vfs_bio.c revision 68885
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 68885 2000-11-18 23:06:26Z dillon $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/mutex.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/ktr.h>
42#include <sys/proc.h>
43#include <sys/reboot.h>
44#include <sys/resourcevar.h>
45#include <sys/sysctl.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
58
59struct	bio_ops bioops;		/* I/O operation notification */
60
61struct buf *buf;		/* buffer header pool */
62struct swqueue bswlist;
63struct mtx buftimelock;		/* Interlock on setting prio and timo */
64
65static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
66		vm_offset_t to);
67static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
68		vm_offset_t to);
69static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
70			       int pageno, vm_page_t m);
71static void vfs_clean_pages(struct buf * bp);
72static void vfs_setdirty(struct buf *bp);
73static void vfs_vmio_release(struct buf *bp);
74static void vfs_backgroundwritedone(struct buf *bp);
75static int flushbufqueues(void);
76
77static int bd_request;
78
79static void buf_daemon __P((void));
80/*
81 * bogus page -- for I/O to/from partially complete buffers
82 * this is a temporary solution to the problem, but it is not
83 * really that bad.  it would be better to split the buffer
84 * for input in the case of buffers partially already in memory,
85 * but the code is intricate enough already.
86 */
87vm_page_t bogus_page;
88int runningbufspace;
89int vmiodirenable = FALSE;
90static vm_offset_t bogus_offset;
91
92static int bufspace, maxbufspace,
93	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
94static int bufreusecnt, bufdefragcnt, buffreekvacnt;
95static int maxbdrun;
96static int needsbuffer;
97static int numdirtybuffers, hidirtybuffers;
98static int numfreebuffers, lofreebuffers, hifreebuffers;
99static int getnewbufcalls;
100static int getnewbufrestarts;
101
102SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
103	&numdirtybuffers, 0, "");
104SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
105	&hidirtybuffers, 0, "");
106SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
107	&numfreebuffers, 0, "");
108SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
109	&lofreebuffers, 0, "");
110SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
111	&hifreebuffers, 0, "");
112SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
113	&runningbufspace, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
115	&maxbufspace, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
117	&hibufspace, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
119	&lobufspace, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
121	&bufspace, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
123	&maxbdrun, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
125	&maxbufmallocspace, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
127	&bufmallocspace, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
129	&getnewbufcalls, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
131	&getnewbufrestarts, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
133	&vmiodirenable, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
135	&bufdefragcnt, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
137	&buffreekvacnt, 0, "");
138SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
139	&bufreusecnt, 0, "");
140
141static int bufhashmask;
142static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
143struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
144char *buf_wmesg = BUF_WMESG;
145
146extern int vm_swap_size;
147
148#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
149#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
150#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
151#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
152
153/*
154 * Buffer hash table code.  Note that the logical block scans linearly, which
155 * gives us some L1 cache locality.
156 */
157
158static __inline
159struct bufhashhdr *
160bufhash(struct vnode *vnp, daddr_t bn)
161{
162	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
163}
164
165/*
166 *	numdirtywakeup:
167 *
168 *	If someone is blocked due to there being too many dirty buffers,
169 *	and numdirtybuffers is now reasonable, wake them up.
170 */
171
172static __inline void
173numdirtywakeup(void)
174{
175	if (numdirtybuffers < hidirtybuffers) {
176		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
177			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
178			wakeup(&needsbuffer);
179		}
180	}
181}
182
183/*
184 *	bufspacewakeup:
185 *
186 *	Called when buffer space is potentially available for recovery.
187 *	getnewbuf() will block on this flag when it is unable to free
188 *	sufficient buffer space.  Buffer space becomes recoverable when
189 *	bp's get placed back in the queues.
190 */
191
192static __inline void
193bufspacewakeup(void)
194{
195	/*
196	 * If someone is waiting for BUF space, wake them up.  Even
197	 * though we haven't freed the kva space yet, the waiting
198	 * process will be able to now.
199	 */
200	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
201		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
202		wakeup(&needsbuffer);
203	}
204}
205
206/*
207 *	bufcountwakeup:
208 *
209 *	Called when a buffer has been added to one of the free queues to
210 *	account for the buffer and to wakeup anyone waiting for free buffers.
211 *	This typically occurs when large amounts of metadata are being handled
212 *	by the buffer cache ( else buffer space runs out first, usually ).
213 */
214
215static __inline void
216bufcountwakeup(void)
217{
218	++numfreebuffers;
219	if (needsbuffer) {
220		needsbuffer &= ~VFS_BIO_NEED_ANY;
221		if (numfreebuffers >= hifreebuffers)
222			needsbuffer &= ~VFS_BIO_NEED_FREE;
223		wakeup(&needsbuffer);
224	}
225}
226
227/*
228 *	vfs_buf_test_cache:
229 *
230 *	Called when a buffer is extended.  This function clears the B_CACHE
231 *	bit if the newly extended portion of the buffer does not contain
232 *	valid data.
233 */
234static __inline__
235void
236vfs_buf_test_cache(struct buf *bp,
237		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
238		  vm_page_t m)
239{
240	if (bp->b_flags & B_CACHE) {
241		int base = (foff + off) & PAGE_MASK;
242		if (vm_page_is_valid(m, base, size) == 0)
243			bp->b_flags &= ~B_CACHE;
244	}
245}
246
247static __inline__
248void
249bd_wakeup(int dirtybuflevel)
250{
251	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
252		bd_request = 1;
253		wakeup(&bd_request);
254	}
255}
256
257/*
258 * bd_speedup - speedup the buffer cache flushing code
259 */
260
261static __inline__
262void
263bd_speedup(void)
264{
265	bd_wakeup(1);
266}
267
268/*
269 * Initialize buffer headers and related structures.
270 */
271
272caddr_t
273bufhashinit(caddr_t vaddr)
274{
275	/* first, make a null hash table */
276	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
277		;
278	bufhashtbl = (void *)vaddr;
279	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
280	--bufhashmask;
281	return(vaddr);
282}
283
284void
285bufinit(void)
286{
287	struct buf *bp;
288	int i;
289
290	TAILQ_INIT(&bswlist);
291	LIST_INIT(&invalhash);
292	mtx_init(&buftimelock, "buftime lock", MTX_DEF);
293
294	for (i = 0; i <= bufhashmask; i++)
295		LIST_INIT(&bufhashtbl[i]);
296
297	/* next, make a null set of free lists */
298	for (i = 0; i < BUFFER_QUEUES; i++)
299		TAILQ_INIT(&bufqueues[i]);
300
301	/* finally, initialize each buffer header and stick on empty q */
302	for (i = 0; i < nbuf; i++) {
303		bp = &buf[i];
304		bzero(bp, sizeof *bp);
305		bp->b_flags = B_INVAL;	/* we're just an empty header */
306		bp->b_dev = NODEV;
307		bp->b_rcred = NOCRED;
308		bp->b_wcred = NOCRED;
309		bp->b_qindex = QUEUE_EMPTY;
310		bp->b_xflags = 0;
311		LIST_INIT(&bp->b_dep);
312		BUF_LOCKINIT(bp);
313		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
314		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
315	}
316
317	/*
318	 * maxbufspace is the absolute maximum amount of buffer space we are
319	 * allowed to reserve in KVM and in real terms.  The absolute maximum
320	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
321	 * used by most other processes.  The differential is required to
322	 * ensure that buf_daemon is able to run when other processes might
323	 * be blocked waiting for buffer space.
324	 *
325	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
326	 * this may result in KVM fragmentation which is not handled optimally
327	 * by the system.
328	 */
329	maxbufspace = nbuf * BKVASIZE;
330	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
331	lobufspace = hibufspace - MAXBSIZE;
332
333/*
334 * Limit the amount of malloc memory since it is wired permanently into
335 * the kernel space.  Even though this is accounted for in the buffer
336 * allocation, we don't want the malloced region to grow uncontrolled.
337 * The malloc scheme improves memory utilization significantly on average
338 * (small) directories.
339 */
340	maxbufmallocspace = hibufspace / 20;
341
342/*
343 * Reduce the chance of a deadlock occuring by limiting the number
344 * of delayed-write dirty buffers we allow to stack up.
345 */
346	hidirtybuffers = nbuf / 4 + 20;
347	numdirtybuffers = 0;
348/*
349 * To support extreme low-memory systems, make sure hidirtybuffers cannot
350 * eat up all available buffer space.  This occurs when our minimum cannot
351 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
352 * BKVASIZE'd (8K) buffers.
353 */
354	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
355		hidirtybuffers >>= 1;
356	}
357
358/*
359 * Try to keep the number of free buffers in the specified range,
360 * and give special processes (e.g. like buf_daemon) access to an
361 * emergency reserve.
362 */
363	lofreebuffers = nbuf / 18 + 5;
364	hifreebuffers = 2 * lofreebuffers;
365	numfreebuffers = nbuf;
366
367/*
368 * Maximum number of async ops initiated per buf_daemon loop.  This is
369 * somewhat of a hack at the moment, we really need to limit ourselves
370 * based on the number of bytes of I/O in-transit that were initiated
371 * from buf_daemon.
372 */
373	if ((maxbdrun = nswbuf / 4) < 4)
374		maxbdrun = 4;
375
376	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
377	bogus_page = vm_page_alloc(kernel_object,
378			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
379			VM_ALLOC_NORMAL);
380	cnt.v_wire_count++;
381
382}
383
384/*
385 * bfreekva() - free the kva allocation for a buffer.
386 *
387 *	Must be called at splbio() or higher as this is the only locking for
388 *	buffer_map.
389 *
390 *	Since this call frees up buffer space, we call bufspacewakeup().
391 */
392static void
393bfreekva(struct buf * bp)
394{
395	if (bp->b_kvasize) {
396		++buffreekvacnt;
397		bufspace -= bp->b_kvasize;
398		vm_map_delete(buffer_map,
399		    (vm_offset_t) bp->b_kvabase,
400		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
401		);
402		bp->b_kvasize = 0;
403		bufspacewakeup();
404	}
405}
406
407/*
408 *	bremfree:
409 *
410 *	Remove the buffer from the appropriate free list.
411 */
412void
413bremfree(struct buf * bp)
414{
415	int s = splbio();
416	int old_qindex = bp->b_qindex;
417
418	if (bp->b_qindex != QUEUE_NONE) {
419		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
420		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
421		bp->b_qindex = QUEUE_NONE;
422		runningbufspace += bp->b_bufsize;
423	} else {
424		if (BUF_REFCNT(bp) <= 1)
425			panic("bremfree: removing a buffer not on a queue");
426	}
427
428	/*
429	 * Fixup numfreebuffers count.  If the buffer is invalid or not
430	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
431	 * the buffer was free and we must decrement numfreebuffers.
432	 */
433	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
434		switch(old_qindex) {
435		case QUEUE_DIRTY:
436		case QUEUE_CLEAN:
437		case QUEUE_EMPTY:
438		case QUEUE_EMPTYKVA:
439			--numfreebuffers;
440			break;
441		default:
442			break;
443		}
444	}
445	splx(s);
446}
447
448
449/*
450 * Get a buffer with the specified data.  Look in the cache first.  We
451 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
452 * is set, the buffer is valid and we do not have to do anything ( see
453 * getblk() ).
454 */
455int
456bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
457    struct buf ** bpp)
458{
459	struct buf *bp;
460
461	bp = getblk(vp, blkno, size, 0, 0);
462	*bpp = bp;
463
464	/* if not found in cache, do some I/O */
465	if ((bp->b_flags & B_CACHE) == 0) {
466		if (curproc != idleproc)
467			curproc->p_stats->p_ru.ru_inblock++;
468		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
469		bp->b_iocmd = BIO_READ;
470		bp->b_flags &= ~B_INVAL;
471		bp->b_ioflags &= ~BIO_ERROR;
472		if (bp->b_rcred == NOCRED) {
473			if (cred != NOCRED)
474				crhold(cred);
475			bp->b_rcred = cred;
476		}
477		vfs_busy_pages(bp, 0);
478		VOP_STRATEGY(vp, bp);
479		return (bufwait(bp));
480	}
481	return (0);
482}
483
484/*
485 * Operates like bread, but also starts asynchronous I/O on
486 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
487 * to initiating I/O . If B_CACHE is set, the buffer is valid
488 * and we do not have to do anything.
489 */
490int
491breadn(struct vnode * vp, daddr_t blkno, int size,
492    daddr_t * rablkno, int *rabsize,
493    int cnt, struct ucred * cred, struct buf ** bpp)
494{
495	struct buf *bp, *rabp;
496	int i;
497	int rv = 0, readwait = 0;
498
499	*bpp = bp = getblk(vp, blkno, size, 0, 0);
500
501	/* if not found in cache, do some I/O */
502	if ((bp->b_flags & B_CACHE) == 0) {
503		if (curproc != idleproc)
504			curproc->p_stats->p_ru.ru_inblock++;
505		bp->b_iocmd = BIO_READ;
506		bp->b_flags &= ~B_INVAL;
507		bp->b_ioflags &= ~BIO_ERROR;
508		if (bp->b_rcred == NOCRED) {
509			if (cred != NOCRED)
510				crhold(cred);
511			bp->b_rcred = cred;
512		}
513		vfs_busy_pages(bp, 0);
514		VOP_STRATEGY(vp, bp);
515		++readwait;
516	}
517
518	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
519		if (inmem(vp, *rablkno))
520			continue;
521		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
522
523		if ((rabp->b_flags & B_CACHE) == 0) {
524			if (curproc != idleproc)
525				curproc->p_stats->p_ru.ru_inblock++;
526			rabp->b_flags |= B_ASYNC;
527			rabp->b_flags &= ~B_INVAL;
528			rabp->b_ioflags &= ~BIO_ERROR;
529			rabp->b_iocmd = BIO_READ;
530			if (rabp->b_rcred == NOCRED) {
531				if (cred != NOCRED)
532					crhold(cred);
533				rabp->b_rcred = cred;
534			}
535			vfs_busy_pages(rabp, 0);
536			BUF_KERNPROC(rabp);
537			VOP_STRATEGY(vp, rabp);
538		} else {
539			brelse(rabp);
540		}
541	}
542
543	if (readwait) {
544		rv = bufwait(bp);
545	}
546	return (rv);
547}
548
549/*
550 * Write, release buffer on completion.  (Done by iodone
551 * if async).  Do not bother writing anything if the buffer
552 * is invalid.
553 *
554 * Note that we set B_CACHE here, indicating that buffer is
555 * fully valid and thus cacheable.  This is true even of NFS
556 * now so we set it generally.  This could be set either here
557 * or in biodone() since the I/O is synchronous.  We put it
558 * here.
559 */
560int
561bwrite(struct buf * bp)
562{
563	int oldflags, s;
564	struct buf *newbp;
565
566	if (bp->b_flags & B_INVAL) {
567		brelse(bp);
568		return (0);
569	}
570
571	oldflags = bp->b_flags;
572
573	if (BUF_REFCNT(bp) == 0)
574		panic("bwrite: buffer is not busy???");
575	s = splbio();
576	/*
577	 * If a background write is already in progress, delay
578	 * writing this block if it is asynchronous. Otherwise
579	 * wait for the background write to complete.
580	 */
581	if (bp->b_xflags & BX_BKGRDINPROG) {
582		if (bp->b_flags & B_ASYNC) {
583			splx(s);
584			bdwrite(bp);
585			return (0);
586		}
587		bp->b_xflags |= BX_BKGRDWAIT;
588		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
589		if (bp->b_xflags & BX_BKGRDINPROG)
590			panic("bwrite: still writing");
591	}
592
593	/* Mark the buffer clean */
594	bundirty(bp);
595
596	/*
597	 * If this buffer is marked for background writing and we
598	 * do not have to wait for it, make a copy and write the
599	 * copy so as to leave this buffer ready for further use.
600	 *
601	 * This optimization eats a lot of memory.  If we have a page
602	 * or buffer shortfall we can't do it.
603	 */
604	if ((bp->b_xflags & BX_BKGRDWRITE) &&
605	    (bp->b_flags & B_ASYNC) &&
606	    !vm_page_count_severe() &&
607	    !buf_dirty_count_severe()) {
608		if (bp->b_iodone != NULL) {
609			printf("bp->b_iodone = %p\n", bp->b_iodone);
610			panic("bwrite: need chained iodone");
611		}
612
613		/* get a new block */
614		newbp = geteblk(bp->b_bufsize);
615
616		/* set it to be identical to the old block */
617		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
618		bgetvp(bp->b_vp, newbp);
619		newbp->b_lblkno = bp->b_lblkno;
620		newbp->b_blkno = bp->b_blkno;
621		newbp->b_offset = bp->b_offset;
622		newbp->b_iodone = vfs_backgroundwritedone;
623		newbp->b_flags |= B_ASYNC;
624		newbp->b_flags &= ~B_INVAL;
625
626		/* move over the dependencies */
627		if (LIST_FIRST(&bp->b_dep) != NULL)
628			buf_movedeps(bp, newbp);
629
630		/*
631		 * Initiate write on the copy, release the original to
632		 * the B_LOCKED queue so that it cannot go away until
633		 * the background write completes. If not locked it could go
634		 * away and then be reconstituted while it was being written.
635		 * If the reconstituted buffer were written, we could end up
636		 * with two background copies being written at the same time.
637		 */
638		bp->b_xflags |= BX_BKGRDINPROG;
639		bp->b_flags |= B_LOCKED;
640		bqrelse(bp);
641		bp = newbp;
642	}
643
644	bp->b_flags &= ~B_DONE;
645	bp->b_ioflags &= ~BIO_ERROR;
646	bp->b_flags |= B_WRITEINPROG | B_CACHE;
647	bp->b_iocmd = BIO_WRITE;
648
649	bp->b_vp->v_numoutput++;
650	vfs_busy_pages(bp, 1);
651	if (curproc != idleproc)
652		curproc->p_stats->p_ru.ru_oublock++;
653	splx(s);
654	if (oldflags & B_ASYNC)
655		BUF_KERNPROC(bp);
656	BUF_STRATEGY(bp);
657
658	if ((oldflags & B_ASYNC) == 0) {
659		int rtval = bufwait(bp);
660		brelse(bp);
661		return (rtval);
662	}
663
664	return (0);
665}
666
667/*
668 * Complete a background write started from bwrite.
669 */
670static void
671vfs_backgroundwritedone(bp)
672	struct buf *bp;
673{
674	struct buf *origbp;
675
676	/*
677	 * Find the original buffer that we are writing.
678	 */
679	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
680		panic("backgroundwritedone: lost buffer");
681	/*
682	 * Process dependencies then return any unfinished ones.
683	 */
684	if (LIST_FIRST(&bp->b_dep) != NULL)
685		buf_complete(bp);
686	if (LIST_FIRST(&bp->b_dep) != NULL)
687		buf_movedeps(bp, origbp);
688	/*
689	 * Clear the BX_BKGRDINPROG flag in the original buffer
690	 * and awaken it if it is waiting for the write to complete.
691	 * If BX_BKGRDINPROG is not set in the original buffer it must
692	 * have been released and re-instantiated - which is not legal.
693	 */
694	KASSERT((origbp->b_xflags & BX_BKGRDINPROG), ("backgroundwritedone: lost buffer2"));
695	origbp->b_xflags &= ~BX_BKGRDINPROG;
696	if (origbp->b_xflags & BX_BKGRDWAIT) {
697		origbp->b_xflags &= ~BX_BKGRDWAIT;
698		wakeup(&origbp->b_xflags);
699	}
700	/*
701	 * Clear the B_LOCKED flag and remove it from the locked
702	 * queue if it currently resides there.
703	 */
704	origbp->b_flags &= ~B_LOCKED;
705	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
706		bremfree(origbp);
707		bqrelse(origbp);
708	}
709	/*
710	 * This buffer is marked B_NOCACHE, so when it is released
711	 * by biodone, it will be tossed. We mark it with BIO_READ
712	 * to avoid biodone doing a second vwakeup.
713	 */
714	bp->b_flags |= B_NOCACHE;
715	bp->b_iocmd = BIO_READ;
716	bp->b_flags &= ~(B_CACHE | B_DONE);
717	bp->b_iodone = 0;
718	bufdone(bp);
719}
720
721/*
722 * Delayed write. (Buffer is marked dirty).  Do not bother writing
723 * anything if the buffer is marked invalid.
724 *
725 * Note that since the buffer must be completely valid, we can safely
726 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
727 * biodone() in order to prevent getblk from writing the buffer
728 * out synchronously.
729 */
730void
731bdwrite(struct buf * bp)
732{
733	if (BUF_REFCNT(bp) == 0)
734		panic("bdwrite: buffer is not busy");
735
736	if (bp->b_flags & B_INVAL) {
737		brelse(bp);
738		return;
739	}
740	bdirty(bp);
741
742	/*
743	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
744	 * true even of NFS now.
745	 */
746	bp->b_flags |= B_CACHE;
747
748	/*
749	 * This bmap keeps the system from needing to do the bmap later,
750	 * perhaps when the system is attempting to do a sync.  Since it
751	 * is likely that the indirect block -- or whatever other datastructure
752	 * that the filesystem needs is still in memory now, it is a good
753	 * thing to do this.  Note also, that if the pageout daemon is
754	 * requesting a sync -- there might not be enough memory to do
755	 * the bmap then...  So, this is important to do.
756	 */
757	if (bp->b_lblkno == bp->b_blkno) {
758		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
759	}
760
761	/*
762	 * Set the *dirty* buffer range based upon the VM system dirty pages.
763	 */
764	vfs_setdirty(bp);
765
766	/*
767	 * We need to do this here to satisfy the vnode_pager and the
768	 * pageout daemon, so that it thinks that the pages have been
769	 * "cleaned".  Note that since the pages are in a delayed write
770	 * buffer -- the VFS layer "will" see that the pages get written
771	 * out on the next sync, or perhaps the cluster will be completed.
772	 */
773	vfs_clean_pages(bp);
774	bqrelse(bp);
775
776	/*
777	 * Wakeup the buffer flushing daemon if we have saturated the
778	 * buffer cache.
779	 */
780
781	bd_wakeup(hidirtybuffers);
782
783	/*
784	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
785	 * due to the softdep code.
786	 */
787}
788
789/*
790 *	bdirty:
791 *
792 *	Turn buffer into delayed write request.  We must clear BIO_READ and
793 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
794 *	itself to properly update it in the dirty/clean lists.  We mark it
795 *	B_DONE to ensure that any asynchronization of the buffer properly
796 *	clears B_DONE ( else a panic will occur later ).
797 *
798 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
799 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
800 *	should only be called if the buffer is known-good.
801 *
802 *	Since the buffer is not on a queue, we do not update the numfreebuffers
803 *	count.
804 *
805 *	Must be called at splbio().
806 *	The buffer must be on QUEUE_NONE.
807 */
808void
809bdirty(bp)
810	struct buf *bp;
811{
812	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
813	bp->b_flags &= ~(B_RELBUF);
814	bp->b_iocmd = BIO_WRITE;
815
816	if ((bp->b_flags & B_DELWRI) == 0) {
817		bp->b_flags |= B_DONE | B_DELWRI;
818		reassignbuf(bp, bp->b_vp);
819		++numdirtybuffers;
820		bd_wakeup(hidirtybuffers);
821	}
822}
823
824/*
825 *	bundirty:
826 *
827 *	Clear B_DELWRI for buffer.
828 *
829 *	Since the buffer is not on a queue, we do not update the numfreebuffers
830 *	count.
831 *
832 *	Must be called at splbio().
833 *	The buffer must be on QUEUE_NONE.
834 */
835
836void
837bundirty(bp)
838	struct buf *bp;
839{
840	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
841
842	if (bp->b_flags & B_DELWRI) {
843		bp->b_flags &= ~B_DELWRI;
844		reassignbuf(bp, bp->b_vp);
845		--numdirtybuffers;
846		numdirtywakeup();
847	}
848	/*
849	 * Since it is now being written, we can clear its deferred write flag.
850	 */
851	bp->b_flags &= ~B_DEFERRED;
852}
853
854/*
855 *	bawrite:
856 *
857 *	Asynchronous write.  Start output on a buffer, but do not wait for
858 *	it to complete.  The buffer is released when the output completes.
859 *
860 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
861 *	B_INVAL buffers.  Not us.
862 */
863void
864bawrite(struct buf * bp)
865{
866	bp->b_flags |= B_ASYNC;
867	(void) BUF_WRITE(bp);
868}
869
870/*
871 *	bowrite:
872 *
873 *	Ordered write.  Start output on a buffer, and flag it so that the
874 *	device will write it in the order it was queued.  The buffer is
875 *	released when the output completes.  bwrite() ( or the VOP routine
876 *	anyway ) is responsible for handling B_INVAL buffers.
877 */
878int
879bowrite(struct buf * bp)
880{
881	bp->b_ioflags |= BIO_ORDERED;
882	bp->b_flags |= B_ASYNC;
883	return (BUF_WRITE(bp));
884}
885
886/*
887 *	bwillwrite:
888 *
889 *	Called prior to the locking of any vnodes when we are expecting to
890 *	write.  We do not want to starve the buffer cache with too many
891 *	dirty buffers so we block here.  By blocking prior to the locking
892 *	of any vnodes we attempt to avoid the situation where a locked vnode
893 *	prevents the various system daemons from flushing related buffers.
894 */
895
896void
897bwillwrite(void)
898{
899	int slop = hidirtybuffers / 10;
900
901	if (numdirtybuffers > hidirtybuffers + slop) {
902		int s;
903
904		s = splbio();
905		while (numdirtybuffers > hidirtybuffers) {
906			bd_wakeup(hidirtybuffers);
907			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
908			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
909		}
910		splx(s);
911	}
912}
913
914/*
915 * Return true if we have too many dirty buffers.
916 */
917int
918buf_dirty_count_severe(void)
919{
920	return(numdirtybuffers >= hidirtybuffers);
921}
922
923/*
924 *	brelse:
925 *
926 *	Release a busy buffer and, if requested, free its resources.  The
927 *	buffer will be stashed in the appropriate bufqueue[] allowing it
928 *	to be accessed later as a cache entity or reused for other purposes.
929 */
930void
931brelse(struct buf * bp)
932{
933	int s;
934
935	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
936
937	s = splbio();
938
939	if (bp->b_flags & B_LOCKED)
940		bp->b_ioflags &= ~BIO_ERROR;
941
942	if (bp->b_iocmd == BIO_WRITE &&
943	    (bp->b_ioflags & BIO_ERROR) &&
944	    !(bp->b_flags & B_INVAL)) {
945		/*
946		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
947		 * pages from being scrapped.  If B_INVAL is set then
948		 * this case is not run and the next case is run to
949		 * destroy the buffer.  B_INVAL can occur if the buffer
950		 * is outside the range supported by the underlying device.
951		 */
952		bp->b_ioflags &= ~BIO_ERROR;
953		bdirty(bp);
954	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
955	    (bp->b_ioflags & BIO_ERROR) ||
956	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
957		/*
958		 * Either a failed I/O or we were asked to free or not
959		 * cache the buffer.
960		 */
961		bp->b_flags |= B_INVAL;
962		if (LIST_FIRST(&bp->b_dep) != NULL)
963			buf_deallocate(bp);
964		if (bp->b_flags & B_DELWRI) {
965			--numdirtybuffers;
966			numdirtywakeup();
967		}
968		bp->b_flags &= ~(B_DELWRI | B_CACHE);
969		if ((bp->b_flags & B_VMIO) == 0) {
970			if (bp->b_bufsize)
971				allocbuf(bp, 0);
972			if (bp->b_vp)
973				brelvp(bp);
974		}
975	}
976
977	/*
978	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
979	 * is called with B_DELWRI set, the underlying pages may wind up
980	 * getting freed causing a previous write (bdwrite()) to get 'lost'
981	 * because pages associated with a B_DELWRI bp are marked clean.
982	 *
983	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
984	 * if B_DELWRI is set.
985	 *
986	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
987	 * on pages to return pages to the VM page queues.
988	 */
989	if (bp->b_flags & B_DELWRI)
990		bp->b_flags &= ~B_RELBUF;
991	else if (vm_page_count_severe() && !(bp->b_xflags & BX_BKGRDINPROG))
992		bp->b_flags |= B_RELBUF;
993
994	/*
995	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
996	 * constituted, not even NFS buffers now.  Two flags effect this.  If
997	 * B_INVAL, the struct buf is invalidated but the VM object is kept
998	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
999	 *
1000	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1001	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1002	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1003	 *
1004	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1005	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1006	 * the commit state and we cannot afford to lose the buffer. If the
1007	 * buffer has a background write in progress, we need to keep it
1008	 * around to prevent it from being reconstituted and starting a second
1009	 * background write.
1010	 */
1011	if ((bp->b_flags & B_VMIO)
1012	    && !(bp->b_vp->v_tag == VT_NFS &&
1013		 !vn_isdisk(bp->b_vp, NULL) &&
1014		 (bp->b_flags & B_DELWRI))
1015	    ) {
1016
1017		int i, j, resid;
1018		vm_page_t m;
1019		off_t foff;
1020		vm_pindex_t poff;
1021		vm_object_t obj;
1022		struct vnode *vp;
1023
1024		vp = bp->b_vp;
1025
1026		/*
1027		 * Get the base offset and length of the buffer.  Note that
1028		 * for block sizes that are less then PAGE_SIZE, the b_data
1029		 * base of the buffer does not represent exactly b_offset and
1030		 * neither b_offset nor b_size are necessarily page aligned.
1031		 * Instead, the starting position of b_offset is:
1032		 *
1033		 * 	b_data + (b_offset & PAGE_MASK)
1034		 *
1035		 * block sizes less then DEV_BSIZE (usually 512) are not
1036		 * supported due to the page granularity bits (m->valid,
1037		 * m->dirty, etc...).
1038		 *
1039		 * See man buf(9) for more information
1040		 */
1041		resid = bp->b_bufsize;
1042		foff = bp->b_offset;
1043
1044		for (i = 0; i < bp->b_npages; i++) {
1045			int had_bogus = 0;
1046
1047			m = bp->b_pages[i];
1048			vm_page_flag_clear(m, PG_ZERO);
1049
1050			/*
1051			 * If we hit a bogus page, fixup *all* the bogus pages
1052			 * now.
1053			 */
1054			if (m == bogus_page) {
1055				VOP_GETVOBJECT(vp, &obj);
1056				poff = OFF_TO_IDX(bp->b_offset);
1057				had_bogus = 1;
1058
1059				for (j = i; j < bp->b_npages; j++) {
1060					vm_page_t mtmp;
1061					mtmp = bp->b_pages[j];
1062					if (mtmp == bogus_page) {
1063						mtmp = vm_page_lookup(obj, poff + j);
1064						if (!mtmp) {
1065							panic("brelse: page missing\n");
1066						}
1067						bp->b_pages[j] = mtmp;
1068					}
1069				}
1070
1071				if ((bp->b_flags & B_INVAL) == 0) {
1072					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1073				}
1074				m = bp->b_pages[i];
1075			}
1076			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1077				int poffset = foff & PAGE_MASK;
1078				int presid = resid > (PAGE_SIZE - poffset) ?
1079					(PAGE_SIZE - poffset) : resid;
1080
1081				KASSERT(presid >= 0, ("brelse: extra page"));
1082				vm_page_set_invalid(m, poffset, presid);
1083				if (had_bogus)
1084					printf("avoided corruption bug in bogus_page/brelse code\n");
1085			}
1086			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1087			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1088		}
1089
1090		if (bp->b_flags & (B_INVAL | B_RELBUF))
1091			vfs_vmio_release(bp);
1092
1093	} else if (bp->b_flags & B_VMIO) {
1094
1095		if (bp->b_flags & (B_INVAL | B_RELBUF))
1096			vfs_vmio_release(bp);
1097
1098	}
1099
1100	if (bp->b_qindex != QUEUE_NONE)
1101		panic("brelse: free buffer onto another queue???");
1102	if (BUF_REFCNT(bp) > 1) {
1103		/* do not release to free list */
1104		BUF_UNLOCK(bp);
1105		splx(s);
1106		return;
1107	}
1108
1109	/* enqueue */
1110
1111	/* buffers with no memory */
1112	if (bp->b_bufsize == 0) {
1113		bp->b_flags |= B_INVAL;
1114		bp->b_xflags &= ~BX_BKGRDWRITE;
1115		if (bp->b_xflags & BX_BKGRDINPROG)
1116			panic("losing buffer 1");
1117		if (bp->b_kvasize) {
1118			bp->b_qindex = QUEUE_EMPTYKVA;
1119		} else {
1120			bp->b_qindex = QUEUE_EMPTY;
1121		}
1122		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1123		LIST_REMOVE(bp, b_hash);
1124		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1125		bp->b_dev = NODEV;
1126	/* buffers with junk contents */
1127	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1128		bp->b_flags |= B_INVAL;
1129		bp->b_xflags &= ~BX_BKGRDWRITE;
1130		if (bp->b_xflags & BX_BKGRDINPROG)
1131			panic("losing buffer 2");
1132		bp->b_qindex = QUEUE_CLEAN;
1133		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1134		LIST_REMOVE(bp, b_hash);
1135		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1136		bp->b_dev = NODEV;
1137
1138	/* buffers that are locked */
1139	} else if (bp->b_flags & B_LOCKED) {
1140		bp->b_qindex = QUEUE_LOCKED;
1141		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1142
1143	/* remaining buffers */
1144	} else {
1145		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1146		case B_DELWRI | B_AGE:
1147		    bp->b_qindex = QUEUE_DIRTY;
1148		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1149		    break;
1150		case B_DELWRI:
1151		    bp->b_qindex = QUEUE_DIRTY;
1152		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1153		    break;
1154		case B_AGE:
1155		    bp->b_qindex = QUEUE_CLEAN;
1156		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1157		    break;
1158		default:
1159		    bp->b_qindex = QUEUE_CLEAN;
1160		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1161		    break;
1162		}
1163	}
1164
1165	/*
1166	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1167	 * on the correct queue.
1168	 */
1169	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1170		bp->b_flags &= ~B_DELWRI;
1171		--numdirtybuffers;
1172		numdirtywakeup();
1173	}
1174
1175	runningbufspace -= bp->b_bufsize;
1176
1177	/*
1178	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1179	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1180	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1181	 * if B_INVAL is set ).
1182	 */
1183
1184	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1185		bufcountwakeup();
1186
1187	/*
1188	 * Something we can maybe free.
1189	 */
1190
1191	if (bp->b_bufsize || bp->b_kvasize)
1192		bufspacewakeup();
1193
1194	/* unlock */
1195	BUF_UNLOCK(bp);
1196	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1197	bp->b_ioflags &= ~BIO_ORDERED;
1198	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1199		panic("brelse: not dirty");
1200	splx(s);
1201}
1202
1203/*
1204 * Release a buffer back to the appropriate queue but do not try to free
1205 * it.  The buffer is expected to be used again soon.
1206 *
1207 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1208 * biodone() to requeue an async I/O on completion.  It is also used when
1209 * known good buffers need to be requeued but we think we may need the data
1210 * again soon.
1211 */
1212void
1213bqrelse(struct buf * bp)
1214{
1215	int s;
1216
1217	s = splbio();
1218
1219	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1220
1221	if (bp->b_qindex != QUEUE_NONE)
1222		panic("bqrelse: free buffer onto another queue???");
1223	if (BUF_REFCNT(bp) > 1) {
1224		/* do not release to free list */
1225		BUF_UNLOCK(bp);
1226		splx(s);
1227		return;
1228	}
1229	if (bp->b_flags & B_LOCKED) {
1230		bp->b_ioflags &= ~BIO_ERROR;
1231		bp->b_qindex = QUEUE_LOCKED;
1232		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1233		/* buffers with stale but valid contents */
1234	} else if (bp->b_flags & B_DELWRI) {
1235		bp->b_qindex = QUEUE_DIRTY;
1236		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1237	} else if (vm_page_count_severe()) {
1238		/*
1239		 * We are too low on memory, we have to try to free the
1240		 * buffer (most importantly: the wired pages making up its
1241		 * backing store) *now*.
1242		 */
1243		splx(s);
1244		brelse(bp);
1245		return;
1246	} else {
1247		bp->b_qindex = QUEUE_CLEAN;
1248		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1249	}
1250
1251	runningbufspace -= bp->b_bufsize;
1252
1253	if ((bp->b_flags & B_LOCKED) == 0 &&
1254	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1255		bufcountwakeup();
1256	}
1257
1258	/*
1259	 * Something we can maybe wakeup
1260	 */
1261	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1262		bufspacewakeup();
1263
1264	/* unlock */
1265	BUF_UNLOCK(bp);
1266	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1267	bp->b_ioflags &= ~BIO_ORDERED;
1268	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1269		panic("bqrelse: not dirty");
1270	splx(s);
1271}
1272
1273static void
1274vfs_vmio_release(bp)
1275	struct buf *bp;
1276{
1277	int i, s;
1278	vm_page_t m;
1279
1280	s = splvm();
1281	for (i = 0; i < bp->b_npages; i++) {
1282		m = bp->b_pages[i];
1283		bp->b_pages[i] = NULL;
1284		/*
1285		 * In order to keep page LRU ordering consistent, put
1286		 * everything on the inactive queue.
1287		 */
1288		vm_page_unwire(m, 0);
1289		/*
1290		 * We don't mess with busy pages, it is
1291		 * the responsibility of the process that
1292		 * busied the pages to deal with them.
1293		 */
1294		if ((m->flags & PG_BUSY) || (m->busy != 0))
1295			continue;
1296
1297		if (m->wire_count == 0) {
1298			vm_page_flag_clear(m, PG_ZERO);
1299			/*
1300			 * Might as well free the page if we can and it has
1301			 * no valid data.
1302			 */
1303			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1304				vm_page_busy(m);
1305				vm_page_protect(m, VM_PROT_NONE);
1306				vm_page_free(m);
1307			} else if (vm_page_count_severe()) {
1308				vm_page_try_to_cache(m);
1309			}
1310		}
1311	}
1312	runningbufspace -= bp->b_bufsize;
1313	splx(s);
1314	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1315	if (bp->b_bufsize)
1316		bufspacewakeup();
1317	bp->b_npages = 0;
1318	bp->b_bufsize = 0;
1319	bp->b_flags &= ~B_VMIO;
1320	if (bp->b_vp)
1321		brelvp(bp);
1322}
1323
1324/*
1325 * Check to see if a block is currently memory resident.
1326 */
1327struct buf *
1328gbincore(struct vnode * vp, daddr_t blkno)
1329{
1330	struct buf *bp;
1331	struct bufhashhdr *bh;
1332
1333	bh = bufhash(vp, blkno);
1334
1335	/* Search hash chain */
1336	LIST_FOREACH(bp, bh, b_hash) {
1337		/* hit */
1338		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1339		    (bp->b_flags & B_INVAL) == 0) {
1340			break;
1341		}
1342	}
1343	return (bp);
1344}
1345
1346/*
1347 *	vfs_bio_awrite:
1348 *
1349 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1350 *	This is much better then the old way of writing only one buffer at
1351 *	a time.  Note that we may not be presented with the buffers in the
1352 *	correct order, so we search for the cluster in both directions.
1353 */
1354int
1355vfs_bio_awrite(struct buf * bp)
1356{
1357	int i;
1358	int j;
1359	daddr_t lblkno = bp->b_lblkno;
1360	struct vnode *vp = bp->b_vp;
1361	int s;
1362	int ncl;
1363	struct buf *bpa;
1364	int nwritten;
1365	int size;
1366	int maxcl;
1367
1368	s = splbio();
1369	/*
1370	 * right now we support clustered writing only to regular files.  If
1371	 * we find a clusterable block we could be in the middle of a cluster
1372	 * rather then at the beginning.
1373	 */
1374	if ((vp->v_type == VREG) &&
1375	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1376	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1377
1378		size = vp->v_mount->mnt_stat.f_iosize;
1379		maxcl = MAXPHYS / size;
1380
1381		for (i = 1; i < maxcl; i++) {
1382			if ((bpa = gbincore(vp, lblkno + i)) &&
1383			    BUF_REFCNT(bpa) == 0 &&
1384			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1385			    (B_DELWRI | B_CLUSTEROK)) &&
1386			    (bpa->b_bufsize == size)) {
1387				if ((bpa->b_blkno == bpa->b_lblkno) ||
1388				    (bpa->b_blkno !=
1389				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1390					break;
1391			} else {
1392				break;
1393			}
1394		}
1395		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1396			if ((bpa = gbincore(vp, lblkno - j)) &&
1397			    BUF_REFCNT(bpa) == 0 &&
1398			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1399			    (B_DELWRI | B_CLUSTEROK)) &&
1400			    (bpa->b_bufsize == size)) {
1401				if ((bpa->b_blkno == bpa->b_lblkno) ||
1402				    (bpa->b_blkno !=
1403				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1404					break;
1405			} else {
1406				break;
1407			}
1408		}
1409		--j;
1410		ncl = i + j;
1411		/*
1412		 * this is a possible cluster write
1413		 */
1414		if (ncl != 1) {
1415			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1416			splx(s);
1417			return nwritten;
1418		}
1419	}
1420
1421	BUF_LOCK(bp, LK_EXCLUSIVE);
1422	bremfree(bp);
1423	bp->b_flags |= B_ASYNC;
1424
1425	splx(s);
1426	/*
1427	 * default (old) behavior, writing out only one block
1428	 *
1429	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1430	 */
1431	nwritten = bp->b_bufsize;
1432	(void) BUF_WRITE(bp);
1433
1434	return nwritten;
1435}
1436
1437/*
1438 *	getnewbuf:
1439 *
1440 *	Find and initialize a new buffer header, freeing up existing buffers
1441 *	in the bufqueues as necessary.  The new buffer is returned locked.
1442 *
1443 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1444 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1445 *
1446 *	We block if:
1447 *		We have insufficient buffer headers
1448 *		We have insufficient buffer space
1449 *		buffer_map is too fragmented ( space reservation fails )
1450 *		If we have to flush dirty buffers ( but we try to avoid this )
1451 *
1452 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1453 *	Instead we ask the buf daemon to do it for us.  We attempt to
1454 *	avoid piecemeal wakeups of the pageout daemon.
1455 */
1456
1457static struct buf *
1458getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1459{
1460	struct buf *bp;
1461	struct buf *nbp;
1462	int defrag = 0;
1463	int nqindex;
1464	static int flushingbufs;
1465
1466	/*
1467	 * We can't afford to block since we might be holding a vnode lock,
1468	 * which may prevent system daemons from running.  We deal with
1469	 * low-memory situations by proactively returning memory and running
1470	 * async I/O rather then sync I/O.
1471	 */
1472
1473	++getnewbufcalls;
1474	--getnewbufrestarts;
1475restart:
1476	++getnewbufrestarts;
1477
1478	/*
1479	 * Setup for scan.  If we do not have enough free buffers,
1480	 * we setup a degenerate case that immediately fails.  Note
1481	 * that if we are specially marked process, we are allowed to
1482	 * dip into our reserves.
1483	 *
1484	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1485	 *
1486	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1487	 * However, there are a number of cases (defragging, reusing, ...)
1488	 * where we cannot backup.
1489	 */
1490	nqindex = QUEUE_EMPTYKVA;
1491	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1492
1493	if (nbp == NULL) {
1494		/*
1495		 * If no EMPTYKVA buffers and we are either
1496		 * defragging or reusing, locate a CLEAN buffer
1497		 * to free or reuse.  If bufspace useage is low
1498		 * skip this step so we can allocate a new buffer.
1499		 */
1500		if (defrag || bufspace >= lobufspace) {
1501			nqindex = QUEUE_CLEAN;
1502			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1503		}
1504
1505		/*
1506		 * Nada.  If we are allowed to allocate an EMPTY
1507		 * buffer, go get one.
1508		 */
1509		if (nbp == NULL && defrag == 0 && bufspace < hibufspace) {
1510			nqindex = QUEUE_EMPTY;
1511			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1512		}
1513	}
1514
1515	/*
1516	 * Run scan, possibly freeing data and/or kva mappings on the fly
1517	 * depending.
1518	 */
1519
1520	while ((bp = nbp) != NULL) {
1521		int qindex = nqindex;
1522
1523		/*
1524		 * Calculate next bp ( we can only use it if we do not block
1525		 * or do other fancy things ).
1526		 */
1527		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1528			switch(qindex) {
1529			case QUEUE_EMPTY:
1530				nqindex = QUEUE_EMPTYKVA;
1531				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1532					break;
1533				/* fall through */
1534			case QUEUE_EMPTYKVA:
1535				nqindex = QUEUE_CLEAN;
1536				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1537					break;
1538				/* fall through */
1539			case QUEUE_CLEAN:
1540				/*
1541				 * nbp is NULL.
1542				 */
1543				break;
1544			}
1545		}
1546
1547		/*
1548		 * Sanity Checks
1549		 */
1550		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1551
1552		/*
1553		 * Note: we no longer distinguish between VMIO and non-VMIO
1554		 * buffers.
1555		 */
1556
1557		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1558
1559		/*
1560		 * If we are defragging then we need a buffer with
1561		 * b_kvasize != 0.  XXX this situation should no longer
1562		 * occur, if defrag is non-zero the buffer's b_kvasize
1563		 * should also be non-zero at this point.  XXX
1564		 */
1565		if (defrag && bp->b_kvasize == 0) {
1566			printf("Warning: defrag empty buffer %p\n", bp);
1567			continue;
1568		}
1569
1570		/*
1571		 * Start freeing the bp.  This is somewhat involved.  nbp
1572		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1573		 */
1574
1575		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1576			panic("getnewbuf: locked buf");
1577		bremfree(bp);
1578
1579		if (qindex == QUEUE_CLEAN) {
1580			if (bp->b_flags & B_VMIO) {
1581				bp->b_flags &= ~B_ASYNC;
1582				vfs_vmio_release(bp);
1583			}
1584			if (bp->b_vp)
1585				brelvp(bp);
1586		}
1587
1588		/*
1589		 * NOTE:  nbp is now entirely invalid.  We can only restart
1590		 * the scan from this point on.
1591		 *
1592		 * Get the rest of the buffer freed up.  b_kva* is still
1593		 * valid after this operation.
1594		 */
1595
1596		if (bp->b_rcred != NOCRED) {
1597			crfree(bp->b_rcred);
1598			bp->b_rcred = NOCRED;
1599		}
1600		if (bp->b_wcred != NOCRED) {
1601			crfree(bp->b_wcred);
1602			bp->b_wcred = NOCRED;
1603		}
1604		if (LIST_FIRST(&bp->b_dep) != NULL)
1605			buf_deallocate(bp);
1606		if (bp->b_xflags & BX_BKGRDINPROG)
1607			panic("losing buffer 3");
1608		LIST_REMOVE(bp, b_hash);
1609		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1610
1611		if (bp->b_bufsize)
1612			allocbuf(bp, 0);
1613
1614		bp->b_flags = 0;
1615		bp->b_ioflags = 0;
1616		bp->b_xflags = 0;
1617		bp->b_dev = NODEV;
1618		bp->b_vp = NULL;
1619		bp->b_blkno = bp->b_lblkno = 0;
1620		bp->b_offset = NOOFFSET;
1621		bp->b_iodone = 0;
1622		bp->b_error = 0;
1623		bp->b_resid = 0;
1624		bp->b_bcount = 0;
1625		bp->b_npages = 0;
1626		bp->b_dirtyoff = bp->b_dirtyend = 0;
1627
1628		LIST_INIT(&bp->b_dep);
1629
1630		/*
1631		 * If we are defragging then free the buffer.
1632		 */
1633		if (defrag) {
1634			bp->b_flags |= B_INVAL;
1635			bfreekva(bp);
1636			brelse(bp);
1637			defrag = 0;
1638			goto restart;
1639		}
1640
1641		if (bufspace >= hibufspace)
1642			flushingbufs = 1;
1643		if (flushingbufs && bp->b_kvasize != 0) {
1644			bp->b_flags |= B_INVAL;
1645			bfreekva(bp);
1646			brelse(bp);
1647			goto restart;
1648		}
1649		if (bufspace < lobufspace)
1650			flushingbufs = 0;
1651		break;
1652	}
1653
1654	/*
1655	 * If we exhausted our list, sleep as appropriate.  We may have to
1656	 * wakeup various daemons and write out some dirty buffers.
1657	 *
1658	 * Generally we are sleeping due to insufficient buffer space.
1659	 */
1660
1661	if (bp == NULL) {
1662		int flags;
1663		char *waitmsg;
1664
1665		if (defrag) {
1666			flags = VFS_BIO_NEED_BUFSPACE;
1667			waitmsg = "nbufkv";
1668		} else if (bufspace >= hibufspace) {
1669			waitmsg = "nbufbs";
1670			flags = VFS_BIO_NEED_BUFSPACE;
1671		} else {
1672			waitmsg = "newbuf";
1673			flags = VFS_BIO_NEED_ANY;
1674		}
1675
1676		bd_speedup();	/* heeeelp */
1677
1678		needsbuffer |= flags;
1679		while (needsbuffer & flags) {
1680			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1681			    waitmsg, slptimeo))
1682				return (NULL);
1683		}
1684	} else {
1685		/*
1686		 * We finally have a valid bp.  We aren't quite out of the
1687		 * woods, we still have to reserve kva space.  In order
1688		 * to keep fragmentation sane we only allocate kva in
1689		 * BKVASIZE chunks.
1690		 */
1691		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1692
1693		if (maxsize != bp->b_kvasize) {
1694			vm_offset_t addr = 0;
1695
1696			bfreekva(bp);
1697
1698			if (vm_map_findspace(buffer_map,
1699				vm_map_min(buffer_map), maxsize, &addr)) {
1700				/*
1701				 * Uh oh.  Buffer map is to fragmented.  We
1702				 * must defragment the map.
1703				 */
1704				++bufdefragcnt;
1705				defrag = 1;
1706				bp->b_flags |= B_INVAL;
1707				brelse(bp);
1708				goto restart;
1709			}
1710			if (addr) {
1711				vm_map_insert(buffer_map, NULL, 0,
1712					addr, addr + maxsize,
1713					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1714
1715				bp->b_kvabase = (caddr_t) addr;
1716				bp->b_kvasize = maxsize;
1717				bufspace += bp->b_kvasize;
1718				++bufreusecnt;
1719			}
1720		}
1721		bp->b_data = bp->b_kvabase;
1722	}
1723	return(bp);
1724}
1725
1726#if 0
1727/*
1728 *	waitfreebuffers:
1729 *
1730 *	Wait for sufficient free buffers.  Only called from normal processes.
1731 */
1732
1733static void
1734waitfreebuffers(int slpflag, int slptimeo)
1735{
1736	while (numfreebuffers < hifreebuffers) {
1737		if (numfreebuffers >= hifreebuffers)
1738			break;
1739		needsbuffer |= VFS_BIO_NEED_FREE;
1740		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1741			break;
1742	}
1743}
1744
1745#endif
1746
1747/*
1748 *	buf_daemon:
1749 *
1750 *	buffer flushing daemon.  Buffers are normally flushed by the
1751 *	update daemon but if it cannot keep up this process starts to
1752 *	take the load in an attempt to prevent getnewbuf() from blocking.
1753 */
1754
1755static struct proc *bufdaemonproc;
1756static int bd_interval;
1757static int bd_flushto;
1758static int bd_flushinc;
1759
1760static struct kproc_desc buf_kp = {
1761	"bufdaemon",
1762	buf_daemon,
1763	&bufdaemonproc
1764};
1765SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1766
1767static void
1768buf_daemon()
1769{
1770	int s;
1771
1772	mtx_enter(&Giant, MTX_DEF);
1773
1774	/*
1775	 * This process needs to be suspended prior to shutdown sync.
1776	 */
1777	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, bufdaemonproc,
1778	    SHUTDOWN_PRI_LAST);
1779
1780	/*
1781	 * This process is allowed to take the buffer cache to the limit
1782	 */
1783	curproc->p_flag |= P_BUFEXHAUST;
1784	s = splbio();
1785
1786	bd_interval = 5 * hz;	/* dynamically adjusted */
1787	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1788	bd_flushinc = 1;
1789
1790	for (;;) {
1791		kproc_suspend_loop(bufdaemonproc);
1792
1793		bd_request = 0;
1794
1795		/*
1796		 * Do the flush.  Limit the number of buffers we flush in one
1797		 * go.  The failure condition occurs when processes are writing
1798		 * buffers faster then we can dispose of them.  In this case
1799		 * we may be flushing so often that the previous set of flushes
1800		 * have not had time to complete, causing us to run out of
1801		 * physical buffers and block.
1802		 */
1803		{
1804			int runcount = maxbdrun;
1805
1806			while (numdirtybuffers > bd_flushto && runcount) {
1807				--runcount;
1808				if (flushbufqueues() == 0)
1809					break;
1810			}
1811		}
1812
1813		if (bd_request ||
1814		    tsleep(&bd_request, PVM, "psleep", bd_interval) == 0) {
1815			/*
1816			 * Another request is pending or we were woken up
1817			 * without timing out.  Flush more.
1818			 */
1819			--bd_flushto;
1820			if (bd_flushto >= numdirtybuffers - 5) {
1821				bd_flushto = numdirtybuffers - 10;
1822				bd_flushinc = 1;
1823			}
1824			if (bd_flushto < 2)
1825				bd_flushto = 2;
1826		} else {
1827			/*
1828			 * We slept and timed out, we can slow down.
1829			 */
1830			bd_flushto += bd_flushinc;
1831			if (bd_flushto > hidirtybuffers)
1832				bd_flushto = hidirtybuffers;
1833			++bd_flushinc;
1834			if (bd_flushinc > hidirtybuffers / 20 + 1)
1835				bd_flushinc = hidirtybuffers / 20 + 1;
1836		}
1837
1838		/*
1839		 * Set the interval on a linear scale based on hidirtybuffers
1840		 * with a maximum frequency of 1/10 second.
1841		 */
1842		bd_interval = bd_flushto * 5 * hz / hidirtybuffers;
1843		if (bd_interval < hz / 10)
1844			bd_interval = hz / 10;
1845	}
1846}
1847
1848/*
1849 *	flushbufqueues:
1850 *
1851 *	Try to flush a buffer in the dirty queue.  We must be careful to
1852 *	free up B_INVAL buffers instead of write them, which NFS is
1853 *	particularly sensitive to.
1854 */
1855
1856static int
1857flushbufqueues(void)
1858{
1859	struct buf *bp;
1860	int r = 0;
1861
1862	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1863
1864	while (bp) {
1865		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1866		if ((bp->b_flags & B_DELWRI) != 0 &&
1867		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1868			if (bp->b_flags & B_INVAL) {
1869				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1870					panic("flushbufqueues: locked buf");
1871				bremfree(bp);
1872				brelse(bp);
1873				++r;
1874				break;
1875			}
1876			if (LIST_FIRST(&bp->b_dep) != NULL &&
1877			    (bp->b_flags & B_DEFERRED) == 0 &&
1878			    buf_countdeps(bp, 0)) {
1879				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1880				    bp, b_freelist);
1881				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1882				    bp, b_freelist);
1883				bp->b_flags |= B_DEFERRED;
1884				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1885				continue;
1886			}
1887			vfs_bio_awrite(bp);
1888			++r;
1889			break;
1890		}
1891		bp = TAILQ_NEXT(bp, b_freelist);
1892	}
1893	return (r);
1894}
1895
1896/*
1897 * Check to see if a block is currently memory resident.
1898 */
1899struct buf *
1900incore(struct vnode * vp, daddr_t blkno)
1901{
1902	struct buf *bp;
1903
1904	int s = splbio();
1905	bp = gbincore(vp, blkno);
1906	splx(s);
1907	return (bp);
1908}
1909
1910/*
1911 * Returns true if no I/O is needed to access the
1912 * associated VM object.  This is like incore except
1913 * it also hunts around in the VM system for the data.
1914 */
1915
1916int
1917inmem(struct vnode * vp, daddr_t blkno)
1918{
1919	vm_object_t obj;
1920	vm_offset_t toff, tinc, size;
1921	vm_page_t m;
1922	vm_ooffset_t off;
1923
1924	if (incore(vp, blkno))
1925		return 1;
1926	if (vp->v_mount == NULL)
1927		return 0;
1928	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_flag & VOBJBUF) == 0)
1929		return 0;
1930
1931	size = PAGE_SIZE;
1932	if (size > vp->v_mount->mnt_stat.f_iosize)
1933		size = vp->v_mount->mnt_stat.f_iosize;
1934	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1935
1936	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1937		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1938		if (!m)
1939			return 0;
1940		tinc = size;
1941		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1942			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1943		if (vm_page_is_valid(m,
1944		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1945			return 0;
1946	}
1947	return 1;
1948}
1949
1950/*
1951 *	vfs_setdirty:
1952 *
1953 *	Sets the dirty range for a buffer based on the status of the dirty
1954 *	bits in the pages comprising the buffer.
1955 *
1956 *	The range is limited to the size of the buffer.
1957 *
1958 *	This routine is primarily used by NFS, but is generalized for the
1959 *	B_VMIO case.
1960 */
1961static void
1962vfs_setdirty(struct buf *bp)
1963{
1964	int i;
1965	vm_object_t object;
1966
1967	/*
1968	 * Degenerate case - empty buffer
1969	 */
1970
1971	if (bp->b_bufsize == 0)
1972		return;
1973
1974	/*
1975	 * We qualify the scan for modified pages on whether the
1976	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1977	 * is not cleared simply by protecting pages off.
1978	 */
1979
1980	if ((bp->b_flags & B_VMIO) == 0)
1981		return;
1982
1983	object = bp->b_pages[0]->object;
1984
1985	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1986		printf("Warning: object %p writeable but not mightbedirty\n", object);
1987	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1988		printf("Warning: object %p mightbedirty but not writeable\n", object);
1989
1990	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1991		vm_offset_t boffset;
1992		vm_offset_t eoffset;
1993
1994		/*
1995		 * test the pages to see if they have been modified directly
1996		 * by users through the VM system.
1997		 */
1998		for (i = 0; i < bp->b_npages; i++) {
1999			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2000			vm_page_test_dirty(bp->b_pages[i]);
2001		}
2002
2003		/*
2004		 * Calculate the encompassing dirty range, boffset and eoffset,
2005		 * (eoffset - boffset) bytes.
2006		 */
2007
2008		for (i = 0; i < bp->b_npages; i++) {
2009			if (bp->b_pages[i]->dirty)
2010				break;
2011		}
2012		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2013
2014		for (i = bp->b_npages - 1; i >= 0; --i) {
2015			if (bp->b_pages[i]->dirty) {
2016				break;
2017			}
2018		}
2019		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2020
2021		/*
2022		 * Fit it to the buffer.
2023		 */
2024
2025		if (eoffset > bp->b_bcount)
2026			eoffset = bp->b_bcount;
2027
2028		/*
2029		 * If we have a good dirty range, merge with the existing
2030		 * dirty range.
2031		 */
2032
2033		if (boffset < eoffset) {
2034			if (bp->b_dirtyoff > boffset)
2035				bp->b_dirtyoff = boffset;
2036			if (bp->b_dirtyend < eoffset)
2037				bp->b_dirtyend = eoffset;
2038		}
2039	}
2040}
2041
2042/*
2043 *	getblk:
2044 *
2045 *	Get a block given a specified block and offset into a file/device.
2046 *	The buffers B_DONE bit will be cleared on return, making it almost
2047 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2048 *	return.  The caller should clear B_INVAL prior to initiating a
2049 *	READ.
2050 *
2051 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2052 *	an existing buffer.
2053 *
2054 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2055 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2056 *	and then cleared based on the backing VM.  If the previous buffer is
2057 *	non-0-sized but invalid, B_CACHE will be cleared.
2058 *
2059 *	If getblk() must create a new buffer, the new buffer is returned with
2060 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2061 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2062 *	backing VM.
2063 *
2064 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2065 *	B_CACHE bit is clear.
2066 *
2067 *	What this means, basically, is that the caller should use B_CACHE to
2068 *	determine whether the buffer is fully valid or not and should clear
2069 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2070 *	the buffer by loading its data area with something, the caller needs
2071 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2072 *	the caller should set B_CACHE ( as an optimization ), else the caller
2073 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2074 *	a write attempt or if it was a successfull read.  If the caller
2075 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2076 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2077 */
2078struct buf *
2079getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2080{
2081	struct buf *bp;
2082	int s;
2083	struct bufhashhdr *bh;
2084
2085	if (size > MAXBSIZE)
2086		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2087
2088	s = splbio();
2089loop:
2090	/*
2091	 * Block if we are low on buffers.   Certain processes are allowed
2092	 * to completely exhaust the buffer cache.
2093         *
2094         * If this check ever becomes a bottleneck it may be better to
2095         * move it into the else, when gbincore() fails.  At the moment
2096         * it isn't a problem.
2097	 *
2098	 * XXX remove if 0 sections (clean this up after its proven)
2099         */
2100#if 0
2101	if (curproc == idleproc || (curproc->p_flag & P_BUFEXHAUST)) {
2102#endif
2103		if (numfreebuffers == 0) {
2104			if (curproc == idleproc)
2105				return NULL;
2106			needsbuffer |= VFS_BIO_NEED_ANY;
2107			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2108			    slptimeo);
2109		}
2110#if 0
2111	} else if (numfreebuffers < lofreebuffers) {
2112		waitfreebuffers(slpflag, slptimeo);
2113	}
2114#endif
2115
2116	if ((bp = gbincore(vp, blkno))) {
2117		/*
2118		 * Buffer is in-core.  If the buffer is not busy, it must
2119		 * be on a queue.
2120		 */
2121
2122		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2123			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2124			    "getblk", slpflag, slptimeo) == ENOLCK)
2125				goto loop;
2126			splx(s);
2127			return (struct buf *) NULL;
2128		}
2129
2130		/*
2131		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2132		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2133		 * and for a VMIO buffer B_CACHE is adjusted according to the
2134		 * backing VM cache.
2135		 */
2136		if (bp->b_flags & B_INVAL)
2137			bp->b_flags &= ~B_CACHE;
2138		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2139			bp->b_flags |= B_CACHE;
2140		bremfree(bp);
2141
2142		/*
2143		 * check for size inconsistancies for non-VMIO case.
2144		 */
2145
2146		if (bp->b_bcount != size) {
2147			if ((bp->b_flags & B_VMIO) == 0 ||
2148			    (size > bp->b_kvasize)) {
2149				if (bp->b_flags & B_DELWRI) {
2150					bp->b_flags |= B_NOCACHE;
2151					BUF_WRITE(bp);
2152				} else {
2153					if ((bp->b_flags & B_VMIO) &&
2154					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2155						bp->b_flags |= B_RELBUF;
2156						brelse(bp);
2157					} else {
2158						bp->b_flags |= B_NOCACHE;
2159						BUF_WRITE(bp);
2160					}
2161				}
2162				goto loop;
2163			}
2164		}
2165
2166		/*
2167		 * If the size is inconsistant in the VMIO case, we can resize
2168		 * the buffer.  This might lead to B_CACHE getting set or
2169		 * cleared.  If the size has not changed, B_CACHE remains
2170		 * unchanged from its previous state.
2171		 */
2172
2173		if (bp->b_bcount != size)
2174			allocbuf(bp, size);
2175
2176		KASSERT(bp->b_offset != NOOFFSET,
2177		    ("getblk: no buffer offset"));
2178
2179		/*
2180		 * A buffer with B_DELWRI set and B_CACHE clear must
2181		 * be committed before we can return the buffer in
2182		 * order to prevent the caller from issuing a read
2183		 * ( due to B_CACHE not being set ) and overwriting
2184		 * it.
2185		 *
2186		 * Most callers, including NFS and FFS, need this to
2187		 * operate properly either because they assume they
2188		 * can issue a read if B_CACHE is not set, or because
2189		 * ( for example ) an uncached B_DELWRI might loop due
2190		 * to softupdates re-dirtying the buffer.  In the latter
2191		 * case, B_CACHE is set after the first write completes,
2192		 * preventing further loops.
2193		 */
2194
2195		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2196			BUF_WRITE(bp);
2197			goto loop;
2198		}
2199
2200		splx(s);
2201		bp->b_flags &= ~B_DONE;
2202	} else {
2203		/*
2204		 * Buffer is not in-core, create new buffer.  The buffer
2205		 * returned by getnewbuf() is locked.  Note that the returned
2206		 * buffer is also considered valid (not marked B_INVAL).
2207		 */
2208		int bsize, maxsize, vmio;
2209		off_t offset;
2210
2211		if (vn_isdisk(vp, NULL))
2212			bsize = DEV_BSIZE;
2213		else if (vp->v_mountedhere)
2214			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2215		else if (vp->v_mount)
2216			bsize = vp->v_mount->mnt_stat.f_iosize;
2217		else
2218			bsize = size;
2219
2220		offset = (off_t)blkno * bsize;
2221		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) && (vp->v_flag & VOBJBUF);
2222		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2223		maxsize = imax(maxsize, bsize);
2224
2225		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2226			if (slpflag || slptimeo) {
2227				splx(s);
2228				return NULL;
2229			}
2230			goto loop;
2231		}
2232
2233		/*
2234		 * This code is used to make sure that a buffer is not
2235		 * created while the getnewbuf routine is blocked.
2236		 * This can be a problem whether the vnode is locked or not.
2237		 * If the buffer is created out from under us, we have to
2238		 * throw away the one we just created.  There is now window
2239		 * race because we are safely running at splbio() from the
2240		 * point of the duplicate buffer creation through to here,
2241		 * and we've locked the buffer.
2242		 */
2243		if (gbincore(vp, blkno)) {
2244			bp->b_flags |= B_INVAL;
2245			brelse(bp);
2246			goto loop;
2247		}
2248
2249		/*
2250		 * Insert the buffer into the hash, so that it can
2251		 * be found by incore.
2252		 */
2253		bp->b_blkno = bp->b_lblkno = blkno;
2254		bp->b_offset = offset;
2255
2256		bgetvp(vp, bp);
2257		LIST_REMOVE(bp, b_hash);
2258		bh = bufhash(vp, blkno);
2259		LIST_INSERT_HEAD(bh, bp, b_hash);
2260
2261		/*
2262		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2263		 * buffer size starts out as 0, B_CACHE will be set by
2264		 * allocbuf() for the VMIO case prior to it testing the
2265		 * backing store for validity.
2266		 */
2267
2268		if (vmio) {
2269			bp->b_flags |= B_VMIO;
2270#if defined(VFS_BIO_DEBUG)
2271			if (vp->v_type != VREG)
2272				printf("getblk: vmioing file type %d???\n", vp->v_type);
2273#endif
2274		} else {
2275			bp->b_flags &= ~B_VMIO;
2276		}
2277
2278		allocbuf(bp, size);
2279
2280		splx(s);
2281		bp->b_flags &= ~B_DONE;
2282	}
2283	return (bp);
2284}
2285
2286/*
2287 * Get an empty, disassociated buffer of given size.  The buffer is initially
2288 * set to B_INVAL.
2289 */
2290struct buf *
2291geteblk(int size)
2292{
2293	struct buf *bp;
2294	int s;
2295	int maxsize;
2296
2297	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2298
2299	s = splbio();
2300	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2301	splx(s);
2302	allocbuf(bp, size);
2303	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2304	return (bp);
2305}
2306
2307
2308/*
2309 * This code constitutes the buffer memory from either anonymous system
2310 * memory (in the case of non-VMIO operations) or from an associated
2311 * VM object (in the case of VMIO operations).  This code is able to
2312 * resize a buffer up or down.
2313 *
2314 * Note that this code is tricky, and has many complications to resolve
2315 * deadlock or inconsistant data situations.  Tread lightly!!!
2316 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2317 * the caller.  Calling this code willy nilly can result in the loss of data.
2318 *
2319 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2320 * B_CACHE for the non-VMIO case.
2321 */
2322
2323int
2324allocbuf(struct buf *bp, int size)
2325{
2326	int newbsize, mbsize;
2327	int i;
2328
2329	if (BUF_REFCNT(bp) == 0)
2330		panic("allocbuf: buffer not busy");
2331
2332	if (bp->b_kvasize < size)
2333		panic("allocbuf: buffer too small");
2334
2335	if ((bp->b_flags & B_VMIO) == 0) {
2336		caddr_t origbuf;
2337		int origbufsize;
2338		/*
2339		 * Just get anonymous memory from the kernel.  Don't
2340		 * mess with B_CACHE.
2341		 */
2342		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2343#if !defined(NO_B_MALLOC)
2344		if (bp->b_flags & B_MALLOC)
2345			newbsize = mbsize;
2346		else
2347#endif
2348			newbsize = round_page(size);
2349
2350		if (newbsize < bp->b_bufsize) {
2351#if !defined(NO_B_MALLOC)
2352			/*
2353			 * malloced buffers are not shrunk
2354			 */
2355			if (bp->b_flags & B_MALLOC) {
2356				if (newbsize) {
2357					bp->b_bcount = size;
2358				} else {
2359					free(bp->b_data, M_BIOBUF);
2360					bufmallocspace -= bp->b_bufsize;
2361					runningbufspace -= bp->b_bufsize;
2362					if (bp->b_bufsize)
2363						bufspacewakeup();
2364					bp->b_data = bp->b_kvabase;
2365					bp->b_bufsize = 0;
2366					bp->b_bcount = 0;
2367					bp->b_flags &= ~B_MALLOC;
2368				}
2369				return 1;
2370			}
2371#endif
2372			vm_hold_free_pages(
2373			    bp,
2374			    (vm_offset_t) bp->b_data + newbsize,
2375			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2376		} else if (newbsize > bp->b_bufsize) {
2377#if !defined(NO_B_MALLOC)
2378			/*
2379			 * We only use malloced memory on the first allocation.
2380			 * and revert to page-allocated memory when the buffer
2381			 * grows.
2382			 */
2383			if ( (bufmallocspace < maxbufmallocspace) &&
2384				(bp->b_bufsize == 0) &&
2385				(mbsize <= PAGE_SIZE/2)) {
2386
2387				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2388				bp->b_bufsize = mbsize;
2389				bp->b_bcount = size;
2390				bp->b_flags |= B_MALLOC;
2391				bufmallocspace += mbsize;
2392				runningbufspace += bp->b_bufsize;
2393				return 1;
2394			}
2395#endif
2396			origbuf = NULL;
2397			origbufsize = 0;
2398#if !defined(NO_B_MALLOC)
2399			/*
2400			 * If the buffer is growing on its other-than-first allocation,
2401			 * then we revert to the page-allocation scheme.
2402			 */
2403			if (bp->b_flags & B_MALLOC) {
2404				origbuf = bp->b_data;
2405				origbufsize = bp->b_bufsize;
2406				bp->b_data = bp->b_kvabase;
2407				bufmallocspace -= bp->b_bufsize;
2408				runningbufspace -= bp->b_bufsize;
2409				if (bp->b_bufsize)
2410					bufspacewakeup();
2411				bp->b_bufsize = 0;
2412				bp->b_flags &= ~B_MALLOC;
2413				newbsize = round_page(newbsize);
2414			}
2415#endif
2416			vm_hold_load_pages(
2417			    bp,
2418			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2419			    (vm_offset_t) bp->b_data + newbsize);
2420#if !defined(NO_B_MALLOC)
2421			if (origbuf) {
2422				bcopy(origbuf, bp->b_data, origbufsize);
2423				free(origbuf, M_BIOBUF);
2424			}
2425#endif
2426		}
2427	} else {
2428		vm_page_t m;
2429		int desiredpages;
2430
2431		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2432		desiredpages = (size == 0) ? 0 :
2433			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2434
2435#if !defined(NO_B_MALLOC)
2436		if (bp->b_flags & B_MALLOC)
2437			panic("allocbuf: VMIO buffer can't be malloced");
2438#endif
2439		/*
2440		 * Set B_CACHE initially if buffer is 0 length or will become
2441		 * 0-length.
2442		 */
2443		if (size == 0 || bp->b_bufsize == 0)
2444			bp->b_flags |= B_CACHE;
2445
2446		if (newbsize < bp->b_bufsize) {
2447			/*
2448			 * DEV_BSIZE aligned new buffer size is less then the
2449			 * DEV_BSIZE aligned existing buffer size.  Figure out
2450			 * if we have to remove any pages.
2451			 */
2452			if (desiredpages < bp->b_npages) {
2453				for (i = desiredpages; i < bp->b_npages; i++) {
2454					/*
2455					 * the page is not freed here -- it
2456					 * is the responsibility of
2457					 * vnode_pager_setsize
2458					 */
2459					m = bp->b_pages[i];
2460					KASSERT(m != bogus_page,
2461					    ("allocbuf: bogus page found"));
2462					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2463						;
2464
2465					bp->b_pages[i] = NULL;
2466					vm_page_unwire(m, 0);
2467				}
2468				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2469				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2470				bp->b_npages = desiredpages;
2471			}
2472		} else if (size > bp->b_bcount) {
2473			/*
2474			 * We are growing the buffer, possibly in a
2475			 * byte-granular fashion.
2476			 */
2477			struct vnode *vp;
2478			vm_object_t obj;
2479			vm_offset_t toff;
2480			vm_offset_t tinc;
2481
2482			/*
2483			 * Step 1, bring in the VM pages from the object,
2484			 * allocating them if necessary.  We must clear
2485			 * B_CACHE if these pages are not valid for the
2486			 * range covered by the buffer.
2487			 */
2488
2489			vp = bp->b_vp;
2490			VOP_GETVOBJECT(vp, &obj);
2491
2492			while (bp->b_npages < desiredpages) {
2493				vm_page_t m;
2494				vm_pindex_t pi;
2495
2496				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2497				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2498					/*
2499					 * note: must allocate system pages
2500					 * since blocking here could intefere
2501					 * with paging I/O, no matter which
2502					 * process we are.
2503					 */
2504					m = vm_page_alloc(obj, pi, VM_ALLOC_SYSTEM);
2505					if (m == NULL) {
2506						VM_WAIT;
2507						vm_pageout_deficit += desiredpages - bp->b_npages;
2508					} else {
2509						vm_page_wire(m);
2510						vm_page_wakeup(m);
2511						bp->b_flags &= ~B_CACHE;
2512						bp->b_pages[bp->b_npages] = m;
2513						++bp->b_npages;
2514					}
2515					continue;
2516				}
2517
2518				/*
2519				 * We found a page.  If we have to sleep on it,
2520				 * retry because it might have gotten freed out
2521				 * from under us.
2522				 *
2523				 * We can only test PG_BUSY here.  Blocking on
2524				 * m->busy might lead to a deadlock:
2525				 *
2526				 *  vm_fault->getpages->cluster_read->allocbuf
2527				 *
2528				 */
2529
2530				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2531					continue;
2532
2533				/*
2534				 * We have a good page.  Should we wakeup the
2535				 * page daemon?
2536				 */
2537				if ((curproc != pageproc) &&
2538				    ((m->queue - m->pc) == PQ_CACHE) &&
2539				    ((cnt.v_free_count + cnt.v_cache_count) <
2540					(cnt.v_free_min + cnt.v_cache_min))) {
2541					pagedaemon_wakeup();
2542				}
2543				vm_page_flag_clear(m, PG_ZERO);
2544				vm_page_wire(m);
2545				bp->b_pages[bp->b_npages] = m;
2546				++bp->b_npages;
2547			}
2548
2549			/*
2550			 * Step 2.  We've loaded the pages into the buffer,
2551			 * we have to figure out if we can still have B_CACHE
2552			 * set.  Note that B_CACHE is set according to the
2553			 * byte-granular range ( bcount and size ), new the
2554			 * aligned range ( newbsize ).
2555			 *
2556			 * The VM test is against m->valid, which is DEV_BSIZE
2557			 * aligned.  Needless to say, the validity of the data
2558			 * needs to also be DEV_BSIZE aligned.  Note that this
2559			 * fails with NFS if the server or some other client
2560			 * extends the file's EOF.  If our buffer is resized,
2561			 * B_CACHE may remain set! XXX
2562			 */
2563
2564			toff = bp->b_bcount;
2565			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2566
2567			while ((bp->b_flags & B_CACHE) && toff < size) {
2568				vm_pindex_t pi;
2569
2570				if (tinc > (size - toff))
2571					tinc = size - toff;
2572
2573				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2574				    PAGE_SHIFT;
2575
2576				vfs_buf_test_cache(
2577				    bp,
2578				    bp->b_offset,
2579				    toff,
2580				    tinc,
2581				    bp->b_pages[pi]
2582				);
2583				toff += tinc;
2584				tinc = PAGE_SIZE;
2585			}
2586
2587			/*
2588			 * Step 3, fixup the KVM pmap.  Remember that
2589			 * bp->b_data is relative to bp->b_offset, but
2590			 * bp->b_offset may be offset into the first page.
2591			 */
2592
2593			bp->b_data = (caddr_t)
2594			    trunc_page((vm_offset_t)bp->b_data);
2595			pmap_qenter(
2596			    (vm_offset_t)bp->b_data,
2597			    bp->b_pages,
2598			    bp->b_npages
2599			);
2600			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2601			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2602		}
2603	}
2604	runningbufspace += (newbsize - bp->b_bufsize);
2605	if (newbsize < bp->b_bufsize)
2606		bufspacewakeup();
2607	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2608	bp->b_bcount = size;		/* requested buffer size	*/
2609	return 1;
2610}
2611
2612/*
2613 *	bufwait:
2614 *
2615 *	Wait for buffer I/O completion, returning error status.  The buffer
2616 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2617 *	error and cleared.
2618 */
2619int
2620bufwait(register struct buf * bp)
2621{
2622	int s;
2623
2624	s = splbio();
2625	while ((bp->b_flags & B_DONE) == 0) {
2626		if (bp->b_iocmd == BIO_READ)
2627			tsleep(bp, PRIBIO, "biord", 0);
2628		else
2629			tsleep(bp, PRIBIO, "biowr", 0);
2630	}
2631	splx(s);
2632	if (bp->b_flags & B_EINTR) {
2633		bp->b_flags &= ~B_EINTR;
2634		return (EINTR);
2635	}
2636	if (bp->b_ioflags & BIO_ERROR) {
2637		return (bp->b_error ? bp->b_error : EIO);
2638	} else {
2639		return (0);
2640	}
2641}
2642
2643 /*
2644  * Call back function from struct bio back up to struct buf.
2645  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2646  */
2647void
2648bufdonebio(struct bio *bp)
2649{
2650	bufdone(bp->bio_caller2);
2651}
2652
2653/*
2654 *	bufdone:
2655 *
2656 *	Finish I/O on a buffer, optionally calling a completion function.
2657 *	This is usually called from an interrupt so process blocking is
2658 *	not allowed.
2659 *
2660 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2661 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2662 *	assuming B_INVAL is clear.
2663 *
2664 *	For the VMIO case, we set B_CACHE if the op was a read and no
2665 *	read error occured, or if the op was a write.  B_CACHE is never
2666 *	set if the buffer is invalid or otherwise uncacheable.
2667 *
2668 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2669 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2670 *	in the biodone routine.
2671 */
2672void
2673bufdone(struct buf *bp)
2674{
2675	int s, error;
2676	void    (*biodone) __P((struct buf *));
2677
2678	s = splbio();
2679
2680	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2681	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2682
2683	bp->b_flags |= B_DONE;
2684
2685	if (bp->b_iocmd == BIO_DELETE) {
2686		brelse(bp);
2687		splx(s);
2688		return;
2689	}
2690
2691	if (bp->b_iocmd == BIO_WRITE) {
2692		vwakeup(bp);
2693	}
2694
2695	/* call optional completion function if requested */
2696	if (bp->b_iodone != NULL) {
2697		biodone = bp->b_iodone;
2698		bp->b_iodone = NULL;
2699		(*biodone) (bp);
2700		splx(s);
2701		return;
2702	}
2703	if (LIST_FIRST(&bp->b_dep) != NULL)
2704		buf_complete(bp);
2705
2706	if (bp->b_flags & B_VMIO) {
2707		int i;
2708		vm_ooffset_t foff;
2709		vm_page_t m;
2710		vm_object_t obj;
2711		int iosize;
2712		struct vnode *vp = bp->b_vp;
2713
2714		error = VOP_GETVOBJECT(vp, &obj);
2715
2716#if defined(VFS_BIO_DEBUG)
2717		if (vp->v_usecount == 0) {
2718			panic("biodone: zero vnode ref count");
2719		}
2720
2721		if (error) {
2722			panic("biodone: missing VM object");
2723		}
2724
2725		if ((vp->v_flag & VOBJBUF) == 0) {
2726			panic("biodone: vnode is not setup for merged cache");
2727		}
2728#endif
2729
2730		foff = bp->b_offset;
2731		KASSERT(bp->b_offset != NOOFFSET,
2732		    ("biodone: no buffer offset"));
2733
2734		if (error) {
2735			panic("biodone: no object");
2736		}
2737#if defined(VFS_BIO_DEBUG)
2738		if (obj->paging_in_progress < bp->b_npages) {
2739			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2740			    obj->paging_in_progress, bp->b_npages);
2741		}
2742#endif
2743
2744		/*
2745		 * Set B_CACHE if the op was a normal read and no error
2746		 * occured.  B_CACHE is set for writes in the b*write()
2747		 * routines.
2748		 */
2749		iosize = bp->b_bcount - bp->b_resid;
2750		if (bp->b_iocmd == BIO_READ &&
2751		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2752		    !(bp->b_ioflags & BIO_ERROR)) {
2753			bp->b_flags |= B_CACHE;
2754		}
2755
2756		for (i = 0; i < bp->b_npages; i++) {
2757			int bogusflag = 0;
2758			int resid;
2759
2760			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2761			if (resid > iosize)
2762				resid = iosize;
2763
2764			/*
2765			 * cleanup bogus pages, restoring the originals
2766			 */
2767			m = bp->b_pages[i];
2768			if (m == bogus_page) {
2769				bogusflag = 1;
2770				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2771				if (!m) {
2772					panic("biodone: page disappeared!");
2773#if defined(VFS_BIO_DEBUG)
2774					printf("biodone: page disappeared\n");
2775#endif
2776					vm_object_pip_subtract(obj, 1);
2777					bp->b_flags &= ~B_CACHE;
2778					foff = (foff + PAGE_SIZE) &
2779					    ~(off_t)PAGE_MASK;
2780					iosize -= resid;
2781					continue;
2782				}
2783				bp->b_pages[i] = m;
2784				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2785			}
2786#if defined(VFS_BIO_DEBUG)
2787			if (OFF_TO_IDX(foff) != m->pindex) {
2788				printf(
2789"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2790				    (unsigned long)foff, m->pindex);
2791			}
2792#endif
2793
2794			/*
2795			 * In the write case, the valid and clean bits are
2796			 * already changed correctly ( see bdwrite() ), so we
2797			 * only need to do this here in the read case.
2798			 */
2799			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2800				vfs_page_set_valid(bp, foff, i, m);
2801			}
2802			vm_page_flag_clear(m, PG_ZERO);
2803
2804			/*
2805			 * when debugging new filesystems or buffer I/O methods, this
2806			 * is the most common error that pops up.  if you see this, you
2807			 * have not set the page busy flag correctly!!!
2808			 */
2809			if (m->busy == 0) {
2810				printf("biodone: page busy < 0, "
2811				    "pindex: %d, foff: 0x(%x,%x), "
2812				    "resid: %d, index: %d\n",
2813				    (int) m->pindex, (int)(foff >> 32),
2814						(int) foff & 0xffffffff, resid, i);
2815				if (!vn_isdisk(vp, NULL))
2816					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2817					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2818					    (int) bp->b_lblkno,
2819					    bp->b_flags, bp->b_npages);
2820				else
2821					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2822					    (int) bp->b_lblkno,
2823					    bp->b_flags, bp->b_npages);
2824				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2825				    m->valid, m->dirty, m->wire_count);
2826				panic("biodone: page busy < 0\n");
2827			}
2828			vm_page_io_finish(m);
2829			vm_object_pip_subtract(obj, 1);
2830			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2831			iosize -= resid;
2832		}
2833		if (obj)
2834			vm_object_pip_wakeupn(obj, 0);
2835	}
2836	/*
2837	 * For asynchronous completions, release the buffer now. The brelse
2838	 * will do a wakeup there if necessary - so no need to do a wakeup
2839	 * here in the async case. The sync case always needs to do a wakeup.
2840	 */
2841
2842	if (bp->b_flags & B_ASYNC) {
2843		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2844			brelse(bp);
2845		else
2846			bqrelse(bp);
2847	} else {
2848		wakeup(bp);
2849	}
2850	splx(s);
2851}
2852
2853/*
2854 * This routine is called in lieu of iodone in the case of
2855 * incomplete I/O.  This keeps the busy status for pages
2856 * consistant.
2857 */
2858void
2859vfs_unbusy_pages(struct buf * bp)
2860{
2861	int i;
2862
2863	if (bp->b_flags & B_VMIO) {
2864		struct vnode *vp = bp->b_vp;
2865		vm_object_t obj;
2866
2867		VOP_GETVOBJECT(vp, &obj);
2868
2869		for (i = 0; i < bp->b_npages; i++) {
2870			vm_page_t m = bp->b_pages[i];
2871
2872			if (m == bogus_page) {
2873				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2874				if (!m) {
2875					panic("vfs_unbusy_pages: page missing\n");
2876				}
2877				bp->b_pages[i] = m;
2878				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2879			}
2880			vm_object_pip_subtract(obj, 1);
2881			vm_page_flag_clear(m, PG_ZERO);
2882			vm_page_io_finish(m);
2883		}
2884		vm_object_pip_wakeupn(obj, 0);
2885	}
2886}
2887
2888/*
2889 * vfs_page_set_valid:
2890 *
2891 *	Set the valid bits in a page based on the supplied offset.   The
2892 *	range is restricted to the buffer's size.
2893 *
2894 *	This routine is typically called after a read completes.
2895 */
2896static void
2897vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2898{
2899	vm_ooffset_t soff, eoff;
2900
2901	/*
2902	 * Start and end offsets in buffer.  eoff - soff may not cross a
2903	 * page boundry or cross the end of the buffer.  The end of the
2904	 * buffer, in this case, is our file EOF, not the allocation size
2905	 * of the buffer.
2906	 */
2907	soff = off;
2908	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2909	if (eoff > bp->b_offset + bp->b_bcount)
2910		eoff = bp->b_offset + bp->b_bcount;
2911
2912	/*
2913	 * Set valid range.  This is typically the entire buffer and thus the
2914	 * entire page.
2915	 */
2916	if (eoff > soff) {
2917		vm_page_set_validclean(
2918		    m,
2919		   (vm_offset_t) (soff & PAGE_MASK),
2920		   (vm_offset_t) (eoff - soff)
2921		);
2922	}
2923}
2924
2925/*
2926 * This routine is called before a device strategy routine.
2927 * It is used to tell the VM system that paging I/O is in
2928 * progress, and treat the pages associated with the buffer
2929 * almost as being PG_BUSY.  Also the object paging_in_progress
2930 * flag is handled to make sure that the object doesn't become
2931 * inconsistant.
2932 *
2933 * Since I/O has not been initiated yet, certain buffer flags
2934 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
2935 * and should be ignored.
2936 */
2937void
2938vfs_busy_pages(struct buf * bp, int clear_modify)
2939{
2940	int i, bogus;
2941
2942	if (bp->b_flags & B_VMIO) {
2943		struct vnode *vp = bp->b_vp;
2944		vm_object_t obj;
2945		vm_ooffset_t foff;
2946
2947		VOP_GETVOBJECT(vp, &obj);
2948		foff = bp->b_offset;
2949		KASSERT(bp->b_offset != NOOFFSET,
2950		    ("vfs_busy_pages: no buffer offset"));
2951		vfs_setdirty(bp);
2952
2953retry:
2954		for (i = 0; i < bp->b_npages; i++) {
2955			vm_page_t m = bp->b_pages[i];
2956			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2957				goto retry;
2958		}
2959
2960		bogus = 0;
2961		for (i = 0; i < bp->b_npages; i++) {
2962			vm_page_t m = bp->b_pages[i];
2963
2964			vm_page_flag_clear(m, PG_ZERO);
2965			if ((bp->b_flags & B_CLUSTER) == 0) {
2966				vm_object_pip_add(obj, 1);
2967				vm_page_io_start(m);
2968			}
2969
2970			/*
2971			 * When readying a buffer for a read ( i.e
2972			 * clear_modify == 0 ), it is important to do
2973			 * bogus_page replacement for valid pages in
2974			 * partially instantiated buffers.  Partially
2975			 * instantiated buffers can, in turn, occur when
2976			 * reconstituting a buffer from its VM backing store
2977			 * base.  We only have to do this if B_CACHE is
2978			 * clear ( which causes the I/O to occur in the
2979			 * first place ).  The replacement prevents the read
2980			 * I/O from overwriting potentially dirty VM-backed
2981			 * pages.  XXX bogus page replacement is, uh, bogus.
2982			 * It may not work properly with small-block devices.
2983			 * We need to find a better way.
2984			 */
2985
2986			vm_page_protect(m, VM_PROT_NONE);
2987			if (clear_modify)
2988				vfs_page_set_valid(bp, foff, i, m);
2989			else if (m->valid == VM_PAGE_BITS_ALL &&
2990				(bp->b_flags & B_CACHE) == 0) {
2991				bp->b_pages[i] = bogus_page;
2992				bogus++;
2993			}
2994			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2995		}
2996		if (bogus)
2997			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2998	}
2999}
3000
3001/*
3002 * Tell the VM system that the pages associated with this buffer
3003 * are clean.  This is used for delayed writes where the data is
3004 * going to go to disk eventually without additional VM intevention.
3005 *
3006 * Note that while we only really need to clean through to b_bcount, we
3007 * just go ahead and clean through to b_bufsize.
3008 */
3009static void
3010vfs_clean_pages(struct buf * bp)
3011{
3012	int i;
3013
3014	if (bp->b_flags & B_VMIO) {
3015		vm_ooffset_t foff;
3016
3017		foff = bp->b_offset;
3018		KASSERT(bp->b_offset != NOOFFSET,
3019		    ("vfs_clean_pages: no buffer offset"));
3020		for (i = 0; i < bp->b_npages; i++) {
3021			vm_page_t m = bp->b_pages[i];
3022			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3023			vm_ooffset_t eoff = noff;
3024
3025			if (eoff > bp->b_offset + bp->b_bufsize)
3026				eoff = bp->b_offset + bp->b_bufsize;
3027			vfs_page_set_valid(bp, foff, i, m);
3028			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3029			foff = noff;
3030		}
3031	}
3032}
3033
3034/*
3035 *	vfs_bio_set_validclean:
3036 *
3037 *	Set the range within the buffer to valid and clean.  The range is
3038 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3039 *	itself may be offset from the beginning of the first page.
3040 */
3041
3042void
3043vfs_bio_set_validclean(struct buf *bp, int base, int size)
3044{
3045	if (bp->b_flags & B_VMIO) {
3046		int i;
3047		int n;
3048
3049		/*
3050		 * Fixup base to be relative to beginning of first page.
3051		 * Set initial n to be the maximum number of bytes in the
3052		 * first page that can be validated.
3053		 */
3054
3055		base += (bp->b_offset & PAGE_MASK);
3056		n = PAGE_SIZE - (base & PAGE_MASK);
3057
3058		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3059			vm_page_t m = bp->b_pages[i];
3060
3061			if (n > size)
3062				n = size;
3063
3064			vm_page_set_validclean(m, base & PAGE_MASK, n);
3065			base += n;
3066			size -= n;
3067			n = PAGE_SIZE;
3068		}
3069	}
3070}
3071
3072/*
3073 *	vfs_bio_clrbuf:
3074 *
3075 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3076 *	to clear BIO_ERROR and B_INVAL.
3077 *
3078 *	Note that while we only theoretically need to clear through b_bcount,
3079 *	we go ahead and clear through b_bufsize.
3080 */
3081
3082void
3083vfs_bio_clrbuf(struct buf *bp) {
3084	int i, mask = 0;
3085	caddr_t sa, ea;
3086	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3087		bp->b_flags &= ~B_INVAL;
3088		bp->b_ioflags &= ~BIO_ERROR;
3089		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3090		    (bp->b_offset & PAGE_MASK) == 0) {
3091			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3092			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3093			    ((bp->b_pages[0]->valid & mask) != mask)) {
3094				bzero(bp->b_data, bp->b_bufsize);
3095			}
3096			bp->b_pages[0]->valid |= mask;
3097			bp->b_resid = 0;
3098			return;
3099		}
3100		ea = sa = bp->b_data;
3101		for(i=0;i<bp->b_npages;i++,sa=ea) {
3102			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3103			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3104			ea = (caddr_t)(vm_offset_t)ulmin(
3105			    (u_long)(vm_offset_t)ea,
3106			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3107			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3108			if ((bp->b_pages[i]->valid & mask) == mask)
3109				continue;
3110			if ((bp->b_pages[i]->valid & mask) == 0) {
3111				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3112					bzero(sa, ea - sa);
3113				}
3114			} else {
3115				for (; sa < ea; sa += DEV_BSIZE, j++) {
3116					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3117						(bp->b_pages[i]->valid & (1<<j)) == 0)
3118						bzero(sa, DEV_BSIZE);
3119				}
3120			}
3121			bp->b_pages[i]->valid |= mask;
3122			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3123		}
3124		bp->b_resid = 0;
3125	} else {
3126		clrbuf(bp);
3127	}
3128}
3129
3130/*
3131 * vm_hold_load_pages and vm_hold_unload pages get pages into
3132 * a buffers address space.  The pages are anonymous and are
3133 * not associated with a file object.
3134 */
3135void
3136vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3137{
3138	vm_offset_t pg;
3139	vm_page_t p;
3140	int index;
3141
3142	to = round_page(to);
3143	from = round_page(from);
3144	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3145
3146	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3147
3148tryagain:
3149
3150		/*
3151		 * note: must allocate system pages since blocking here
3152		 * could intefere with paging I/O, no matter which
3153		 * process we are.
3154		 */
3155		p = vm_page_alloc(kernel_object,
3156			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3157		    VM_ALLOC_SYSTEM);
3158		if (!p) {
3159			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3160			VM_WAIT;
3161			goto tryagain;
3162		}
3163		vm_page_wire(p);
3164		p->valid = VM_PAGE_BITS_ALL;
3165		vm_page_flag_clear(p, PG_ZERO);
3166		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3167		bp->b_pages[index] = p;
3168		vm_page_wakeup(p);
3169	}
3170	bp->b_npages = index;
3171}
3172
3173void
3174vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3175{
3176	vm_offset_t pg;
3177	vm_page_t p;
3178	int index, newnpages;
3179
3180	from = round_page(from);
3181	to = round_page(to);
3182	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3183
3184	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3185		p = bp->b_pages[index];
3186		if (p && (index < bp->b_npages)) {
3187			if (p->busy) {
3188				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3189					bp->b_blkno, bp->b_lblkno);
3190			}
3191			bp->b_pages[index] = NULL;
3192			pmap_kremove(pg);
3193			vm_page_busy(p);
3194			vm_page_unwire(p, 0);
3195			vm_page_free(p);
3196		}
3197	}
3198	bp->b_npages = newnpages;
3199}
3200
3201
3202#include "opt_ddb.h"
3203#ifdef DDB
3204#include <ddb/ddb.h>
3205
3206DB_SHOW_COMMAND(buffer, db_show_buffer)
3207{
3208	/* get args */
3209	struct buf *bp = (struct buf *)addr;
3210
3211	if (!have_addr) {
3212		db_printf("usage: show buffer <addr>\n");
3213		return;
3214	}
3215
3216	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3217	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3218		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3219		  "b_blkno = %d, b_pblkno = %d\n",
3220		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3221		  major(bp->b_dev), minor(bp->b_dev),
3222		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3223	if (bp->b_npages) {
3224		int i;
3225		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3226		for (i = 0; i < bp->b_npages; i++) {
3227			vm_page_t m;
3228			m = bp->b_pages[i];
3229			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3230			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3231			if ((i + 1) < bp->b_npages)
3232				db_printf(",");
3233		}
3234		db_printf("\n");
3235	}
3236}
3237#endif /* DDB */
3238