		bp->b_flags |= B_READ;
208		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
209		if (bp->b_rcred == NOCRED) {
210			if (cred != NOCRED)
211				crhold(cred);
212			bp->b_rcred = cred;
213		}
214		vfs_busy_pages(bp, 0);
215		VOP_STRATEGY(bp);
216		++readwait;
217	}
218	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
219		if (inmem(vp, *rablkno))
220			continue;
221		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
222
223		if ((rabp->b_flags & B_CACHE) == 0) {
224			if (curproc != NULL)
225				curproc->p_stats->p_ru.ru_inblock++;
226			rabp->b_flags |= B_READ | B_ASYNC;
227			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
228			if (rabp->b_rcred == NOCRED) {
229				if (cred != NOCRED)
230					crhold(cred);
231				rabp->b_rcred = cred;
232			}
233			vfs_busy_pages(rabp, 0);
234			VOP_STRATEGY(rabp);
235		} else {
236			brelse(rabp);
237		}
238	}
239
240	if (readwait) {
241		rv = biowait(bp);
242	}
243	return (rv);
244}
245
246/*
247 * Write, release buffer on completion.  (Done by iodone
248 * if async.)
249 */
250int
251bwrite(struct buf * bp)
252{
253	int oldflags = bp->b_flags;
254
255	if (bp->b_flags & B_INVAL) {
256		brelse(bp);
257		return (0);
258	}
259	if (!(bp->b_flags & B_BUSY))
260		panic("bwrite: buffer is not busy???");
261
262	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
263	bp->b_flags |= B_WRITEINPROG;
264
265	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
266		reassignbuf(bp, bp->b_vp);
267	}
268
269	bp->b_vp->v_numoutput++;
270	vfs_busy_pages(bp, 1);
271	if (curproc != NULL)
272		curproc->p_stats->p_ru.ru_oublock++;
273	VOP_STRATEGY(bp);
274
275	if ((oldflags & B_ASYNC) == 0) {
276		int rtval = biowait(bp);
277
278		if (oldflags & B_DELWRI) {
279			reassignbuf(bp, bp->b_vp);
280		}
281		brelse(bp);
282		return (rtval);
283	}
284	return (0);
285}
286
287int
288vn_bwrite(ap)
289	struct vop_bwrite_args *ap;
290{
291	return (bwrite(ap->a_bp));
292}
293
294/*
295 * Delayed write. (Buffer is marked dirty).
296 */
297void
298bdwrite(struct buf * bp)
299{
300
301	if ((bp->b_flags & B_BUSY) == 0) {
302		panic("bdwrite: buffer is not busy");
303	}
304	if (bp->b_flags & B_INVAL) {
305		brelse(bp);
306		return;
307	}
308	if (bp->b_flags & B_TAPE) {
309		bawrite(bp);
310		return;
311	}
312	bp->b_flags &= ~(B_READ|B_RELBUF);
313	if ((bp->b_flags & B_DELWRI) == 0) {
314		bp->b_flags |= B_DONE | B_DELWRI;
315		reassignbuf(bp, bp->b_vp);
316	}
317	if( bp->b_lblkno == bp->b_blkno) {
318		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL);
319	}
320	vfs_clean_pages(bp);
321	brelse(bp);
322	return;
323}
324
325/*
326 * Asynchronous write.
327 * Start output on a buffer, but do not wait for it to complete.
328 * The buffer is released when the output completes.
329 */
330void
331bawrite(struct buf * bp)
332{
333	bp->b_flags |= B_ASYNC;
334	(void) VOP_BWRITE(bp);
335}
336
337/*
338 * Release a buffer.
339 */
340void
341brelse(struct buf * bp)
342{
343	int s;
344
345	if (bp->b_flags & B_CLUSTER) {
346		relpbuf(bp);
347		return;
348	}
349	/* anyone need a "free" block? */
350	s = splbio();
351
352	if (needsbuffer) {
353		needsbuffer = 0;
354		wakeup((caddr_t) &needsbuffer);
355	}
356
357	/* anyone need this block? */
358	if (bp->b_flags & B_WANTED) {
359		bp->b_flags &= ~B_WANTED | B_AGE;
360		wakeup((caddr_t) bp);
361	} else if (bp->b_flags & B_VMIO) {
362		bp->b_flags &= ~B_WANTED;
363		wakeup((caddr_t) bp);
364	}
365	if (bp->b_flags & B_LOCKED)
366		bp->b_flags &= ~B_ERROR;
367
368	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
369	    (bp->b_bufsize <= 0)) {
370		bp->b_flags |= B_INVAL;
371		bp->b_flags &= ~(B_DELWRI | B_CACHE);
372		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp)
373			brelvp(bp);
374	}
375
376	/*
377	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
378	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
379	 * but the VM object is kept around.  The B_NOCACHE flag is used to
380	 * invalidate the pages in the VM object.
381	 */
382	if (bp->b_flags & B_VMIO) {
383		vm_offset_t foff;
384		vm_object_t obj;
385		int i, resid;
386		vm_page_t m;
387		int iototal = bp->b_bufsize;
388
389		foff = 0;
390		obj = 0;
391		if (bp->b_npages) {
392			if (bp->b_vp && bp->b_vp->v_mount) {
393				foff = bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
394			} else {
395				/*
396				 * vnode pointer has been ripped away --
397				 * probably file gone...
398				 */
399				foff = bp->b_pages[0]->offset;
400			}
401		}
402		for (i = 0; i < bp->b_npages; i++) {
403			m = bp->b_pages[i];
404			if (m == bogus_page) {
405				m = vm_page_lookup(obj, foff);
406				if (!m) {
407					panic("brelse: page missing\n");
408				}
409				bp->b_pages[i] = m;
410				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
411			}
412			resid = (m->offset + PAGE_SIZE) - foff;
413			if (resid > iototal)
414				resid = iototal;
415			if (resid > 0) {
416				if (bp->b_flags & (B_ERROR | B_NOCACHE)) {
417					vm_page_set_invalid(m, foff, resid);
418					if (m->valid == 0)
419						vm_page_protect(m, VM_PROT_NONE);
420				}
421			}
422			foff += resid;
423			iototal -= resid;
424		}
425
426		if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_RELBUF)) {
427			for(i=0;i<bp->b_npages;i++) {
428				m = bp->b_pages[i];
429				--m->bmapped;
430				if (m->bmapped == 0) {
431					vm_page_test_dirty(m);
432					if(m->flags & PG_WANTED) {
433						wakeup((caddr_t) m);
434						m->flags &= ~PG_WANTED;
435					}
436					if ((m->dirty & m->valid) == 0 &&
437						(m->flags & PG_REFERENCED) == 0 &&
438							!pmap_is_referenced(VM_PAGE_TO_PHYS(m)))
439						vm_page_cache(m);
440					else if ((m->flags & PG_ACTIVE) == 0) {
441						vm_page_activate(m);
442						m->act_count = 0;
443					}
444				}
445			}
446			bufspace -= bp->b_bufsize;
447			pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
448			bp->b_npages = 0;
449			bp->b_bufsize = 0;
450			bp->b_flags &= ~B_VMIO;
451			if (bp->b_vp)
452				brelvp(bp);
453		}
454	}
455	if (bp->b_qindex != QUEUE_NONE)
456		panic("brelse: free buffer onto another queue???");
457
458	/* enqueue */
459	/* buffers with no memory */
460	if (bp->b_bufsize == 0) {
461		bp->b_qindex = QUEUE_EMPTY;
462		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
463		LIST_REMOVE(bp, b_hash);
464		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
465		bp->b_dev = NODEV;
466		/* buffers with junk contents */
467	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
468		bp->b_qindex = QUEUE_AGE;
469		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
470		LIST_REMOVE(bp, b_hash);
471		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
472		bp->b_dev = NODEV;
473		/* buffers that are locked */
474	} else if (bp->b_flags & B_LOCKED) {
475		bp->b_qindex = QUEUE_LOCKED;
476		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
477		/* buffers with stale but valid contents */
478	} else if (bp->b_flags & B_AGE) {
479		bp->b_qindex = QUEUE_AGE;
480		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
481		/* buffers with valid and quite potentially reuseable contents */
482	} else {
483		bp->b_qindex = QUEUE_LRU;
484		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
485	}
486
487	/* unlock */
488	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
489	splx(s);
490}
491
492/*
493 * this routine implements clustered async writes for
494 * clearing out B_DELWRI buffers...  This is much better
495 * than the old way of writing only one buffer at a time.
496 */
497void
498vfs_bio_awrite(struct buf * bp)
499{
500	int i;
501	daddr_t lblkno = bp->b_lblkno;
502	struct vnode *vp = bp->b_vp;
503	int s;
504	int ncl;
505	struct buf *bpa;
506
507	s = splbio();
508	if( vp->v_mount && (vp->v_flag & VVMIO) &&
509	    	(bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
510		int size = vp->v_mount->mnt_stat.f_iosize;
511
512		for (i = 1; i < MAXPHYS / size; i++) {
513			if ((bpa = incore(vp, lblkno + i)) &&
514			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_BUSY | B_CLUSTEROK | B_INVAL)) == B_DELWRI | B_CLUSTEROK) &&
515			    (bpa->b_bufsize == size)) {
516				if ((bpa->b_blkno == bpa->b_lblkno) ||
517				    (bpa->b_blkno != bp->b_blkno + (i * size) / DEV_BSIZE))
518					break;
519			} else {
520				break;
521			}
522		}
523		ncl = i;
524		/*
525		 * this is a possible cluster write
526		 */
527		if (ncl != 1) {
528			bremfree(bp);
529			cluster_wbuild(vp, bp, size, lblkno, ncl, -1);
530			splx(s);
531			return;
532		}
533	}
534	/*
535	 * default (old) behavior, writing out only one block
536	 */
537	bremfree(bp);
538	bp->b_flags |= B_BUSY | B_ASYNC;
539	(void) VOP_BWRITE(bp);
540	splx(s);
541}
542
543
544/*
545 * Find a buffer header which is available for use.
546 */
547static struct buf *
548getnewbuf(int slpflag, int slptimeo, int doingvmio)
549{
550	struct buf *bp;
551	int s;
552	int firstbp = 1;
553
554	s = splbio();
555start:
556	if (bufspace >= maxbufspace)
557		goto trytofreespace;
558
559	/* can we constitute a new buffer? */
560	if ((bp = bufqueues[QUEUE_EMPTY].tqh_first)) {
561		if (bp->b_qindex != QUEUE_EMPTY)
562			panic("getnewbuf: inconsistent EMPTY queue");
563		bremfree(bp);
564		goto fillbuf;
565	}
566trytofreespace:
567	/*
568	 * We keep the file I/O from hogging metadata I/O
569	 * This is desirable because file data is cached in the
570	 * VM/Buffer cache even if a buffer is freed.
571	 */
572	if ((bp = bufqueues[QUEUE_AGE].tqh_first)) {
573		if (bp->b_qindex != QUEUE_AGE)
574			panic("getnewbuf: inconsistent AGE queue");
575	} else if ((bp = bufqueues[QUEUE_LRU].tqh_first)) {
576		if (bp->b_qindex != QUEUE_LRU)
577			panic("getnewbuf: inconsistent LRU queue");
578	}
579	if (!bp) {
580		/* wait for a free buffer of any kind */
581		needsbuffer = 1;
582		tsleep((caddr_t) &needsbuffer, PRIBIO | slpflag, "newbuf", slptimeo);
583		splx(s);
584		return (0);
585	}
586
587	/* if we are a delayed write, convert to an async write */
588	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
589		vfs_bio_awrite(bp);
590		if (!slpflag && !slptimeo) {
591			splx(s);
592			return (0);
593		}
594		goto start;
595	}
596
597	if (bp->b_flags & B_WANTED) {
598		bp->b_flags &= ~B_WANTED;
599		wakeup((caddr_t) bp);
600	}
601	bremfree(bp);
602
603	if (bp->b_flags & B_VMIO) {
604		bp->b_flags |= B_RELBUF | B_BUSY | B_DONE;
605		brelse(bp);
606		bremfree(bp);
607	}
608
609	if (bp->b_vp)
610		brelvp(bp);
611
612	/* we are not free, nor do we contain interesting data */
613	if (bp->b_rcred != NOCRED)
614		crfree(bp->b_rcred);
615	if (bp->b_wcred != NOCRED)
616		crfree(bp->b_wcred);
617fillbuf:
618	bp->b_flags |= B_BUSY;
619	LIST_REMOVE(bp, b_hash);
620	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
621	splx(s);
622	if (bp->b_bufsize) {
623		allocbuf(bp, 0);
624	}
625	bp->b_flags = B_BUSY;
626	bp->b_dev = NODEV;
627	bp->b_vp = NULL;
628	bp->b_blkno = bp->b_lblkno = 0;
629	bp->b_iodone = 0;
630	bp->b_error = 0;
631	bp->b_resid = 0;
632	bp->b_bcount = 0;
633	bp->b_npages = 0;
634	bp->b_wcred = bp->b_rcred = NOCRED;
635	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
636	bp->b_dirtyoff = bp->b_dirtyend = 0;
637	bp->b_validoff = bp->b_validend = 0;
638	if (bufspace >= maxbufspace) {
639		s = splbio();
640		bp->b_flags |= B_INVAL;
641		brelse(bp);
642		goto trytofreespace;
643	}
644	return (bp);
645}
646
647/*
648 * Check to see if a block is currently memory resident.
649 */
650struct buf *
651incore(struct vnode * vp, daddr_t blkno)
652{
653	struct buf *bp;
654	struct bufhashhdr *bh;
655
656	int s = splbio();
657
658	bh = BUFHASH(vp, blkno);
659	bp = bh->lh_first;
660
661	/* Search hash chain */
662	while (bp) {
663		/* hit */
664		if (bp->b_lblkno == blkno && bp->b_vp == vp
665		    && (bp->b_flags & B_INVAL) == 0) {
666			splx(s);
667			return (bp);
668		}
669		bp = bp->b_hash.le_next;
670	}
671	splx(s);
672
673	return (0);
674}
675
676/*
677 * Returns true if no I/O is needed to access the
678 * associated VM object.  This is like incore except
679 * it also hunts around in the VM system for the data.
680 */
681
682int
683inmem(struct vnode * vp, daddr_t blkno)
684{
685	vm_object_t obj;
686	vm_offset_t off, toff, tinc;
687	vm_page_t m;
688
689	if (incore(vp, blkno))
690		return 1;
691	if (vp->v_mount == 0)
692		return 0;
693	if ((vp->v_vmdata == 0) || (vp->v_flag & VVMIO) == 0)
694		return 0;
695
696	obj = (vm_object_t) vp->v_vmdata;
697	tinc = PAGE_SIZE;
698	if (tinc > vp->v_mount->mnt_stat.f_iosize)
699		tinc = vp->v_mount->mnt_stat.f_iosize;
700	off = blkno * vp->v_mount->mnt_stat.f_iosize;
701
702	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
703		int mask;
704
705		m = vm_page_lookup(obj, trunc_page(toff + off));
706		if (!m)
707			return 0;
708		if (vm_page_is_valid(m, toff + off, tinc) == 0)
709			return 0;
710	}
711	return 1;
712}
713
714/*
715 * Get a block given a specified block and offset into a file/device.
716 */
717struct buf *
718getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
719{
720	struct buf *bp;
721	int s;
722	struct bufhashhdr *bh;
723	vm_offset_t off;
724	int nleft;
725
726	s = splbio();
727loop:
728	if (bp = incore(vp, blkno)) {
729		if (bp->b_flags & B_BUSY) {
730			bp->b_flags |= B_WANTED;
731			if (!tsleep((caddr_t) bp, PRIBIO | slpflag, "getblk", slptimeo))
732				goto loop;
733
734			splx(s);
735			return (struct buf *) NULL;
736		}
737		bp->b_flags |= B_BUSY | B_CACHE;
738		bremfree(bp);
739		/*
740		 * check for size inconsistancies
741		 */
742		if (bp->b_bcount != size) {
743#if defined(VFS_BIO_DEBUG)
744			printf("getblk: invalid buffer size: %ld\n", bp->b_bcount);
745#endif
746			bp->b_flags |= B_NOCACHE;
747			(void) VOP_BWRITE(bp);
748			goto loop;
749		}
750		splx(s);
751		return (bp);
752	} else {
753		vm_object_t obj;
754		int doingvmio;
755
756		if ((obj = (vm_object_t) vp->v_vmdata) && (vp->v_flag & VVMIO)) {
757			doingvmio = 1;
758		} else {
759			doingvmio = 0;
760		}
761		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
762			if (slpflag || slptimeo)
763				return NULL;
764			goto loop;
765		}
766
767		/*
768		 * This code is used to make sure that a buffer is not
769		 * created while the getnewbuf routine is blocked.
770		 * Normally the vnode is locked so this isn't a problem.
771		 * VBLK type I/O requests, however, don't lock the vnode.
772		 * VOP_ISLOCKED would be much better but is also much
773		 * slower.
774		 */
775		if ((vp->v_type == VBLK) && incore(vp, blkno)) {
776			bp->b_flags |= B_INVAL;
777			brelse(bp);
778			goto loop;
779		}
780
781		/*
782		 * Insert the buffer into the hash, so that it can
783		 * be found by incore.
784		 */
785		bp->b_blkno = bp->b_lblkno = blkno;
786		bgetvp(vp, bp);
787		LIST_REMOVE(bp, b_hash);
788		bh = BUFHASH(vp, blkno);
789		LIST_INSERT_HEAD(bh, bp, b_hash);
790
791		if (doingvmio) {
792			bp->b_flags |= (B_VMIO | B_CACHE);
793#if defined(VFS_BIO_DEBUG)
794			if (vp->v_type != VREG)
795				printf("getblk: vmioing file type %d???\n", vp->v_type);
796#endif
797		} else {
798			bp->b_flags &= ~B_VMIO;
799		}
800		splx(s);
801
802		allocbuf(bp, size);
803		return (bp);
804	}
805}
806
807/*
808 * Get an empty, disassociated buffer of given size.
809 */
810struct buf *
811geteblk(int size)
812{
813	struct buf *bp;
814
815	while ((bp = getnewbuf(0, 0, 0)) == 0);
816	allocbuf(bp, size);
817	bp->b_flags |= B_INVAL;
818	return (bp);
819}
820
821/*
822 * This code constitutes the buffer memory from either anonymous system
823 * memory (in the case of non-VMIO operations) or from an associated
824 * VM object (in the case of VMIO operations).
825 *
826 * Note that this code is tricky, and has many complications to resolve
827 * deadlock or inconsistant data situations.  Tread lightly!!!
828 *
829 * Modify the length of a buffer's underlying buffer storage without
830 * destroying information (unless, of course the buffer is shrinking).
831 */
832int
833allocbuf(struct buf * bp, int size)
834{
835
836	int s;
837	int newbsize, mbsize;
838	int i;
839
840	if ((bp->b_flags & B_VMIO) == 0) {
841		/*
842		 * Just get anonymous memory from the kernel
843		 */
844		mbsize = ((size + DEV_BSIZE - 1) / DEV_BSIZE) * DEV_BSIZE;
845		newbsize = round_page(size);
846
847		if (newbsize == bp->b_bufsize) {
848			bp->b_bcount = size;
849			return 1;
850		} else if (newbsize < bp->b_bufsize) {
851			vm_hold_free_pages(
852			    bp,
853			    (vm_offset_t) bp->b_data + newbsize,
854			    (vm_offset_t) bp->b_data + bp->b_bufsize);
855			bufspace -= (bp->b_bufsize - newbsize);
856		} else if (newbsize > bp->b_bufsize) {
857			vm_hold_load_pages(
858			    bp,
859			    (vm_offset_t) bp->b_data + bp->b_bufsize,
860			    (vm_offset_t) bp->b_data + newbsize);
861			bufspace += (newbsize - bp->b_bufsize);
862		}
863	} else {
864		vm_page_t m;
865		int desiredpages;
866
867		newbsize = ((size + DEV_BSIZE - 1) / DEV_BSIZE) * DEV_BSIZE;
868		desiredpages = round_page(newbsize) / PAGE_SIZE;
869
870		if (newbsize == bp->b_bufsize) {
871			bp->b_bcount = size;
872			return 1;
873		} else if (newbsize < bp->b_bufsize) {
874			if (desiredpages < bp->b_npages) {
875				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
876				    desiredpages * PAGE_SIZE, (bp->b_npages - desiredpages));
877				for (i = desiredpages; i < bp->b_npages; i++) {
878					m = bp->b_pages[i];
879					s = splhigh();
880					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
881						m->flags |= PG_WANTED;
882						tsleep(m, PVM, "biodep", 0);
883					}
884					splx(s);
885
886					if (m->bmapped == 0) {
887						printf("allocbuf: bmapped is zero for page %d\n", i);
888						panic("allocbuf: error");
889					}
890					--m->bmapped;
891					if (m->bmapped == 0) {
892						vm_page_protect(m, VM_PROT_NONE);
893						vm_page_free(m);
894					}
895					bp->b_pages[i] = NULL;
896				}
897				bp->b_npages = desiredpages;
898				bufspace -= (bp->b_bufsize - newbsize);
899			}
900		} else {
901			vm_object_t obj;
902			vm_offset_t tinc, off, toff, objoff;
903			int pageindex, curbpnpages;
904			struct vnode *vp;
905			int bsize;
906
907			vp = bp->b_vp;
908			bsize = vp->v_mount->mnt_stat.f_iosize;
909
910			if (bp->b_npages < desiredpages) {
911				obj = (vm_object_t) vp->v_vmdata;
912				tinc = PAGE_SIZE;
913				if (tinc > bsize)
914					tinc = bsize;
915				off = bp->b_lblkno * bsize;
916				curbpnpages = bp->b_npages;
917		doretry:
918				bp->b_flags |= B_CACHE;
919				for (toff = 0; toff < newbsize; toff += tinc) {
920					int mask;
921					int bytesinpage;
922
923					pageindex = toff / PAGE_SIZE;
924					objoff = trunc_page(toff + off);
925					if (pageindex < curbpnpages) {
926						int pb;
927
928						m = bp->b_pages[pageindex];
929						if (m->offset != objoff)
930							panic("allocbuf: page changed offset??!!!?");
931						bytesinpage = tinc;
932						if (tinc > (newbsize - toff))
933							bytesinpage = newbsize - toff;
934						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
935							bp->b_flags &= ~B_CACHE;
936						}
937						if ((m->flags & PG_ACTIVE) == 0) {
938							vm_page_activate(m);
939							m->act_count = 0;
940						}
941						continue;
942					}
943					m = vm_page_lookup(obj, objoff);
944					if (!m) {
945						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
946						if (!m) {
947							int j;
948
949							for (j = bp->b_npages; j < pageindex; j++) {
950								PAGE_WAKEUP(bp->b_pages[j]);
951							}
952							VM_WAIT;
953							curbpnpages = bp->b_npages;
954							goto doretry;
955						}
956						vm_page_activate(m);
957						m->act_count = 0;
958						m->valid = 0;
959					} else if (m->flags & PG_BUSY) {
960						int j;
961
962						for (j = bp->b_npages; j < pageindex; j++) {
963							PAGE_WAKEUP(bp->b_pages[j]);
964						}
965
966						s = splbio();
967						m->flags |= PG_WANTED;
968						tsleep(m, PRIBIO, "pgtblk", 0);
969						splx(s);
970
971						curbpnpages = bp->b_npages;
972						goto doretry;
973					} else {
974						int pb;
975						if ((curproc != pageproc) &&
976							(m->flags & PG_CACHE) &&
977						    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
978							pagedaemon_wakeup();
979						}
980						bytesinpage = tinc;
981						if (tinc > (newbsize - toff))
982							bytesinpage = newbsize - toff;
983						if (!vm_page_is_valid(m, toff + off, bytesinpage)) {
984							bp->b_flags &= ~B_CACHE;
985						}
986						if ((m->flags & PG_ACTIVE) == 0) {
987							vm_page_activate(m);
988							m->act_count = 0;
989						}
990						m->flags |= PG_BUSY;
991					}
992					bp->b_pages[pageindex] = m;
993					curbpnpages = pageindex + 1;
994				}
995				if (bsize >= PAGE_SIZE) {
996					for (i = bp->b_npages; i < curbpnpages; i++) {
997						m = bp->b_pages[i];
998						if (m->valid == 0) {
999							bp->b_flags &= ~B_CACHE;
1000						}
1001						m->bmapped++;
1002						PAGE_WAKEUP(m);
1003					}
1004				} else {
1005					if (!vm_page_is_valid(bp->b_pages[0], off, bsize))
1006						bp->b_flags &= ~B_CACHE;
1007					bp->b_pages[0]->bmapped++;
1008					PAGE_WAKEUP(bp->b_pages[0]);
1009				}
1010				bp->b_npages = curbpnpages;
1011				bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
1012				pmap_qenter((vm_offset_t) bp->b_data, bp->b_pages, bp->b_npages);
1013				bp->b_data += off % PAGE_SIZE;
1014			}
1015			bufspace += (newbsize - bp->b_bufsize);
1016		}
1017	}
1018	bp->b_bufsize = newbsize;
1019	bp->b_bcount = size;
1020	return 1;
1021}
1022
1023/*
1024 * Wait for buffer I/O completion, returning error status.
1025 */
1026int
1027biowait(register struct buf * bp)
1028{
1029	int s;
1030
1031	s = splbio();
1032	while ((bp->b_flags & B_DONE) == 0)
1033		tsleep((caddr_t) bp, PRIBIO, "biowait", 0);
1034	splx(s);
1035	if (bp->b_flags & B_EINTR) {
1036		bp->b_flags &= ~B_EINTR;
1037		return (EINTR);
1038	}
1039	if (bp->b_flags & B_ERROR) {
1040		return (bp->b_error ? bp->b_error : EIO);
1041	} else {
1042		return (0);
1043	}
1044}
1045
1046/*
1047 * Finish I/O on a buffer, calling an optional function.
1048 * This is usually called from interrupt level, so process blocking
1049 * is not *a good idea*.
1050 */
1051void
1052biodone(register struct buf * bp)
1053{
1054	int s;
1055
1056	s = splbio();
1057	if (bp->b_flags & B_DONE) {
1058		splx(s);
1059		printf("biodone: buffer already done\n");
1060		return;
1061	}
1062	bp->b_flags |= B_DONE;
1063
1064	if ((bp->b_flags & B_READ) == 0) {
1065		struct vnode *vp = bp->b_vp;
1066		vwakeup(bp);
1067	}
1068#ifdef BOUNCE_BUFFERS
1069	if (bp->b_flags & B_BOUNCE)
1070		vm_bounce_free(bp);
1071#endif
1072
1073	/* call optional completion function if requested */
1074	if (bp->b_flags & B_CALL) {
1075		bp->b_flags &= ~B_CALL;
1076		(*bp->b_iodone) (bp);
1077		splx(s);
1078		return;
1079	}
1080	if (bp->b_flags & B_VMIO) {
1081		int i, resid;
1082		vm_offset_t foff;
1083		vm_page_t m;
1084		vm_object_t obj;
1085		int iosize;
1086		struct vnode *vp = bp->b_vp;
1087
1088		foff = vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1089		obj = (vm_object_t) vp->v_vmdata;
1090		if (!obj) {
1091			return;
1092		}
1093#if defined(VFS_BIO_DEBUG)
1094		if (obj->paging_in_progress < bp->b_npages) {
1095			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1096			    obj->paging_in_progress, bp->b_npages);
1097		}
1098#endif
1099		iosize = bp->b_bufsize;
1100		for (i = 0; i < bp->b_npages; i++) {
1101			int bogusflag = 0;
1102			m = bp->b_pages[i];
1103			if (m == bogus_page) {
1104				bogusflag = 1;
1105				m = vm_page_lookup(obj, foff);
1106				if (!m) {
1107#if defined(VFS_BIO_DEBUG)
1108					printf("biodone: page disappeared\n");
1109#endif
1110					--obj->paging_in_progress;
1111					continue;
1112				}
1113				bp->b_pages[i] = m;
1114				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1115			}
1116#if defined(VFS_BIO_DEBUG)
1117			if (trunc_page(foff) != m->offset) {
1118				printf("biodone: foff(%d)/m->offset(%d) mismatch\n", foff, m->offset);
1119			}
1120#endif
1121			resid = (m->offset + PAGE_SIZE) - foff;
1122			if (resid > iosize)
1123				resid = iosize;
1124			if (!bogusflag && resid > 0) {
1125				vm_page_set_valid(m, foff & (PAGE_SIZE-1), resid);
1126				vm_page_set_clean(m, foff & (PAGE_SIZE-1), resid);
1127			}
1128
1129			/*
1130			 * when debugging new filesystems or buffer I/O methods, this
1131			 * is the most common error that pops up.  if you see this, you
1132			 * have not set the page busy flag correctly!!!
1133			 */
1134			if (m->busy == 0) {
1135				printf("biodone: page busy < 0, "
1136				    "off: %ld, foff: %ld, "
1137				    "resid: %d, index: %d\n",
1138				    m->offset, foff, resid, i);
1139				printf(" iosize: %ld, lblkno: %ld\n",
1140				    bp->b_vp->v_mount->mnt_stat.f_iosize,
1141				    bp->b_lblkno);
1142				printf(" valid: 0x%x, dirty: 0x%x, mapped: %d\n",
1143				    m->valid, m->dirty, m->bmapped);
1144				panic("biodone: page busy < 0\n");
1145			}
1146			--m->busy;
1147			if( (m->busy == 0) && (m->flags & PG_WANTED))
1148				wakeup((caddr_t) m);
1149			--obj->paging_in_progress;
1150			foff += resid;
1151			iosize -= resid;
1152		}
1153		if (obj && obj->paging_in_progress == 0 &&
1154		    (obj->flags & OBJ_PIPWNT)) {
1155			obj->flags &= ~OBJ_PIPWNT;
1156			wakeup((caddr_t) obj);
1157		}
1158	}
1159	/*
1160	 * For asynchronous completions, release the buffer now. The brelse
1161	 * checks for B_WANTED and will do the wakeup there if necessary - so
1162	 * no need to do a wakeup here in the async case.
1163	 */
1164
1165	if (bp->b_flags & B_ASYNC) {
1166		brelse(bp);
1167	} else {
1168		bp->b_flags &= ~B_WANTED;
1169		wakeup((caddr_t) bp);
1170	}
1171	splx(s);
1172}
1173
1174int
1175count_lock_queue()
1176{
1177	int count;
1178	struct buf *bp;
1179
1180	count = 0;
1181	for (bp = bufqueues[QUEUE_LOCKED].tqh_first;
1182	    bp != NULL;
1183	    bp = bp->b_freelist.tqe_next)
1184		count++;
1185	return (count);
1186}
1187
1188int vfs_update_interval = 30;
1189
1190void
1191vfs_update()
1192{
1193	(void) spl0();
1194	while (1) {
1195		tsleep((caddr_t) &vfs_update_wakeup, PRIBIO, "update",
1196		    hz * vfs_update_interval);
1197		vfs_update_wakeup = 0;
1198		sync(curproc, NULL, NULL);
1199	}
1200}
1201
1202/*
1203 * This routine is called in lieu of iodone in the case of
1204 * incomplete I/O.  This keeps the busy status for pages
1205 * consistant.
1206 */
1207void
1208vfs_unbusy_pages(struct buf * bp)
1209{
1210	int i;
1211
1212	if (bp->b_flags & B_VMIO) {
1213		struct vnode *vp = bp->b_vp;
1214		vm_object_t obj = (vm_object_t) vp->v_vmdata;
1215		vm_offset_t foff;
1216
1217		foff = vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1218
1219		for (i = 0; i < bp->b_npages; i++) {
1220			vm_page_t m = bp->b_pages[i];
1221
1222			if (m == bogus_page) {
1223				m = vm_page_lookup(obj, foff);
1224				if (!m) {
1225					panic("vfs_unbusy_pages: page missing\n");
1226				}
1227				bp->b_pages[i] = m;
1228				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1229			}
1230			--obj->paging_in_progress;
1231			--m->busy;
1232			if( (m->busy == 0) && (m->flags & PG_WANTED))
1233				wakeup((caddr_t) m);
1234		}
1235		if (obj->paging_in_progress == 0 &&
1236		    (obj->flags & OBJ_PIPWNT)) {
1237			obj->flags &= ~OBJ_PIPWNT;
1238			wakeup((caddr_t) obj);
1239		}
1240	}
1241}
1242
1243/*
1244 * This routine is called before a device strategy routine.
1245 * It is used to tell the VM system that paging I/O is in
1246 * progress, and treat the pages associated with the buffer
1247 * almost as being PG_BUSY.  Also the object paging_in_progress
1248 * flag is handled to make sure that the object doesn't become
1249 * inconsistant.
1250 */
1251void
1252vfs_busy_pages(struct buf * bp, int clear_modify)
1253{
1254	int i;
1255
1256	if (bp->b_flags & B_VMIO) {
1257		vm_object_t obj = (vm_object_t) bp->b_vp->v_vmdata;
1258		vm_offset_t foff = bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1259		int iocount = bp->b_bufsize;
1260
1261		for (i = 0; i < bp->b_npages; i++) {
1262			vm_page_t m = bp->b_pages[i];
1263			int resid = (m->offset + PAGE_SIZE) - foff;
1264
1265			if (resid > iocount)
1266				resid = iocount;
1267			obj->paging_in_progress++;
1268			m->busy++;
1269			if (clear_modify) {
1270				vm_page_protect(m, VM_PROT_READ);
1271				pmap_clear_reference(VM_PAGE_TO_PHYS(m));
1272				m->flags &= ~PG_REFERENCED;
1273				vm_page_set_valid(m,
1274					foff & (PAGE_SIZE-1), resid);
1275				vm_page_set_clean(m,
1276					foff & (PAGE_SIZE-1), resid);
1277			} else if (bp->b_bcount >= PAGE_SIZE) {
1278				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1279					bp->b_pages[i] = bogus_page;
1280					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1281				}
1282			}
1283			foff += resid;
1284			iocount -= resid;
1285		}
1286	}
1287}
1288
1289/*
1290 * Tell the VM system that the pages associated with this buffer
1291 * are dirty.  This is in case of the unlikely circumstance that
1292 * a buffer has to be destroyed before it is flushed.
1293 */
1294void
1295vfs_clean_pages(struct buf * bp)
1296{
1297	int i;
1298
1299	if (bp->b_flags & B_VMIO) {
1300		vm_offset_t foff =
1301			bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1302		int iocount = bp->b_bufsize;
1303
1304		for (i = 0; i < bp->b_npages; i++) {
1305			vm_page_t m = bp->b_pages[i];
1306			int resid = (m->offset + PAGE_SIZE) - foff;
1307
1308			if (resid > iocount)
1309				resid = iocount;
1310			if (resid > 0) {
1311				vm_page_set_valid(m,
1312					foff & (PAGE_SIZE-1), resid);
1313				vm_page_set_clean(m,
1314					foff & (PAGE_SIZE-1), resid);
1315			}
1316			foff += resid;
1317			iocount -= resid;
1318		}
1319	}
1320}
1321
1322void
1323vfs_bio_clrbuf(struct buf *bp) {
1324	int i;
1325	if( bp->b_flags & B_VMIO) {
1326		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1327			int j;
1328			if( bp->b_pages[0]->valid != VM_PAGE_BITS_ALL) {
1329				for(j=0; j < bp->b_bufsize / DEV_BSIZE;j++) {
1330					bzero(bp->b_data + j * DEV_BSIZE, DEV_BSIZE);
1331				}
1332			}
1333			bp->b_resid = 0;
1334			return;
1335		}
1336		for(i=0;i<bp->b_npages;i++) {
1337			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1338				continue;
1339			if( bp->b_pages[i]->valid == 0) {
1340				bzero(bp->b_data + i * PAGE_SIZE, PAGE_SIZE);
1341			} else {
1342				int j;
1343				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1344					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1345						bzero(bp->b_data + i * PAGE_SIZE + j * DEV_BSIZE, DEV_BSIZE);
1346				}
1347			}
1348			bp->b_pages[i]->valid = VM_PAGE_BITS_ALL;
1349		}
1350		bp->b_resid = 0;
1351	} else {
1352		clrbuf(bp);
1353	}
1354}
1355
1356/*
1357 * vm_hold_load_pages and vm_hold_unload pages get pages into
1358 * a buffers address space.  The pages are anonymous and are
1359 * not associated with a file object.
1360 */
1361void
1362vm_hold_load_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1363{
1364	vm_offset_t pg;
1365	vm_page_t p;
1366	vm_offset_t from = round_page(froma);
1367	vm_offset_t to = round_page(toa);
1368
1369	for (pg = from; pg < to; pg += PAGE_SIZE) {
1370
1371tryagain:
1372
1373		p = vm_page_alloc(kernel_object, pg - VM_MIN_KERNEL_ADDRESS,
1374		    VM_ALLOC_NORMAL);
1375		if (!p) {
1376			VM_WAIT;
1377			goto tryagain;
1378		}
1379		vm_page_wire(p);
1380		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1381		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = p;
1382		PAGE_WAKEUP(p);
1383		bp->b_npages++;
1384	}
1385}
1386
1387void
1388vm_hold_free_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1389{
1390	vm_offset_t pg;
1391	vm_page_t p;
1392	vm_offset_t from = round_page(froma);
1393	vm_offset_t to = round_page(toa);
1394
1395	for (pg = from; pg < to; pg += PAGE_SIZE) {
1396		p = bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE];
1397		bp->b_pages[((caddr_t) pg - bp->b_data) / PAGE_SIZE] = 0;
1398		pmap_kremove(pg);
1399		vm_page_free(p);
1400		--bp->b_npages;
1401	}
1402}
1403