vfs_bio.c revision 76827
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 76827 2001-05-19 01:28:09Z alfred $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct	buf_ops buf_ops_bio = {
62	"buf_ops_bio",
63	bwrite
64};
65
66struct buf *buf;		/* buffer header pool */
67struct swqueue bswlist;
68struct mtx buftimelock;		/* Interlock on setting prio and timo */
69
70static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
71		vm_offset_t to);
72static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
73		vm_offset_t to);
74static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
75			       int pageno, vm_page_t m);
76static void vfs_clean_pages(struct buf * bp);
77static void vfs_setdirty(struct buf *bp);
78static void vfs_vmio_release(struct buf *bp);
79static void vfs_backgroundwritedone(struct buf *bp);
80static int flushbufqueues(void);
81
82static int bd_request;
83
84static void buf_daemon __P((void));
85/*
86 * bogus page -- for I/O to/from partially complete buffers
87 * this is a temporary solution to the problem, but it is not
88 * really that bad.  it would be better to split the buffer
89 * for input in the case of buffers partially already in memory,
90 * but the code is intricate enough already.
91 */
92vm_page_t bogus_page;
93int vmiodirenable = FALSE;
94int runningbufspace;
95static vm_offset_t bogus_offset;
96
97static int bufspace, maxbufspace,
98	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
99static int bufreusecnt, bufdefragcnt, buffreekvacnt;
100static int needsbuffer;
101static int lorunningspace, hirunningspace, runningbufreq;
102static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
103static int numfreebuffers, lofreebuffers, hifreebuffers;
104static int getnewbufcalls;
105static int getnewbufrestarts;
106
107SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
108	&numdirtybuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
110	&lodirtybuffers, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
112	&hidirtybuffers, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
114	&numfreebuffers, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
116	&lofreebuffers, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
118	&hifreebuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
120	&runningbufspace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW,
122	&lorunningspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW,
124	&hirunningspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
126	&maxbufspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
128	&hibufspace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
130	&lobufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134	&maxbufmallocspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136	&bufmallocspace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
138	&getnewbufcalls, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
140	&getnewbufrestarts, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
142	&vmiodirenable, 0, "");
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
144	&bufdefragcnt, 0, "");
145SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
146	&buffreekvacnt, 0, "");
147SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
148	&bufreusecnt, 0, "");
149
150static int bufhashmask;
151static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
152struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
153char *buf_wmesg = BUF_WMESG;
154
155extern int vm_swap_size;
156
157#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
158#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
159#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
160#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
161
162/*
163 * Buffer hash table code.  Note that the logical block scans linearly, which
164 * gives us some L1 cache locality.
165 */
166
167static __inline
168struct bufhashhdr *
169bufhash(struct vnode *vnp, daddr_t bn)
170{
171	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
172}
173
174/*
175 *	numdirtywakeup:
176 *
177 *	If someone is blocked due to there being too many dirty buffers,
178 *	and numdirtybuffers is now reasonable, wake them up.
179 */
180
181static __inline void
182numdirtywakeup(int level)
183{
184	if (numdirtybuffers <= level) {
185		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
186			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
187			wakeup(&needsbuffer);
188		}
189	}
190}
191
192/*
193 *	bufspacewakeup:
194 *
195 *	Called when buffer space is potentially available for recovery.
196 *	getnewbuf() will block on this flag when it is unable to free
197 *	sufficient buffer space.  Buffer space becomes recoverable when
198 *	bp's get placed back in the queues.
199 */
200
201static __inline void
202bufspacewakeup(void)
203{
204	/*
205	 * If someone is waiting for BUF space, wake them up.  Even
206	 * though we haven't freed the kva space yet, the waiting
207	 * process will be able to now.
208	 */
209	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
210		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
211		wakeup(&needsbuffer);
212	}
213}
214
215/*
216 * runningbufwakeup() - in-progress I/O accounting.
217 *
218 */
219static __inline void
220runningbufwakeup(struct buf *bp)
221{
222	if (bp->b_runningbufspace) {
223		runningbufspace -= bp->b_runningbufspace;
224		bp->b_runningbufspace = 0;
225		if (runningbufreq && runningbufspace <= lorunningspace) {
226			runningbufreq = 0;
227			wakeup(&runningbufreq);
228		}
229	}
230}
231
232/*
233 *	bufcountwakeup:
234 *
235 *	Called when a buffer has been added to one of the free queues to
236 *	account for the buffer and to wakeup anyone waiting for free buffers.
237 *	This typically occurs when large amounts of metadata are being handled
238 *	by the buffer cache ( else buffer space runs out first, usually ).
239 */
240
241static __inline void
242bufcountwakeup(void)
243{
244	++numfreebuffers;
245	if (needsbuffer) {
246		needsbuffer &= ~VFS_BIO_NEED_ANY;
247		if (numfreebuffers >= hifreebuffers)
248			needsbuffer &= ~VFS_BIO_NEED_FREE;
249		wakeup(&needsbuffer);
250	}
251}
252
253/*
254 *	waitrunningbufspace()
255 *
256 *	runningbufspace is a measure of the amount of I/O currently
257 *	running.  This routine is used in async-write situations to
258 *	prevent creating huge backups of pending writes to a device.
259 *	Only asynchronous writes are governed by this function.
260 *
261 *	Reads will adjust runningbufspace, but will not block based on it.
262 *	The read load has a side effect of reducing the allowed write load.
263 *
264 *	This does NOT turn an async write into a sync write.  It waits
265 *	for earlier writes to complete and generally returns before the
266 *	caller's write has reached the device.
267 */
268static __inline void
269waitrunningbufspace(void)
270{
271	while (runningbufspace > hirunningspace) {
272		++runningbufreq;
273		tsleep(&runningbufreq, PVM, "wdrain", 0);
274	}
275}
276
277
278/*
279 *	vfs_buf_test_cache:
280 *
281 *	Called when a buffer is extended.  This function clears the B_CACHE
282 *	bit if the newly extended portion of the buffer does not contain
283 *	valid data.
284 *
285 *	must be called with vm_mtx held
286 */
287static __inline__
288void
289vfs_buf_test_cache(struct buf *bp,
290		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
291		  vm_page_t m)
292{
293	if (bp->b_flags & B_CACHE) {
294		int base = (foff + off) & PAGE_MASK;
295		if (vm_page_is_valid(m, base, size) == 0)
296			bp->b_flags &= ~B_CACHE;
297	}
298}
299
300static __inline__
301void
302bd_wakeup(int dirtybuflevel)
303{
304	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
305		bd_request = 1;
306		wakeup(&bd_request);
307	}
308}
309
310/*
311 * bd_speedup - speedup the buffer cache flushing code
312 */
313
314static __inline__
315void
316bd_speedup(void)
317{
318	bd_wakeup(1);
319}
320
321/*
322 * Initialize buffer headers and related structures.
323 */
324
325caddr_t
326bufhashinit(caddr_t vaddr)
327{
328	/* first, make a null hash table */
329	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
330		;
331	bufhashtbl = (void *)vaddr;
332	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
333	--bufhashmask;
334	return(vaddr);
335}
336
337void
338bufinit(void)
339{
340	struct buf *bp;
341	int i;
342
343	TAILQ_INIT(&bswlist);
344	LIST_INIT(&invalhash);
345	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
346
347	for (i = 0; i <= bufhashmask; i++)
348		LIST_INIT(&bufhashtbl[i]);
349
350	/* next, make a null set of free lists */
351	for (i = 0; i < BUFFER_QUEUES; i++)
352		TAILQ_INIT(&bufqueues[i]);
353
354	/* finally, initialize each buffer header and stick on empty q */
355	for (i = 0; i < nbuf; i++) {
356		bp = &buf[i];
357		bzero(bp, sizeof *bp);
358		bp->b_flags = B_INVAL;	/* we're just an empty header */
359		bp->b_dev = NODEV;
360		bp->b_rcred = NOCRED;
361		bp->b_wcred = NOCRED;
362		bp->b_qindex = QUEUE_EMPTY;
363		bp->b_xflags = 0;
364		LIST_INIT(&bp->b_dep);
365		BUF_LOCKINIT(bp);
366		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
367		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
368	}
369
370	/*
371	 * maxbufspace is the absolute maximum amount of buffer space we are
372	 * allowed to reserve in KVM and in real terms.  The absolute maximum
373	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
374	 * used by most other processes.  The differential is required to
375	 * ensure that buf_daemon is able to run when other processes might
376	 * be blocked waiting for buffer space.
377	 *
378	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
379	 * this may result in KVM fragmentation which is not handled optimally
380	 * by the system.
381	 */
382	maxbufspace = nbuf * BKVASIZE;
383	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
384	lobufspace = hibufspace - MAXBSIZE;
385
386	lorunningspace = 512 * 1024;
387	hirunningspace = 1024 * 1024;
388
389/*
390 * Limit the amount of malloc memory since it is wired permanently into
391 * the kernel space.  Even though this is accounted for in the buffer
392 * allocation, we don't want the malloced region to grow uncontrolled.
393 * The malloc scheme improves memory utilization significantly on average
394 * (small) directories.
395 */
396	maxbufmallocspace = hibufspace / 20;
397
398/*
399 * Reduce the chance of a deadlock occuring by limiting the number
400 * of delayed-write dirty buffers we allow to stack up.
401 */
402	hidirtybuffers = nbuf / 4 + 20;
403	numdirtybuffers = 0;
404/*
405 * To support extreme low-memory systems, make sure hidirtybuffers cannot
406 * eat up all available buffer space.  This occurs when our minimum cannot
407 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
408 * BKVASIZE'd (8K) buffers.
409 */
410	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
411		hidirtybuffers >>= 1;
412	}
413	lodirtybuffers = hidirtybuffers / 2;
414
415/*
416 * Try to keep the number of free buffers in the specified range,
417 * and give special processes (e.g. like buf_daemon) access to an
418 * emergency reserve.
419 */
420	lofreebuffers = nbuf / 18 + 5;
421	hifreebuffers = 2 * lofreebuffers;
422	numfreebuffers = nbuf;
423
424/*
425 * Maximum number of async ops initiated per buf_daemon loop.  This is
426 * somewhat of a hack at the moment, we really need to limit ourselves
427 * based on the number of bytes of I/O in-transit that were initiated
428 * from buf_daemon.
429 */
430
431	mtx_lock(&vm_mtx);
432	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
433	bogus_page = vm_page_alloc(kernel_object,
434			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
435			VM_ALLOC_NORMAL);
436	cnt.v_wire_count++;
437	mtx_unlock(&vm_mtx);
438
439}
440
441/*
442 * bfreekva() - free the kva allocation for a buffer.
443 *
444 *	Must be called at splbio() or higher as this is the only locking for
445 *	buffer_map.
446 *
447 *	Since this call frees up buffer space, we call bufspacewakeup().
448 *
449 *	Can be called with or without the vm_mtx.
450 */
451static void
452bfreekva(struct buf * bp)
453{
454
455	if (bp->b_kvasize) {
456		int hadvmlock;
457
458		++buffreekvacnt;
459		bufspace -= bp->b_kvasize;
460		hadvmlock = mtx_owned(&vm_mtx);
461		if (!hadvmlock)
462			mtx_lock(&vm_mtx);
463		vm_map_delete(buffer_map,
464		    (vm_offset_t) bp->b_kvabase,
465		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
466		);
467		if (!hadvmlock)
468			mtx_unlock(&vm_mtx);
469		bp->b_kvasize = 0;
470		bufspacewakeup();
471	}
472}
473
474/*
475 *	bremfree:
476 *
477 *	Remove the buffer from the appropriate free list.
478 */
479void
480bremfree(struct buf * bp)
481{
482	int s = splbio();
483	int old_qindex = bp->b_qindex;
484
485	if (bp->b_qindex != QUEUE_NONE) {
486		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
487		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
488		bp->b_qindex = QUEUE_NONE;
489	} else {
490		if (BUF_REFCNT(bp) <= 1)
491			panic("bremfree: removing a buffer not on a queue");
492	}
493
494	/*
495	 * Fixup numfreebuffers count.  If the buffer is invalid or not
496	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
497	 * the buffer was free and we must decrement numfreebuffers.
498	 */
499	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
500		switch(old_qindex) {
501		case QUEUE_DIRTY:
502		case QUEUE_CLEAN:
503		case QUEUE_EMPTY:
504		case QUEUE_EMPTYKVA:
505			--numfreebuffers;
506			break;
507		default:
508			break;
509		}
510	}
511	splx(s);
512}
513
514
515/*
516 * Get a buffer with the specified data.  Look in the cache first.  We
517 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
518 * is set, the buffer is valid and we do not have to do anything ( see
519 * getblk() ).  This is really just a special case of breadn().
520 */
521int
522bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
523    struct buf ** bpp)
524{
525
526	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
527}
528
529/*
530 * Operates like bread, but also starts asynchronous I/O on
531 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
532 * to initiating I/O . If B_CACHE is set, the buffer is valid
533 * and we do not have to do anything.
534 */
535int
536breadn(struct vnode * vp, daddr_t blkno, int size,
537    daddr_t * rablkno, int *rabsize,
538    int cnt, struct ucred * cred, struct buf ** bpp)
539{
540	struct buf *bp, *rabp;
541	int i;
542	int rv = 0, readwait = 0;
543
544	*bpp = bp = getblk(vp, blkno, size, 0, 0);
545
546	/* if not found in cache, do some I/O */
547	if ((bp->b_flags & B_CACHE) == 0) {
548		if (curproc != PCPU_GET(idleproc))
549			curproc->p_stats->p_ru.ru_inblock++;
550		bp->b_iocmd = BIO_READ;
551		bp->b_flags &= ~B_INVAL;
552		bp->b_ioflags &= ~BIO_ERROR;
553		if (bp->b_rcred == NOCRED) {
554			if (cred != NOCRED)
555				crhold(cred);
556			bp->b_rcred = cred;
557		}
558		vfs_busy_pages(bp, 0);
559		VOP_STRATEGY(vp, bp);
560		++readwait;
561	}
562
563	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
564		if (inmem(vp, *rablkno))
565			continue;
566		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
567
568		if ((rabp->b_flags & B_CACHE) == 0) {
569			if (curproc != PCPU_GET(idleproc))
570				curproc->p_stats->p_ru.ru_inblock++;
571			rabp->b_flags |= B_ASYNC;
572			rabp->b_flags &= ~B_INVAL;
573			rabp->b_ioflags &= ~BIO_ERROR;
574			rabp->b_iocmd = BIO_READ;
575			if (rabp->b_rcred == NOCRED) {
576				if (cred != NOCRED)
577					crhold(cred);
578				rabp->b_rcred = cred;
579			}
580			vfs_busy_pages(rabp, 0);
581			BUF_KERNPROC(rabp);
582			VOP_STRATEGY(vp, rabp);
583		} else {
584			brelse(rabp);
585		}
586	}
587
588	if (readwait) {
589		rv = bufwait(bp);
590	}
591	return (rv);
592}
593
594/*
595 * Write, release buffer on completion.  (Done by iodone
596 * if async).  Do not bother writing anything if the buffer
597 * is invalid.
598 *
599 * Note that we set B_CACHE here, indicating that buffer is
600 * fully valid and thus cacheable.  This is true even of NFS
601 * now so we set it generally.  This could be set either here
602 * or in biodone() since the I/O is synchronous.  We put it
603 * here.
604 */
605
606int dobkgrdwrite = 1;
607SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "");
608
609int
610bwrite(struct buf * bp)
611{
612	int oldflags, s;
613	struct buf *newbp;
614
615	if (bp->b_flags & B_INVAL) {
616		brelse(bp);
617		return (0);
618	}
619
620	oldflags = bp->b_flags;
621
622	if (BUF_REFCNT(bp) == 0)
623		panic("bwrite: buffer is not busy???");
624	s = splbio();
625	/*
626	 * If a background write is already in progress, delay
627	 * writing this block if it is asynchronous. Otherwise
628	 * wait for the background write to complete.
629	 */
630	if (bp->b_xflags & BX_BKGRDINPROG) {
631		if (bp->b_flags & B_ASYNC) {
632			splx(s);
633			bdwrite(bp);
634			return (0);
635		}
636		bp->b_xflags |= BX_BKGRDWAIT;
637		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
638		if (bp->b_xflags & BX_BKGRDINPROG)
639			panic("bwrite: still writing");
640	}
641
642	/* Mark the buffer clean */
643	bundirty(bp);
644
645	/*
646	 * If this buffer is marked for background writing and we
647	 * do not have to wait for it, make a copy and write the
648	 * copy so as to leave this buffer ready for further use.
649	 *
650	 * This optimization eats a lot of memory.  If we have a page
651	 * or buffer shortfall we can't do it.
652	 */
653	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
654	    (bp->b_flags & B_ASYNC) &&
655	    !vm_page_count_severe() &&
656	    !buf_dirty_count_severe()) {
657		if (bp->b_iodone != NULL) {
658			printf("bp->b_iodone = %p\n", bp->b_iodone);
659			panic("bwrite: need chained iodone");
660		}
661
662		/* get a new block */
663		newbp = geteblk(bp->b_bufsize);
664
665		/* set it to be identical to the old block */
666		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
667		bgetvp(bp->b_vp, newbp);
668		newbp->b_lblkno = bp->b_lblkno;
669		newbp->b_blkno = bp->b_blkno;
670		newbp->b_offset = bp->b_offset;
671		newbp->b_iodone = vfs_backgroundwritedone;
672		newbp->b_flags |= B_ASYNC;
673		newbp->b_flags &= ~B_INVAL;
674
675		/* move over the dependencies */
676		if (LIST_FIRST(&bp->b_dep) != NULL)
677			buf_movedeps(bp, newbp);
678
679		/*
680		 * Initiate write on the copy, release the original to
681		 * the B_LOCKED queue so that it cannot go away until
682		 * the background write completes. If not locked it could go
683		 * away and then be reconstituted while it was being written.
684		 * If the reconstituted buffer were written, we could end up
685		 * with two background copies being written at the same time.
686		 */
687		bp->b_xflags |= BX_BKGRDINPROG;
688		bp->b_flags |= B_LOCKED;
689		bqrelse(bp);
690		bp = newbp;
691	}
692
693	bp->b_flags &= ~B_DONE;
694	bp->b_ioflags &= ~BIO_ERROR;
695	bp->b_flags |= B_WRITEINPROG | B_CACHE;
696	bp->b_iocmd = BIO_WRITE;
697
698	bp->b_vp->v_numoutput++;
699	vfs_busy_pages(bp, 1);
700
701	/*
702	 * Normal bwrites pipeline writes
703	 */
704	bp->b_runningbufspace = bp->b_bufsize;
705	runningbufspace += bp->b_runningbufspace;
706
707	if (curproc != PCPU_GET(idleproc))
708		curproc->p_stats->p_ru.ru_oublock++;
709	splx(s);
710	if (oldflags & B_ASYNC)
711		BUF_KERNPROC(bp);
712	BUF_STRATEGY(bp);
713
714	if ((oldflags & B_ASYNC) == 0) {
715		int rtval = bufwait(bp);
716		brelse(bp);
717		return (rtval);
718	} else {
719		/*
720		 * don't allow the async write to saturate the I/O
721		 * system.  There is no chance of deadlock here because
722		 * we are blocking on I/O that is already in-progress.
723		 */
724		waitrunningbufspace();
725	}
726
727	return (0);
728}
729
730/*
731 * Complete a background write started from bwrite.
732 */
733static void
734vfs_backgroundwritedone(bp)
735	struct buf *bp;
736{
737	struct buf *origbp;
738
739	/*
740	 * Find the original buffer that we are writing.
741	 */
742	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
743		panic("backgroundwritedone: lost buffer");
744	/*
745	 * Process dependencies then return any unfinished ones.
746	 */
747	if (LIST_FIRST(&bp->b_dep) != NULL)
748		buf_complete(bp);
749	if (LIST_FIRST(&bp->b_dep) != NULL)
750		buf_movedeps(bp, origbp);
751	/*
752	 * Clear the BX_BKGRDINPROG flag in the original buffer
753	 * and awaken it if it is waiting for the write to complete.
754	 * If BX_BKGRDINPROG is not set in the original buffer it must
755	 * have been released and re-instantiated - which is not legal.
756	 */
757	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
758	origbp->b_xflags &= ~BX_BKGRDINPROG;
759	if (origbp->b_xflags & BX_BKGRDWAIT) {
760		origbp->b_xflags &= ~BX_BKGRDWAIT;
761		wakeup(&origbp->b_xflags);
762	}
763	/*
764	 * Clear the B_LOCKED flag and remove it from the locked
765	 * queue if it currently resides there.
766	 */
767	origbp->b_flags &= ~B_LOCKED;
768	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
769		bremfree(origbp);
770		bqrelse(origbp);
771	}
772	/*
773	 * This buffer is marked B_NOCACHE, so when it is released
774	 * by biodone, it will be tossed. We mark it with BIO_READ
775	 * to avoid biodone doing a second vwakeup.
776	 */
777	bp->b_flags |= B_NOCACHE;
778	bp->b_iocmd = BIO_READ;
779	bp->b_flags &= ~(B_CACHE | B_DONE);
780	bp->b_iodone = 0;
781	bufdone(bp);
782}
783
784/*
785 * Delayed write. (Buffer is marked dirty).  Do not bother writing
786 * anything if the buffer is marked invalid.
787 *
788 * Note that since the buffer must be completely valid, we can safely
789 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
790 * biodone() in order to prevent getblk from writing the buffer
791 * out synchronously.
792 */
793void
794bdwrite(struct buf * bp)
795{
796	if (BUF_REFCNT(bp) == 0)
797		panic("bdwrite: buffer is not busy");
798
799	if (bp->b_flags & B_INVAL) {
800		brelse(bp);
801		return;
802	}
803	bdirty(bp);
804
805	/*
806	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
807	 * true even of NFS now.
808	 */
809	bp->b_flags |= B_CACHE;
810
811	/*
812	 * This bmap keeps the system from needing to do the bmap later,
813	 * perhaps when the system is attempting to do a sync.  Since it
814	 * is likely that the indirect block -- or whatever other datastructure
815	 * that the filesystem needs is still in memory now, it is a good
816	 * thing to do this.  Note also, that if the pageout daemon is
817	 * requesting a sync -- there might not be enough memory to do
818	 * the bmap then...  So, this is important to do.
819	 */
820	if (bp->b_lblkno == bp->b_blkno) {
821		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
822	}
823
824	mtx_lock(&vm_mtx);
825	/*
826	 * Set the *dirty* buffer range based upon the VM system dirty pages.
827	 */
828	vfs_setdirty(bp);
829
830	/*
831	 * We need to do this here to satisfy the vnode_pager and the
832	 * pageout daemon, so that it thinks that the pages have been
833	 * "cleaned".  Note that since the pages are in a delayed write
834	 * buffer -- the VFS layer "will" see that the pages get written
835	 * out on the next sync, or perhaps the cluster will be completed.
836	 */
837	vfs_clean_pages(bp);
838	mtx_unlock(&vm_mtx);
839	bqrelse(bp);
840
841	/*
842	 * Wakeup the buffer flushing daemon if we have a lot of dirty
843	 * buffers (midpoint between our recovery point and our stall
844	 * point).
845	 */
846	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
847
848	/*
849	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
850	 * due to the softdep code.
851	 */
852}
853
854/*
855 *	bdirty:
856 *
857 *	Turn buffer into delayed write request.  We must clear BIO_READ and
858 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
859 *	itself to properly update it in the dirty/clean lists.  We mark it
860 *	B_DONE to ensure that any asynchronization of the buffer properly
861 *	clears B_DONE ( else a panic will occur later ).
862 *
863 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
864 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
865 *	should only be called if the buffer is known-good.
866 *
867 *	Since the buffer is not on a queue, we do not update the numfreebuffers
868 *	count.
869 *
870 *	Must be called at splbio().
871 *	The buffer must be on QUEUE_NONE.
872 */
873void
874bdirty(bp)
875	struct buf *bp;
876{
877	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
878	bp->b_flags &= ~(B_RELBUF);
879	bp->b_iocmd = BIO_WRITE;
880
881	if ((bp->b_flags & B_DELWRI) == 0) {
882		bp->b_flags |= B_DONE | B_DELWRI;
883		reassignbuf(bp, bp->b_vp);
884		++numdirtybuffers;
885		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
886	}
887}
888
889/*
890 *	bundirty:
891 *
892 *	Clear B_DELWRI for buffer.
893 *
894 *	Since the buffer is not on a queue, we do not update the numfreebuffers
895 *	count.
896 *
897 *	Must be called at splbio().
898 *	The buffer must be on QUEUE_NONE.
899 */
900
901void
902bundirty(bp)
903	struct buf *bp;
904{
905	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
906
907	if (bp->b_flags & B_DELWRI) {
908		bp->b_flags &= ~B_DELWRI;
909		reassignbuf(bp, bp->b_vp);
910		--numdirtybuffers;
911		numdirtywakeup(lodirtybuffers);
912	}
913	/*
914	 * Since it is now being written, we can clear its deferred write flag.
915	 */
916	bp->b_flags &= ~B_DEFERRED;
917}
918
919/*
920 *	bawrite:
921 *
922 *	Asynchronous write.  Start output on a buffer, but do not wait for
923 *	it to complete.  The buffer is released when the output completes.
924 *
925 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
926 *	B_INVAL buffers.  Not us.
927 */
928void
929bawrite(struct buf * bp)
930{
931	bp->b_flags |= B_ASYNC;
932	(void) BUF_WRITE(bp);
933}
934
935/*
936 *	bowrite:
937 *
938 *	Ordered write.  Start output on a buffer, and flag it so that the
939 *	device will write it in the order it was queued.  The buffer is
940 *	released when the output completes.  bwrite() ( or the VOP routine
941 *	anyway ) is responsible for handling B_INVAL buffers.
942 */
943int
944bowrite(struct buf * bp)
945{
946	bp->b_ioflags |= BIO_ORDERED;
947	bp->b_flags |= B_ASYNC;
948	return (BUF_WRITE(bp));
949}
950
951/*
952 *	bwillwrite:
953 *
954 *	Called prior to the locking of any vnodes when we are expecting to
955 *	write.  We do not want to starve the buffer cache with too many
956 *	dirty buffers so we block here.  By blocking prior to the locking
957 *	of any vnodes we attempt to avoid the situation where a locked vnode
958 *	prevents the various system daemons from flushing related buffers.
959 */
960
961void
962bwillwrite(void)
963{
964	if (numdirtybuffers >= hidirtybuffers) {
965		int s;
966
967		s = splbio();
968		while (numdirtybuffers >= hidirtybuffers) {
969			bd_wakeup(1);
970			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
971			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
972		}
973		splx(s);
974	}
975}
976
977/*
978 * Return true if we have too many dirty buffers.
979 */
980int
981buf_dirty_count_severe(void)
982{
983	return(numdirtybuffers >= hidirtybuffers);
984}
985
986/*
987 *	brelse:
988 *
989 *	Release a busy buffer and, if requested, free its resources.  The
990 *	buffer will be stashed in the appropriate bufqueue[] allowing it
991 *	to be accessed later as a cache entity or reused for other purposes.
992 *
993 *	vm_mtx must be not be held.
994 */
995void
996brelse(struct buf * bp)
997{
998	int s;
999
1000	mtx_assert(&vm_mtx, MA_NOTOWNED);
1001	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1002
1003	s = splbio();
1004
1005	if (bp->b_flags & B_LOCKED)
1006		bp->b_ioflags &= ~BIO_ERROR;
1007
1008	if (bp->b_iocmd == BIO_WRITE &&
1009	    (bp->b_ioflags & BIO_ERROR) &&
1010	    !(bp->b_flags & B_INVAL)) {
1011		/*
1012		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1013		 * pages from being scrapped.  If B_INVAL is set then
1014		 * this case is not run and the next case is run to
1015		 * destroy the buffer.  B_INVAL can occur if the buffer
1016		 * is outside the range supported by the underlying device.
1017		 */
1018		bp->b_ioflags &= ~BIO_ERROR;
1019		bdirty(bp);
1020	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1021	    (bp->b_ioflags & BIO_ERROR) ||
1022	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1023		/*
1024		 * Either a failed I/O or we were asked to free or not
1025		 * cache the buffer.
1026		 */
1027		bp->b_flags |= B_INVAL;
1028		if (LIST_FIRST(&bp->b_dep) != NULL)
1029			buf_deallocate(bp);
1030		if (bp->b_flags & B_DELWRI) {
1031			--numdirtybuffers;
1032			numdirtywakeup(lodirtybuffers);
1033		}
1034		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1035		if ((bp->b_flags & B_VMIO) == 0) {
1036			if (bp->b_bufsize)
1037				allocbuf(bp, 0);
1038			if (bp->b_vp)
1039				brelvp(bp);
1040		}
1041	}
1042
1043	/*
1044	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1045	 * is called with B_DELWRI set, the underlying pages may wind up
1046	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1047	 * because pages associated with a B_DELWRI bp are marked clean.
1048	 *
1049	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1050	 * if B_DELWRI is set.
1051	 *
1052	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1053	 * on pages to return pages to the VM page queues.
1054	 */
1055	if (bp->b_flags & B_DELWRI)
1056		bp->b_flags &= ~B_RELBUF;
1057	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
1058		bp->b_flags |= B_RELBUF;
1059
1060	/*
1061	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1062	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1063	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1064	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1065	 *
1066	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1067	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1068	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1069	 *
1070	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1071	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1072	 * the commit state and we cannot afford to lose the buffer. If the
1073	 * buffer has a background write in progress, we need to keep it
1074	 * around to prevent it from being reconstituted and starting a second
1075	 * background write.
1076	 */
1077	if ((bp->b_flags & B_VMIO)
1078	    && !(bp->b_vp->v_tag == VT_NFS &&
1079		 !vn_isdisk(bp->b_vp, NULL) &&
1080		 (bp->b_flags & B_DELWRI))
1081	    ) {
1082
1083		int i, j, resid;
1084		vm_page_t m;
1085		off_t foff;
1086		vm_pindex_t poff;
1087		vm_object_t obj;
1088		struct vnode *vp;
1089
1090		vp = bp->b_vp;
1091
1092		/*
1093		 * Get the base offset and length of the buffer.  Note that
1094		 * for block sizes that are less then PAGE_SIZE, the b_data
1095		 * base of the buffer does not represent exactly b_offset and
1096		 * neither b_offset nor b_size are necessarily page aligned.
1097		 * Instead, the starting position of b_offset is:
1098		 *
1099		 * 	b_data + (b_offset & PAGE_MASK)
1100		 *
1101		 * block sizes less then DEV_BSIZE (usually 512) are not
1102		 * supported due to the page granularity bits (m->valid,
1103		 * m->dirty, etc...).
1104		 *
1105		 * See man buf(9) for more information
1106		 */
1107		resid = bp->b_bufsize;
1108		foff = bp->b_offset;
1109
1110		mtx_lock(&vm_mtx);
1111		for (i = 0; i < bp->b_npages; i++) {
1112			int had_bogus = 0;
1113
1114			m = bp->b_pages[i];
1115			vm_page_flag_clear(m, PG_ZERO);
1116
1117			/*
1118			 * If we hit a bogus page, fixup *all* the bogus pages
1119			 * now.
1120			 */
1121			if (m == bogus_page) {
1122				mtx_unlock(&vm_mtx);
1123				VOP_GETVOBJECT(vp, &obj);
1124				poff = OFF_TO_IDX(bp->b_offset);
1125				had_bogus = 1;
1126
1127				mtx_lock(&vm_mtx);
1128				for (j = i; j < bp->b_npages; j++) {
1129					vm_page_t mtmp;
1130					mtmp = bp->b_pages[j];
1131					if (mtmp == bogus_page) {
1132						mtmp = vm_page_lookup(obj, poff + j);
1133						if (!mtmp) {
1134							panic("brelse: page missing\n");
1135						}
1136						bp->b_pages[j] = mtmp;
1137					}
1138				}
1139
1140				if ((bp->b_flags & B_INVAL) == 0) {
1141					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1142				}
1143				m = bp->b_pages[i];
1144			}
1145			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1146				int poffset = foff & PAGE_MASK;
1147				int presid = resid > (PAGE_SIZE - poffset) ?
1148					(PAGE_SIZE - poffset) : resid;
1149
1150				KASSERT(presid >= 0, ("brelse: extra page"));
1151				vm_page_set_invalid(m, poffset, presid);
1152				if (had_bogus)
1153					printf("avoided corruption bug in bogus_page/brelse code\n");
1154			}
1155			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1156			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1157		}
1158
1159		if (bp->b_flags & (B_INVAL | B_RELBUF))
1160			vfs_vmio_release(bp);
1161		mtx_unlock(&vm_mtx);
1162
1163	} else if (bp->b_flags & B_VMIO) {
1164
1165		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1166			mtx_lock(&vm_mtx);
1167			vfs_vmio_release(bp);
1168			mtx_unlock(&vm_mtx);
1169		}
1170
1171	}
1172
1173	if (bp->b_qindex != QUEUE_NONE)
1174		panic("brelse: free buffer onto another queue???");
1175	if (BUF_REFCNT(bp) > 1) {
1176		/* do not release to free list */
1177		BUF_UNLOCK(bp);
1178		splx(s);
1179		return;
1180	}
1181
1182	/* enqueue */
1183
1184	/* buffers with no memory */
1185	if (bp->b_bufsize == 0) {
1186		bp->b_flags |= B_INVAL;
1187		bp->b_xflags &= ~BX_BKGRDWRITE;
1188		if (bp->b_xflags & BX_BKGRDINPROG)
1189			panic("losing buffer 1");
1190		if (bp->b_kvasize) {
1191			bp->b_qindex = QUEUE_EMPTYKVA;
1192		} else {
1193			bp->b_qindex = QUEUE_EMPTY;
1194		}
1195		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1196		LIST_REMOVE(bp, b_hash);
1197		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1198		bp->b_dev = NODEV;
1199	/* buffers with junk contents */
1200	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1201		bp->b_flags |= B_INVAL;
1202		bp->b_xflags &= ~BX_BKGRDWRITE;
1203		if (bp->b_xflags & BX_BKGRDINPROG)
1204			panic("losing buffer 2");
1205		bp->b_qindex = QUEUE_CLEAN;
1206		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1207		LIST_REMOVE(bp, b_hash);
1208		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1209		bp->b_dev = NODEV;
1210
1211	/* buffers that are locked */
1212	} else if (bp->b_flags & B_LOCKED) {
1213		bp->b_qindex = QUEUE_LOCKED;
1214		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1215
1216	/* remaining buffers */
1217	} else {
1218		if (bp->b_flags & B_DELWRI)
1219			bp->b_qindex = QUEUE_DIRTY;
1220		else
1221			bp->b_qindex = QUEUE_CLEAN;
1222		if (bp->b_flags & B_AGE)
1223			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1224		else
1225			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1226	}
1227
1228	/*
1229	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1230	 * on the correct queue.
1231	 */
1232	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1233		bp->b_flags &= ~B_DELWRI;
1234		--numdirtybuffers;
1235		numdirtywakeup(lodirtybuffers);
1236	}
1237
1238	/*
1239	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1240	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1241	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1242	 * if B_INVAL is set ).
1243	 */
1244
1245	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1246		bufcountwakeup();
1247
1248	/*
1249	 * Something we can maybe free or reuse
1250	 */
1251	if (bp->b_bufsize || bp->b_kvasize)
1252		bufspacewakeup();
1253
1254	/* unlock */
1255	BUF_UNLOCK(bp);
1256	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1257	bp->b_ioflags &= ~BIO_ORDERED;
1258	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1259		panic("brelse: not dirty");
1260	splx(s);
1261}
1262
1263/*
1264 * Release a buffer back to the appropriate queue but do not try to free
1265 * it.  The buffer is expected to be used again soon.
1266 *
1267 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1268 * biodone() to requeue an async I/O on completion.  It is also used when
1269 * known good buffers need to be requeued but we think we may need the data
1270 * again soon.
1271 */
1272void
1273bqrelse(struct buf * bp)
1274{
1275	int s;
1276
1277	s = splbio();
1278
1279	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1280
1281	if (bp->b_qindex != QUEUE_NONE)
1282		panic("bqrelse: free buffer onto another queue???");
1283	if (BUF_REFCNT(bp) > 1) {
1284		/* do not release to free list */
1285		BUF_UNLOCK(bp);
1286		splx(s);
1287		return;
1288	}
1289	if (bp->b_flags & B_LOCKED) {
1290		bp->b_ioflags &= ~BIO_ERROR;
1291		bp->b_qindex = QUEUE_LOCKED;
1292		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1293		/* buffers with stale but valid contents */
1294	} else if (bp->b_flags & B_DELWRI) {
1295		bp->b_qindex = QUEUE_DIRTY;
1296		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1297	} else if (vm_page_count_severe()) {
1298		/*
1299		 * We are too low on memory, we have to try to free the
1300		 * buffer (most importantly: the wired pages making up its
1301		 * backing store) *now*.
1302		 */
1303		splx(s);
1304		brelse(bp);
1305		return;
1306	} else {
1307		bp->b_qindex = QUEUE_CLEAN;
1308		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1309	}
1310
1311	if ((bp->b_flags & B_LOCKED) == 0 &&
1312	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1313		bufcountwakeup();
1314	}
1315
1316	/*
1317	 * Something we can maybe free or reuse.
1318	 */
1319	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1320		bufspacewakeup();
1321
1322	/* unlock */
1323	BUF_UNLOCK(bp);
1324	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1325	bp->b_ioflags &= ~BIO_ORDERED;
1326	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1327		panic("bqrelse: not dirty");
1328	splx(s);
1329}
1330
1331/*
1332 * Must be called with vm_mtx held.
1333 */
1334static void
1335vfs_vmio_release(bp)
1336	struct buf *bp;
1337{
1338	int i, s;
1339	vm_page_t m;
1340
1341	s = splvm();
1342	mtx_assert(&vm_mtx, MA_OWNED);
1343	for (i = 0; i < bp->b_npages; i++) {
1344		m = bp->b_pages[i];
1345		bp->b_pages[i] = NULL;
1346		/*
1347		 * In order to keep page LRU ordering consistent, put
1348		 * everything on the inactive queue.
1349		 */
1350		vm_page_unwire(m, 0);
1351		/*
1352		 * We don't mess with busy pages, it is
1353		 * the responsibility of the process that
1354		 * busied the pages to deal with them.
1355		 */
1356		if ((m->flags & PG_BUSY) || (m->busy != 0))
1357			continue;
1358
1359		if (m->wire_count == 0) {
1360			vm_page_flag_clear(m, PG_ZERO);
1361			/*
1362			 * Might as well free the page if we can and it has
1363			 * no valid data.
1364			 */
1365			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1366				vm_page_busy(m);
1367				vm_page_protect(m, VM_PROT_NONE);
1368				vm_page_free(m);
1369			} else if (vm_page_count_severe()) {
1370				vm_page_try_to_cache(m);
1371			}
1372		}
1373	}
1374	splx(s);
1375	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1376
1377	/* could drop vm_mtx here */
1378
1379	if (bp->b_bufsize) {
1380		bufspacewakeup();
1381		bp->b_bufsize = 0;
1382	}
1383	bp->b_npages = 0;
1384	bp->b_flags &= ~B_VMIO;
1385	if (bp->b_vp)
1386		brelvp(bp);
1387}
1388
1389/*
1390 * Check to see if a block is currently memory resident.
1391 */
1392struct buf *
1393gbincore(struct vnode * vp, daddr_t blkno)
1394{
1395	struct buf *bp;
1396	struct bufhashhdr *bh;
1397
1398	bh = bufhash(vp, blkno);
1399
1400	/* Search hash chain */
1401	LIST_FOREACH(bp, bh, b_hash) {
1402		/* hit */
1403		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1404		    (bp->b_flags & B_INVAL) == 0) {
1405			break;
1406		}
1407	}
1408	return (bp);
1409}
1410
1411/*
1412 *	vfs_bio_awrite:
1413 *
1414 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1415 *	This is much better then the old way of writing only one buffer at
1416 *	a time.  Note that we may not be presented with the buffers in the
1417 *	correct order, so we search for the cluster in both directions.
1418 */
1419int
1420vfs_bio_awrite(struct buf * bp)
1421{
1422	int i;
1423	int j;
1424	daddr_t lblkno = bp->b_lblkno;
1425	struct vnode *vp = bp->b_vp;
1426	int s;
1427	int ncl;
1428	struct buf *bpa;
1429	int nwritten;
1430	int size;
1431	int maxcl;
1432
1433	s = splbio();
1434	/*
1435	 * right now we support clustered writing only to regular files.  If
1436	 * we find a clusterable block we could be in the middle of a cluster
1437	 * rather then at the beginning.
1438	 */
1439	if ((vp->v_type == VREG) &&
1440	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1441	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1442
1443		size = vp->v_mount->mnt_stat.f_iosize;
1444		maxcl = MAXPHYS / size;
1445
1446		for (i = 1; i < maxcl; i++) {
1447			if ((bpa = gbincore(vp, lblkno + i)) &&
1448			    BUF_REFCNT(bpa) == 0 &&
1449			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1450			    (B_DELWRI | B_CLUSTEROK)) &&
1451			    (bpa->b_bufsize == size)) {
1452				if ((bpa->b_blkno == bpa->b_lblkno) ||
1453				    (bpa->b_blkno !=
1454				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1455					break;
1456			} else {
1457				break;
1458			}
1459		}
1460		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1461			if ((bpa = gbincore(vp, lblkno - j)) &&
1462			    BUF_REFCNT(bpa) == 0 &&
1463			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1464			    (B_DELWRI | B_CLUSTEROK)) &&
1465			    (bpa->b_bufsize == size)) {
1466				if ((bpa->b_blkno == bpa->b_lblkno) ||
1467				    (bpa->b_blkno !=
1468				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1469					break;
1470			} else {
1471				break;
1472			}
1473		}
1474		--j;
1475		ncl = i + j;
1476		/*
1477		 * this is a possible cluster write
1478		 */
1479		if (ncl != 1) {
1480			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1481			splx(s);
1482			return nwritten;
1483		}
1484	}
1485
1486	BUF_LOCK(bp, LK_EXCLUSIVE);
1487	bremfree(bp);
1488	bp->b_flags |= B_ASYNC;
1489
1490	splx(s);
1491	/*
1492	 * default (old) behavior, writing out only one block
1493	 *
1494	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1495	 */
1496	nwritten = bp->b_bufsize;
1497	(void) BUF_WRITE(bp);
1498
1499	return nwritten;
1500}
1501
1502/*
1503 *	getnewbuf:
1504 *
1505 *	Find and initialize a new buffer header, freeing up existing buffers
1506 *	in the bufqueues as necessary.  The new buffer is returned locked.
1507 *
1508 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1509 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1510 *
1511 *	We block if:
1512 *		We have insufficient buffer headers
1513 *		We have insufficient buffer space
1514 *		buffer_map is too fragmented ( space reservation fails )
1515 *		If we have to flush dirty buffers ( but we try to avoid this )
1516 *
1517 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1518 *	Instead we ask the buf daemon to do it for us.  We attempt to
1519 *	avoid piecemeal wakeups of the pageout daemon.
1520 */
1521
1522static struct buf *
1523getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1524{
1525	struct buf *bp;
1526	struct buf *nbp;
1527	int defrag = 0;
1528	int nqindex;
1529	static int flushingbufs;
1530
1531	/*
1532	 * We can't afford to block since we might be holding a vnode lock,
1533	 * which may prevent system daemons from running.  We deal with
1534	 * low-memory situations by proactively returning memory and running
1535	 * async I/O rather then sync I/O.
1536	 */
1537
1538	++getnewbufcalls;
1539	--getnewbufrestarts;
1540restart:
1541	++getnewbufrestarts;
1542
1543	/*
1544	 * Setup for scan.  If we do not have enough free buffers,
1545	 * we setup a degenerate case that immediately fails.  Note
1546	 * that if we are specially marked process, we are allowed to
1547	 * dip into our reserves.
1548	 *
1549	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1550	 *
1551	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1552	 * However, there are a number of cases (defragging, reusing, ...)
1553	 * where we cannot backup.
1554	 */
1555	nqindex = QUEUE_EMPTYKVA;
1556	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1557
1558	if (nbp == NULL) {
1559		/*
1560		 * If no EMPTYKVA buffers and we are either
1561		 * defragging or reusing, locate a CLEAN buffer
1562		 * to free or reuse.  If bufspace useage is low
1563		 * skip this step so we can allocate a new buffer.
1564		 */
1565		if (defrag || bufspace >= lobufspace) {
1566			nqindex = QUEUE_CLEAN;
1567			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1568		}
1569
1570		/*
1571		 * If we could not find or were not allowed to reuse a
1572		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1573		 * buffer.  We can only use an EMPTY buffer if allocating
1574		 * its KVA would not otherwise run us out of buffer space.
1575		 */
1576		if (nbp == NULL && defrag == 0 &&
1577		    bufspace + maxsize < hibufspace) {
1578			nqindex = QUEUE_EMPTY;
1579			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1580		}
1581	}
1582
1583	/*
1584	 * Run scan, possibly freeing data and/or kva mappings on the fly
1585	 * depending.
1586	 */
1587
1588	while ((bp = nbp) != NULL) {
1589		int qindex = nqindex;
1590
1591		/*
1592		 * Calculate next bp ( we can only use it if we do not block
1593		 * or do other fancy things ).
1594		 */
1595		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1596			switch(qindex) {
1597			case QUEUE_EMPTY:
1598				nqindex = QUEUE_EMPTYKVA;
1599				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1600					break;
1601				/* fall through */
1602			case QUEUE_EMPTYKVA:
1603				nqindex = QUEUE_CLEAN;
1604				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1605					break;
1606				/* fall through */
1607			case QUEUE_CLEAN:
1608				/*
1609				 * nbp is NULL.
1610				 */
1611				break;
1612			}
1613		}
1614
1615		/*
1616		 * Sanity Checks
1617		 */
1618		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1619
1620		/*
1621		 * Note: we no longer distinguish between VMIO and non-VMIO
1622		 * buffers.
1623		 */
1624
1625		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1626
1627		/*
1628		 * If we are defragging then we need a buffer with
1629		 * b_kvasize != 0.  XXX this situation should no longer
1630		 * occur, if defrag is non-zero the buffer's b_kvasize
1631		 * should also be non-zero at this point.  XXX
1632		 */
1633		if (defrag && bp->b_kvasize == 0) {
1634			printf("Warning: defrag empty buffer %p\n", bp);
1635			continue;
1636		}
1637
1638		/*
1639		 * Start freeing the bp.  This is somewhat involved.  nbp
1640		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1641		 */
1642
1643		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1644			panic("getnewbuf: locked buf");
1645		bremfree(bp);
1646
1647		if (qindex == QUEUE_CLEAN) {
1648			if (bp->b_flags & B_VMIO) {
1649				bp->b_flags &= ~B_ASYNC;
1650				mtx_lock(&vm_mtx);
1651				vfs_vmio_release(bp);
1652				mtx_unlock(&vm_mtx);
1653			}
1654			if (bp->b_vp)
1655				brelvp(bp);
1656		}
1657
1658		/*
1659		 * NOTE:  nbp is now entirely invalid.  We can only restart
1660		 * the scan from this point on.
1661		 *
1662		 * Get the rest of the buffer freed up.  b_kva* is still
1663		 * valid after this operation.
1664		 */
1665
1666		if (bp->b_rcred != NOCRED) {
1667			crfree(bp->b_rcred);
1668			bp->b_rcred = NOCRED;
1669		}
1670		if (bp->b_wcred != NOCRED) {
1671			crfree(bp->b_wcred);
1672			bp->b_wcred = NOCRED;
1673		}
1674		if (LIST_FIRST(&bp->b_dep) != NULL)
1675			buf_deallocate(bp);
1676		if (bp->b_xflags & BX_BKGRDINPROG)
1677			panic("losing buffer 3");
1678		LIST_REMOVE(bp, b_hash);
1679		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1680
1681		if (bp->b_bufsize)
1682			allocbuf(bp, 0);
1683
1684		bp->b_flags = 0;
1685		bp->b_ioflags = 0;
1686		bp->b_xflags = 0;
1687		bp->b_dev = NODEV;
1688		bp->b_vp = NULL;
1689		bp->b_blkno = bp->b_lblkno = 0;
1690		bp->b_offset = NOOFFSET;
1691		bp->b_iodone = 0;
1692		bp->b_error = 0;
1693		bp->b_resid = 0;
1694		bp->b_bcount = 0;
1695		bp->b_npages = 0;
1696		bp->b_dirtyoff = bp->b_dirtyend = 0;
1697		bp->b_magic = B_MAGIC_BIO;
1698		bp->b_op = &buf_ops_bio;
1699
1700		LIST_INIT(&bp->b_dep);
1701
1702		/*
1703		 * If we are defragging then free the buffer.
1704		 */
1705		if (defrag) {
1706			bp->b_flags |= B_INVAL;
1707			bfreekva(bp);
1708			brelse(bp);
1709			defrag = 0;
1710			goto restart;
1711		}
1712
1713		/*
1714		 * If we are overcomitted then recover the buffer and its
1715		 * KVM space.  This occurs in rare situations when multiple
1716		 * processes are blocked in getnewbuf() or allocbuf().
1717		 */
1718		if (bufspace >= hibufspace)
1719			flushingbufs = 1;
1720		if (flushingbufs && bp->b_kvasize != 0) {
1721			bp->b_flags |= B_INVAL;
1722			bfreekva(bp);
1723			brelse(bp);
1724			goto restart;
1725		}
1726		if (bufspace < lobufspace)
1727			flushingbufs = 0;
1728		break;
1729	}
1730
1731	/*
1732	 * If we exhausted our list, sleep as appropriate.  We may have to
1733	 * wakeup various daemons and write out some dirty buffers.
1734	 *
1735	 * Generally we are sleeping due to insufficient buffer space.
1736	 */
1737
1738	if (bp == NULL) {
1739		int flags;
1740		char *waitmsg;
1741
1742		if (defrag) {
1743			flags = VFS_BIO_NEED_BUFSPACE;
1744			waitmsg = "nbufkv";
1745		} else if (bufspace >= hibufspace) {
1746			waitmsg = "nbufbs";
1747			flags = VFS_BIO_NEED_BUFSPACE;
1748		} else {
1749			waitmsg = "newbuf";
1750			flags = VFS_BIO_NEED_ANY;
1751		}
1752
1753		bd_speedup();	/* heeeelp */
1754
1755		needsbuffer |= flags;
1756		while (needsbuffer & flags) {
1757			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1758			    waitmsg, slptimeo))
1759				return (NULL);
1760		}
1761	} else {
1762		/*
1763		 * We finally have a valid bp.  We aren't quite out of the
1764		 * woods, we still have to reserve kva space.  In order
1765		 * to keep fragmentation sane we only allocate kva in
1766		 * BKVASIZE chunks.
1767		 */
1768		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1769
1770		if (maxsize != bp->b_kvasize) {
1771			vm_offset_t addr = 0;
1772
1773			/* we'll hold the lock over some vm ops */
1774			mtx_lock(&vm_mtx);
1775			bfreekva(bp);
1776
1777			if (vm_map_findspace(buffer_map,
1778				vm_map_min(buffer_map), maxsize, &addr)) {
1779				/*
1780				 * Uh oh.  Buffer map is to fragmented.  We
1781				 * must defragment the map.
1782				 */
1783				mtx_unlock(&vm_mtx);
1784				++bufdefragcnt;
1785				defrag = 1;
1786				bp->b_flags |= B_INVAL;
1787				brelse(bp);
1788				goto restart;
1789			}
1790			if (addr) {
1791				vm_map_insert(buffer_map, NULL, 0,
1792					addr, addr + maxsize,
1793					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1794
1795				bp->b_kvabase = (caddr_t) addr;
1796				bp->b_kvasize = maxsize;
1797				bufspace += bp->b_kvasize;
1798				++bufreusecnt;
1799			}
1800			mtx_unlock(&vm_mtx);
1801		}
1802		bp->b_data = bp->b_kvabase;
1803	}
1804	return(bp);
1805}
1806
1807/*
1808 *	buf_daemon:
1809 *
1810 *	buffer flushing daemon.  Buffers are normally flushed by the
1811 *	update daemon but if it cannot keep up this process starts to
1812 *	take the load in an attempt to prevent getnewbuf() from blocking.
1813 */
1814
1815static struct proc *bufdaemonproc;
1816
1817static struct kproc_desc buf_kp = {
1818	"bufdaemon",
1819	buf_daemon,
1820	&bufdaemonproc
1821};
1822SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1823
1824static void
1825buf_daemon()
1826{
1827	int s;
1828
1829	mtx_lock(&Giant);
1830
1831	/*
1832	 * This process needs to be suspended prior to shutdown sync.
1833	 */
1834	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1835	    SHUTDOWN_PRI_LAST);
1836
1837	/*
1838	 * This process is allowed to take the buffer cache to the limit
1839	 */
1840	curproc->p_flag |= P_BUFEXHAUST;
1841	s = splbio();
1842
1843	for (;;) {
1844		kthread_suspend_check(bufdaemonproc);
1845
1846		bd_request = 0;
1847
1848		/*
1849		 * Do the flush.  Limit the amount of in-transit I/O we
1850		 * allow to build up, otherwise we would completely saturate
1851		 * the I/O system.  Wakeup any waiting processes before we
1852		 * normally would so they can run in parallel with our drain.
1853		 */
1854		while (numdirtybuffers > lodirtybuffers) {
1855			if (flushbufqueues() == 0)
1856				break;
1857			waitrunningbufspace();
1858			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1859		}
1860
1861		/*
1862		 * Only clear bd_request if we have reached our low water
1863		 * mark.  The buf_daemon normally waits 5 seconds and
1864		 * then incrementally flushes any dirty buffers that have
1865		 * built up, within reason.
1866		 *
1867		 * If we were unable to hit our low water mark and couldn't
1868		 * find any flushable buffers, we sleep half a second.
1869		 * Otherwise we loop immediately.
1870		 */
1871		if (numdirtybuffers <= lodirtybuffers) {
1872			/*
1873			 * We reached our low water mark, reset the
1874			 * request and sleep until we are needed again.
1875			 * The sleep is just so the suspend code works.
1876			 */
1877			bd_request = 0;
1878			tsleep(&bd_request, PVM, "psleep", hz);
1879		} else {
1880			/*
1881			 * We couldn't find any flushable dirty buffers but
1882			 * still have too many dirty buffers, we
1883			 * have to sleep and try again.  (rare)
1884			 */
1885			tsleep(&bd_request, PVM, "qsleep", hz / 2);
1886		}
1887	}
1888}
1889
1890/*
1891 *	flushbufqueues:
1892 *
1893 *	Try to flush a buffer in the dirty queue.  We must be careful to
1894 *	free up B_INVAL buffers instead of write them, which NFS is
1895 *	particularly sensitive to.
1896 */
1897
1898static int
1899flushbufqueues(void)
1900{
1901	struct buf *bp;
1902	int r = 0;
1903
1904	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1905
1906	while (bp) {
1907		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1908		if ((bp->b_flags & B_DELWRI) != 0 &&
1909		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1910			if (bp->b_flags & B_INVAL) {
1911				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1912					panic("flushbufqueues: locked buf");
1913				bremfree(bp);
1914				brelse(bp);
1915				++r;
1916				break;
1917			}
1918			if (LIST_FIRST(&bp->b_dep) != NULL &&
1919			    (bp->b_flags & B_DEFERRED) == 0 &&
1920			    buf_countdeps(bp, 0)) {
1921				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1922				    bp, b_freelist);
1923				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1924				    bp, b_freelist);
1925				bp->b_flags |= B_DEFERRED;
1926				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1927				continue;
1928			}
1929			vfs_bio_awrite(bp);
1930			++r;
1931			break;
1932		}
1933		bp = TAILQ_NEXT(bp, b_freelist);
1934	}
1935	return (r);
1936}
1937
1938/*
1939 * Check to see if a block is currently memory resident.
1940 */
1941struct buf *
1942incore(struct vnode * vp, daddr_t blkno)
1943{
1944	struct buf *bp;
1945
1946	int s = splbio();
1947	bp = gbincore(vp, blkno);
1948	splx(s);
1949	return (bp);
1950}
1951
1952/*
1953 * Returns true if no I/O is needed to access the
1954 * associated VM object.  This is like incore except
1955 * it also hunts around in the VM system for the data.
1956 */
1957
1958int
1959inmem(struct vnode * vp, daddr_t blkno)
1960{
1961	vm_object_t obj;
1962	vm_offset_t toff, tinc, size;
1963	vm_page_t m;
1964	vm_ooffset_t off;
1965
1966	if (incore(vp, blkno))
1967		return 1;
1968	if (vp->v_mount == NULL)
1969		return 0;
1970	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1971		return 0;
1972
1973	size = PAGE_SIZE;
1974	if (size > vp->v_mount->mnt_stat.f_iosize)
1975		size = vp->v_mount->mnt_stat.f_iosize;
1976	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1977
1978	mtx_lock(&vm_mtx);
1979	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1980		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1981		if (!m)
1982			goto notinmem;
1983		tinc = size;
1984		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1985			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1986		if (vm_page_is_valid(m,
1987		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1988			goto notinmem;
1989	}
1990	mtx_unlock(&vm_mtx);
1991	return 1;
1992
1993notinmem:
1994	mtx_unlock(&vm_mtx);
1995	return (0);
1996}
1997
1998/*
1999 *	vfs_setdirty:
2000 *
2001 *	Sets the dirty range for a buffer based on the status of the dirty
2002 *	bits in the pages comprising the buffer.
2003 *
2004 *	The range is limited to the size of the buffer.
2005 *
2006 *	This routine is primarily used by NFS, but is generalized for the
2007 *	B_VMIO case.
2008 *
2009 *	Can be called with or without vm_mtx
2010 */
2011static void
2012vfs_setdirty(struct buf *bp)
2013{
2014	int i;
2015	int hadvmlock;
2016	vm_object_t object;
2017
2018	/*
2019	 * Degenerate case - empty buffer
2020	 */
2021
2022	if (bp->b_bufsize == 0)
2023		return;
2024
2025	/*
2026	 * We qualify the scan for modified pages on whether the
2027	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2028	 * is not cleared simply by protecting pages off.
2029	 */
2030
2031	if ((bp->b_flags & B_VMIO) == 0)
2032		return;
2033
2034	hadvmlock = mtx_owned(&vm_mtx);
2035	if (!hadvmlock)
2036		mtx_lock(&vm_mtx);
2037
2038	object = bp->b_pages[0]->object;
2039
2040	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2041		printf("Warning: object %p writeable but not mightbedirty\n", object);
2042	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2043		printf("Warning: object %p mightbedirty but not writeable\n", object);
2044
2045	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2046		vm_offset_t boffset;
2047		vm_offset_t eoffset;
2048
2049		/*
2050		 * test the pages to see if they have been modified directly
2051		 * by users through the VM system.
2052		 */
2053		for (i = 0; i < bp->b_npages; i++) {
2054			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2055			vm_page_test_dirty(bp->b_pages[i]);
2056		}
2057
2058		/*
2059		 * Calculate the encompassing dirty range, boffset and eoffset,
2060		 * (eoffset - boffset) bytes.
2061		 */
2062
2063		for (i = 0; i < bp->b_npages; i++) {
2064			if (bp->b_pages[i]->dirty)
2065				break;
2066		}
2067		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2068
2069		for (i = bp->b_npages - 1; i >= 0; --i) {
2070			if (bp->b_pages[i]->dirty) {
2071				break;
2072			}
2073		}
2074		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2075
2076		/*
2077		 * Fit it to the buffer.
2078		 */
2079
2080		if (eoffset > bp->b_bcount)
2081			eoffset = bp->b_bcount;
2082
2083		/*
2084		 * If we have a good dirty range, merge with the existing
2085		 * dirty range.
2086		 */
2087
2088		if (boffset < eoffset) {
2089			if (bp->b_dirtyoff > boffset)
2090				bp->b_dirtyoff = boffset;
2091			if (bp->b_dirtyend < eoffset)
2092				bp->b_dirtyend = eoffset;
2093		}
2094	}
2095	if (!hadvmlock)
2096		mtx_unlock(&vm_mtx);
2097}
2098
2099/*
2100 *	getblk:
2101 *
2102 *	Get a block given a specified block and offset into a file/device.
2103 *	The buffers B_DONE bit will be cleared on return, making it almost
2104 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2105 *	return.  The caller should clear B_INVAL prior to initiating a
2106 *	READ.
2107 *
2108 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2109 *	an existing buffer.
2110 *
2111 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2112 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2113 *	and then cleared based on the backing VM.  If the previous buffer is
2114 *	non-0-sized but invalid, B_CACHE will be cleared.
2115 *
2116 *	If getblk() must create a new buffer, the new buffer is returned with
2117 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2118 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2119 *	backing VM.
2120 *
2121 *	getblk() also forces a BUF_WRITE() for any B_DELWRI buffer whos
2122 *	B_CACHE bit is clear.
2123 *
2124 *	What this means, basically, is that the caller should use B_CACHE to
2125 *	determine whether the buffer is fully valid or not and should clear
2126 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2127 *	the buffer by loading its data area with something, the caller needs
2128 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2129 *	the caller should set B_CACHE ( as an optimization ), else the caller
2130 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2131 *	a write attempt or if it was a successfull read.  If the caller
2132 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2133 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2134 */
2135struct buf *
2136getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2137{
2138	struct buf *bp;
2139	int s;
2140	struct bufhashhdr *bh;
2141
2142	if (size > MAXBSIZE)
2143		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2144
2145	s = splbio();
2146loop:
2147	/*
2148	 * Block if we are low on buffers.   Certain processes are allowed
2149	 * to completely exhaust the buffer cache.
2150         *
2151         * If this check ever becomes a bottleneck it may be better to
2152         * move it into the else, when gbincore() fails.  At the moment
2153         * it isn't a problem.
2154	 *
2155	 * XXX remove if 0 sections (clean this up after its proven)
2156         */
2157	if (numfreebuffers == 0) {
2158		if (curproc == PCPU_GET(idleproc))
2159			return NULL;
2160		needsbuffer |= VFS_BIO_NEED_ANY;
2161	}
2162
2163	if ((bp = gbincore(vp, blkno))) {
2164		/*
2165		 * Buffer is in-core.  If the buffer is not busy, it must
2166		 * be on a queue.
2167		 */
2168
2169		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2170			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2171			    "getblk", slpflag, slptimeo) == ENOLCK)
2172				goto loop;
2173			splx(s);
2174			return (struct buf *) NULL;
2175		}
2176
2177		/*
2178		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2179		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2180		 * and for a VMIO buffer B_CACHE is adjusted according to the
2181		 * backing VM cache.
2182		 */
2183		if (bp->b_flags & B_INVAL)
2184			bp->b_flags &= ~B_CACHE;
2185		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2186			bp->b_flags |= B_CACHE;
2187		bremfree(bp);
2188
2189		/*
2190		 * check for size inconsistancies for non-VMIO case.
2191		 */
2192
2193		if (bp->b_bcount != size) {
2194			if ((bp->b_flags & B_VMIO) == 0 ||
2195			    (size > bp->b_kvasize)) {
2196				if (bp->b_flags & B_DELWRI) {
2197					bp->b_flags |= B_NOCACHE;
2198					BUF_WRITE(bp);
2199				} else {
2200					if ((bp->b_flags & B_VMIO) &&
2201					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2202						bp->b_flags |= B_RELBUF;
2203						brelse(bp);
2204					} else {
2205						bp->b_flags |= B_NOCACHE;
2206						BUF_WRITE(bp);
2207					}
2208				}
2209				goto loop;
2210			}
2211		}
2212
2213		/*
2214		 * If the size is inconsistant in the VMIO case, we can resize
2215		 * the buffer.  This might lead to B_CACHE getting set or
2216		 * cleared.  If the size has not changed, B_CACHE remains
2217		 * unchanged from its previous state.
2218		 */
2219
2220		if (bp->b_bcount != size)
2221			allocbuf(bp, size);
2222
2223		KASSERT(bp->b_offset != NOOFFSET,
2224		    ("getblk: no buffer offset"));
2225
2226		/*
2227		 * A buffer with B_DELWRI set and B_CACHE clear must
2228		 * be committed before we can return the buffer in
2229		 * order to prevent the caller from issuing a read
2230		 * ( due to B_CACHE not being set ) and overwriting
2231		 * it.
2232		 *
2233		 * Most callers, including NFS and FFS, need this to
2234		 * operate properly either because they assume they
2235		 * can issue a read if B_CACHE is not set, or because
2236		 * ( for example ) an uncached B_DELWRI might loop due
2237		 * to softupdates re-dirtying the buffer.  In the latter
2238		 * case, B_CACHE is set after the first write completes,
2239		 * preventing further loops.
2240		 */
2241
2242		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2243			BUF_WRITE(bp);
2244			goto loop;
2245		}
2246
2247		splx(s);
2248		bp->b_flags &= ~B_DONE;
2249	} else {
2250		/*
2251		 * Buffer is not in-core, create new buffer.  The buffer
2252		 * returned by getnewbuf() is locked.  Note that the returned
2253		 * buffer is also considered valid (not marked B_INVAL).
2254		 */
2255		int bsize, maxsize, vmio;
2256		off_t offset;
2257
2258		if (vn_isdisk(vp, NULL))
2259			bsize = DEV_BSIZE;
2260		else if (vp->v_mountedhere)
2261			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2262		else if (vp->v_mount)
2263			bsize = vp->v_mount->mnt_stat.f_iosize;
2264		else
2265			bsize = size;
2266
2267		offset = (off_t)blkno * bsize;
2268		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2269		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2270		maxsize = imax(maxsize, bsize);
2271
2272		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2273			if (slpflag || slptimeo) {
2274				splx(s);
2275				return NULL;
2276			}
2277			goto loop;
2278		}
2279
2280		/*
2281		 * This code is used to make sure that a buffer is not
2282		 * created while the getnewbuf routine is blocked.
2283		 * This can be a problem whether the vnode is locked or not.
2284		 * If the buffer is created out from under us, we have to
2285		 * throw away the one we just created.  There is now window
2286		 * race because we are safely running at splbio() from the
2287		 * point of the duplicate buffer creation through to here,
2288		 * and we've locked the buffer.
2289		 */
2290		if (gbincore(vp, blkno)) {
2291			bp->b_flags |= B_INVAL;
2292			brelse(bp);
2293			goto loop;
2294		}
2295
2296		/*
2297		 * Insert the buffer into the hash, so that it can
2298		 * be found by incore.
2299		 */
2300		bp->b_blkno = bp->b_lblkno = blkno;
2301		bp->b_offset = offset;
2302
2303		bgetvp(vp, bp);
2304		LIST_REMOVE(bp, b_hash);
2305		bh = bufhash(vp, blkno);
2306		LIST_INSERT_HEAD(bh, bp, b_hash);
2307
2308		/*
2309		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2310		 * buffer size starts out as 0, B_CACHE will be set by
2311		 * allocbuf() for the VMIO case prior to it testing the
2312		 * backing store for validity.
2313		 */
2314
2315		if (vmio) {
2316			bp->b_flags |= B_VMIO;
2317#if defined(VFS_BIO_DEBUG)
2318			if (vp->v_type != VREG)
2319				printf("getblk: vmioing file type %d???\n", vp->v_type);
2320#endif
2321		} else {
2322			bp->b_flags &= ~B_VMIO;
2323		}
2324
2325		allocbuf(bp, size);
2326
2327		splx(s);
2328		bp->b_flags &= ~B_DONE;
2329	}
2330	return (bp);
2331}
2332
2333/*
2334 * Get an empty, disassociated buffer of given size.  The buffer is initially
2335 * set to B_INVAL.
2336 */
2337struct buf *
2338geteblk(int size)
2339{
2340	struct buf *bp;
2341	int s;
2342	int maxsize;
2343
2344	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2345
2346	s = splbio();
2347	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2348	splx(s);
2349	allocbuf(bp, size);
2350	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2351	return (bp);
2352}
2353
2354
2355/*
2356 * This code constitutes the buffer memory from either anonymous system
2357 * memory (in the case of non-VMIO operations) or from an associated
2358 * VM object (in the case of VMIO operations).  This code is able to
2359 * resize a buffer up or down.
2360 *
2361 * Note that this code is tricky, and has many complications to resolve
2362 * deadlock or inconsistant data situations.  Tread lightly!!!
2363 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2364 * the caller.  Calling this code willy nilly can result in the loss of data.
2365 *
2366 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2367 * B_CACHE for the non-VMIO case.
2368 */
2369
2370int
2371allocbuf(struct buf *bp, int size)
2372{
2373	int newbsize, mbsize;
2374	int i;
2375
2376	if (BUF_REFCNT(bp) == 0)
2377		panic("allocbuf: buffer not busy");
2378
2379	if (bp->b_kvasize < size)
2380		panic("allocbuf: buffer too small");
2381
2382	if ((bp->b_flags & B_VMIO) == 0) {
2383		caddr_t origbuf;
2384		int origbufsize;
2385		/*
2386		 * Just get anonymous memory from the kernel.  Don't
2387		 * mess with B_CACHE.
2388		 */
2389		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2390#if !defined(NO_B_MALLOC)
2391		if (bp->b_flags & B_MALLOC)
2392			newbsize = mbsize;
2393		else
2394#endif
2395			newbsize = round_page(size);
2396
2397		if (newbsize < bp->b_bufsize) {
2398#if !defined(NO_B_MALLOC)
2399			/*
2400			 * malloced buffers are not shrunk
2401			 */
2402			if (bp->b_flags & B_MALLOC) {
2403				if (newbsize) {
2404					bp->b_bcount = size;
2405				} else {
2406					free(bp->b_data, M_BIOBUF);
2407					if (bp->b_bufsize) {
2408						bufmallocspace -= bp->b_bufsize;
2409						bufspacewakeup();
2410						bp->b_bufsize = 0;
2411					}
2412					bp->b_data = bp->b_kvabase;
2413					bp->b_bcount = 0;
2414					bp->b_flags &= ~B_MALLOC;
2415				}
2416				return 1;
2417			}
2418#endif
2419			vm_hold_free_pages(
2420			    bp,
2421			    (vm_offset_t) bp->b_data + newbsize,
2422			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2423		} else if (newbsize > bp->b_bufsize) {
2424#if !defined(NO_B_MALLOC)
2425			/*
2426			 * We only use malloced memory on the first allocation.
2427			 * and revert to page-allocated memory when the buffer
2428			 * grows.
2429			 */
2430			if ( (bufmallocspace < maxbufmallocspace) &&
2431				(bp->b_bufsize == 0) &&
2432				(mbsize <= PAGE_SIZE/2)) {
2433
2434				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2435				bp->b_bufsize = mbsize;
2436				bp->b_bcount = size;
2437				bp->b_flags |= B_MALLOC;
2438				bufmallocspace += mbsize;
2439				return 1;
2440			}
2441#endif
2442			origbuf = NULL;
2443			origbufsize = 0;
2444#if !defined(NO_B_MALLOC)
2445			/*
2446			 * If the buffer is growing on its other-than-first allocation,
2447			 * then we revert to the page-allocation scheme.
2448			 */
2449			if (bp->b_flags & B_MALLOC) {
2450				origbuf = bp->b_data;
2451				origbufsize = bp->b_bufsize;
2452				bp->b_data = bp->b_kvabase;
2453				if (bp->b_bufsize) {
2454					bufmallocspace -= bp->b_bufsize;
2455					bufspacewakeup();
2456					bp->b_bufsize = 0;
2457				}
2458				bp->b_flags &= ~B_MALLOC;
2459				newbsize = round_page(newbsize);
2460			}
2461#endif
2462			vm_hold_load_pages(
2463			    bp,
2464			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2465			    (vm_offset_t) bp->b_data + newbsize);
2466#if !defined(NO_B_MALLOC)
2467			if (origbuf) {
2468				bcopy(origbuf, bp->b_data, origbufsize);
2469				free(origbuf, M_BIOBUF);
2470			}
2471#endif
2472		}
2473	} else {
2474		vm_page_t m;
2475		int desiredpages;
2476
2477		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2478		desiredpages = (size == 0) ? 0 :
2479			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2480
2481#if !defined(NO_B_MALLOC)
2482		if (bp->b_flags & B_MALLOC)
2483			panic("allocbuf: VMIO buffer can't be malloced");
2484#endif
2485		/*
2486		 * Set B_CACHE initially if buffer is 0 length or will become
2487		 * 0-length.
2488		 */
2489		if (size == 0 || bp->b_bufsize == 0)
2490			bp->b_flags |= B_CACHE;
2491
2492		if (newbsize < bp->b_bufsize) {
2493			/*
2494			 * DEV_BSIZE aligned new buffer size is less then the
2495			 * DEV_BSIZE aligned existing buffer size.  Figure out
2496			 * if we have to remove any pages.
2497			 */
2498			mtx_lock(&vm_mtx);
2499			if (desiredpages < bp->b_npages) {
2500				for (i = desiredpages; i < bp->b_npages; i++) {
2501					/*
2502					 * the page is not freed here -- it
2503					 * is the responsibility of
2504					 * vnode_pager_setsize
2505					 */
2506					m = bp->b_pages[i];
2507					KASSERT(m != bogus_page,
2508					    ("allocbuf: bogus page found"));
2509					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2510						;
2511
2512					bp->b_pages[i] = NULL;
2513					vm_page_unwire(m, 0);
2514				}
2515				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2516				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2517				bp->b_npages = desiredpages;
2518			}
2519			mtx_unlock(&vm_mtx);
2520		} else if (size > bp->b_bcount) {
2521			/*
2522			 * We are growing the buffer, possibly in a
2523			 * byte-granular fashion.
2524			 */
2525			struct vnode *vp;
2526			vm_object_t obj;
2527			vm_offset_t toff;
2528			vm_offset_t tinc;
2529
2530			/*
2531			 * Step 1, bring in the VM pages from the object,
2532			 * allocating them if necessary.  We must clear
2533			 * B_CACHE if these pages are not valid for the
2534			 * range covered by the buffer.
2535			 */
2536
2537			vp = bp->b_vp;
2538			VOP_GETVOBJECT(vp, &obj);
2539
2540			mtx_lock(&vm_mtx);
2541			while (bp->b_npages < desiredpages) {
2542				vm_page_t m;
2543				vm_pindex_t pi;
2544
2545				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2546				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2547					/*
2548					 * note: must allocate system pages
2549					 * since blocking here could intefere
2550					 * with paging I/O, no matter which
2551					 * process we are.
2552					 */
2553					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2554					if (m == NULL) {
2555						VM_WAIT;
2556						vm_pageout_deficit += desiredpages - bp->b_npages;
2557					} else {
2558						vm_page_wire(m);
2559						vm_page_wakeup(m);
2560						bp->b_flags &= ~B_CACHE;
2561						bp->b_pages[bp->b_npages] = m;
2562						++bp->b_npages;
2563					}
2564					continue;
2565				}
2566
2567				/*
2568				 * We found a page.  If we have to sleep on it,
2569				 * retry because it might have gotten freed out
2570				 * from under us.
2571				 *
2572				 * We can only test PG_BUSY here.  Blocking on
2573				 * m->busy might lead to a deadlock:
2574				 *
2575				 *  vm_fault->getpages->cluster_read->allocbuf
2576				 *
2577				 */
2578
2579				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2580					continue;
2581
2582				/*
2583				 * We have a good page.  Should we wakeup the
2584				 * page daemon?
2585				 */
2586				if ((curproc != pageproc) &&
2587				    ((m->queue - m->pc) == PQ_CACHE) &&
2588				    ((cnt.v_free_count + cnt.v_cache_count) <
2589					(cnt.v_free_min + cnt.v_cache_min))) {
2590					pagedaemon_wakeup();
2591				}
2592				vm_page_flag_clear(m, PG_ZERO);
2593				vm_page_wire(m);
2594				bp->b_pages[bp->b_npages] = m;
2595				++bp->b_npages;
2596			}
2597
2598			/*
2599			 * Step 2.  We've loaded the pages into the buffer,
2600			 * we have to figure out if we can still have B_CACHE
2601			 * set.  Note that B_CACHE is set according to the
2602			 * byte-granular range ( bcount and size ), new the
2603			 * aligned range ( newbsize ).
2604			 *
2605			 * The VM test is against m->valid, which is DEV_BSIZE
2606			 * aligned.  Needless to say, the validity of the data
2607			 * needs to also be DEV_BSIZE aligned.  Note that this
2608			 * fails with NFS if the server or some other client
2609			 * extends the file's EOF.  If our buffer is resized,
2610			 * B_CACHE may remain set! XXX
2611			 */
2612
2613			toff = bp->b_bcount;
2614			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2615
2616			while ((bp->b_flags & B_CACHE) && toff < size) {
2617				vm_pindex_t pi;
2618
2619				if (tinc > (size - toff))
2620					tinc = size - toff;
2621
2622				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2623				    PAGE_SHIFT;
2624
2625				vfs_buf_test_cache(
2626				    bp,
2627				    bp->b_offset,
2628				    toff,
2629				    tinc,
2630				    bp->b_pages[pi]
2631				);
2632				toff += tinc;
2633				tinc = PAGE_SIZE;
2634			}
2635
2636			/*
2637			 * Step 3, fixup the KVM pmap.  Remember that
2638			 * bp->b_data is relative to bp->b_offset, but
2639			 * bp->b_offset may be offset into the first page.
2640			 */
2641
2642			bp->b_data = (caddr_t)
2643			    trunc_page((vm_offset_t)bp->b_data);
2644			pmap_qenter(
2645			    (vm_offset_t)bp->b_data,
2646			    bp->b_pages,
2647			    bp->b_npages
2648			);
2649
2650			mtx_unlock(&vm_mtx);
2651
2652			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2653			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2654		}
2655	}
2656	if (newbsize < bp->b_bufsize)
2657		bufspacewakeup();
2658	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2659	bp->b_bcount = size;		/* requested buffer size	*/
2660	return 1;
2661}
2662
2663/*
2664 *	bufwait:
2665 *
2666 *	Wait for buffer I/O completion, returning error status.  The buffer
2667 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2668 *	error and cleared.
2669 */
2670int
2671bufwait(register struct buf * bp)
2672{
2673	int s;
2674
2675	s = splbio();
2676	while ((bp->b_flags & B_DONE) == 0) {
2677		if (bp->b_iocmd == BIO_READ)
2678			tsleep(bp, PRIBIO, "biord", 0);
2679		else
2680			tsleep(bp, PRIBIO, "biowr", 0);
2681	}
2682	splx(s);
2683	if (bp->b_flags & B_EINTR) {
2684		bp->b_flags &= ~B_EINTR;
2685		return (EINTR);
2686	}
2687	if (bp->b_ioflags & BIO_ERROR) {
2688		return (bp->b_error ? bp->b_error : EIO);
2689	} else {
2690		return (0);
2691	}
2692}
2693
2694 /*
2695  * Call back function from struct bio back up to struct buf.
2696  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2697  */
2698void
2699bufdonebio(struct bio *bp)
2700{
2701	bufdone(bp->bio_caller2);
2702}
2703
2704/*
2705 *	bufdone:
2706 *
2707 *	Finish I/O on a buffer, optionally calling a completion function.
2708 *	This is usually called from an interrupt so process blocking is
2709 *	not allowed.
2710 *
2711 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2712 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2713 *	assuming B_INVAL is clear.
2714 *
2715 *	For the VMIO case, we set B_CACHE if the op was a read and no
2716 *	read error occured, or if the op was a write.  B_CACHE is never
2717 *	set if the buffer is invalid or otherwise uncacheable.
2718 *
2719 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2720 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2721 *	in the biodone routine.
2722 */
2723void
2724bufdone(struct buf *bp)
2725{
2726	int s, error;
2727	void    (*biodone) __P((struct buf *));
2728
2729	s = splbio();
2730
2731	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2732	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2733
2734	bp->b_flags |= B_DONE;
2735	runningbufwakeup(bp);
2736
2737	if (bp->b_iocmd == BIO_DELETE) {
2738		brelse(bp);
2739		splx(s);
2740		return;
2741	}
2742
2743	if (bp->b_iocmd == BIO_WRITE) {
2744		vwakeup(bp);
2745	}
2746
2747	/* call optional completion function if requested */
2748	if (bp->b_iodone != NULL) {
2749		biodone = bp->b_iodone;
2750		bp->b_iodone = NULL;
2751		(*biodone) (bp);
2752		splx(s);
2753		return;
2754	}
2755	if (LIST_FIRST(&bp->b_dep) != NULL)
2756		buf_complete(bp);
2757
2758	if (bp->b_flags & B_VMIO) {
2759		int i;
2760		vm_ooffset_t foff;
2761		vm_page_t m;
2762		vm_object_t obj;
2763		int iosize;
2764		struct vnode *vp = bp->b_vp;
2765
2766		error = VOP_GETVOBJECT(vp, &obj);
2767
2768#if defined(VFS_BIO_DEBUG)
2769		if (vp->v_usecount == 0) {
2770			panic("biodone: zero vnode ref count");
2771		}
2772
2773		if (error) {
2774			panic("biodone: missing VM object");
2775		}
2776
2777		if ((vp->v_flag & VOBJBUF) == 0) {
2778			panic("biodone: vnode is not setup for merged cache");
2779		}
2780#endif
2781
2782		foff = bp->b_offset;
2783		KASSERT(bp->b_offset != NOOFFSET,
2784		    ("biodone: no buffer offset"));
2785
2786		if (error) {
2787			panic("biodone: no object");
2788		}
2789		mtx_lock(&vm_mtx);
2790#if defined(VFS_BIO_DEBUG)
2791		if (obj->paging_in_progress < bp->b_npages) {
2792			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2793			    obj->paging_in_progress, bp->b_npages);
2794		}
2795#endif
2796
2797		/*
2798		 * Set B_CACHE if the op was a normal read and no error
2799		 * occured.  B_CACHE is set for writes in the b*write()
2800		 * routines.
2801		 */
2802		iosize = bp->b_bcount - bp->b_resid;
2803		if (bp->b_iocmd == BIO_READ &&
2804		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2805		    !(bp->b_ioflags & BIO_ERROR)) {
2806			bp->b_flags |= B_CACHE;
2807		}
2808
2809		for (i = 0; i < bp->b_npages; i++) {
2810			int bogusflag = 0;
2811			int resid;
2812
2813			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2814			if (resid > iosize)
2815				resid = iosize;
2816
2817			/*
2818			 * cleanup bogus pages, restoring the originals
2819			 */
2820			m = bp->b_pages[i];
2821			if (m == bogus_page) {
2822				bogusflag = 1;
2823				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2824				if (m == NULL)
2825					panic("biodone: page disappeared!");
2826				bp->b_pages[i] = m;
2827				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2828			}
2829#if defined(VFS_BIO_DEBUG)
2830			if (OFF_TO_IDX(foff) != m->pindex) {
2831				printf(
2832"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2833				    (unsigned long)foff, m->pindex);
2834			}
2835#endif
2836
2837			/*
2838			 * In the write case, the valid and clean bits are
2839			 * already changed correctly ( see bdwrite() ), so we
2840			 * only need to do this here in the read case.
2841			 */
2842			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2843				vfs_page_set_valid(bp, foff, i, m);
2844			}
2845			vm_page_flag_clear(m, PG_ZERO);
2846
2847			/*
2848			 * when debugging new filesystems or buffer I/O methods, this
2849			 * is the most common error that pops up.  if you see this, you
2850			 * have not set the page busy flag correctly!!!
2851			 */
2852			if (m->busy == 0) {
2853				printf("biodone: page busy < 0, "
2854				    "pindex: %d, foff: 0x(%x,%x), "
2855				    "resid: %d, index: %d\n",
2856				    (int) m->pindex, (int)(foff >> 32),
2857						(int) foff & 0xffffffff, resid, i);
2858				if (!vn_isdisk(vp, NULL))
2859					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2860					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2861					    (int) bp->b_lblkno,
2862					    bp->b_flags, bp->b_npages);
2863				else
2864					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2865					    (int) bp->b_lblkno,
2866					    bp->b_flags, bp->b_npages);
2867				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2868				    m->valid, m->dirty, m->wire_count);
2869				panic("biodone: page busy < 0\n");
2870			}
2871			vm_page_io_finish(m);
2872			vm_object_pip_subtract(obj, 1);
2873			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2874			iosize -= resid;
2875		}
2876		if (obj)
2877			vm_object_pip_wakeupn(obj, 0);
2878		mtx_unlock(&vm_mtx);
2879	}
2880
2881	/*
2882	 * For asynchronous completions, release the buffer now. The brelse
2883	 * will do a wakeup there if necessary - so no need to do a wakeup
2884	 * here in the async case. The sync case always needs to do a wakeup.
2885	 */
2886
2887	if (bp->b_flags & B_ASYNC) {
2888		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2889			brelse(bp);
2890		else
2891			bqrelse(bp);
2892	} else {
2893		wakeup(bp);
2894	}
2895	splx(s);
2896}
2897
2898/*
2899 * This routine is called in lieu of iodone in the case of
2900 * incomplete I/O.  This keeps the busy status for pages
2901 * consistant.
2902 *
2903 * vm_mtx should not be held
2904 */
2905void
2906vfs_unbusy_pages(struct buf * bp)
2907{
2908	int i;
2909
2910	mtx_assert(&vm_mtx, MA_NOTOWNED);
2911	runningbufwakeup(bp);
2912	if (bp->b_flags & B_VMIO) {
2913		struct vnode *vp = bp->b_vp;
2914		vm_object_t obj;
2915
2916		VOP_GETVOBJECT(vp, &obj);
2917
2918		mtx_lock(&vm_mtx);
2919		for (i = 0; i < bp->b_npages; i++) {
2920			vm_page_t m = bp->b_pages[i];
2921
2922			if (m == bogus_page) {
2923				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2924				if (!m) {
2925					panic("vfs_unbusy_pages: page missing\n");
2926				}
2927				bp->b_pages[i] = m;
2928				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2929			}
2930			vm_object_pip_subtract(obj, 1);
2931			vm_page_flag_clear(m, PG_ZERO);
2932			vm_page_io_finish(m);
2933		}
2934		vm_object_pip_wakeupn(obj, 0);
2935		mtx_unlock(&vm_mtx);
2936	}
2937}
2938
2939/*
2940 * vfs_page_set_valid:
2941 *
2942 *	Set the valid bits in a page based on the supplied offset.   The
2943 *	range is restricted to the buffer's size.
2944 *
2945 *	This routine is typically called after a read completes.
2946 *
2947 *	vm_mtx should be held
2948 */
2949static void
2950vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2951{
2952	vm_ooffset_t soff, eoff;
2953
2954	mtx_assert(&vm_mtx, MA_OWNED);
2955	/*
2956	 * Start and end offsets in buffer.  eoff - soff may not cross a
2957	 * page boundry or cross the end of the buffer.  The end of the
2958	 * buffer, in this case, is our file EOF, not the allocation size
2959	 * of the buffer.
2960	 */
2961	soff = off;
2962	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2963	if (eoff > bp->b_offset + bp->b_bcount)
2964		eoff = bp->b_offset + bp->b_bcount;
2965
2966	/*
2967	 * Set valid range.  This is typically the entire buffer and thus the
2968	 * entire page.
2969	 */
2970	if (eoff > soff) {
2971		vm_page_set_validclean(
2972		    m,
2973		   (vm_offset_t) (soff & PAGE_MASK),
2974		   (vm_offset_t) (eoff - soff)
2975		);
2976	}
2977}
2978
2979/*
2980 * This routine is called before a device strategy routine.
2981 * It is used to tell the VM system that paging I/O is in
2982 * progress, and treat the pages associated with the buffer
2983 * almost as being PG_BUSY.  Also the object paging_in_progress
2984 * flag is handled to make sure that the object doesn't become
2985 * inconsistant.
2986 *
2987 * Since I/O has not been initiated yet, certain buffer flags
2988 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
2989 * and should be ignored.
2990 *
2991 * vm_mtx should not be held
2992 */
2993void
2994vfs_busy_pages(struct buf * bp, int clear_modify)
2995{
2996	int i, bogus;
2997
2998	mtx_assert(&vm_mtx, MA_NOTOWNED);
2999	if (bp->b_flags & B_VMIO) {
3000		struct vnode *vp = bp->b_vp;
3001		vm_object_t obj;
3002		vm_ooffset_t foff;
3003
3004		VOP_GETVOBJECT(vp, &obj);
3005		foff = bp->b_offset;
3006		KASSERT(bp->b_offset != NOOFFSET,
3007		    ("vfs_busy_pages: no buffer offset"));
3008		mtx_lock(&vm_mtx);
3009		vfs_setdirty(bp);
3010
3011retry:
3012		for (i = 0; i < bp->b_npages; i++) {
3013			vm_page_t m = bp->b_pages[i];
3014			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3015				goto retry;
3016		}
3017
3018		bogus = 0;
3019		for (i = 0; i < bp->b_npages; i++) {
3020			vm_page_t m = bp->b_pages[i];
3021
3022			vm_page_flag_clear(m, PG_ZERO);
3023			if ((bp->b_flags & B_CLUSTER) == 0) {
3024				vm_object_pip_add(obj, 1);
3025				vm_page_io_start(m);
3026			}
3027
3028			/*
3029			 * When readying a buffer for a read ( i.e
3030			 * clear_modify == 0 ), it is important to do
3031			 * bogus_page replacement for valid pages in
3032			 * partially instantiated buffers.  Partially
3033			 * instantiated buffers can, in turn, occur when
3034			 * reconstituting a buffer from its VM backing store
3035			 * base.  We only have to do this if B_CACHE is
3036			 * clear ( which causes the I/O to occur in the
3037			 * first place ).  The replacement prevents the read
3038			 * I/O from overwriting potentially dirty VM-backed
3039			 * pages.  XXX bogus page replacement is, uh, bogus.
3040			 * It may not work properly with small-block devices.
3041			 * We need to find a better way.
3042			 */
3043
3044			vm_page_protect(m, VM_PROT_NONE);
3045			if (clear_modify)
3046				vfs_page_set_valid(bp, foff, i, m);
3047			else if (m->valid == VM_PAGE_BITS_ALL &&
3048				(bp->b_flags & B_CACHE) == 0) {
3049				bp->b_pages[i] = bogus_page;
3050				bogus++;
3051			}
3052			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3053		}
3054		if (bogus)
3055			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3056		mtx_unlock(&vm_mtx);
3057	}
3058}
3059
3060/*
3061 * Tell the VM system that the pages associated with this buffer
3062 * are clean.  This is used for delayed writes where the data is
3063 * going to go to disk eventually without additional VM intevention.
3064 *
3065 * Note that while we only really need to clean through to b_bcount, we
3066 * just go ahead and clean through to b_bufsize.
3067 *
3068 * should be called with vm_mtx held
3069 */
3070static void
3071vfs_clean_pages(struct buf * bp)
3072{
3073	int i;
3074
3075	mtx_assert(&vm_mtx, MA_OWNED);
3076	if (bp->b_flags & B_VMIO) {
3077		vm_ooffset_t foff;
3078
3079		foff = bp->b_offset;
3080		KASSERT(bp->b_offset != NOOFFSET,
3081		    ("vfs_clean_pages: no buffer offset"));
3082		for (i = 0; i < bp->b_npages; i++) {
3083			vm_page_t m = bp->b_pages[i];
3084			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3085			vm_ooffset_t eoff = noff;
3086
3087			if (eoff > bp->b_offset + bp->b_bufsize)
3088				eoff = bp->b_offset + bp->b_bufsize;
3089			vfs_page_set_valid(bp, foff, i, m);
3090			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3091			foff = noff;
3092		}
3093	}
3094}
3095
3096/*
3097 *	vfs_bio_set_validclean:
3098 *
3099 *	Set the range within the buffer to valid and clean.  The range is
3100 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3101 *	itself may be offset from the beginning of the first page.
3102 *
3103 */
3104
3105void
3106vfs_bio_set_validclean(struct buf *bp, int base, int size)
3107{
3108	if (bp->b_flags & B_VMIO) {
3109		int i;
3110		int n;
3111
3112		/*
3113		 * Fixup base to be relative to beginning of first page.
3114		 * Set initial n to be the maximum number of bytes in the
3115		 * first page that can be validated.
3116		 */
3117
3118		base += (bp->b_offset & PAGE_MASK);
3119		n = PAGE_SIZE - (base & PAGE_MASK);
3120
3121		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3122			vm_page_t m = bp->b_pages[i];
3123
3124			if (n > size)
3125				n = size;
3126
3127			vm_page_set_validclean(m, base & PAGE_MASK, n);
3128			base += n;
3129			size -= n;
3130			n = PAGE_SIZE;
3131		}
3132	}
3133}
3134
3135/*
3136 *	vfs_bio_clrbuf:
3137 *
3138 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3139 *	to clear BIO_ERROR and B_INVAL.
3140 *
3141 *	Note that while we only theoretically need to clear through b_bcount,
3142 *	we go ahead and clear through b_bufsize.
3143 *
3144 *	We'll get vm_mtx here for safety if processing a VMIO buffer.
3145 *	I don't think vm_mtx is needed, but we're twiddling vm_page flags.
3146 */
3147
3148void
3149vfs_bio_clrbuf(struct buf *bp) {
3150	int i, mask = 0;
3151	caddr_t sa, ea;
3152
3153	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3154		mtx_lock(&vm_mtx);
3155		bp->b_flags &= ~B_INVAL;
3156		bp->b_ioflags &= ~BIO_ERROR;
3157		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3158		    (bp->b_offset & PAGE_MASK) == 0) {
3159			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3160			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3161			    ((bp->b_pages[0]->valid & mask) != mask)) {
3162				bzero(bp->b_data, bp->b_bufsize);
3163			}
3164			bp->b_pages[0]->valid |= mask;
3165			bp->b_resid = 0;
3166			mtx_unlock(&vm_mtx);
3167			return;
3168		}
3169		ea = sa = bp->b_data;
3170		for(i=0;i<bp->b_npages;i++,sa=ea) {
3171			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3172			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3173			ea = (caddr_t)(vm_offset_t)ulmin(
3174			    (u_long)(vm_offset_t)ea,
3175			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3176			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3177			if ((bp->b_pages[i]->valid & mask) == mask)
3178				continue;
3179			if ((bp->b_pages[i]->valid & mask) == 0) {
3180				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3181					bzero(sa, ea - sa);
3182				}
3183			} else {
3184				for (; sa < ea; sa += DEV_BSIZE, j++) {
3185					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3186						(bp->b_pages[i]->valid & (1<<j)) == 0)
3187						bzero(sa, DEV_BSIZE);
3188				}
3189			}
3190			bp->b_pages[i]->valid |= mask;
3191			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3192		}
3193		bp->b_resid = 0;
3194		mtx_unlock(&vm_mtx);
3195	} else {
3196		clrbuf(bp);
3197	}
3198}
3199
3200/*
3201 * vm_hold_load_pages and vm_hold_unload pages get pages into
3202 * a buffers address space.  The pages are anonymous and are
3203 * not associated with a file object.
3204 *
3205 * vm_mtx should not be held
3206 */
3207static void
3208vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3209{
3210	vm_offset_t pg;
3211	vm_page_t p;
3212	int index;
3213
3214	mtx_assert(&vm_mtx, MA_NOTOWNED);
3215	to = round_page(to);
3216	from = round_page(from);
3217	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3218
3219	mtx_lock(&vm_mtx);
3220	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3221
3222tryagain:
3223
3224		/*
3225		 * note: must allocate system pages since blocking here
3226		 * could intefere with paging I/O, no matter which
3227		 * process we are.
3228		 */
3229		p = vm_page_alloc(kernel_object,
3230			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3231		    VM_ALLOC_SYSTEM);
3232		if (!p) {
3233			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3234			VM_WAIT;
3235			goto tryagain;
3236		}
3237		vm_page_wire(p);
3238		p->valid = VM_PAGE_BITS_ALL;
3239		vm_page_flag_clear(p, PG_ZERO);
3240		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3241		bp->b_pages[index] = p;
3242		vm_page_wakeup(p);
3243	}
3244	bp->b_npages = index;
3245	mtx_unlock(&vm_mtx);
3246}
3247
3248void
3249vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3250{
3251	vm_offset_t pg;
3252	vm_page_t p;
3253	int index, newnpages;
3254	int hadvmlock;
3255
3256	from = round_page(from);
3257	to = round_page(to);
3258	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3259
3260	hadvmlock = mtx_owned(&vm_mtx);
3261	if (!hadvmlock)
3262		mtx_lock(&vm_mtx);
3263	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3264		p = bp->b_pages[index];
3265		if (p && (index < bp->b_npages)) {
3266			if (p->busy) {
3267				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3268					bp->b_blkno, bp->b_lblkno);
3269			}
3270			bp->b_pages[index] = NULL;
3271			pmap_kremove(pg);
3272			vm_page_busy(p);
3273			vm_page_unwire(p, 0);
3274			vm_page_free(p);
3275		}
3276	}
3277	bp->b_npages = newnpages;
3278	if (!hadvmlock)
3279		mtx_unlock(&vm_mtx);
3280}
3281
3282
3283#include "opt_ddb.h"
3284#ifdef DDB
3285#include <ddb/ddb.h>
3286
3287DB_SHOW_COMMAND(buffer, db_show_buffer)
3288{
3289	/* get args */
3290	struct buf *bp = (struct buf *)addr;
3291
3292	if (!have_addr) {
3293		db_printf("usage: show buffer <addr>\n");
3294		return;
3295	}
3296
3297	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3298	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3299		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3300		  "b_blkno = %d, b_pblkno = %d\n",
3301		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3302		  major(bp->b_dev), minor(bp->b_dev),
3303		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3304	if (bp->b_npages) {
3305		int i;
3306		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3307		for (i = 0; i < bp->b_npages; i++) {
3308			vm_page_t m;
3309			m = bp->b_pages[i];
3310			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3311			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3312			if ((i + 1) < bp->b_npages)
3313				db_printf(",");
3314		}
3315		db_printf("\n");
3316	}
3317}
3318#endif /* DDB */
3319