vfs_bio.c revision 77115
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 77115 2001-05-24 07:22:27Z dillon $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct	buf_ops buf_ops_bio = {
62	"buf_ops_bio",
63	bwrite
64};
65
66struct buf *buf;		/* buffer header pool */
67struct swqueue bswlist;
68struct mtx buftimelock;		/* Interlock on setting prio and timo */
69
70static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71		vm_offset_t to);
72static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73		vm_offset_t to);
74static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75			       int pageno, vm_page_t m);
76static void vfs_clean_pages(struct buf * bp);
77static void vfs_setdirty(struct buf *bp);
78static void vfs_vmio_release(struct buf *bp);
79static void vfs_backgroundwritedone(struct buf *bp);
80static int flushbufqueues(void);
81
82static int bd_request;
83
84static void buf_daemon __P((void));
85/*
86 * bogus page -- for I/O to/from partially complete buffers
87 * this is a temporary solution to the problem, but it is not
88 * really that bad.  it would be better to split the buffer
89 * for input in the case of buffers partially already in memory,
90 * but the code is intricate enough already.
91 */
92vm_page_t bogus_page;
93int vmiodirenable = FALSE;
94int runningbufspace;
95static vm_offset_t bogus_offset;
96
97static int bufspace, maxbufspace,
98	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100static int needsbuffer;
101static int lorunningspace, hirunningspace, runningbufreq;
102static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103static int numfreebuffers, lofreebuffers, hifreebuffers;
104static int getnewbufcalls;
105static int getnewbufrestarts;
106
107SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108	&numdirtybuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110	&lodirtybuffers, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112	&hidirtybuffers, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114	&numfreebuffers, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116	&lofreebuffers, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118	&hifreebuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120	&runningbufspace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122	&lorunningspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124	&hirunningspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126	&maxbufspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128	&hibufspace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130	&lobufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134	&maxbufmallocspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136	&bufmallocspace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138	&getnewbufcalls, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140	&getnewbufrestarts, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142	&vmiodirenable, 0, "");
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144	&bufdefragcnt, 0, "");
145SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146	&buffreekvacnt, 0, "");
147SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148	&bufreusecnt, 0, "");
149
150static int bufhashmask;
151static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153char *buf_wmesg = BUF_WMESG;
154
155extern int vm_swap_size;
156
157#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161
162/*
163 * Buffer hash table code.  Note that the logical block scans linearly, which
164 * gives us some L1 cache locality.
165 */
166
167static __inline
168struct bufhashhdr *
169bufhash(struct vnode *vnp, daddr_t bn)
170{
171	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172}
173
174/*
175 *	numdirtywakeup:
176 *
177 *	If someone is blocked due to there being too many dirty buffers,
178 *	and numdirtybuffers is now reasonable, wake them up.
179 */
180
181static __inline void
182numdirtywakeup(int level)
183{
184	if (numdirtybuffers <= level) {
185		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187			wakeup(&needsbuffer);
188		}
189	}
190}
191
192/*
193 *	bufspacewakeup:
194 *
195 *	Called when buffer space is potentially available for recovery.
196 *	getnewbuf() will block on this flag when it is unable to free
197 *	sufficient buffer space.  Buffer space becomes recoverable when
198 *	bp's get placed back in the queues.
199 */
200
201static __inline void
202bufspacewakeup(void)
203{
204	/*
205	 * If someone is waiting for BUF space, wake them up.  Even
206	 * though we haven't freed the kva space yet, the waiting
207	 * process will be able to now.
208	 */
209	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211		wakeup(&needsbuffer);
212	}
213}
214
215/*
216 * runningbufwakeup() - in-progress I/O accounting.
217 *
218 */
219static __inline void
220runningbufwakeup(struct buf *bp)
221{
222	if (bp->b_runningbufspace) {
223		runningbufspace -= bp->b_runningbufspace;
224		bp->b_runningbufspace = 0;
225		if (runningbufreq && runningbufspace <= lorunningspace) {
226			runningbufreq = 0;
227			wakeup(&runningbufreq);
228		}
229	}
230}
231
232/*
233 *	bufcountwakeup:
234 *
235 *	Called when a buffer has been added to one of the free queues to
236 *	account for the buffer and to wakeup anyone waiting for free buffers.
237 *	This typically occurs when large amounts of metadata are being handled
238 *	by the buffer cache ( else buffer space runs out first, usually ).
239 */
240
241static __inline void
242bufcountwakeup(void)
243{
244	++numfreebuffers;
245	if (needsbuffer) {
246		needsbuffer &= ~VFS_BIO_NEED_ANY;
247		if (numfreebuffers >= hifreebuffers)
248			needsbuffer &= ~VFS_BIO_NEED_FREE;
249		wakeup(&needsbuffer);
250	}
251}
252
253/*
254 *	waitrunningbufspace()
255 *
256 *	runningbufspace is a measure of the amount of I/O currently
257 *	running.  This routine is used in async-write situations to
258 *	prevent creating huge backups of pending writes to a device.
259 *	Only asynchronous writes are governed by this function.
260 *
261 *	Reads will adjust runningbufspace, but will not block based on it.
262 *	The read load has a side effect of reducing the allowed write load.
263 *
264 *	This does NOT turn an async write into a sync write.  It waits
265 *	for earlier writes to complete and generally returns before the
266 *	caller's write has reached the device.
267 */
268static __inline void
269waitrunningbufspace(void)
270{
271	while (runningbufspace > hirunningspace) {
272		++runningbufreq;
273		tsleep(&runningbufreq, PVM, "wdrain", 0);
274	}
275}
276
277
278/*
279 *	vfs_buf_test_cache:
280 *
281 *	Called when a buffer is extended.  This function clears the B_CACHE
282 *	bit if the newly extended portion of the buffer does not contain
283 *	valid data.
284 *
285 *	must be called with vm_mtx held
286 */
287static __inline__
288void
289vfs_buf_test_cache(struct buf *bp,
290		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
291		  vm_page_t m)
292{
293	if (bp->b_flags & B_CACHE) {
294		int base = (foff + off) & PAGE_MASK;
295		if (vm_page_is_valid(m, base, size) == 0)
296			bp->b_flags &= ~B_CACHE;
297	}
298}
299
300static __inline__
301void
302bd_wakeup(int dirtybuflevel)
303{
304	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
305		bd_request = 1;
306		wakeup(&bd_request);
307	}
308}
309
310/*
311 * bd_speedup - speedup the buffer cache flushing code
312 */
313
314static __inline__
315void
316bd_speedup(void)
317{
318	bd_wakeup(1);
319}
320
321/*
322 * Initialize buffer headers and related structures.
323 */
324
325caddr_t
326bufhashinit(caddr_t vaddr)
327{
328	/* first, make a null hash table */
329	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
330		;
331	bufhashtbl = (void *)vaddr;
332	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
333	--bufhashmask;
334	return(vaddr);
335}
336
337void
338bufinit(void)
339{
340	struct buf *bp;
341	int i;
342
343	TAILQ_INIT(&bswlist);
344	LIST_INIT(&invalhash);
345	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
346
347	for (i = 0; i <= bufhashmask; i++)
348		LIST_INIT(&bufhashtbl[i]);
349
350	/* next, make a null set of free lists */
351	for (i = 0; i < BUFFER_QUEUES; i++)
352		TAILQ_INIT(&bufqueues[i]);
353
354	/* finally, initialize each buffer header and stick on empty q */
355	for (i = 0; i < nbuf; i++) {
356		bp = &buf[i];
357		bzero(bp, sizeof *bp);
358		bp->b_flags = B_INVAL;	/* we're just an empty header */
359		bp->b_dev = NODEV;
360		bp->b_rcred = NOCRED;
361		bp->b_wcred = NOCRED;
362		bp->b_qindex = QUEUE_EMPTY;
363		bp->b_xflags = 0;
364		LIST_INIT(&bp->b_dep);
365		BUF_LOCKINIT(bp);
366		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
367		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
368	}
369
370	/*
371	 * maxbufspace is the absolute maximum amount of buffer space we are
372	 * allowed to reserve in KVM and in real terms.  The absolute maximum
373	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
374	 * used by most other processes.  The differential is required to
375	 * ensure that buf_daemon is able to run when other processes might
376	 * be blocked waiting for buffer space.
377	 *
378	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
379	 * this may result in KVM fragmentation which is not handled optimally
380	 * by the system.
381	 */
382	maxbufspace = nbuf * BKVASIZE;
383	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
384	lobufspace = hibufspace - MAXBSIZE;
385
386	lorunningspace = 512 * 1024;
387	hirunningspace = 1024 * 1024;
388
389/*
390 * Limit the amount of malloc memory since it is wired permanently into
391 * the kernel space.  Even though this is accounted for in the buffer
392 * allocation, we don't want the malloced region to grow uncontrolled.
393 * The malloc scheme improves memory utilization significantly on average
394 * (small) directories.
395 */
396	maxbufmallocspace = hibufspace / 20;
397
398/*
399 * Reduce the chance of a deadlock occuring by limiting the number
400 * of delayed-write dirty buffers we allow to stack up.
401 */
402	hidirtybuffers = nbuf / 4 + 20;
403	numdirtybuffers = 0;
404/*
405 * To support extreme low-memory systems, make sure hidirtybuffers cannot
406 * eat up all available buffer space.  This occurs when our minimum cannot
407 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
408 * BKVASIZE'd (8K) buffers.
409 */
410	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
411		hidirtybuffers >>= 1;
412	}
413	lodirtybuffers = hidirtybuffers / 2;
414
415/*
416 * Try to keep the number of free buffers in the specified range,
417 * and give special processes (e.g. like buf_daemon) access to an
418 * emergency reserve.
419 */
420	lofreebuffers = nbuf / 18 + 5;
421	hifreebuffers = 2 * lofreebuffers;
422	numfreebuffers = nbuf;
423
424/*
425 * Maximum number of async ops initiated per buf_daemon loop.  This is
426 * somewhat of a hack at the moment, we really need to limit ourselves
427 * based on the number of bytes of I/O in-transit that were initiated
428 * from buf_daemon.
429 */
430
431	mtx_lock(&vm_mtx);
432	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
433	bogus_page = vm_page_alloc(kernel_object,
434			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
435			VM_ALLOC_NORMAL);
436	cnt.v_wire_count++;
437	mtx_unlock(&vm_mtx);
438
439}
440
441/*
442 * bfreekva() - free the kva allocation for a buffer.
443 *
444 *	Must be called at splbio() or higher as this is the only locking for
445 *	buffer_map.
446 *
447 *	Since this call frees up buffer space, we call bufspacewakeup().
448 *
449 *	Must be called without the vm_mtx.
450 */
451static void
452bfreekva(struct buf * bp)
453{
454
455	mtx_assert(&vm_mtx, MA_NOTOWNED);
456	if (bp->b_kvasize) {
457		++buffreekvacnt;
458		bufspace -= bp->b_kvasize;
459		mtx_lock(&vm_mtx);
460		vm_map_delete(buffer_map,
461		    (vm_offset_t) bp->b_kvabase,
462		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
463		);
464		mtx_unlock(&vm_mtx);
465		bp->b_kvasize = 0;
466		bufspacewakeup();
467	}
468}
469
470/*
471 *	bremfree:
472 *
473 *	Remove the buffer from the appropriate free list.
474 */
475void
476bremfree(struct buf * bp)
477{
478	int s = splbio();
479	int old_qindex = bp->b_qindex;
480
481	if (bp->b_qindex != QUEUE_NONE) {
482		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
483		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
484		bp->b_qindex = QUEUE_NONE;
485	} else {
486		if (BUF_REFCNT(bp) <= 1)
487			panic("bremfree: removing a buffer not on a queue");
488	}
489
490	/*
491	 * Fixup numfreebuffers count.  If the buffer is invalid or not
492	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
493	 * the buffer was free and we must decrement numfreebuffers.
494	 */
495	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
496		switch(old_qindex) {
497		case QUEUE_DIRTY:
498		case QUEUE_CLEAN:
499		case QUEUE_EMPTY:
500		case QUEUE_EMPTYKVA:
501			--numfreebuffers;
502			break;
503		default:
504			break;
505		}
506	}
507	splx(s);
508}
509
510
511/*
512 * Get a buffer with the specified data.  Look in the cache first.  We
513 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
514 * is set, the buffer is valid and we do not have to do anything ( see
515 * getblk() ).  This is really just a special case of breadn().
516 */
517int
518bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
519    struct buf ** bpp)
520{
521
522	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
523}
524
525/*
526 * Operates like bread, but also starts asynchronous I/O on
527 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
528 * to initiating I/O . If B_CACHE is set, the buffer is valid
529 * and we do not have to do anything.
530 */
531int
532breadn(struct vnode * vp, daddr_t blkno, int size,
533    daddr_t * rablkno, int *rabsize,
534    int cnt, struct ucred * cred, struct buf ** bpp)
535{
536	struct buf *bp, *rabp;
537	int i;
538	int rv = 0, readwait = 0;
539
540	*bpp = bp = getblk(vp, blkno, size, 0, 0);
541
542	/* if not found in cache, do some I/O */
543	if ((bp->b_flags & B_CACHE) == 0) {
544		if (curproc != PCPU_GET(idleproc))
545			curproc->p_stats->p_ru.ru_inblock++;
546		bp->b_iocmd = BIO_READ;
547		bp->b_flags &= ~B_INVAL;
548		bp->b_ioflags &= ~BIO_ERROR;
549		if (bp->b_rcred == NOCRED) {
550			if (cred != NOCRED)
551				crhold(cred);
552			bp->b_rcred = cred;
553		}
554		vfs_busy_pages(bp, 0);
555		VOP_STRATEGY(vp, bp);
556		++readwait;
557	}
558
559	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
560		if (inmem(vp, *rablkno))
561			continue;
562		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
563
564		if ((rabp->b_flags & B_CACHE) == 0) {
565			if (curproc != PCPU_GET(idleproc))
566				curproc->p_stats->p_ru.ru_inblock++;
567			rabp->b_flags |= B_ASYNC;
568			rabp->b_flags &= ~B_INVAL;
569			rabp->b_ioflags &= ~BIO_ERROR;
570			rabp->b_iocmd = BIO_READ;
571			if (rabp->b_rcred == NOCRED) {
572				if (cred != NOCRED)
573					crhold(cred);
574				rabp->b_rcred = cred;
575			}
576			vfs_busy_pages(rabp, 0);
577			BUF_KERNPROC(rabp);
578			VOP_STRATEGY(vp, rabp);
579		} else {
580			brelse(rabp);
581		}
582	}
583
584	if (readwait) {
585		rv = bufwait(bp);
586	}
587	return (rv);
588}
589
590/*
591 * Write, release buffer on completion.  (Done by iodone
592 * if async).  Do not bother writing anything if the buffer
593 * is invalid.
594 *
595 * Note that we set B_CACHE here, indicating that buffer is
596 * fully valid and thus cacheable.  This is true even of NFS
597 * now so we set it generally.  This could be set either here
598 * or in biodone() since the I/O is synchronous.  We put it
599 * here.
600 */
601
602int dobkgrdwrite = 1;
603SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
604
605int
606bwrite(struct buf * bp)
607{
608	int oldflags, s;
609	struct buf *newbp;
610
611	if (bp->b_flags & B_INVAL) {
612		brelse(bp);
613		return (0);
614	}
615
616	oldflags = bp->b_flags;
617
618	if (BUF_REFCNT(bp) == 0)
619		panic("bwrite: buffer is not busy???");
620	s = splbio();
621	/*
622	 * If a background write is already in progress, delay
623	 * writing this block if it is asynchronous. Otherwise
624	 * wait for the background write to complete.
625	 */
626	if (bp->b_xflags & BX_BKGRDINPROG) {
627		if (bp->b_flags & B_ASYNC) {
628			splx(s);
629			bdwrite(bp);
630			return (0);
631		}
632		bp->b_xflags |= BX_BKGRDWAIT;
633		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
634		if (bp->b_xflags & BX_BKGRDINPROG)
635			panic("bwrite: still writing");
636	}
637
638	/* Mark the buffer clean */
639	bundirty(bp);
640
641	/*
642	 * If this buffer is marked for background writing and we
643	 * do not have to wait for it, make a copy and write the
644	 * copy so as to leave this buffer ready for further use.
645	 *
646	 * This optimization eats a lot of memory.  If we have a page
647	 * or buffer shortfall we can't do it.
648	 */
649	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
650	    (bp->b_flags & B_ASYNC) &&
651	    !vm_page_count_severe() &&
652	    !buf_dirty_count_severe()) {
653		if (bp->b_iodone != NULL) {
654			printf("bp->b_iodone = %p\n", bp->b_iodone);
655			panic("bwrite: need chained iodone");
656		}
657
658		/* get a new block */
659		newbp = geteblk(bp->b_bufsize);
660
661		/* set it to be identical to the old block */
662		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
663		bgetvp(bp->b_vp, newbp);
664		newbp->b_lblkno = bp->b_lblkno;
665		newbp->b_blkno = bp->b_blkno;
666		newbp->b_offset = bp->b_offset;
667		newbp->b_iodone = vfs_backgroundwritedone;
668		newbp->b_flags |= B_ASYNC;
669		newbp->b_flags &= ~B_INVAL;
670
671		/* move over the dependencies */
672		if (LIST_FIRST(&bp->b_dep) != NULL)
673			buf_movedeps(bp, newbp);
674
675		/*
676		 * Initiate write on the copy, release the original to
677		 * the B_LOCKED queue so that it cannot go away until
678		 * the background write completes. If not locked it could go
679		 * away and then be reconstituted while it was being written.
680		 * If the reconstituted buffer were written, we could end up
681		 * with two background copies being written at the same time.
682		 */
683		bp->b_xflags |= BX_BKGRDINPROG;
684		bp->b_flags |= B_LOCKED;
685		bqrelse(bp);
686		bp = newbp;
687	}
688
689	bp->b_flags &= ~B_DONE;
690	bp->b_ioflags &= ~BIO_ERROR;
691	bp->b_flags |= B_WRITEINPROG | B_CACHE;
692	bp->b_iocmd = BIO_WRITE;
693
694	bp->b_vp->v_numoutput++;
695	vfs_busy_pages(bp, 1);
696
697	/*
698	 * Normal bwrites pipeline writes
699	 */
700	bp->b_runningbufspace = bp->b_bufsize;
701	runningbufspace += bp->b_runningbufspace;
702
703	if (curproc != PCPU_GET(idleproc))
704		curproc->p_stats->p_ru.ru_oublock++;
705	splx(s);
706	if (oldflags & B_ASYNC)
707		BUF_KERNPROC(bp);
708	BUF_STRATEGY(bp);
709
710	if ((oldflags & B_ASYNC) == 0) {
711		int rtval = bufwait(bp);
712		brelse(bp);
713		return (rtval);
714	} else {
715		/*
716		 * don't allow the async write to saturate the I/O
717		 * system.  There is no chance of deadlock here because
718		 * we are blocking on I/O that is already in-progress.
719		 */
720		waitrunningbufspace();
721	}
722
723	return (0);
724}
725
726/*
727 * Complete a background write started from bwrite.
728 */
729static void
730vfs_backgroundwritedone(bp)
731	struct buf *bp;
732{
733	struct buf *origbp;
734
735	/*
736	 * Find the original buffer that we are writing.
737	 */
738	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
739		panic("backgroundwritedone: lost buffer");
740	/*
741	 * Process dependencies then return any unfinished ones.
742	 */
743	if (LIST_FIRST(&bp->b_dep) != NULL)
744		buf_complete(bp);
745	if (LIST_FIRST(&bp->b_dep) != NULL)
746		buf_movedeps(bp, origbp);
747	/*
748	 * Clear the BX_BKGRDINPROG flag in the original buffer
749	 * and awaken it if it is waiting for the write to complete.
750	 * If BX_BKGRDINPROG is not set in the original buffer it must
751	 * have been released and re-instantiated - which is not legal.
752	 */
753	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
754	origbp->b_xflags &= ~BX_BKGRDINPROG;
755	if (origbp->b_xflags & BX_BKGRDWAIT) {
756		origbp->b_xflags &= ~BX_BKGRDWAIT;
757		wakeup(&origbp->b_xflags);
758	}
759	/*
760	 * Clear the B_LOCKED flag and remove it from the locked
761	 * queue if it currently resides there.
762	 */
763	origbp->b_flags &= ~B_LOCKED;
764	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
765		bremfree(origbp);
766		bqrelse(origbp);
767	}
768	/*
769	 * This buffer is marked B_NOCACHE, so when it is released
770	 * by biodone, it will be tossed. We mark it with BIO_READ
771	 * to avoid biodone doing a second vwakeup.
772	 */
773	bp->b_flags |= B_NOCACHE;
774	bp->b_iocmd = BIO_READ;
775	bp->b_flags &= ~(B_CACHE | B_DONE);
776	bp->b_iodone = 0;
777	bufdone(bp);
778}
779
780/*
781 * Delayed write. (Buffer is marked dirty).  Do not bother writing
782 * anything if the buffer is marked invalid.
783 *
784 * Note that since the buffer must be completely valid, we can safely
785 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
786 * biodone() in order to prevent getblk from writing the buffer
787 * out synchronously.
788 */
789void
790bdwrite(struct buf * bp)
791{
792	if (BUF_REFCNT(bp) == 0)
793		panic("bdwrite: buffer is not busy");
794
795	if (bp->b_flags & B_INVAL) {
796		brelse(bp);
797		return;
798	}
799	bdirty(bp);
800
801	/*
802	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
803	 * true even of NFS now.
804	 */
805	bp->b_flags |= B_CACHE;
806
807	/*
808	 * This bmap keeps the system from needing to do the bmap later,
809	 * perhaps when the system is attempting to do a sync.  Since it
810	 * is likely that the indirect block -- or whatever other datastructure
811	 * that the filesystem needs is still in memory now, it is a good
812	 * thing to do this.  Note also, that if the pageout daemon is
813	 * requesting a sync -- there might not be enough memory to do
814	 * the bmap then...  So, this is important to do.
815	 */
816	if (bp->b_lblkno == bp->b_blkno) {
817		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
818	}
819
820	mtx_lock(&vm_mtx);
821	/*
822	 * Set the *dirty* buffer range based upon the VM system dirty pages.
823	 */
824	vfs_setdirty(bp);
825
826	/*
827	 * We need to do this here to satisfy the vnode_pager and the
828	 * pageout daemon, so that it thinks that the pages have been
829	 * "cleaned".  Note that since the pages are in a delayed write
830	 * buffer -- the VFS layer "will" see that the pages get written
831	 * out on the next sync, or perhaps the cluster will be completed.
832	 */
833	vfs_clean_pages(bp);
834	mtx_unlock(&vm_mtx);
835	bqrelse(bp);
836
837	/*
838	 * Wakeup the buffer flushing daemon if we have a lot of dirty
839	 * buffers (midpoint between our recovery point and our stall
840	 * point).
841	 */
842	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
843
844	/*
845	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
846	 * due to the softdep code.
847	 */
848}
849
850/*
851 *	bdirty:
852 *
853 *	Turn buffer into delayed write request.  We must clear BIO_READ and
854 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
855 *	itself to properly update it in the dirty/clean lists.  We mark it
856 *	B_DONE to ensure that any asynchronization of the buffer properly
857 *	clears B_DONE ( else a panic will occur later ).
858 *
859 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
860 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
861 *	should only be called if the buffer is known-good.
862 *
863 *	Since the buffer is not on a queue, we do not update the numfreebuffers
864 *	count.
865 *
866 *	Must be called at splbio().
867 *	The buffer must be on QUEUE_NONE.
868 */
869void
870bdirty(bp)
871	struct buf *bp;
872{
873	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
874	bp->b_flags &= ~(B_RELBUF);
875	bp->b_iocmd = BIO_WRITE;
876
877	if ((bp->b_flags & B_DELWRI) == 0) {
878		bp->b_flags |= B_DONE | B_DELWRI;
879		reassignbuf(bp, bp->b_vp);
880		++numdirtybuffers;
881		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
882	}
883}
884
885/*
886 *	bundirty:
887 *
888 *	Clear B_DELWRI for buffer.
889 *
890 *	Since the buffer is not on a queue, we do not update the numfreebuffers
891 *	count.
892 *
893 *	Must be called at splbio().
894 *	The buffer must be on QUEUE_NONE.
895 */
896
897void
898bundirty(bp)
899	struct buf *bp;
900{
901	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
902
903	if (bp->b_flags & B_DELWRI) {
904		bp->b_flags &= ~B_DELWRI;
905		reassignbuf(bp, bp->b_vp);
906		--numdirtybuffers;
907		numdirtywakeup(lodirtybuffers);
908	}
909	/*
910	 * Since it is now being written, we can clear its deferred write flag.
911	 */
912	bp->b_flags &= ~B_DEFERRED;
913}
914
915/*
916 *	bawrite:
917 *
918 *	Asynchronous write.  Start output on a buffer, but do not wait for
919 *	it to complete.  The buffer is released when the output completes.
920 *
921 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
922 *	B_INVAL buffers.  Not us.
923 */
924void
925bawrite(struct buf * bp)
926{
927	bp->b_flags |= B_ASYNC;
928	(void) BUF_WRITE(bp);
929}
930
931/*
932 *	bowrite:
933 *
934 *	Ordered write.  Start output on a buffer, and flag it so that the
935 *	device will write it in the order it was queued.  The buffer is
936 *	released when the output completes.  bwrite() ( or the VOP routine
937 *	anyway ) is responsible for handling B_INVAL buffers.
938 */
939int
940bowrite(struct buf * bp)
941{
942	bp->b_ioflags |= BIO_ORDERED;
943	bp->b_flags |= B_ASYNC;
944	return (BUF_WRITE(bp));
945}
946
947/*
948 *	bwillwrite:
949 *
950 *	Called prior to the locking of any vnodes when we are expecting to
951 *	write.  We do not want to starve the buffer cache with too many
952 *	dirty buffers so we block here.  By blocking prior to the locking
953 *	of any vnodes we attempt to avoid the situation where a locked vnode
954 *	prevents the various system daemons from flushing related buffers.
955 */
956
957void
958bwillwrite(void)
959{
960	if (numdirtybuffers >= hidirtybuffers) {
961		int s;
962
963		s = splbio();
964		while (numdirtybuffers >= hidirtybuffers) {
965			bd_wakeup(1);
966			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
967			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
968		}
969		splx(s);
970	}
971}
972
973/*
974 * Return true if we have too many dirty buffers.
975 */
976int
977buf_dirty_count_severe(void)
978{
979	return(numdirtybuffers >= hidirtybuffers);
980}
981
982/*
983 *	brelse:
984 *
985 *	Release a busy buffer and, if requested, free its resources.  The
986 *	buffer will be stashed in the appropriate bufqueue[] allowing it
987 *	to be accessed later as a cache entity or reused for other purposes.
988 *
989 *	vm_mtx must be not be held.
990 */
991void
992brelse(struct buf * bp)
993{
994	int s;
995
996	mtx_assert(&vm_mtx, MA_NOTOWNED);
997	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
998
999	s = splbio();
1000
1001	if (bp->b_flags & B_LOCKED)
1002		bp->b_ioflags &= ~BIO_ERROR;
1003
1004	if (bp->b_iocmd == BIO_WRITE &&
1005	    (bp->b_ioflags & BIO_ERROR) &&
1006	    !(bp->b_flags & B_INVAL)) {
1007		/*
1008		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1009		 * pages from being scrapped.  If B_INVAL is set then
1010		 * this case is not run and the next case is run to
1011		 * destroy the buffer.  B_INVAL can occur if the buffer
1012		 * is outside the range supported by the underlying device.
1013		 */
1014		bp->b_ioflags &= ~BIO_ERROR;
1015		bdirty(bp);
1016	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1017	    (bp->b_ioflags & BIO_ERROR) ||
1018	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1019		/*
1020		 * Either a failed I/O or we were asked to free or not
1021		 * cache the buffer.
1022		 */
1023		bp->b_flags |= B_INVAL;
1024		if (LIST_FIRST(&bp->b_dep) != NULL)
1025			buf_deallocate(bp);
1026		if (bp->b_flags & B_DELWRI) {
1027			--numdirtybuffers;
1028			numdirtywakeup(lodirtybuffers);
1029		}
1030		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1031		if ((bp->b_flags & B_VMIO) == 0) {
1032			if (bp->b_bufsize)
1033				allocbuf(bp, 0);
1034			if (bp->b_vp)
1035				brelvp(bp);
1036		}
1037	}
1038
1039	/*
1040	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1041	 * is called with B_DELWRI set, the underlying pages may wind up
1042	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1043	 * because pages associated with a B_DELWRI bp are marked clean.
1044	 *
1045	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1046	 * if B_DELWRI is set.
1047	 *
1048	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1049	 * on pages to return pages to the VM page queues.
1050	 */
1051	if (bp->b_flags & B_DELWRI)
1052		bp->b_flags &= ~B_RELBUF;
1053	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1054		bp->b_flags |= B_RELBUF;
1055
1056	/*
1057	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1058	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1059	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1060	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1061	 *
1062	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1063	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1064	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1065	 *
1066	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1067	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1068	 * the commit state and we cannot afford to lose the buffer. If the
1069	 * buffer has a background write in progress, we need to keep it
1070	 * around to prevent it from being reconstituted and starting a second
1071	 * background write.
1072	 */
1073	if ((bp->b_flags & B_VMIO)
1074	    && !(bp->b_vp->v_tag == VT_NFS &&
1075		 !vn_isdisk(bp->b_vp, NULL) &&
1076		 (bp->b_flags & B_DELWRI))
1077	    ) {
1078
1079		int i, j, resid;
1080		vm_page_t m;
1081		off_t foff;
1082		vm_pindex_t poff;
1083		vm_object_t obj;
1084		struct vnode *vp;
1085
1086		vp = bp->b_vp;
1087
1088		/*
1089		 * Get the base offset and length of the buffer.  Note that
1090		 * for block sizes that are less then PAGE_SIZE, the b_data
1091		 * base of the buffer does not represent exactly b_offset and
1092		 * neither b_offset nor b_size are necessarily page aligned.
1093		 * Instead, the starting position of b_offset is:
1094		 *
1095		 * 	b_data + (b_offset & PAGE_MASK)
1096		 *
1097		 * block sizes less then DEV_BSIZE (usually 512) are not
1098		 * supported due to the page granularity bits (m->valid,
1099		 * m->dirty, etc...).
1100		 *
1101		 * See man buf(9) for more information
1102		 */
1103		resid = bp->b_bufsize;
1104		foff = bp->b_offset;
1105
1106		mtx_lock(&vm_mtx);
1107		for (i = 0; i < bp->b_npages; i++) {
1108			int had_bogus = 0;
1109
1110			m = bp->b_pages[i];
1111			vm_page_flag_clear(m, PG_ZERO);
1112
1113			/*
1114			 * If we hit a bogus page, fixup *all* the bogus pages
1115			 * now.
1116			 */
1117			if (m == bogus_page) {
1118				mtx_unlock(&vm_mtx);
1119				VOP_GETVOBJECT(vp, &obj);
1120				poff = OFF_TO_IDX(bp->b_offset);
1121				had_bogus = 1;
1122
1123				mtx_lock(&vm_mtx);
1124				for (j = i; j < bp->b_npages; j++) {
1125					vm_page_t mtmp;
1126					mtmp = bp->b_pages[j];
1127					if (mtmp == bogus_page) {
1128						mtmp = vm_page_lookup(obj, poff + j);
1129						if (!mtmp) {
1130							panic("brelse: page missing\n");
1131						}
1132						bp->b_pages[j] = mtmp;
1133					}
1134				}
1135
1136				if ((bp->b_flags & B_INVAL) == 0) {
1137					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1138				}
1139				m = bp->b_pages[i];
1140			}
1141			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1142				int poffset = foff & PAGE_MASK;
1143				int presid = resid > (PAGE_SIZE - poffset) ?
1144					(PAGE_SIZE - poffset) : resid;
1145
1146				KASSERT(presid >= 0, ("brelse: extra page"));
1147				vm_page_set_invalid(m, poffset, presid);
1148				if (had_bogus)
1149					printf("avoided corruption bug in bogus_page/brelse code\n");
1150			}
1151			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1152			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1153		}
1154
1155		if (bp->b_flags & (B_INVAL | B_RELBUF))
1156			vfs_vmio_release(bp);
1157		mtx_unlock(&vm_mtx);
1158
1159	} else if (bp->b_flags & B_VMIO) {
1160
1161		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1162			mtx_lock(&vm_mtx);
1163			vfs_vmio_release(bp);
1164			mtx_unlock(&vm_mtx);
1165		}
1166
1167	}
1168
1169	if (bp->b_qindex != QUEUE_NONE)
1170		panic("brelse: free buffer onto another queue???");
1171	if (BUF_REFCNT(bp) > 1) {
1172		/* do not release to free list */
1173		BUF_UNLOCK(bp);
1174		splx(s);
1175		return;
1176	}
1177
1178	/* enqueue */
1179
1180	/* buffers with no memory */
1181	if (bp->b_bufsize == 0) {
1182		bp->b_flags |= B_INVAL;
1183		bp->b_xflags &= ~BX_BKGRDWRITE;
1184		if (bp->b_xflags & BX_BKGRDINPROG)
1185			panic("losing buffer 1");
1186		if (bp->b_kvasize) {
1187			bp->b_qindex = QUEUE_EMPTYKVA;
1188		} else {
1189			bp->b_qindex = QUEUE_EMPTY;
1190		}
1191		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1192		LIST_REMOVE(bp, b_hash);
1193		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1194		bp->b_dev = NODEV;
1195	/* buffers with junk contents */
1196	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1197		bp->b_flags |= B_INVAL;
1198		bp->b_xflags &= ~BX_BKGRDWRITE;
1199		if (bp->b_xflags & BX_BKGRDINPROG)
1200			panic("losing buffer 2");
1201		bp->b_qindex = QUEUE_CLEAN;
1202		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1203		LIST_REMOVE(bp, b_hash);
1204		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1205		bp->b_dev = NODEV;
1206
1207	/* buffers that are locked */
1208	} else if (bp->b_flags & B_LOCKED) {
1209		bp->b_qindex = QUEUE_LOCKED;
1210		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1211
1212	/* remaining buffers */
1213	} else {
1214		if (bp->b_flags & B_DELWRI)
1215			bp->b_qindex = QUEUE_DIRTY;
1216		else
1217			bp->b_qindex = QUEUE_CLEAN;
1218		if (bp->b_flags & B_AGE)
1219			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1220		else
1221			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1222	}
1223
1224	/*
1225	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1226	 * on the correct queue.
1227	 */
1228	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1229		bp->b_flags &= ~B_DELWRI;
1230		--numdirtybuffers;
1231		numdirtywakeup(lodirtybuffers);
1232	}
1233
1234	/*
1235	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1236	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1237	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1238	 * if B_INVAL is set ).
1239	 */
1240
1241	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1242		bufcountwakeup();
1243
1244	/*
1245	 * Something we can maybe free or reuse
1246	 */
1247	if (bp->b_bufsize || bp->b_kvasize)
1248		bufspacewakeup();
1249
1250	/* unlock */
1251	BUF_UNLOCK(bp);
1252	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1253	bp->b_ioflags &= ~BIO_ORDERED;
1254	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1255		panic("brelse: not dirty");
1256	splx(s);
1257}
1258
1259/*
1260 * Release a buffer back to the appropriate queue but do not try to free
1261 * it.  The buffer is expected to be used again soon.
1262 *
1263 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1264 * biodone() to requeue an async I/O on completion.  It is also used when
1265 * known good buffers need to be requeued but we think we may need the data
1266 * again soon.
1267 *
1268 * XXX we should be able to leave the B_RELBUF hint set on completion.
1269 */
1270void
1271bqrelse(struct buf * bp)
1272{
1273	int s;
1274
1275	s = splbio();
1276
1277	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1278
1279	if (bp->b_qindex != QUEUE_NONE)
1280		panic("bqrelse: free buffer onto another queue???");
1281	if (BUF_REFCNT(bp) > 1) {
1282		/* do not release to free list */
1283		BUF_UNLOCK(bp);
1284		splx(s);
1285		return;
1286	}
1287	if (bp->b_flags & B_LOCKED) {
1288		bp->b_ioflags &= ~BIO_ERROR;
1289		bp->b_qindex = QUEUE_LOCKED;
1290		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1291		/* buffers with stale but valid contents */
1292	} else if (bp->b_flags & B_DELWRI) {
1293		bp->b_qindex = QUEUE_DIRTY;
1294		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1295	} else if (vm_page_count_severe()) {
1296		/*
1297		 * We are too low on memory, we have to try to free the
1298		 * buffer (most importantly: the wired pages making up its
1299		 * backing store) *now*.
1300		 */
1301		splx(s);
1302		brelse(bp);
1303		return;
1304	} else {
1305		bp->b_qindex = QUEUE_CLEAN;
1306		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1307	}
1308
1309	if ((bp->b_flags & B_LOCKED) == 0 &&
1310	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1311		bufcountwakeup();
1312	}
1313
1314	/*
1315	 * Something we can maybe free or reuse.
1316	 */
1317	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1318		bufspacewakeup();
1319
1320	/* unlock */
1321	BUF_UNLOCK(bp);
1322	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1323	bp->b_ioflags &= ~BIO_ORDERED;
1324	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1325		panic("bqrelse: not dirty");
1326	splx(s);
1327}
1328
1329/*
1330 * Must be called with vm_mtx held.
1331 */
1332static void
1333vfs_vmio_release(bp)
1334	struct buf *bp;
1335{
1336	int i;
1337	vm_page_t m;
1338
1339	mtx_assert(&vm_mtx, MA_OWNED);
1340	for (i = 0; i < bp->b_npages; i++) {
1341		m = bp->b_pages[i];
1342		bp->b_pages[i] = NULL;
1343		/*
1344		 * In order to keep page LRU ordering consistent, put
1345		 * everything on the inactive queue.
1346		 */
1347		vm_page_unwire(m, 0);
1348		/*
1349		 * We don't mess with busy pages, it is
1350		 * the responsibility of the process that
1351		 * busied the pages to deal with them.
1352		 */
1353		if ((m->flags & PG_BUSY) || (m->busy != 0))
1354			continue;
1355
1356		if (m->wire_count == 0) {
1357			vm_page_flag_clear(m, PG_ZERO);
1358			/*
1359			 * Might as well free the page if we can and it has
1360			 * no valid data.  We also free the page if the
1361			 * buffer was used for direct I/O
1362			 */
1363			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1364				vm_page_busy(m);
1365				vm_page_protect(m, VM_PROT_NONE);
1366				vm_page_free(m);
1367			} else if (bp->b_flags & B_DIRECT) {
1368				vm_page_try_to_free(m);
1369			} else if (vm_page_count_severe()) {
1370				vm_page_try_to_cache(m);
1371			}
1372		}
1373	}
1374	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1375
1376	/* could drop vm_mtx here */
1377
1378	if (bp->b_bufsize) {
1379		bufspacewakeup();
1380		bp->b_bufsize = 0;
1381	}
1382	bp->b_npages = 0;
1383	bp->b_flags &= ~B_VMIO;
1384	if (bp->b_vp)
1385		brelvp(bp);
1386}
1387
1388/*
1389 * Check to see if a block is currently memory resident.
1390 */
1391struct buf *
1392gbincore(struct vnode * vp, daddr_t blkno)
1393{
1394	struct buf *bp;
1395	struct bufhashhdr *bh;
1396
1397	bh = bufhash(vp, blkno);
1398
1399	/* Search hash chain */
1400	LIST_FOREACH(bp, bh, b_hash) {
1401		/* hit */
1402		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1403		    (bp->b_flags & B_INVAL) == 0) {
1404			break;
1405		}
1406	}
1407	return (bp);
1408}
1409
1410/*
1411 *	vfs_bio_awrite:
1412 *
1413 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1414 *	This is much better then the old way of writing only one buffer at
1415 *	a time.  Note that we may not be presented with the buffers in the
1416 *	correct order, so we search for the cluster in both directions.
1417 */
1418int
1419vfs_bio_awrite(struct buf * bp)
1420{
1421	int i;
1422	int j;
1423	daddr_t lblkno = bp->b_lblkno;
1424	struct vnode *vp = bp->b_vp;
1425	int s;
1426	int ncl;
1427	struct buf *bpa;
1428	int nwritten;
1429	int size;
1430	int maxcl;
1431
1432	s = splbio();
1433	/*
1434	 * right now we support clustered writing only to regular files.  If
1435	 * we find a clusterable block we could be in the middle of a cluster
1436	 * rather then at the beginning.
1437	 */
1438	if ((vp->v_type == VREG) &&
1439	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1440	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1441
1442		size = vp->v_mount->mnt_stat.f_iosize;
1443		maxcl = MAXPHYS / size;
1444
1445		for (i = 1; i < maxcl; i++) {
1446			if ((bpa = gbincore(vp, lblkno + i)) &&
1447			    BUF_REFCNT(bpa) == 0 &&
1448			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1449			    (B_DELWRI | B_CLUSTEROK)) &&
1450			    (bpa->b_bufsize == size)) {
1451				if ((bpa->b_blkno == bpa->b_lblkno) ||
1452				    (bpa->b_blkno !=
1453				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1454					break;
1455			} else {
1456				break;
1457			}
1458		}
1459		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1460			if ((bpa = gbincore(vp, lblkno - j)) &&
1461			    BUF_REFCNT(bpa) == 0 &&
1462			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1463			    (B_DELWRI | B_CLUSTEROK)) &&
1464			    (bpa->b_bufsize == size)) {
1465				if ((bpa->b_blkno == bpa->b_lblkno) ||
1466				    (bpa->b_blkno !=
1467				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1468					break;
1469			} else {
1470				break;
1471			}
1472		}
1473		--j;
1474		ncl = i + j;
1475		/*
1476		 * this is a possible cluster write
1477		 */
1478		if (ncl != 1) {
1479			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1480			splx(s);
1481			return nwritten;
1482		}
1483	}
1484
1485	BUF_LOCK(bp, LK_EXCLUSIVE);
1486	bremfree(bp);
1487	bp->b_flags |= B_ASYNC;
1488
1489	splx(s);
1490	/*
1491	 * default (old) behavior, writing out only one block
1492	 *
1493	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1494	 */
1495	nwritten = bp->b_bufsize;
1496	(void) BUF_WRITE(bp);
1497
1498	return nwritten;
1499}
1500
1501/*
1502 *	getnewbuf:
1503 *
1504 *	Find and initialize a new buffer header, freeing up existing buffers
1505 *	in the bufqueues as necessary.  The new buffer is returned locked.
1506 *
1507 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1508 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1509 *
1510 *	We block if:
1511 *		We have insufficient buffer headers
1512 *		We have insufficient buffer space
1513 *		buffer_map is too fragmented ( space reservation fails )
1514 *		If we have to flush dirty buffers ( but we try to avoid this )
1515 *
1516 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1517 *	Instead we ask the buf daemon to do it for us.  We attempt to
1518 *	avoid piecemeal wakeups of the pageout daemon.
1519 */
1520
1521static struct buf *
1522getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1523{
1524	struct buf *bp;
1525	struct buf *nbp;
1526	int defrag = 0;
1527	int nqindex;
1528	static int flushingbufs;
1529
1530	/*
1531	 * We can't afford to block since we might be holding a vnode lock,
1532	 * which may prevent system daemons from running.  We deal with
1533	 * low-memory situations by proactively returning memory and running
1534	 * async I/O rather then sync I/O.
1535	 */
1536
1537	++getnewbufcalls;
1538	--getnewbufrestarts;
1539restart:
1540	++getnewbufrestarts;
1541
1542	/*
1543	 * Setup for scan.  If we do not have enough free buffers,
1544	 * we setup a degenerate case that immediately fails.  Note
1545	 * that if we are specially marked process, we are allowed to
1546	 * dip into our reserves.
1547	 *
1548	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1549	 *
1550	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1551	 * However, there are a number of cases (defragging, reusing, ...)
1552	 * where we cannot backup.
1553	 */
1554	nqindex = QUEUE_EMPTYKVA;
1555	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1556
1557	if (nbp == NULL) {
1558		/*
1559		 * If no EMPTYKVA buffers and we are either
1560		 * defragging or reusing, locate a CLEAN buffer
1561		 * to free or reuse.  If bufspace useage is low
1562		 * skip this step so we can allocate a new buffer.
1563		 */
1564		if (defrag || bufspace >= lobufspace) {
1565			nqindex = QUEUE_CLEAN;
1566			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1567		}
1568
1569		/*
1570		 * If we could not find or were not allowed to reuse a
1571		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1572		 * buffer.  We can only use an EMPTY buffer if allocating
1573		 * its KVA would not otherwise run us out of buffer space.
1574		 */
1575		if (nbp == NULL && defrag == 0 &&
1576		    bufspace + maxsize < hibufspace) {
1577			nqindex = QUEUE_EMPTY;
1578			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1579		}
1580	}
1581
1582	/*
1583	 * Run scan, possibly freeing data and/or kva mappings on the fly
1584	 * depending.
1585	 */
1586
1587	while ((bp = nbp) != NULL) {
1588		int qindex = nqindex;
1589
1590		/*
1591		 * Calculate next bp ( we can only use it if we do not block
1592		 * or do other fancy things ).
1593		 */
1594		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1595			switch(qindex) {
1596			case QUEUE_EMPTY:
1597				nqindex = QUEUE_EMPTYKVA;
1598				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1599					break;
1600				/* fall through */
1601			case QUEUE_EMPTYKVA:
1602				nqindex = QUEUE_CLEAN;
1603				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1604					break;
1605				/* fall through */
1606			case QUEUE_CLEAN:
1607				/*
1608				 * nbp is NULL.
1609				 */
1610				break;
1611			}
1612		}
1613
1614		/*
1615		 * Sanity Checks
1616		 */
1617		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1618
1619		/*
1620		 * Note: we no longer distinguish between VMIO and non-VMIO
1621		 * buffers.
1622		 */
1623
1624		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1625
1626		/*
1627		 * If we are defragging then we need a buffer with
1628		 * b_kvasize != 0.  XXX this situation should no longer
1629		 * occur, if defrag is non-zero the buffer's b_kvasize
1630		 * should also be non-zero at this point.  XXX
1631		 */
1632		if (defrag && bp->b_kvasize == 0) {
1633			printf("Warning: defrag empty buffer %p\n", bp);
1634			continue;
1635		}
1636
1637		/*
1638		 * Start freeing the bp.  This is somewhat involved.  nbp
1639		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1640		 */
1641
1642		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1643			panic("getnewbuf: locked buf");
1644		bremfree(bp);
1645
1646		if (qindex == QUEUE_CLEAN) {
1647			if (bp->b_flags & B_VMIO) {
1648				bp->b_flags &= ~B_ASYNC;
1649				mtx_lock(&vm_mtx);
1650				vfs_vmio_release(bp);
1651				mtx_unlock(&vm_mtx);
1652			}
1653			if (bp->b_vp)
1654				brelvp(bp);
1655		}
1656
1657		/*
1658		 * NOTE:  nbp is now entirely invalid.  We can only restart
1659		 * the scan from this point on.
1660		 *
1661		 * Get the rest of the buffer freed up.  b_kva* is still
1662		 * valid after this operation.
1663		 */
1664
1665		if (bp->b_rcred != NOCRED) {
1666			crfree(bp->b_rcred);
1667			bp->b_rcred = NOCRED;
1668		}
1669		if (bp->b_wcred != NOCRED) {
1670			crfree(bp->b_wcred);
1671			bp->b_wcred = NOCRED;
1672		}
1673		if (LIST_FIRST(&bp->b_dep) != NULL)
1674			buf_deallocate(bp);
1675		if (bp->b_xflags & BX_BKGRDINPROG)
1676			panic("losing buffer 3");
1677		LIST_REMOVE(bp, b_hash);
1678		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1679
1680		if (bp->b_bufsize)
1681			allocbuf(bp, 0);
1682
1683		bp->b_flags = 0;
1684		bp->b_ioflags = 0;
1685		bp->b_xflags = 0;
1686		bp->b_dev = NODEV;
1687		bp->b_vp = NULL;
1688		bp->b_blkno = bp->b_lblkno = 0;
1689		bp->b_offset = NOOFFSET;
1690		bp->b_iodone = 0;
1691		bp->b_error = 0;
1692		bp->b_resid = 0;
1693		bp->b_bcount = 0;
1694		bp->b_npages = 0;
1695		bp->b_dirtyoff = bp->b_dirtyend = 0;
1696		bp->b_magic = B_MAGIC_BIO;
1697		bp->b_op = &buf_ops_bio;
1698
1699		LIST_INIT(&bp->b_dep);
1700
1701		/*
1702		 * If we are defragging then free the buffer.
1703		 */
1704		if (defrag) {
1705			bp->b_flags |= B_INVAL;
1706			bfreekva(bp);
1707			brelse(bp);
1708			defrag = 0;
1709			goto restart;
1710		}
1711
1712		/*
1713		 * If we are overcomitted then recover the buffer and its
1714		 * KVM space.  This occurs in rare situations when multiple
1715		 * processes are blocked in getnewbuf() or allocbuf().
1716		 */
1717		if (bufspace >= hibufspace)
1718			flushingbufs = 1;
1719		if (flushingbufs && bp->b_kvasize != 0) {
1720			bp->b_flags |= B_INVAL;
1721			bfreekva(bp);
1722			brelse(bp);
1723			goto restart;
1724		}
1725		if (bufspace < lobufspace)
1726			flushingbufs = 0;
1727		break;
1728	}
1729
1730	/*
1731	 * If we exhausted our list, sleep as appropriate.  We may have to
1732	 * wakeup various daemons and write out some dirty buffers.
1733	 *
1734	 * Generally we are sleeping due to insufficient buffer space.
1735	 */
1736
1737	if (bp == NULL) {
1738		int flags;
1739		char *waitmsg;
1740
1741		if (defrag) {
1742			flags = VFS_BIO_NEED_BUFSPACE;
1743			waitmsg = "nbufkv";
1744		} else if (bufspace >= hibufspace) {
1745			waitmsg = "nbufbs";
1746			flags = VFS_BIO_NEED_BUFSPACE;
1747		} else {
1748			waitmsg = "newbuf";
1749			flags = VFS_BIO_NEED_ANY;
1750		}
1751
1752		bd_speedup();	/* heeeelp */
1753
1754		needsbuffer |= flags;
1755		while (needsbuffer & flags) {
1756			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1757			    waitmsg, slptimeo))
1758				return (NULL);
1759		}
1760	} else {
1761		/*
1762		 * We finally have a valid bp.  We aren't quite out of the
1763		 * woods, we still have to reserve kva space.  In order
1764		 * to keep fragmentation sane we only allocate kva in
1765		 * BKVASIZE chunks.
1766		 */
1767		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1768
1769		if (maxsize != bp->b_kvasize) {
1770			vm_offset_t addr = 0;
1771
1772			bfreekva(bp);
1773
1774			mtx_lock(&vm_mtx);
1775			if (vm_map_findspace(buffer_map,
1776				vm_map_min(buffer_map), maxsize, &addr)) {
1777				/*
1778				 * Uh oh.  Buffer map is to fragmented.  We
1779				 * must defragment the map.
1780				 */
1781				mtx_unlock(&vm_mtx);
1782				++bufdefragcnt;
1783				defrag = 1;
1784				bp->b_flags |= B_INVAL;
1785				brelse(bp);
1786				goto restart;
1787			}
1788			if (addr) {
1789				vm_map_insert(buffer_map, NULL, 0,
1790					addr, addr + maxsize,
1791					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1792
1793				bp->b_kvabase = (caddr_t) addr;
1794				bp->b_kvasize = maxsize;
1795				bufspace += bp->b_kvasize;
1796				++bufreusecnt;
1797			}
1798			mtx_unlock(&vm_mtx);
1799		}
1800		bp->b_data = bp->b_kvabase;
1801	}
1802	return(bp);
1803}
1804
1805/*
1806 *	buf_daemon:
1807 *
1808 *	buffer flushing daemon.  Buffers are normally flushed by the
1809 *	update daemon but if it cannot keep up this process starts to
1810 *	take the load in an attempt to prevent getnewbuf() from blocking.
1811 */
1812
1813static struct proc *bufdaemonproc;
1814
1815static struct kproc_desc buf_kp = {
1816	"bufdaemon",
1817	buf_daemon,
1818	&bufdaemonproc
1819};
1820SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1821
1822static void
1823buf_daemon()
1824{
1825	int s;
1826
1827	mtx_lock(&Giant);
1828
1829	/*
1830	 * This process needs to be suspended prior to shutdown sync.
1831	 */
1832	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1833	    SHUTDOWN_PRI_LAST);
1834
1835	/*
1836	 * This process is allowed to take the buffer cache to the limit
1837	 */
1838	curproc->p_flag |= P_BUFEXHAUST;
1839	s = splbio();
1840
1841	for (;;) {
1842		kthread_suspend_check(bufdaemonproc);
1843
1844		bd_request = 0;
1845
1846		/*
1847		 * Do the flush.  Limit the amount of in-transit I/O we
1848		 * allow to build up, otherwise we would completely saturate
1849		 * the I/O system.  Wakeup any waiting processes before we
1850		 * normally would so they can run in parallel with our drain.
1851		 */
1852		while (numdirtybuffers > lodirtybuffers) {
1853			if (flushbufqueues() == 0)
1854				break;
1855			waitrunningbufspace();
1856			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1857		}
1858
1859		/*
1860		 * Only clear bd_request if we have reached our low water
1861		 * mark.  The buf_daemon normally waits 5 seconds and
1862		 * then incrementally flushes any dirty buffers that have
1863		 * built up, within reason.
1864		 *
1865		 * If we were unable to hit our low water mark and couldn't
1866		 * find any flushable buffers, we sleep half a second.
1867		 * Otherwise we loop immediately.
1868		 */
1869		if (numdirtybuffers <= lodirtybuffers) {
1870			/*
1871			 * We reached our low water mark, reset the
1872			 * request and sleep until we are needed again.
1873			 * The sleep is just so the suspend code works.
1874			 */
1875			bd_request = 0;
1876			tsleep(&bd_request, PVM, "psleep", hz);
1877		} else {
1878			/*
1879			 * We couldn't find any flushable dirty buffers but
1880			 * still have too many dirty buffers, we
1881			 * have to sleep and try again.  (rare)
1882			 */
1883			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1884		}
1885	}
1886}
1887
1888/*
1889 *	flushbufqueues:
1890 *
1891 *	Try to flush a buffer in the dirty queue.  We must be careful to
1892 *	free up B_INVAL buffers instead of write them, which NFS is
1893 *	particularly sensitive to.
1894 */
1895
1896static int
1897flushbufqueues(void)
1898{
1899	struct buf *bp;
1900	int r = 0;
1901
1902	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1903
1904	while (bp) {
1905		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1906		if ((bp->b_flags & B_DELWRI) != 0 &&
1907		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1908			if (bp->b_flags & B_INVAL) {
1909				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1910					panic("flushbufqueues: locked buf");
1911				bremfree(bp);
1912				brelse(bp);
1913				++r;
1914				break;
1915			}
1916			if (LIST_FIRST(&bp->b_dep) != NULL &&
1917			    (bp->b_flags & B_DEFERRED) == 0 &&
1918			    buf_countdeps(bp, 0)) {
1919				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1920				    bp, b_freelist);
1921				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1922				    bp, b_freelist);
1923				bp->b_flags |= B_DEFERRED;
1924				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1925				continue;
1926			}
1927			vfs_bio_awrite(bp);
1928			++r;
1929			break;
1930		}
1931		bp = TAILQ_NEXT(bp, b_freelist);
1932	}
1933	return (r);
1934}
1935
1936/*
1937 * Check to see if a block is currently memory resident.
1938 */
1939struct buf *
1940incore(struct vnode * vp, daddr_t blkno)
1941{
1942	struct buf *bp;
1943
1944	int s = splbio();
1945	bp = gbincore(vp, blkno);
1946	splx(s);
1947	return (bp);
1948}
1949
1950/*
1951 * Returns true if no I/O is needed to access the
1952 * associated VM object.  This is like incore except
1953 * it also hunts around in the VM system for the data.
1954 */
1955
1956int
1957inmem(struct vnode * vp, daddr_t blkno)
1958{
1959	vm_object_t obj;
1960	vm_offset_t toff, tinc, size;
1961	vm_page_t m;
1962	vm_ooffset_t off;
1963
1964	if (incore(vp, blkno))
1965		return 1;
1966	if (vp->v_mount == NULL)
1967		return 0;
1968	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1969		return 0;
1970
1971	size = PAGE_SIZE;
1972	if (size > vp->v_mount->mnt_stat.f_iosize)
1973		size = vp->v_mount->mnt_stat.f_iosize;
1974	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1975
1976	mtx_lock(&vm_mtx);
1977	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1978		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1979		if (!m)
1980			goto notinmem;
1981		tinc = size;
1982		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1983			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1984		if (vm_page_is_valid(m,
1985		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1986			goto notinmem;
1987	}
1988	mtx_unlock(&vm_mtx);
1989	return 1;
1990
1991notinmem:
1992	mtx_unlock(&vm_mtx);
1993	return (0);
1994}
1995
1996/*
1997 *	vfs_setdirty:
1998 *
1999 *	Sets the dirty range for a buffer based on the status of the dirty
2000 *	bits in the pages comprising the buffer.
2001 *
2002 *	The range is limited to the size of the buffer.
2003 *
2004 *	This routine is primarily used by NFS, but is generalized for the
2005 *	B_VMIO case.
2006 *
2007 *	Must be called with vm_mtx
2008 */
2009static void
2010vfs_setdirty(struct buf *bp)
2011{
2012	int i;
2013	vm_object_t object;
2014
2015	mtx_assert(&vm_mtx, MA_OWNED);
2016	/*
2017	 * Degenerate case - empty buffer
2018	 */
2019
2020	if (bp->b_bufsize == 0)
2021		return;
2022
2023	/*
2024	 * We qualify the scan for modified pages on whether the
2025	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2026	 * is not cleared simply by protecting pages off.
2027	 */
2028
2029	if ((bp->b_flags & B_VMIO) == 0)
2030		return;
2031
2032	object = bp->b_pages[0]->object;
2033
2034	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2035		printf("Warning: object %p writeable but not mightbedirty\n", object);
2036	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2037		printf("Warning: object %p mightbedirty but not writeable\n", object);
2038
2039	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2040		vm_offset_t boffset;
2041		vm_offset_t eoffset;
2042
2043		/*
2044		 * test the pages to see if they have been modified directly
2045		 * by users through the VM system.
2046		 */
2047		for (i = 0; i < bp->b_npages; i++) {
2048			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2049			vm_page_test_dirty(bp->b_pages[i]);
2050		}
2051
2052		/*
2053		 * Calculate the encompassing dirty range, boffset and eoffset,
2054		 * (eoffset - boffset) bytes.
2055		 */
2056
2057		for (i = 0; i < bp->b_npages; i++) {
2058			if (bp->b_pages[i]->dirty)
2059				break;
2060		}
2061		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2062
2063		for (i = bp->b_npages - 1; i >= 0; --i) {
2064			if (bp->b_pages[i]->dirty) {
2065				break;
2066			}
2067		}
2068		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2069
2070		/*
2071		 * Fit it to the buffer.
2072		 */
2073
2074		if (eoffset > bp->b_bcount)
2075			eoffset = bp->b_bcount;
2076
2077		/*
2078		 * If we have a good dirty range, merge with the existing
2079		 * dirty range.
2080		 */
2081
2082		if (boffset < eoffset) {
2083			if (bp->b_dirtyoff > boffset)
2084				bp->b_dirtyoff = boffset;
2085			if (bp->b_dirtyend < eoffset)
2086				bp->b_dirtyend = eoffset;
2087		}
2088	}
2089}
2090
2091/*
2092 *	getblk:
2093 *
2094 *	Get a block given a specified block and offset into a file/device.
2095 *	The buffers B_DONE bit will be cleared on return, making it almost
2096 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2097 *	return.  The caller should clear B_INVAL prior to initiating a
2098 *	READ.
2099 *
2100 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2101 *	an existing buffer.
2102 *
2103 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2104 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2105 *	and then cleared based on the backing VM.  If the previous buffer is
2106 *	non-0-sized but invalid, B_CACHE will be cleared.
2107 *
2108 *	If getblk() must create a new buffer, the new buffer is returned with
2109 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2110 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2111 *	backing VM.
2112 *
2113 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2114 *	B_CACHE bit is clear.
2115 *
2116 *	What this means, basically, is that the caller should use B_CACHE to
2117 *	determine whether the buffer is fully valid or not and should clear
2118 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2119 *	the buffer by loading its data area with something, the caller needs
2120 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2121 *	the caller should set B_CACHE ( as an optimization ), else the caller
2122 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2123 *	a write attempt or if it was a successfull read.  If the caller
2124 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2125 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2126 */
2127struct buf *
2128getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2129{
2130	struct buf *bp;
2131	int s;
2132	struct bufhashhdr *bh;
2133
2134	if (size > MAXBSIZE)
2135		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2136
2137	s = splbio();
2138loop:
2139	/*
2140	 * Block if we are low on buffers.   Certain processes are allowed
2141	 * to completely exhaust the buffer cache.
2142         *
2143         * If this check ever becomes a bottleneck it may be better to
2144         * move it into the else, when gbincore() fails.  At the moment
2145         * it isn't a problem.
2146	 *
2147	 * XXX remove if 0 sections (clean this up after its proven)
2148         */
2149	if (numfreebuffers == 0) {
2150		if (curproc == PCPU_GET(idleproc))
2151			return NULL;
2152		needsbuffer |= VFS_BIO_NEED_ANY;
2153	}
2154
2155	if ((bp = gbincore(vp, blkno))) {
2156		/*
2157		 * Buffer is in-core.  If the buffer is not busy, it must
2158		 * be on a queue.
2159		 */
2160
2161		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2162			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2163			    "getblk", slpflag, slptimeo) == ENOLCK)
2164				goto loop;
2165			splx(s);
2166			return (struct buf *) NULL;
2167		}
2168
2169		/*
2170		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2171		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2172		 * and for a VMIO buffer B_CACHE is adjusted according to the
2173		 * backing VM cache.
2174		 */
2175		if (bp->b_flags & B_INVAL)
2176			bp->b_flags &= ~B_CACHE;
2177		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2178			bp->b_flags |= B_CACHE;
2179		bremfree(bp);
2180
2181		/*
2182		 * check for size inconsistancies for non-VMIO case.
2183		 */
2184
2185		if (bp->b_bcount != size) {
2186			if ((bp->b_flags & B_VMIO) == 0 ||
2187			    (size > bp->b_kvasize)) {
2188				if (bp->b_flags & B_DELWRI) {
2189					bp->b_flags |= B_NOCACHE;
2190					BUF_WRITE(bp);
2191				} else {
2192					if ((bp->b_flags & B_VMIO) &&
2193					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2194						bp->b_flags |= B_RELBUF;
2195						brelse(bp);
2196					} else {
2197						bp->b_flags |= B_NOCACHE;
2198						BUF_WRITE(bp);
2199					}
2200				}
2201				goto loop;
2202			}
2203		}
2204
2205		/*
2206		 * If the size is inconsistant in the VMIO case, we can resize
2207		 * the buffer.  This might lead to B_CACHE getting set or
2208		 * cleared.  If the size has not changed, B_CACHE remains
2209		 * unchanged from its previous state.
2210		 */
2211
2212		if (bp->b_bcount != size)
2213			allocbuf(bp, size);
2214
2215		KASSERT(bp->b_offset != NOOFFSET,
2216		    ("getblk: no buffer offset"));
2217
2218		/*
2219		 * A buffer with B_DELWRI set and B_CACHE clear must
2220		 * be committed before we can return the buffer in
2221		 * order to prevent the caller from issuing a read
2222		 * ( due to B_CACHE not being set ) and overwriting
2223		 * it.
2224		 *
2225		 * Most callers, including NFS and FFS, need this to
2226		 * operate properly either because they assume they
2227		 * can issue a read if B_CACHE is not set, or because
2228		 * ( for example ) an uncached B_DELWRI might loop due
2229		 * to softupdates re-dirtying the buffer.  In the latter
2230		 * case, B_CACHE is set after the first write completes,
2231		 * preventing further loops.
2232		 */
2233
2234		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2235			BUF_WRITE(bp);
2236			goto loop;
2237		}
2238
2239		splx(s);
2240		bp->b_flags &= ~B_DONE;
2241	} else {
2242		/*
2243		 * Buffer is not in-core, create new buffer.  The buffer
2244		 * returned by getnewbuf() is locked.  Note that the returned
2245		 * buffer is also considered valid (not marked B_INVAL).
2246		 */
2247		int bsize, maxsize, vmio;
2248		off_t offset;
2249
2250		if (vn_isdisk(vp, NULL))
2251			bsize = DEV_BSIZE;
2252		else if (vp->v_mountedhere)
2253			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2254		else if (vp->v_mount)
2255			bsize = vp->v_mount->mnt_stat.f_iosize;
2256		else
2257			bsize = size;
2258
2259		offset = (off_t)blkno * bsize;
2260		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2261		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2262		maxsize = imax(maxsize, bsize);
2263
2264		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2265			if (slpflag || slptimeo) {
2266				splx(s);
2267				return NULL;
2268			}
2269			goto loop;
2270		}
2271
2272		/*
2273		 * This code is used to make sure that a buffer is not
2274		 * created while the getnewbuf routine is blocked.
2275		 * This can be a problem whether the vnode is locked or not.
2276		 * If the buffer is created out from under us, we have to
2277		 * throw away the one we just created.  There is now window
2278		 * race because we are safely running at splbio() from the
2279		 * point of the duplicate buffer creation through to here,
2280		 * and we've locked the buffer.
2281		 */
2282		if (gbincore(vp, blkno)) {
2283			bp->b_flags |= B_INVAL;
2284			brelse(bp);
2285			goto loop;
2286		}
2287
2288		/*
2289		 * Insert the buffer into the hash, so that it can
2290		 * be found by incore.
2291		 */
2292		bp->b_blkno = bp->b_lblkno = blkno;
2293		bp->b_offset = offset;
2294
2295		bgetvp(vp, bp);
2296		LIST_REMOVE(bp, b_hash);
2297		bh = bufhash(vp, blkno);
2298		LIST_INSERT_HEAD(bh, bp, b_hash);
2299
2300		/*
2301		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2302		 * buffer size starts out as 0, B_CACHE will be set by
2303		 * allocbuf() for the VMIO case prior to it testing the
2304		 * backing store for validity.
2305		 */
2306
2307		if (vmio) {
2308			bp->b_flags |= B_VMIO;
2309#if defined(VFS_BIO_DEBUG)
2310			if (vp->v_type != VREG)
2311				printf("getblk: vmioing file type %d???\n", vp->v_type);
2312#endif
2313		} else {
2314			bp->b_flags &= ~B_VMIO;
2315		}
2316
2317		allocbuf(bp, size);
2318
2319		splx(s);
2320		bp->b_flags &= ~B_DONE;
2321	}
2322	return (bp);
2323}
2324
2325/*
2326 * Get an empty, disassociated buffer of given size.  The buffer is initially
2327 * set to B_INVAL.
2328 */
2329struct buf *
2330geteblk(int size)
2331{
2332	struct buf *bp;
2333	int s;
2334	int maxsize;
2335
2336	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2337
2338	s = splbio();
2339	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2340	splx(s);
2341	allocbuf(bp, size);
2342	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2343	return (bp);
2344}
2345
2346
2347/*
2348 * This code constitutes the buffer memory from either anonymous system
2349 * memory (in the case of non-VMIO operations) or from an associated
2350 * VM object (in the case of VMIO operations).  This code is able to
2351 * resize a buffer up or down.
2352 *
2353 * Note that this code is tricky, and has many complications to resolve
2354 * deadlock or inconsistant data situations.  Tread lightly!!!
2355 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2356 * the caller.  Calling this code willy nilly can result in the loss of data.
2357 *
2358 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2359 * B_CACHE for the non-VMIO case.
2360 */
2361
2362int
2363allocbuf(struct buf *bp, int size)
2364{
2365	int newbsize, mbsize;
2366	int i;
2367
2368	if (BUF_REFCNT(bp) == 0)
2369		panic("allocbuf: buffer not busy");
2370
2371	if (bp->b_kvasize < size)
2372		panic("allocbuf: buffer too small");
2373
2374	if ((bp->b_flags & B_VMIO) == 0) {
2375		caddr_t origbuf;
2376		int origbufsize;
2377		/*
2378		 * Just get anonymous memory from the kernel.  Don't
2379		 * mess with B_CACHE.
2380		 */
2381		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2382#if !defined(NO_B_MALLOC)
2383		if (bp->b_flags & B_MALLOC)
2384			newbsize = mbsize;
2385		else
2386#endif
2387			newbsize = round_page(size);
2388
2389		if (newbsize < bp->b_bufsize) {
2390#if !defined(NO_B_MALLOC)
2391			/*
2392			 * malloced buffers are not shrunk
2393			 */
2394			if (bp->b_flags & B_MALLOC) {
2395				if (newbsize) {
2396					bp->b_bcount = size;
2397				} else {
2398					free(bp->b_data, M_BIOBUF);
2399					if (bp->b_bufsize) {
2400						bufmallocspace -= bp->b_bufsize;
2401						bufspacewakeup();
2402						bp->b_bufsize = 0;
2403					}
2404					bp->b_data = bp->b_kvabase;
2405					bp->b_bcount = 0;
2406					bp->b_flags &= ~B_MALLOC;
2407				}
2408				return 1;
2409			}
2410#endif
2411			vm_hold_free_pages(
2412			    bp,
2413			    (vm_offset_t) bp->b_data + newbsize,
2414			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2415		} else if (newbsize > bp->b_bufsize) {
2416#if !defined(NO_B_MALLOC)
2417			/*
2418			 * We only use malloced memory on the first allocation.
2419			 * and revert to page-allocated memory when the buffer
2420			 * grows.
2421			 */
2422			if ( (bufmallocspace < maxbufmallocspace) &&
2423				(bp->b_bufsize == 0) &&
2424				(mbsize <= PAGE_SIZE/2)) {
2425
2426				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2427				bp->b_bufsize = mbsize;
2428				bp->b_bcount = size;
2429				bp->b_flags |= B_MALLOC;
2430				bufmallocspace += mbsize;
2431				return 1;
2432			}
2433#endif
2434			origbuf = NULL;
2435			origbufsize = 0;
2436#if !defined(NO_B_MALLOC)
2437			/*
2438			 * If the buffer is growing on its other-than-first allocation,
2439			 * then we revert to the page-allocation scheme.
2440			 */
2441			if (bp->b_flags & B_MALLOC) {
2442				origbuf = bp->b_data;
2443				origbufsize = bp->b_bufsize;
2444				bp->b_data = bp->b_kvabase;
2445				if (bp->b_bufsize) {
2446					bufmallocspace -= bp->b_bufsize;
2447					bufspacewakeup();
2448					bp->b_bufsize = 0;
2449				}
2450				bp->b_flags &= ~B_MALLOC;
2451				newbsize = round_page(newbsize);
2452			}
2453#endif
2454			vm_hold_load_pages(
2455			    bp,
2456			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2457			    (vm_offset_t) bp->b_data + newbsize);
2458#if !defined(NO_B_MALLOC)
2459			if (origbuf) {
2460				bcopy(origbuf, bp->b_data, origbufsize);
2461				free(origbuf, M_BIOBUF);
2462			}
2463#endif
2464		}
2465	} else {
2466		vm_page_t m;
2467		int desiredpages;
2468
2469		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2470		desiredpages = (size == 0) ? 0 :
2471			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2472
2473#if !defined(NO_B_MALLOC)
2474		if (bp->b_flags & B_MALLOC)
2475			panic("allocbuf: VMIO buffer can't be malloced");
2476#endif
2477		/*
2478		 * Set B_CACHE initially if buffer is 0 length or will become
2479		 * 0-length.
2480		 */
2481		if (size == 0 || bp->b_bufsize == 0)
2482			bp->b_flags |= B_CACHE;
2483
2484		if (newbsize < bp->b_bufsize) {
2485			/*
2486			 * DEV_BSIZE aligned new buffer size is less then the
2487			 * DEV_BSIZE aligned existing buffer size.  Figure out
2488			 * if we have to remove any pages.
2489			 */
2490			mtx_lock(&vm_mtx);
2491			if (desiredpages < bp->b_npages) {
2492				for (i = desiredpages; i < bp->b_npages; i++) {
2493					/*
2494					 * the page is not freed here -- it
2495					 * is the responsibility of
2496					 * vnode_pager_setsize
2497					 */
2498					m = bp->b_pages[i];
2499					KASSERT(m != bogus_page,
2500					    ("allocbuf: bogus page found"));
2501					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2502						;
2503
2504					bp->b_pages[i] = NULL;
2505					vm_page_unwire(m, 0);
2506				}
2507				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2508				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2509				bp->b_npages = desiredpages;
2510			}
2511			mtx_unlock(&vm_mtx);
2512		} else if (size > bp->b_bcount) {
2513			/*
2514			 * We are growing the buffer, possibly in a
2515			 * byte-granular fashion.
2516			 */
2517			struct vnode *vp;
2518			vm_object_t obj;
2519			vm_offset_t toff;
2520			vm_offset_t tinc;
2521
2522			/*
2523			 * Step 1, bring in the VM pages from the object,
2524			 * allocating them if necessary.  We must clear
2525			 * B_CACHE if these pages are not valid for the
2526			 * range covered by the buffer.
2527			 */
2528
2529			vp = bp->b_vp;
2530			VOP_GETVOBJECT(vp, &obj);
2531
2532			mtx_lock(&vm_mtx);
2533			while (bp->b_npages < desiredpages) {
2534				vm_page_t m;
2535				vm_pindex_t pi;
2536
2537				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2538				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2539					/*
2540					 * note: must allocate system pages
2541					 * since blocking here could intefere
2542					 * with paging I/O, no matter which
2543					 * process we are.
2544					 */
2545					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2546					if (m == NULL) {
2547						VM_WAIT;
2548						vm_pageout_deficit += desiredpages - bp->b_npages;
2549					} else {
2550						vm_page_wire(m);
2551						vm_page_wakeup(m);
2552						bp->b_flags &= ~B_CACHE;
2553						bp->b_pages[bp->b_npages] = m;
2554						++bp->b_npages;
2555					}
2556					continue;
2557				}
2558
2559				/*
2560				 * We found a page.  If we have to sleep on it,
2561				 * retry because it might have gotten freed out
2562				 * from under us.
2563				 *
2564				 * We can only test PG_BUSY here.  Blocking on
2565				 * m->busy might lead to a deadlock:
2566				 *
2567				 *  vm_fault->getpages->cluster_read->allocbuf
2568				 *
2569				 */
2570
2571				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2572					continue;
2573
2574				/*
2575				 * We have a good page.  Should we wakeup the
2576				 * page daemon?
2577				 */
2578				if ((curproc != pageproc) &&
2579				    ((m->queue - m->pc) == PQ_CACHE) &&
2580				    ((cnt.v_free_count + cnt.v_cache_count) <
2581					(cnt.v_free_min + cnt.v_cache_min))) {
2582					pagedaemon_wakeup();
2583				}
2584				vm_page_flag_clear(m, PG_ZERO);
2585				vm_page_wire(m);
2586				bp->b_pages[bp->b_npages] = m;
2587				++bp->b_npages;
2588			}
2589
2590			/*
2591			 * Step 2.  We've loaded the pages into the buffer,
2592			 * we have to figure out if we can still have B_CACHE
2593			 * set.  Note that B_CACHE is set according to the
2594			 * byte-granular range ( bcount and size ), new the
2595			 * aligned range ( newbsize ).
2596			 *
2597			 * The VM test is against m->valid, which is DEV_BSIZE
2598			 * aligned.  Needless to say, the validity of the data
2599			 * needs to also be DEV_BSIZE aligned.  Note that this
2600			 * fails with NFS if the server or some other client
2601			 * extends the file's EOF.  If our buffer is resized,
2602			 * B_CACHE may remain set! XXX
2603			 */
2604
2605			toff = bp->b_bcount;
2606			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2607
2608			while ((bp->b_flags & B_CACHE) && toff < size) {
2609				vm_pindex_t pi;
2610
2611				if (tinc > (size - toff))
2612					tinc = size - toff;
2613
2614				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2615				    PAGE_SHIFT;
2616
2617				vfs_buf_test_cache(
2618				    bp,
2619				    bp->b_offset,
2620				    toff,
2621				    tinc,
2622				    bp->b_pages[pi]
2623				);
2624				toff += tinc;
2625				tinc = PAGE_SIZE;
2626			}
2627
2628			/*
2629			 * Step 3, fixup the KVM pmap.  Remember that
2630			 * bp->b_data is relative to bp->b_offset, but
2631			 * bp->b_offset may be offset into the first page.
2632			 */
2633
2634			bp->b_data = (caddr_t)
2635			    trunc_page((vm_offset_t)bp->b_data);
2636			pmap_qenter(
2637			    (vm_offset_t)bp->b_data,
2638			    bp->b_pages,
2639			    bp->b_npages
2640			);
2641
2642			mtx_unlock(&vm_mtx);
2643
2644			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2645			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2646		}
2647	}
2648	if (newbsize < bp->b_bufsize)
2649		bufspacewakeup();
2650	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2651	bp->b_bcount = size;		/* requested buffer size	*/
2652	return 1;
2653}
2654
2655/*
2656 *	bufwait:
2657 *
2658 *	Wait for buffer I/O completion, returning error status.  The buffer
2659 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2660 *	error and cleared.
2661 */
2662int
2663bufwait(register struct buf * bp)
2664{
2665	int s;
2666
2667	s = splbio();
2668	while ((bp->b_flags & B_DONE) == 0) {
2669		if (bp->b_iocmd == BIO_READ)
2670			tsleep(bp, PRIBIO, "biord", 0);
2671		else
2672			tsleep(bp, PRIBIO, "biowr", 0);
2673	}
2674	splx(s);
2675	if (bp->b_flags & B_EINTR) {
2676		bp->b_flags &= ~B_EINTR;
2677		return (EINTR);
2678	}
2679	if (bp->b_ioflags & BIO_ERROR) {
2680		return (bp->b_error ? bp->b_error : EIO);
2681	} else {
2682		return (0);
2683	}
2684}
2685
2686 /*
2687  * Call back function from struct bio back up to struct buf.
2688  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2689  */
2690void
2691bufdonebio(struct bio *bp)
2692{
2693	bufdone(bp->bio_caller2);
2694}
2695
2696/*
2697 *	bufdone:
2698 *
2699 *	Finish I/O on a buffer, optionally calling a completion function.
2700 *	This is usually called from an interrupt so process blocking is
2701 *	not allowed.
2702 *
2703 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2704 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2705 *	assuming B_INVAL is clear.
2706 *
2707 *	For the VMIO case, we set B_CACHE if the op was a read and no
2708 *	read error occured, or if the op was a write.  B_CACHE is never
2709 *	set if the buffer is invalid or otherwise uncacheable.
2710 *
2711 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2712 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2713 *	in the biodone routine.
2714 */
2715void
2716bufdone(struct buf *bp)
2717{
2718	int s, error;
2719	void    (*biodone) __P((struct buf *));
2720
2721	s = splbio();
2722
2723	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2724	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2725
2726	bp->b_flags |= B_DONE;
2727	runningbufwakeup(bp);
2728
2729	if (bp->b_iocmd == BIO_DELETE) {
2730		brelse(bp);
2731		splx(s);
2732		return;
2733	}
2734
2735	if (bp->b_iocmd == BIO_WRITE) {
2736		vwakeup(bp);
2737	}
2738
2739	/* call optional completion function if requested */
2740	if (bp->b_iodone != NULL) {
2741		biodone = bp->b_iodone;
2742		bp->b_iodone = NULL;
2743		(*biodone) (bp);
2744		splx(s);
2745		return;
2746	}
2747	if (LIST_FIRST(&bp->b_dep) != NULL)
2748		buf_complete(bp);
2749
2750	if (bp->b_flags & B_VMIO) {
2751		int i;
2752		vm_ooffset_t foff;
2753		vm_page_t m;
2754		vm_object_t obj;
2755		int iosize;
2756		struct vnode *vp = bp->b_vp;
2757
2758		error = VOP_GETVOBJECT(vp, &obj);
2759
2760#if defined(VFS_BIO_DEBUG)
2761		if (vp->v_usecount == 0) {
2762			panic("biodone: zero vnode ref count");
2763		}
2764
2765		if (error) {
2766			panic("biodone: missing VM object");
2767		}
2768
2769		if ((vp->v_flag & VOBJBUF) == 0) {
2770			panic("biodone: vnode is not setup for merged cache");
2771		}
2772#endif
2773
2774		foff = bp->b_offset;
2775		KASSERT(bp->b_offset != NOOFFSET,
2776		    ("biodone: no buffer offset"));
2777
2778		if (error) {
2779			panic("biodone: no object");
2780		}
2781		mtx_lock(&vm_mtx);
2782#if defined(VFS_BIO_DEBUG)
2783		if (obj->paging_in_progress < bp->b_npages) {
2784			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2785			    obj->paging_in_progress, bp->b_npages);
2786		}
2787#endif
2788
2789		/*
2790		 * Set B_CACHE if the op was a normal read and no error
2791		 * occured.  B_CACHE is set for writes in the b*write()
2792		 * routines.
2793		 */
2794		iosize = bp->b_bcount - bp->b_resid;
2795		if (bp->b_iocmd == BIO_READ &&
2796		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2797		    !(bp->b_ioflags & BIO_ERROR)) {
2798			bp->b_flags |= B_CACHE;
2799		}
2800
2801		for (i = 0; i < bp->b_npages; i++) {
2802			int bogusflag = 0;
2803			int resid;
2804
2805			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2806			if (resid > iosize)
2807				resid = iosize;
2808
2809			/*
2810			 * cleanup bogus pages, restoring the originals
2811			 */
2812			m = bp->b_pages[i];
2813			if (m == bogus_page) {
2814				bogusflag = 1;
2815				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2816				if (m == NULL)
2817					panic("biodone: page disappeared!");
2818				bp->b_pages[i] = m;
2819				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2820			}
2821#if defined(VFS_BIO_DEBUG)
2822			if (OFF_TO_IDX(foff) != m->pindex) {
2823				printf(
2824"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2825				    (unsigned long)foff, m->pindex);
2826			}
2827#endif
2828
2829			/*
2830			 * In the write case, the valid and clean bits are
2831			 * already changed correctly ( see bdwrite() ), so we
2832			 * only need to do this here in the read case.
2833			 */
2834			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2835				vfs_page_set_valid(bp, foff, i, m);
2836			}
2837			vm_page_flag_clear(m, PG_ZERO);
2838
2839			/*
2840			 * when debugging new filesystems or buffer I/O methods, this
2841			 * is the most common error that pops up.  if you see this, you
2842			 * have not set the page busy flag correctly!!!
2843			 */
2844			if (m->busy == 0) {
2845				printf("biodone: page busy < 0, "
2846				    "pindex: %d, foff: 0x(%x,%x), "
2847				    "resid: %d, index: %d\n",
2848				    (int) m->pindex, (int)(foff >> 32),
2849						(int) foff & 0xffffffff, resid, i);
2850				if (!vn_isdisk(vp, NULL))
2851					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2852					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2853					    (int) bp->b_lblkno,
2854					    bp->b_flags, bp->b_npages);
2855				else
2856					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2857					    (int) bp->b_lblkno,
2858					    bp->b_flags, bp->b_npages);
2859				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2860				    m->valid, m->dirty, m->wire_count);
2861				panic("biodone: page busy < 0\n");
2862			}
2863			vm_page_io_finish(m);
2864			vm_object_pip_subtract(obj, 1);
2865			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2866			iosize -= resid;
2867		}
2868		if (obj)
2869			vm_object_pip_wakeupn(obj, 0);
2870		mtx_unlock(&vm_mtx);
2871	}
2872
2873	/*
2874	 * For asynchronous completions, release the buffer now. The brelse
2875	 * will do a wakeup there if necessary - so no need to do a wakeup
2876	 * here in the async case. The sync case always needs to do a wakeup.
2877	 */
2878
2879	if (bp->b_flags & B_ASYNC) {
2880		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2881			brelse(bp);
2882		else
2883			bqrelse(bp);
2884	} else {
2885		wakeup(bp);
2886	}
2887	splx(s);
2888}
2889
2890/*
2891 * This routine is called in lieu of iodone in the case of
2892 * incomplete I/O.  This keeps the busy status for pages
2893 * consistant.
2894 *
2895 * vm_mtx should not be held
2896 */
2897void
2898vfs_unbusy_pages(struct buf * bp)
2899{
2900	int i;
2901
2902	mtx_assert(&vm_mtx, MA_NOTOWNED);
2903	runningbufwakeup(bp);
2904	if (bp->b_flags & B_VMIO) {
2905		struct vnode *vp = bp->b_vp;
2906		vm_object_t obj;
2907
2908		VOP_GETVOBJECT(vp, &obj);
2909
2910		mtx_lock(&vm_mtx);
2911		for (i = 0; i < bp->b_npages; i++) {
2912			vm_page_t m = bp->b_pages[i];
2913
2914			if (m == bogus_page) {
2915				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2916				if (!m) {
2917					panic("vfs_unbusy_pages: page missing\n");
2918				}
2919				bp->b_pages[i] = m;
2920				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2921			}
2922			vm_object_pip_subtract(obj, 1);
2923			vm_page_flag_clear(m, PG_ZERO);
2924			vm_page_io_finish(m);
2925		}
2926		vm_object_pip_wakeupn(obj, 0);
2927		mtx_unlock(&vm_mtx);
2928	}
2929}
2930
2931/*
2932 * vfs_page_set_valid:
2933 *
2934 *	Set the valid bits in a page based on the supplied offset.   The
2935 *	range is restricted to the buffer's size.
2936 *
2937 *	This routine is typically called after a read completes.
2938 *
2939 *	vm_mtx should be held
2940 */
2941static void
2942vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2943{
2944	vm_ooffset_t soff, eoff;
2945
2946	mtx_assert(&vm_mtx, MA_OWNED);
2947	/*
2948	 * Start and end offsets in buffer.  eoff - soff may not cross a
2949	 * page boundry or cross the end of the buffer.  The end of the
2950	 * buffer, in this case, is our file EOF, not the allocation size
2951	 * of the buffer.
2952	 */
2953	soff = off;
2954	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2955	if (eoff > bp->b_offset + bp->b_bcount)
2956		eoff = bp->b_offset + bp->b_bcount;
2957
2958	/*
2959	 * Set valid range.  This is typically the entire buffer and thus the
2960	 * entire page.
2961	 */
2962	if (eoff > soff) {
2963		vm_page_set_validclean(
2964		    m,
2965		   (vm_offset_t) (soff & PAGE_MASK),
2966		   (vm_offset_t) (eoff - soff)
2967		);
2968	}
2969}
2970
2971/*
2972 * This routine is called before a device strategy routine.
2973 * It is used to tell the VM system that paging I/O is in
2974 * progress, and treat the pages associated with the buffer
2975 * almost as being PG_BUSY.  Also the object paging_in_progress
2976 * flag is handled to make sure that the object doesn't become
2977 * inconsistant.
2978 *
2979 * Since I/O has not been initiated yet, certain buffer flags
2980 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
2981 * and should be ignored.
2982 *
2983 * vm_mtx should not be held
2984 */
2985void
2986vfs_busy_pages(struct buf * bp, int clear_modify)
2987{
2988	int i, bogus;
2989
2990	mtx_assert(&vm_mtx, MA_NOTOWNED);
2991	if (bp->b_flags & B_VMIO) {
2992		struct vnode *vp = bp->b_vp;
2993		vm_object_t obj;
2994		vm_ooffset_t foff;
2995
2996		VOP_GETVOBJECT(vp, &obj);
2997		foff = bp->b_offset;
2998		KASSERT(bp->b_offset != NOOFFSET,
2999		    ("vfs_busy_pages: no buffer offset"));
3000		mtx_lock(&vm_mtx);
3001		vfs_setdirty(bp);
3002
3003retry:
3004		for (i = 0; i < bp->b_npages; i++) {
3005			vm_page_t m = bp->b_pages[i];
3006			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3007				goto retry;
3008		}
3009
3010		bogus = 0;
3011		for (i = 0; i < bp->b_npages; i++) {
3012			vm_page_t m = bp->b_pages[i];
3013
3014			vm_page_flag_clear(m, PG_ZERO);
3015			if ((bp->b_flags & B_CLUSTER) == 0) {
3016				vm_object_pip_add(obj, 1);
3017				vm_page_io_start(m);
3018			}
3019
3020			/*
3021			 * When readying a buffer for a read ( i.e
3022			 * clear_modify == 0 ), it is important to do
3023			 * bogus_page replacement for valid pages in
3024			 * partially instantiated buffers.  Partially
3025			 * instantiated buffers can, in turn, occur when
3026			 * reconstituting a buffer from its VM backing store
3027			 * base.  We only have to do this if B_CACHE is
3028			 * clear ( which causes the I/O to occur in the
3029			 * first place ).  The replacement prevents the read
3030			 * I/O from overwriting potentially dirty VM-backed
3031			 * pages.  XXX bogus page replacement is, uh, bogus.
3032			 * It may not work properly with small-block devices.
3033			 * We need to find a better way.
3034			 */
3035
3036			vm_page_protect(m, VM_PROT_NONE);
3037			if (clear_modify)
3038				vfs_page_set_valid(bp, foff, i, m);
3039			else if (m->valid == VM_PAGE_BITS_ALL &&
3040				(bp->b_flags & B_CACHE) == 0) {
3041				bp->b_pages[i] = bogus_page;
3042				bogus++;
3043			}
3044			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3045		}
3046		if (bogus)
3047			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3048		mtx_unlock(&vm_mtx);
3049	}
3050}
3051
3052/*
3053 * Tell the VM system that the pages associated with this buffer
3054 * are clean.  This is used for delayed writes where the data is
3055 * going to go to disk eventually without additional VM intevention.
3056 *
3057 * Note that while we only really need to clean through to b_bcount, we
3058 * just go ahead and clean through to b_bufsize.
3059 *
3060 * should be called with vm_mtx held
3061 */
3062static void
3063vfs_clean_pages(struct buf * bp)
3064{
3065	int i;
3066
3067	mtx_assert(&vm_mtx, MA_OWNED);
3068	if (bp->b_flags & B_VMIO) {
3069		vm_ooffset_t foff;
3070
3071		foff = bp->b_offset;
3072		KASSERT(bp->b_offset != NOOFFSET,
3073		    ("vfs_clean_pages: no buffer offset"));
3074		for (i = 0; i < bp->b_npages; i++) {
3075			vm_page_t m = bp->b_pages[i];
3076			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3077			vm_ooffset_t eoff = noff;
3078
3079			if (eoff > bp->b_offset + bp->b_bufsize)
3080				eoff = bp->b_offset + bp->b_bufsize;
3081			vfs_page_set_valid(bp, foff, i, m);
3082			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3083			foff = noff;
3084		}
3085	}
3086}
3087
3088/*
3089 *	vfs_bio_set_validclean:
3090 *
3091 *	Set the range within the buffer to valid and clean.  The range is
3092 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3093 *	itself may be offset from the beginning of the first page.
3094 *
3095 */
3096
3097void
3098vfs_bio_set_validclean(struct buf *bp, int base, int size)
3099{
3100	if (bp->b_flags & B_VMIO) {
3101		int i;
3102		int n;
3103
3104		/*
3105		 * Fixup base to be relative to beginning of first page.
3106		 * Set initial n to be the maximum number of bytes in the
3107		 * first page that can be validated.
3108		 */
3109
3110		base += (bp->b_offset & PAGE_MASK);
3111		n = PAGE_SIZE - (base & PAGE_MASK);
3112
3113		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3114			vm_page_t m = bp->b_pages[i];
3115
3116			if (n > size)
3117				n = size;
3118
3119			vm_page_set_validclean(m, base & PAGE_MASK, n);
3120			base += n;
3121			size -= n;
3122			n = PAGE_SIZE;
3123		}
3124	}
3125}
3126
3127/*
3128 *	vfs_bio_clrbuf:
3129 *
3130 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3131 *	to clear BIO_ERROR and B_INVAL.
3132 *
3133 *	Note that while we only theoretically need to clear through b_bcount,
3134 *	we go ahead and clear through b_bufsize.
3135 *
3136 *	We'll get vm_mtx here for safety if processing a VMIO buffer.
3137 *	I don't think vm_mtx is needed, but we're twiddling vm_page flags.
3138 */
3139
3140void
3141vfs_bio_clrbuf(struct buf *bp) {
3142	int i, mask = 0;
3143	caddr_t sa, ea;
3144
3145	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3146		mtx_lock(&vm_mtx);
3147		bp->b_flags &= ~B_INVAL;
3148		bp->b_ioflags &= ~BIO_ERROR;
3149		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3150		    (bp->b_offset & PAGE_MASK) == 0) {
3151			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3152			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3153			    ((bp->b_pages[0]->valid & mask) != mask)) {
3154				bzero(bp->b_data, bp->b_bufsize);
3155			}
3156			bp->b_pages[0]->valid |= mask;
3157			bp->b_resid = 0;
3158			mtx_unlock(&vm_mtx);
3159			return;
3160		}
3161		ea = sa = bp->b_data;
3162		for(i=0;i<bp->b_npages;i++,sa=ea) {
3163			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3164			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3165			ea = (caddr_t)(vm_offset_t)ulmin(
3166			    (u_long)(vm_offset_t)ea,
3167			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3168			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3169			if ((bp->b_pages[i]->valid & mask) == mask)
3170				continue;
3171			if ((bp->b_pages[i]->valid & mask) == 0) {
3172				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3173					bzero(sa, ea - sa);
3174				}
3175			} else {
3176				for (; sa < ea; sa += DEV_BSIZE, j++) {
3177					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3178						(bp->b_pages[i]->valid & (1<<j)) == 0)
3179						bzero(sa, DEV_BSIZE);
3180				}
3181			}
3182			bp->b_pages[i]->valid |= mask;
3183			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3184		}
3185		bp->b_resid = 0;
3186		mtx_unlock(&vm_mtx);
3187	} else {
3188		clrbuf(bp);
3189	}
3190}
3191
3192/*
3193 * vm_hold_load_pages and vm_hold_free_pages get pages into
3194 * a buffers address space.  The pages are anonymous and are
3195 * not associated with a file object.
3196 *
3197 * vm_mtx should not be held
3198 */
3199static void
3200vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3201{
3202	vm_offset_t pg;
3203	vm_page_t p;
3204	int index;
3205
3206	mtx_assert(&vm_mtx, MA_NOTOWNED);
3207	to = round_page(to);
3208	from = round_page(from);
3209	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3210
3211	mtx_lock(&vm_mtx);
3212	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3213
3214tryagain:
3215
3216		/*
3217		 * note: must allocate system pages since blocking here
3218		 * could intefere with paging I/O, no matter which
3219		 * process we are.
3220		 */
3221		p = vm_page_alloc(kernel_object,
3222			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3223		    VM_ALLOC_SYSTEM);
3224		if (!p) {
3225			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3226			VM_WAIT;
3227			goto tryagain;
3228		}
3229		vm_page_wire(p);
3230		p->valid = VM_PAGE_BITS_ALL;
3231		vm_page_flag_clear(p, PG_ZERO);
3232		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3233		bp->b_pages[index] = p;
3234		vm_page_wakeup(p);
3235	}
3236	bp->b_npages = index;
3237	mtx_unlock(&vm_mtx);
3238}
3239
3240void
3241vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3242{
3243	vm_offset_t pg;
3244	vm_page_t p;
3245	int index, newnpages;
3246
3247	mtx_assert(&vm_mtx, MA_NOTOWNED);
3248	from = round_page(from);
3249	to = round_page(to);
3250	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3251
3252	mtx_lock(&vm_mtx);
3253	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3254		p = bp->b_pages[index];
3255		if (p && (index < bp->b_npages)) {
3256			if (p->busy) {
3257				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3258					bp->b_blkno, bp->b_lblkno);
3259			}
3260			bp->b_pages[index] = NULL;
3261			pmap_kremove(pg);
3262			vm_page_busy(p);
3263			vm_page_unwire(p, 0);
3264			vm_page_free(p);
3265		}
3266	}
3267	bp->b_npages = newnpages;
3268	mtx_unlock(&vm_mtx);
3269}
3270
3271
3272#include "opt_ddb.h"
3273#ifdef DDB
3274#include <ddb/ddb.h>
3275
3276DB_SHOW_COMMAND(buffer, db_show_buffer)
3277{
3278	/* get args */
3279	struct buf *bp = (struct buf *)addr;
3280
3281	if (!have_addr) {
3282		db_printf("usage: show buffer <addr>\n");
3283		return;
3284	}
3285
3286	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3287	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3288		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3289		  "b_blkno = %d, b_pblkno = %d\n",
3290		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3291		  major(bp->b_dev), minor(bp->b_dev),
3292		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3293	if (bp->b_npages) {
3294		int i;
3295		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3296		for (i = 0; i < bp->b_npages; i++) {
3297			vm_page_t m;
3298			m = bp->b_pages[i];
3299			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3300			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3301			if ((i + 1) < bp->b_npages)
3302				db_printf(",");
3303		}
3304		db_printf("\n");
3305	}
3306}
3307#endif /* DDB */
3308