vfs_bio.c revision 60041
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 60041 2000-05-05 09:59:14Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/bio.h>
33#include <sys/buf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/proc.h>
41#include <sys/reboot.h>
42#include <sys/resourcevar.h>
43#include <sys/sysctl.h>
44#include <sys/vmmeter.h>
45#include <sys/vnode.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_kern.h>
49#include <vm/vm_pageout.h>
50#include <vm/vm_page.h>
51#include <vm/vm_object.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_map.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59struct buf *buf;		/* buffer header pool */
60struct swqueue bswlist;
61struct simplelock buftimelock;	/* Interlock on setting prio and timo */
62
63static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
64		vm_offset_t to);
65static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
66		vm_offset_t to);
67static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
68			       int pageno, vm_page_t m);
69static void vfs_clean_pages(struct buf * bp);
70static void vfs_setdirty(struct buf *bp);
71static void vfs_vmio_release(struct buf *bp);
72static void vfs_backgroundwritedone(struct buf *bp);
73static int flushbufqueues(void);
74
75static int bd_request;
76
77static void buf_daemon __P((void));
78/*
79 * bogus page -- for I/O to/from partially complete buffers
80 * this is a temporary solution to the problem, but it is not
81 * really that bad.  it would be better to split the buffer
82 * for input in the case of buffers partially already in memory,
83 * but the code is intricate enough already.
84 */
85vm_page_t bogus_page;
86int runningbufspace;
87int vmiodirenable = FALSE;
88static vm_offset_t bogus_offset;
89
90static int bufspace, maxbufspace,
91	bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
92static int bufreusecnt, bufdefragcnt, buffreekvacnt;
93static int maxbdrun;
94static int needsbuffer;
95static int numdirtybuffers, hidirtybuffers;
96static int numfreebuffers, lofreebuffers, hifreebuffers;
97static int getnewbufcalls;
98static int getnewbufrestarts;
99
100SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
101	&numdirtybuffers, 0, "");
102SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
103	&hidirtybuffers, 0, "");
104SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
105	&numfreebuffers, 0, "");
106SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
107	&lofreebuffers, 0, "");
108SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
109	&hifreebuffers, 0, "");
110SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
111	&runningbufspace, 0, "");
112SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD,
113	&maxbufspace, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
115	&hibufspace, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD,
117	&lobufspace, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
119	&bufspace, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
121	&maxbdrun, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
123	&maxbufmallocspace, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
125	&bufmallocspace, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
127	&getnewbufcalls, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
129	&getnewbufrestarts, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
131	&vmiodirenable, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW,
133	&bufdefragcnt, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW,
135	&buffreekvacnt, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW,
137	&bufreusecnt, 0, "");
138
139static int bufhashmask;
140static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
141struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
142char *buf_wmesg = BUF_WMESG;
143
144extern int vm_swap_size;
145
146#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
147#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
148#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
149#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
150
151/*
152 * Buffer hash table code.  Note that the logical block scans linearly, which
153 * gives us some L1 cache locality.
154 */
155
156static __inline
157struct bufhashhdr *
158bufhash(struct vnode *vnp, daddr_t bn)
159{
160	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
161}
162
163/*
164 *	numdirtywakeup:
165 *
166 *	If someone is blocked due to there being too many dirty buffers,
167 *	and numdirtybuffers is now reasonable, wake them up.
168 */
169
170static __inline void
171numdirtywakeup(void)
172{
173	if (numdirtybuffers < hidirtybuffers) {
174		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
175			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
176			wakeup(&needsbuffer);
177		}
178	}
179}
180
181/*
182 *	bufspacewakeup:
183 *
184 *	Called when buffer space is potentially available for recovery.
185 *	getnewbuf() will block on this flag when it is unable to free
186 *	sufficient buffer space.  Buffer space becomes recoverable when
187 *	bp's get placed back in the queues.
188 */
189
190static __inline void
191bufspacewakeup(void)
192{
193	/*
194	 * If someone is waiting for BUF space, wake them up.  Even
195	 * though we haven't freed the kva space yet, the waiting
196	 * process will be able to now.
197	 */
198	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
199		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
200		wakeup(&needsbuffer);
201	}
202}
203
204/*
205 *	bufcountwakeup:
206 *
207 *	Called when a buffer has been added to one of the free queues to
208 *	account for the buffer and to wakeup anyone waiting for free buffers.
209 *	This typically occurs when large amounts of metadata are being handled
210 *	by the buffer cache ( else buffer space runs out first, usually ).
211 */
212
213static __inline void
214bufcountwakeup(void)
215{
216	++numfreebuffers;
217	if (needsbuffer) {
218		needsbuffer &= ~VFS_BIO_NEED_ANY;
219		if (numfreebuffers >= hifreebuffers)
220			needsbuffer &= ~VFS_BIO_NEED_FREE;
221		wakeup(&needsbuffer);
222	}
223}
224
225/*
226 *	vfs_buf_test_cache:
227 *
228 *	Called when a buffer is extended.  This function clears the B_CACHE
229 *	bit if the newly extended portion of the buffer does not contain
230 *	valid data.
231 */
232static __inline__
233void
234vfs_buf_test_cache(struct buf *bp,
235		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
236		  vm_page_t m)
237{
238	if (bp->b_flags & B_CACHE) {
239		int base = (foff + off) & PAGE_MASK;
240		if (vm_page_is_valid(m, base, size) == 0)
241			bp->b_flags &= ~B_CACHE;
242	}
243}
244
245static __inline__
246void
247bd_wakeup(int dirtybuflevel)
248{
249	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
250		bd_request = 1;
251		wakeup(&bd_request);
252	}
253}
254
255/*
256 * bd_speedup - speedup the buffer cache flushing code
257 */
258
259static __inline__
260void
261bd_speedup(void)
262{
263	bd_wakeup(1);
264}
265
266/*
267 * Initialize buffer headers and related structures.
268 */
269
270caddr_t
271bufhashinit(caddr_t vaddr)
272{
273	/* first, make a null hash table */
274	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
275		;
276	bufhashtbl = (void *)vaddr;
277	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
278	--bufhashmask;
279	return(vaddr);
280}
281
282void
283bufinit(void)
284{
285	struct buf *bp;
286	int i;
287
288	TAILQ_INIT(&bswlist);
289	LIST_INIT(&invalhash);
290	simple_lock_init(&buftimelock);
291
292	for (i = 0; i <= bufhashmask; i++)
293		LIST_INIT(&bufhashtbl[i]);
294
295	/* next, make a null set of free lists */
296	for (i = 0; i < BUFFER_QUEUES; i++)
297		TAILQ_INIT(&bufqueues[i]);
298
299	/* finally, initialize each buffer header and stick on empty q */
300	for (i = 0; i < nbuf; i++) {
301		bp = &buf[i];
302		bzero(bp, sizeof *bp);
303		bp->b_flags = B_INVAL;	/* we're just an empty header */
304		bp->b_dev = NODEV;
305		bp->b_rcred = NOCRED;
306		bp->b_wcred = NOCRED;
307		bp->b_qindex = QUEUE_EMPTY;
308		bp->b_xflags = 0;
309		LIST_INIT(&bp->b_dep);
310		BUF_LOCKINIT(bp);
311		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
312		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
313	}
314
315	/*
316	 * maxbufspace is the absolute maximum amount of buffer space we are
317	 * allowed to reserve in KVM and in real terms.  The absolute maximum
318	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
319	 * used by most other processes.  The differential is required to
320	 * ensure that buf_daemon is able to run when other processes might
321	 * be blocked waiting for buffer space.
322	 *
323	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
324	 * this may result in KVM fragmentation which is not handled optimally
325	 * by the system.
326	 */
327	maxbufspace = nbuf * BKVASIZE;
328	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
329	lobufspace = hibufspace - MAXBSIZE;
330
331/*
332 * Limit the amount of malloc memory since it is wired permanently into
333 * the kernel space.  Even though this is accounted for in the buffer
334 * allocation, we don't want the malloced region to grow uncontrolled.
335 * The malloc scheme improves memory utilization significantly on average
336 * (small) directories.
337 */
338	maxbufmallocspace = hibufspace / 20;
339
340/*
341 * Reduce the chance of a deadlock occuring by limiting the number
342 * of delayed-write dirty buffers we allow to stack up.
343 */
344	hidirtybuffers = nbuf / 4 + 20;
345	numdirtybuffers = 0;
346/*
347 * To support extreme low-memory systems, make sure hidirtybuffers cannot
348 * eat up all available buffer space.  This occurs when our minimum cannot
349 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
350 * BKVASIZE'd (8K) buffers.
351 */
352	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
353		hidirtybuffers >>= 1;
354	}
355
356/*
357 * Try to keep the number of free buffers in the specified range,
358 * and give special processes (e.g. like buf_daemon) access to an
359 * emergency reserve.
360 */
361	lofreebuffers = nbuf / 18 + 5;
362	hifreebuffers = 2 * lofreebuffers;
363	numfreebuffers = nbuf;
364
365/*
366 * Maximum number of async ops initiated per buf_daemon loop.  This is
367 * somewhat of a hack at the moment, we really need to limit ourselves
368 * based on the number of bytes of I/O in-transit that were initiated
369 * from buf_daemon.
370 */
371	if ((maxbdrun = nswbuf / 4) < 4)
372		maxbdrun = 4;
373
374	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
375	bogus_page = vm_page_alloc(kernel_object,
376			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
377			VM_ALLOC_NORMAL);
378	cnt.v_wire_count++;
379
380}
381
382/*
383 * bfreekva() - free the kva allocation for a buffer.
384 *
385 *	Must be called at splbio() or higher as this is the only locking for
386 *	buffer_map.
387 *
388 *	Since this call frees up buffer space, we call bufspacewakeup().
389 */
390static void
391bfreekva(struct buf * bp)
392{
393	if (bp->b_kvasize) {
394		++buffreekvacnt;
395		bufspace -= bp->b_kvasize;
396		vm_map_delete(buffer_map,
397		    (vm_offset_t) bp->b_kvabase,
398		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
399		);
400		bp->b_kvasize = 0;
401		bufspacewakeup();
402	}
403}
404
405/*
406 *	bremfree:
407 *
408 *	Remove the buffer from the appropriate free list.
409 */
410void
411bremfree(struct buf * bp)
412{
413	int s = splbio();
414	int old_qindex = bp->b_qindex;
415
416	if (bp->b_qindex != QUEUE_NONE) {
417		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
418		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
419		bp->b_qindex = QUEUE_NONE;
420		runningbufspace += bp->b_bufsize;
421	} else {
422		if (BUF_REFCNT(bp) <= 1)
423			panic("bremfree: removing a buffer not on a queue");
424	}
425
426	/*
427	 * Fixup numfreebuffers count.  If the buffer is invalid or not
428	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
429	 * the buffer was free and we must decrement numfreebuffers.
430	 */
431	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
432		switch(old_qindex) {
433		case QUEUE_DIRTY:
434		case QUEUE_CLEAN:
435		case QUEUE_EMPTY:
436		case QUEUE_EMPTYKVA:
437			--numfreebuffers;
438			break;
439		default:
440			break;
441		}
442	}
443	splx(s);
444}
445
446
447/*
448 * Get a buffer with the specified data.  Look in the cache first.  We
449 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
450 * is set, the buffer is valid and we do not have to do anything ( see
451 * getblk() ).
452 */
453int
454bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
455    struct buf ** bpp)
456{
457	struct buf *bp;
458
459	bp = getblk(vp, blkno, size, 0, 0);
460	*bpp = bp;
461
462	/* if not found in cache, do some I/O */
463	if ((bp->b_flags & B_CACHE) == 0) {
464		if (curproc != NULL)
465			curproc->p_stats->p_ru.ru_inblock++;
466		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
467		bp->b_iocmd = BIO_READ;
468		bp->b_flags &= ~B_INVAL;
469		bp->b_ioflags &= ~BIO_ERROR;
470		if (bp->b_rcred == NOCRED) {
471			if (cred != NOCRED)
472				crhold(cred);
473			bp->b_rcred = cred;
474		}
475		vfs_busy_pages(bp, 0);
476		VOP_STRATEGY(vp, bp);
477		return (bufwait(bp));
478	}
479	return (0);
480}
481
482/*
483 * Operates like bread, but also starts asynchronous I/O on
484 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
485 * to initiating I/O . If B_CACHE is set, the buffer is valid
486 * and we do not have to do anything.
487 */
488int
489breadn(struct vnode * vp, daddr_t blkno, int size,
490    daddr_t * rablkno, int *rabsize,
491    int cnt, struct ucred * cred, struct buf ** bpp)
492{
493	struct buf *bp, *rabp;
494	int i;
495	int rv = 0, readwait = 0;
496
497	*bpp = bp = getblk(vp, blkno, size, 0, 0);
498
499	/* if not found in cache, do some I/O */
500	if ((bp->b_flags & B_CACHE) == 0) {
501		if (curproc != NULL)
502			curproc->p_stats->p_ru.ru_inblock++;
503		bp->b_iocmd = BIO_READ;
504		bp->b_flags &= ~B_INVAL;
505		bp->b_ioflags &= ~BIO_ERROR;
506		if (bp->b_rcred == NOCRED) {
507			if (cred != NOCRED)
508				crhold(cred);
509			bp->b_rcred = cred;
510		}
511		vfs_busy_pages(bp, 0);
512		VOP_STRATEGY(vp, bp);
513		++readwait;
514	}
515
516	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
517		if (inmem(vp, *rablkno))
518			continue;
519		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
520
521		if ((rabp->b_flags & B_CACHE) == 0) {
522			if (curproc != NULL)
523				curproc->p_stats->p_ru.ru_inblock++;
524			rabp->b_flags |= B_ASYNC;
525			rabp->b_flags &= ~B_INVAL;
526			rabp->b_ioflags &= ~BIO_ERROR;
527			rabp->b_iocmd = BIO_READ;
528			if (rabp->b_rcred == NOCRED) {
529				if (cred != NOCRED)
530					crhold(cred);
531				rabp->b_rcred = cred;
532			}
533			vfs_busy_pages(rabp, 0);
534			BUF_KERNPROC(rabp);
535			VOP_STRATEGY(vp, rabp);
536		} else {
537			brelse(rabp);
538		}
539	}
540
541	if (readwait) {
542		rv = bufwait(bp);
543	}
544	return (rv);
545}
546
547/*
548 * Write, release buffer on completion.  (Done by iodone
549 * if async).  Do not bother writing anything if the buffer
550 * is invalid.
551 *
552 * Note that we set B_CACHE here, indicating that buffer is
553 * fully valid and thus cacheable.  This is true even of NFS
554 * now so we set it generally.  This could be set either here
555 * or in biodone() since the I/O is synchronous.  We put it
556 * here.
557 */
558int
559bwrite(struct buf * bp)
560{
561	int oldflags, s;
562	struct buf *newbp;
563
564	if (bp->b_flags & B_INVAL) {
565		brelse(bp);
566		return (0);
567	}
568
569	oldflags = bp->b_flags;
570
571	if (BUF_REFCNT(bp) == 0)
572		panic("bwrite: buffer is not busy???");
573	s = splbio();
574	/*
575	 * If a background write is already in progress, delay
576	 * writing this block if it is asynchronous. Otherwise
577	 * wait for the background write to complete.
578	 */
579	if (bp->b_xflags & BX_BKGRDINPROG) {
580		if (bp->b_flags & B_ASYNC) {
581			splx(s);
582			bdwrite(bp);
583			return (0);
584		}
585		bp->b_xflags |= BX_BKGRDWAIT;
586		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
587		if (bp->b_xflags & BX_BKGRDINPROG)
588			panic("bwrite: still writing");
589	}
590
591	/* Mark the buffer clean */
592	bundirty(bp);
593
594	/*
595	 * If this buffer is marked for background writing and we
596	 * do not have to wait for it, make a copy and write the
597	 * copy so as to leave this buffer ready for further use.
598	 */
599	if ((bp->b_xflags & BX_BKGRDWRITE) && (bp->b_flags & B_ASYNC)) {
600		if (bp->b_iodone != NULL) {
601			printf("bp->b_iodone = %p\n", bp->b_iodone);
602			panic("bwrite: need chained iodone");
603		}
604
605		/* get a new block */
606		newbp = geteblk(bp->b_bufsize);
607
608		/* set it to be identical to the old block */
609		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
610		bgetvp(bp->b_vp, newbp);
611		newbp->b_lblkno = bp->b_lblkno;
612		newbp->b_blkno = bp->b_blkno;
613		newbp->b_offset = bp->b_offset;
614		newbp->b_iodone = vfs_backgroundwritedone;
615		newbp->b_flags |= B_ASYNC;
616		newbp->b_flags &= ~B_INVAL;
617
618		/* move over the dependencies */
619		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
620			(*bioops.io_movedeps)(bp, newbp);
621
622		/*
623		 * Initiate write on the copy, release the original to
624		 * the B_LOCKED queue so that it cannot go away until
625		 * the background write completes. If not locked it could go
626		 * away and then be reconstituted while it was being written.
627		 * If the reconstituted buffer were written, we could end up
628		 * with two background copies being written at the same time.
629		 */
630		bp->b_xflags |= BX_BKGRDINPROG;
631		bp->b_flags |= B_LOCKED;
632		bqrelse(bp);
633		bp = newbp;
634	}
635
636	bp->b_flags &= ~B_DONE;
637	bp->b_ioflags &= ~BIO_ERROR;
638	bp->b_flags |= B_WRITEINPROG | B_CACHE;
639	bp->b_iocmd = BIO_WRITE;
640
641	bp->b_vp->v_numoutput++;
642	vfs_busy_pages(bp, 1);
643	if (curproc != NULL)
644		curproc->p_stats->p_ru.ru_oublock++;
645	splx(s);
646	if (oldflags & B_ASYNC)
647		BUF_KERNPROC(bp);
648	BUF_STRATEGY(bp);
649
650	if ((oldflags & B_ASYNC) == 0) {
651		int rtval = bufwait(bp);
652		brelse(bp);
653		return (rtval);
654	}
655
656	return (0);
657}
658
659/*
660 * Complete a background write started from bwrite.
661 */
662static void
663vfs_backgroundwritedone(bp)
664	struct buf *bp;
665{
666	struct buf *origbp;
667
668	/*
669	 * Find the original buffer that we are writing.
670	 */
671	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
672		panic("backgroundwritedone: lost buffer");
673	/*
674	 * Process dependencies then return any unfinished ones.
675	 */
676	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
677		(*bioops.io_complete)(bp);
678	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
679		(*bioops.io_movedeps)(bp, origbp);
680	/*
681	 * Clear the BX_BKGRDINPROG flag in the original buffer
682	 * and awaken it if it is waiting for the write to complete.
683	 */
684	origbp->b_xflags &= ~BX_BKGRDINPROG;
685	if (origbp->b_xflags & BX_BKGRDWAIT) {
686		origbp->b_xflags &= ~BX_BKGRDWAIT;
687		wakeup(&origbp->b_xflags);
688	}
689	/*
690	 * Clear the B_LOCKED flag and remove it from the locked
691	 * queue if it currently resides there.
692	 */
693	origbp->b_flags &= ~B_LOCKED;
694	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
695		bremfree(origbp);
696		bqrelse(origbp);
697	}
698	/*
699	 * This buffer is marked B_NOCACHE, so when it is released
700	 * by biodone, it will be tossed. We mark it with BIO_READ
701	 * to avoid biodone doing a second vwakeup.
702	 */
703	bp->b_flags |= B_NOCACHE;
704	bp->b_iocmd = BIO_READ;
705	bp->b_flags &= ~(B_CACHE | B_DONE);
706	bp->b_iodone = 0;
707	bufdone(bp);
708}
709
710/*
711 * Delayed write. (Buffer is marked dirty).  Do not bother writing
712 * anything if the buffer is marked invalid.
713 *
714 * Note that since the buffer must be completely valid, we can safely
715 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
716 * biodone() in order to prevent getblk from writing the buffer
717 * out synchronously.
718 */
719void
720bdwrite(struct buf * bp)
721{
722	if (BUF_REFCNT(bp) == 0)
723		panic("bdwrite: buffer is not busy");
724
725	if (bp->b_flags & B_INVAL) {
726		brelse(bp);
727		return;
728	}
729	bdirty(bp);
730
731	/*
732	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
733	 * true even of NFS now.
734	 */
735	bp->b_flags |= B_CACHE;
736
737	/*
738	 * This bmap keeps the system from needing to do the bmap later,
739	 * perhaps when the system is attempting to do a sync.  Since it
740	 * is likely that the indirect block -- or whatever other datastructure
741	 * that the filesystem needs is still in memory now, it is a good
742	 * thing to do this.  Note also, that if the pageout daemon is
743	 * requesting a sync -- there might not be enough memory to do
744	 * the bmap then...  So, this is important to do.
745	 */
746	if (bp->b_lblkno == bp->b_blkno) {
747		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
748	}
749
750	/*
751	 * Set the *dirty* buffer range based upon the VM system dirty pages.
752	 */
753	vfs_setdirty(bp);
754
755	/*
756	 * We need to do this here to satisfy the vnode_pager and the
757	 * pageout daemon, so that it thinks that the pages have been
758	 * "cleaned".  Note that since the pages are in a delayed write
759	 * buffer -- the VFS layer "will" see that the pages get written
760	 * out on the next sync, or perhaps the cluster will be completed.
761	 */
762	vfs_clean_pages(bp);
763	bqrelse(bp);
764
765	/*
766	 * Wakeup the buffer flushing daemon if we have saturated the
767	 * buffer cache.
768	 */
769
770	bd_wakeup(hidirtybuffers);
771
772	/*
773	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
774	 * due to the softdep code.
775	 */
776}
777
778/*
779 *	bdirty:
780 *
781 *	Turn buffer into delayed write request.  We must clear BIO_READ and
782 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
783 *	itself to properly update it in the dirty/clean lists.  We mark it
784 *	B_DONE to ensure that any asynchronization of the buffer properly
785 *	clears B_DONE ( else a panic will occur later ).
786 *
787 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
788 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
789 *	should only be called if the buffer is known-good.
790 *
791 *	Since the buffer is not on a queue, we do not update the numfreebuffers
792 *	count.
793 *
794 *	Must be called at splbio().
795 *	The buffer must be on QUEUE_NONE.
796 */
797void
798bdirty(bp)
799	struct buf *bp;
800{
801	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
802	bp->b_flags &= ~(B_RELBUF);
803	bp->b_iocmd = BIO_WRITE;
804
805	if ((bp->b_flags & B_DELWRI) == 0) {
806		bp->b_flags |= B_DONE | B_DELWRI;
807		reassignbuf(bp, bp->b_vp);
808		++numdirtybuffers;
809		bd_wakeup(hidirtybuffers);
810	}
811}
812
813/*
814 *	bundirty:
815 *
816 *	Clear B_DELWRI for buffer.
817 *
818 *	Since the buffer is not on a queue, we do not update the numfreebuffers
819 *	count.
820 *
821 *	Must be called at splbio().
822 *	The buffer must be on QUEUE_NONE.
823 */
824
825void
826bundirty(bp)
827	struct buf *bp;
828{
829	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
830
831	if (bp->b_flags & B_DELWRI) {
832		bp->b_flags &= ~B_DELWRI;
833		reassignbuf(bp, bp->b_vp);
834		--numdirtybuffers;
835		numdirtywakeup();
836	}
837	/*
838	 * Since it is now being written, we can clear its deferred write flag.
839	 */
840	bp->b_flags &= ~B_DEFERRED;
841}
842
843/*
844 *	bawrite:
845 *
846 *	Asynchronous write.  Start output on a buffer, but do not wait for
847 *	it to complete.  The buffer is released when the output completes.
848 *
849 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
850 *	B_INVAL buffers.  Not us.
851 */
852void
853bawrite(struct buf * bp)
854{
855	bp->b_flags |= B_ASYNC;
856	(void) BUF_WRITE(bp);
857}
858
859/*
860 *	bowrite:
861 *
862 *	Ordered write.  Start output on a buffer, and flag it so that the
863 *	device will write it in the order it was queued.  The buffer is
864 *	released when the output completes.  bwrite() ( or the VOP routine
865 *	anyway ) is responsible for handling B_INVAL buffers.
866 */
867int
868bowrite(struct buf * bp)
869{
870	bp->b_ioflags |= BIO_ORDERED;
871	bp->b_flags |= B_ASYNC;
872	return (BUF_WRITE(bp));
873}
874
875/*
876 *	bwillwrite:
877 *
878 *	Called prior to the locking of any vnodes when we are expecting to
879 *	write.  We do not want to starve the buffer cache with too many
880 *	dirty buffers so we block here.  By blocking prior to the locking
881 *	of any vnodes we attempt to avoid the situation where a locked vnode
882 *	prevents the various system daemons from flushing related buffers.
883 */
884
885void
886bwillwrite(void)
887{
888	int slop = hidirtybuffers / 10;
889
890	if (numdirtybuffers > hidirtybuffers + slop) {
891		int s;
892
893		s = splbio();
894		while (numdirtybuffers > hidirtybuffers) {
895			bd_wakeup(hidirtybuffers);
896			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
897			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
898		}
899		splx(s);
900	}
901}
902
903/*
904 *	brelse:
905 *
906 *	Release a busy buffer and, if requested, free its resources.  The
907 *	buffer will be stashed in the appropriate bufqueue[] allowing it
908 *	to be accessed later as a cache entity or reused for other purposes.
909 */
910void
911brelse(struct buf * bp)
912{
913	int s;
914
915	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
916
917	s = splbio();
918
919	if (bp->b_flags & B_LOCKED)
920		bp->b_ioflags &= ~BIO_ERROR;
921
922	if (bp->b_iocmd == BIO_WRITE &&
923	    (bp->b_ioflags & BIO_ERROR) &&
924	    !(bp->b_flags & B_INVAL)) {
925		/*
926		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
927		 * pages from being scrapped.  If B_INVAL is set then
928		 * this case is not run and the next case is run to
929		 * destroy the buffer.  B_INVAL can occur if the buffer
930		 * is outside the range supported by the underlying device.
931		 */
932		bp->b_ioflags &= ~BIO_ERROR;
933		bdirty(bp);
934	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
935	    (bp->b_ioflags & BIO_ERROR) ||
936	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
937		/*
938		 * Either a failed I/O or we were asked to free or not
939		 * cache the buffer.
940		 */
941		bp->b_flags |= B_INVAL;
942		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
943			(*bioops.io_deallocate)(bp);
944		if (bp->b_flags & B_DELWRI) {
945			--numdirtybuffers;
946			numdirtywakeup();
947		}
948		bp->b_flags &= ~(B_DELWRI | B_CACHE);
949		if ((bp->b_flags & B_VMIO) == 0) {
950			if (bp->b_bufsize)
951				allocbuf(bp, 0);
952			if (bp->b_vp)
953				brelvp(bp);
954		}
955	}
956
957	/*
958	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
959	 * is called with B_DELWRI set, the underlying pages may wind up
960	 * getting freed causing a previous write (bdwrite()) to get 'lost'
961	 * because pages associated with a B_DELWRI bp are marked clean.
962	 *
963	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
964	 * if B_DELWRI is set.
965	 */
966
967	if (bp->b_flags & B_DELWRI)
968		bp->b_flags &= ~B_RELBUF;
969
970	/*
971	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
972	 * constituted, not even NFS buffers now.  Two flags effect this.  If
973	 * B_INVAL, the struct buf is invalidated but the VM object is kept
974	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
975	 *
976	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
977	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
978	 * buffer is also B_INVAL because it hits the re-dirtying code above.
979	 *
980	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
981	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
982	 * the commit state and we cannot afford to lose the buffer. If the
983	 * buffer has a background write in progress, we need to keep it
984	 * around to prevent it from being reconstituted and starting a second
985	 * background write.
986	 */
987	if ((bp->b_flags & B_VMIO)
988	    && !(bp->b_vp->v_tag == VT_NFS &&
989		 !vn_isdisk(bp->b_vp, NULL) &&
990		 (bp->b_flags & B_DELWRI) &&
991		 (bp->b_xflags & BX_BKGRDINPROG))
992	    ) {
993
994		int i, j, resid;
995		vm_page_t m;
996		off_t foff;
997		vm_pindex_t poff;
998		vm_object_t obj;
999		struct vnode *vp;
1000
1001		vp = bp->b_vp;
1002
1003		/*
1004		 * Get the base offset and length of the buffer.  Note that
1005		 * for block sizes that are less then PAGE_SIZE, the b_data
1006		 * base of the buffer does not represent exactly b_offset and
1007		 * neither b_offset nor b_size are necessarily page aligned.
1008		 * Instead, the starting position of b_offset is:
1009		 *
1010		 * 	b_data + (b_offset & PAGE_MASK)
1011		 *
1012		 * block sizes less then DEV_BSIZE (usually 512) are not
1013		 * supported due to the page granularity bits (m->valid,
1014		 * m->dirty, etc...).
1015		 *
1016		 * See man buf(9) for more information
1017		 */
1018
1019		resid = bp->b_bufsize;
1020		foff = bp->b_offset;
1021
1022		for (i = 0; i < bp->b_npages; i++) {
1023			m = bp->b_pages[i];
1024			vm_page_flag_clear(m, PG_ZERO);
1025			if (m == bogus_page) {
1026
1027				obj = (vm_object_t) vp->v_object;
1028				poff = OFF_TO_IDX(bp->b_offset);
1029
1030				for (j = i; j < bp->b_npages; j++) {
1031					m = bp->b_pages[j];
1032					if (m == bogus_page) {
1033						m = vm_page_lookup(obj, poff + j);
1034						if (!m) {
1035							panic("brelse: page missing\n");
1036						}
1037						bp->b_pages[j] = m;
1038					}
1039				}
1040
1041				if ((bp->b_flags & B_INVAL) == 0) {
1042					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1043				}
1044			}
1045			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1046				int poffset = foff & PAGE_MASK;
1047				int presid = resid > (PAGE_SIZE - poffset) ?
1048					(PAGE_SIZE - poffset) : resid;
1049
1050				KASSERT(presid >= 0, ("brelse: extra page"));
1051				vm_page_set_invalid(m, poffset, presid);
1052			}
1053			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1054			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
1055		}
1056
1057		if (bp->b_flags & (B_INVAL | B_RELBUF))
1058			vfs_vmio_release(bp);
1059
1060	} else if (bp->b_flags & B_VMIO) {
1061
1062		if (bp->b_flags & (B_INVAL | B_RELBUF))
1063			vfs_vmio_release(bp);
1064
1065	}
1066
1067	if (bp->b_qindex != QUEUE_NONE)
1068		panic("brelse: free buffer onto another queue???");
1069	if (BUF_REFCNT(bp) > 1) {
1070		/* Temporary panic to verify exclusive locking */
1071		/* This panic goes away when we allow shared refs */
1072		panic("brelse: multiple refs");
1073		/* do not release to free list */
1074		BUF_UNLOCK(bp);
1075		splx(s);
1076		return;
1077	}
1078
1079	/* enqueue */
1080
1081	/* buffers with no memory */
1082	if (bp->b_bufsize == 0) {
1083		bp->b_flags |= B_INVAL;
1084		bp->b_xflags &= ~BX_BKGRDWRITE;
1085		if (bp->b_xflags & BX_BKGRDINPROG)
1086			panic("losing buffer 1");
1087		if (bp->b_kvasize) {
1088			bp->b_qindex = QUEUE_EMPTYKVA;
1089		} else {
1090			bp->b_qindex = QUEUE_EMPTY;
1091		}
1092		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1093		LIST_REMOVE(bp, b_hash);
1094		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1095		bp->b_dev = NODEV;
1096	/* buffers with junk contents */
1097	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) || (bp->b_ioflags & BIO_ERROR)) {
1098		bp->b_flags |= B_INVAL;
1099		bp->b_xflags &= ~BX_BKGRDWRITE;
1100		if (bp->b_xflags & BX_BKGRDINPROG)
1101			panic("losing buffer 2");
1102		bp->b_qindex = QUEUE_CLEAN;
1103		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1104		LIST_REMOVE(bp, b_hash);
1105		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1106		bp->b_dev = NODEV;
1107
1108	/* buffers that are locked */
1109	} else if (bp->b_flags & B_LOCKED) {
1110		bp->b_qindex = QUEUE_LOCKED;
1111		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1112
1113	/* remaining buffers */
1114	} else {
1115		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1116		case B_DELWRI | B_AGE:
1117		    bp->b_qindex = QUEUE_DIRTY;
1118		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1119		    break;
1120		case B_DELWRI:
1121		    bp->b_qindex = QUEUE_DIRTY;
1122		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1123		    break;
1124		case B_AGE:
1125		    bp->b_qindex = QUEUE_CLEAN;
1126		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1127		    break;
1128		default:
1129		    bp->b_qindex = QUEUE_CLEAN;
1130		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1131		    break;
1132		}
1133	}
1134
1135	/*
1136	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1137	 * on the correct queue.
1138	 */
1139	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1140		bp->b_flags &= ~B_DELWRI;
1141		--numdirtybuffers;
1142		numdirtywakeup();
1143	}
1144
1145	runningbufspace -= bp->b_bufsize;
1146
1147	/*
1148	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1149	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1150	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1151	 * if B_INVAL is set ).
1152	 */
1153
1154	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1155		bufcountwakeup();
1156
1157	/*
1158	 * Something we can maybe free.
1159	 */
1160
1161	if (bp->b_bufsize || bp->b_kvasize)
1162		bufspacewakeup();
1163
1164	/* unlock */
1165	BUF_UNLOCK(bp);
1166	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1167	bp->b_ioflags &= ~BIO_ORDERED;
1168	splx(s);
1169}
1170
1171/*
1172 * Release a buffer back to the appropriate queue but do not try to free
1173 * it.
1174 *
1175 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1176 * biodone() to requeue an async I/O on completion.  It is also used when
1177 * known good buffers need to be requeued but we think we may need the data
1178 * again soon.
1179 */
1180void
1181bqrelse(struct buf * bp)
1182{
1183	int s;
1184
1185	s = splbio();
1186
1187	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1188
1189	if (bp->b_qindex != QUEUE_NONE)
1190		panic("bqrelse: free buffer onto another queue???");
1191	if (BUF_REFCNT(bp) > 1) {
1192		/* do not release to free list */
1193		panic("bqrelse: multiple refs");
1194		BUF_UNLOCK(bp);
1195		splx(s);
1196		return;
1197	}
1198	if (bp->b_flags & B_LOCKED) {
1199		bp->b_ioflags &= ~BIO_ERROR;
1200		bp->b_qindex = QUEUE_LOCKED;
1201		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1202		/* buffers with stale but valid contents */
1203	} else if (bp->b_flags & B_DELWRI) {
1204		bp->b_qindex = QUEUE_DIRTY;
1205		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1206	} else {
1207		bp->b_qindex = QUEUE_CLEAN;
1208		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1209	}
1210
1211	runningbufspace -= bp->b_bufsize;
1212
1213	if ((bp->b_flags & B_LOCKED) == 0 &&
1214	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1215		bufcountwakeup();
1216	}
1217
1218	/*
1219	 * Something we can maybe wakeup
1220	 */
1221	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1222		bufspacewakeup();
1223
1224	/* unlock */
1225	BUF_UNLOCK(bp);
1226	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1227	bp->b_ioflags &= ~BIO_ORDERED;
1228	splx(s);
1229}
1230
1231static void
1232vfs_vmio_release(bp)
1233	struct buf *bp;
1234{
1235	int i, s;
1236	vm_page_t m;
1237
1238	s = splvm();
1239	for (i = 0; i < bp->b_npages; i++) {
1240		m = bp->b_pages[i];
1241		bp->b_pages[i] = NULL;
1242		/*
1243		 * In order to keep page LRU ordering consistent, put
1244		 * everything on the inactive queue.
1245		 */
1246		vm_page_unwire(m, 0);
1247		/*
1248		 * We don't mess with busy pages, it is
1249		 * the responsibility of the process that
1250		 * busied the pages to deal with them.
1251		 */
1252		if ((m->flags & PG_BUSY) || (m->busy != 0))
1253			continue;
1254
1255		if (m->wire_count == 0) {
1256			vm_page_flag_clear(m, PG_ZERO);
1257			/*
1258			 * Might as well free the page if we can and it has
1259			 * no valid data.
1260			 */
1261			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1262				vm_page_busy(m);
1263				vm_page_protect(m, VM_PROT_NONE);
1264				vm_page_free(m);
1265			}
1266		}
1267	}
1268	runningbufspace -= bp->b_bufsize;
1269	splx(s);
1270	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1271	if (bp->b_bufsize)
1272		bufspacewakeup();
1273	bp->b_npages = 0;
1274	bp->b_bufsize = 0;
1275	bp->b_flags &= ~B_VMIO;
1276	if (bp->b_vp)
1277		brelvp(bp);
1278}
1279
1280/*
1281 * Check to see if a block is currently memory resident.
1282 */
1283struct buf *
1284gbincore(struct vnode * vp, daddr_t blkno)
1285{
1286	struct buf *bp;
1287	struct bufhashhdr *bh;
1288
1289	bh = bufhash(vp, blkno);
1290
1291	/* Search hash chain */
1292	LIST_FOREACH(bp, bh, b_hash) {
1293		/* hit */
1294		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1295		    (bp->b_flags & B_INVAL) == 0) {
1296			break;
1297		}
1298	}
1299	return (bp);
1300}
1301
1302/*
1303 *	vfs_bio_awrite:
1304 *
1305 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1306 *	This is much better then the old way of writing only one buffer at
1307 *	a time.  Note that we may not be presented with the buffers in the
1308 *	correct order, so we search for the cluster in both directions.
1309 */
1310int
1311vfs_bio_awrite(struct buf * bp)
1312{
1313	int i;
1314	int j;
1315	daddr_t lblkno = bp->b_lblkno;
1316	struct vnode *vp = bp->b_vp;
1317	int s;
1318	int ncl;
1319	struct buf *bpa;
1320	int nwritten;
1321	int size;
1322	int maxcl;
1323
1324	s = splbio();
1325	/*
1326	 * right now we support clustered writing only to regular files.  If
1327	 * we find a clusterable block we could be in the middle of a cluster
1328	 * rather then at the beginning.
1329	 */
1330	if ((vp->v_type == VREG) &&
1331	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1332	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1333
1334		size = vp->v_mount->mnt_stat.f_iosize;
1335		maxcl = MAXPHYS / size;
1336
1337		for (i = 1; i < maxcl; i++) {
1338			if ((bpa = gbincore(vp, lblkno + i)) &&
1339			    BUF_REFCNT(bpa) == 0 &&
1340			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1341			    (B_DELWRI | B_CLUSTEROK)) &&
1342			    (bpa->b_bufsize == size)) {
1343				if ((bpa->b_blkno == bpa->b_lblkno) ||
1344				    (bpa->b_blkno !=
1345				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1346					break;
1347			} else {
1348				break;
1349			}
1350		}
1351		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1352			if ((bpa = gbincore(vp, lblkno - j)) &&
1353			    BUF_REFCNT(bpa) == 0 &&
1354			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1355			    (B_DELWRI | B_CLUSTEROK)) &&
1356			    (bpa->b_bufsize == size)) {
1357				if ((bpa->b_blkno == bpa->b_lblkno) ||
1358				    (bpa->b_blkno !=
1359				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1360					break;
1361			} else {
1362				break;
1363			}
1364		}
1365		--j;
1366		ncl = i + j;
1367		/*
1368		 * this is a possible cluster write
1369		 */
1370		if (ncl != 1) {
1371			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1372			splx(s);
1373			return nwritten;
1374		}
1375	}
1376
1377	BUF_LOCK(bp, LK_EXCLUSIVE);
1378	bremfree(bp);
1379	bp->b_flags |= B_ASYNC;
1380
1381	splx(s);
1382	/*
1383	 * default (old) behavior, writing out only one block
1384	 *
1385	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1386	 */
1387	nwritten = bp->b_bufsize;
1388	(void) BUF_WRITE(bp);
1389
1390	return nwritten;
1391}
1392
1393/*
1394 *	getnewbuf:
1395 *
1396 *	Find and initialize a new buffer header, freeing up existing buffers
1397 *	in the bufqueues as necessary.  The new buffer is returned locked.
1398 *
1399 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1400 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1401 *
1402 *	We block if:
1403 *		We have insufficient buffer headers
1404 *		We have insufficient buffer space
1405 *		buffer_map is too fragmented ( space reservation fails )
1406 *		If we have to flush dirty buffers ( but we try to avoid this )
1407 *
1408 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1409 *	Instead we ask the buf daemon to do it for us.  We attempt to
1410 *	avoid piecemeal wakeups of the pageout daemon.
1411 */
1412
1413static struct buf *
1414getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1415{
1416	struct buf *bp;
1417	struct buf *nbp;
1418	int defrag = 0;
1419	int nqindex;
1420	int isspecial;
1421	static int flushingbufs;
1422
1423	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0)
1424		isspecial = 0;
1425	else
1426		isspecial = 1;
1427
1428	++getnewbufcalls;
1429	--getnewbufrestarts;
1430restart:
1431	++getnewbufrestarts;
1432
1433	/*
1434	 * Setup for scan.  If we do not have enough free buffers,
1435	 * we setup a degenerate case that immediately fails.  Note
1436	 * that if we are specially marked process, we are allowed to
1437	 * dip into our reserves.
1438	 *
1439	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1440	 *
1441	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1442	 * However, there are a number of cases (defragging, reusing, ...)
1443	 * where we cannot backup.
1444	 */
1445
1446	if (isspecial == 0 && numfreebuffers < lofreebuffers) {
1447		/*
1448		 * This will cause an immediate failure
1449		 */
1450		nqindex = QUEUE_CLEAN;
1451		nbp = NULL;
1452	} else {
1453		/*
1454		 * Locate a buffer which already has KVA assigned.  First
1455		 * try EMPTYKVA buffers.
1456		 */
1457		nqindex = QUEUE_EMPTYKVA;
1458		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1459
1460		if (nbp == NULL) {
1461			/*
1462			 * If no EMPTYKVA buffers and we are either
1463			 * defragging or reusing, locate a CLEAN buffer
1464			 * to free or reuse.  If bufspace useage is low
1465			 * skip this step so we can allocate a new buffer.
1466			 */
1467			if (defrag || bufspace >= lobufspace) {
1468				nqindex = QUEUE_CLEAN;
1469				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1470			}
1471
1472			/*
1473			 * Nada.  If we are allowed to allocate an EMPTY
1474			 * buffer, go get one.
1475			 */
1476			if (nbp == NULL && defrag == 0 &&
1477			    (isspecial || bufspace < hibufspace)) {
1478				nqindex = QUEUE_EMPTY;
1479				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1480			}
1481		}
1482	}
1483
1484	/*
1485	 * Run scan, possibly freeing data and/or kva mappings on the fly
1486	 * depending.
1487	 */
1488
1489	while ((bp = nbp) != NULL) {
1490		int qindex = nqindex;
1491
1492		/*
1493		 * Calculate next bp ( we can only use it if we do not block
1494		 * or do other fancy things ).
1495		 */
1496		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1497			switch(qindex) {
1498			case QUEUE_EMPTY:
1499				nqindex = QUEUE_EMPTYKVA;
1500				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1501					break;
1502				/* fall through */
1503			case QUEUE_EMPTYKVA:
1504				nqindex = QUEUE_CLEAN;
1505				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1506					break;
1507				/* fall through */
1508			case QUEUE_CLEAN:
1509				/*
1510				 * nbp is NULL.
1511				 */
1512				break;
1513			}
1514		}
1515
1516		/*
1517		 * Sanity Checks
1518		 */
1519		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1520
1521		/*
1522		 * Note: we no longer distinguish between VMIO and non-VMIO
1523		 * buffers.
1524		 */
1525
1526		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1527
1528		/*
1529		 * If we are defragging then we need a buffer with
1530		 * b_kvasize != 0.  XXX this situation should no longer
1531		 * occur, if defrag is non-zero the buffer's b_kvasize
1532		 * should also be non-zero at this point.  XXX
1533		 */
1534		if (defrag && bp->b_kvasize == 0) {
1535			printf("Warning: defrag empty buffer %p\n", bp);
1536			continue;
1537		}
1538
1539		/*
1540		 * Start freeing the bp.  This is somewhat involved.  nbp
1541		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1542		 */
1543
1544		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1545			panic("getnewbuf: locked buf");
1546		bremfree(bp);
1547
1548		if (qindex == QUEUE_CLEAN) {
1549			if (bp->b_flags & B_VMIO) {
1550				bp->b_flags &= ~B_ASYNC;
1551				vfs_vmio_release(bp);
1552			}
1553			if (bp->b_vp)
1554				brelvp(bp);
1555		}
1556
1557		/*
1558		 * NOTE:  nbp is now entirely invalid.  We can only restart
1559		 * the scan from this point on.
1560		 *
1561		 * Get the rest of the buffer freed up.  b_kva* is still
1562		 * valid after this operation.
1563		 */
1564
1565		if (bp->b_rcred != NOCRED) {
1566			crfree(bp->b_rcred);
1567			bp->b_rcred = NOCRED;
1568		}
1569		if (bp->b_wcred != NOCRED) {
1570			crfree(bp->b_wcred);
1571			bp->b_wcred = NOCRED;
1572		}
1573		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1574			(*bioops.io_deallocate)(bp);
1575		if (bp->b_xflags & BX_BKGRDINPROG)
1576			panic("losing buffer 3");
1577		LIST_REMOVE(bp, b_hash);
1578		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1579
1580		if (bp->b_bufsize)
1581			allocbuf(bp, 0);
1582
1583		bp->b_flags = 0;
1584		bp->b_ioflags = 0;
1585		bp->b_xflags = 0;
1586		bp->b_dev = NODEV;
1587		bp->b_vp = NULL;
1588		bp->b_blkno = bp->b_lblkno = 0;
1589		bp->b_offset = NOOFFSET;
1590		bp->b_iodone = 0;
1591		bp->b_error = 0;
1592		bp->b_resid = 0;
1593		bp->b_bcount = 0;
1594		bp->b_npages = 0;
1595		bp->b_dirtyoff = bp->b_dirtyend = 0;
1596
1597		LIST_INIT(&bp->b_dep);
1598
1599		/*
1600		 * If we are defragging then free the buffer.
1601		 */
1602		if (defrag) {
1603			bp->b_flags |= B_INVAL;
1604			bfreekva(bp);
1605			brelse(bp);
1606			defrag = 0;
1607			goto restart;
1608		}
1609
1610		/*
1611		 * If we are a normal process then deal with bufspace
1612		 * hysteresis.  A normal process tries to keep bufspace
1613		 * between lobufspace and hibufspace.  Note: if we encounter
1614		 * a buffer with b_kvasize == 0 then it means we started
1615		 * our scan on the EMPTY list and should allocate a new
1616		 * buffer.
1617		 */
1618		if (isspecial == 0) {
1619			if (bufspace > hibufspace)
1620				flushingbufs = 1;
1621			if (flushingbufs && bp->b_kvasize != 0) {
1622				bp->b_flags |= B_INVAL;
1623				bfreekva(bp);
1624				brelse(bp);
1625				goto restart;
1626			}
1627			if (bufspace < lobufspace)
1628				flushingbufs = 0;
1629		}
1630		break;
1631	}
1632
1633	/*
1634	 * If we exhausted our list, sleep as appropriate.  We may have to
1635	 * wakeup various daemons and write out some dirty buffers.
1636	 *
1637	 * Generally we are sleeping due to insufficient buffer space.
1638	 */
1639
1640	if (bp == NULL) {
1641		int flags;
1642		char *waitmsg;
1643
1644		if (defrag) {
1645			flags = VFS_BIO_NEED_BUFSPACE;
1646			waitmsg = "nbufkv";
1647		} else if (bufspace >= hibufspace) {
1648			waitmsg = "nbufbs";
1649			flags = VFS_BIO_NEED_BUFSPACE;
1650		} else {
1651			waitmsg = "newbuf";
1652			flags = VFS_BIO_NEED_ANY;
1653		}
1654
1655		bd_speedup();	/* heeeelp */
1656
1657		needsbuffer |= flags;
1658		while (needsbuffer & flags) {
1659			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1660			    waitmsg, slptimeo))
1661				return (NULL);
1662		}
1663	} else {
1664		/*
1665		 * We finally have a valid bp.  We aren't quite out of the
1666		 * woods, we still have to reserve kva space.  In order
1667		 * to keep fragmentation sane we only allocate kva in
1668		 * BKVASIZE chunks.
1669		 */
1670		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1671
1672		if (maxsize != bp->b_kvasize) {
1673			vm_offset_t addr = 0;
1674
1675			bfreekva(bp);
1676
1677			if (vm_map_findspace(buffer_map,
1678				vm_map_min(buffer_map), maxsize, &addr)) {
1679				/*
1680				 * Uh oh.  Buffer map is to fragmented.  We
1681				 * must defragment the map.
1682				 */
1683				++bufdefragcnt;
1684				defrag = 1;
1685				bp->b_flags |= B_INVAL;
1686				brelse(bp);
1687				goto restart;
1688			}
1689			if (addr) {
1690				vm_map_insert(buffer_map, NULL, 0,
1691					addr, addr + maxsize,
1692					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1693
1694				bp->b_kvabase = (caddr_t) addr;
1695				bp->b_kvasize = maxsize;
1696				bufspace += bp->b_kvasize;
1697				++bufreusecnt;
1698			}
1699		}
1700		bp->b_data = bp->b_kvabase;
1701	}
1702	return(bp);
1703}
1704
1705/*
1706 *	waitfreebuffers:
1707 *
1708 *	Wait for sufficient free buffers.  Only called from normal processes.
1709 */
1710
1711static void
1712waitfreebuffers(int slpflag, int slptimeo)
1713{
1714	while (numfreebuffers < hifreebuffers) {
1715		if (numfreebuffers >= hifreebuffers)
1716			break;
1717		needsbuffer |= VFS_BIO_NEED_FREE;
1718		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1719			break;
1720	}
1721}
1722
1723/*
1724 *	buf_daemon:
1725 *
1726 *	buffer flushing daemon.  Buffers are normally flushed by the
1727 *	update daemon but if it cannot keep up this process starts to
1728 *	take the load in an attempt to prevent getnewbuf() from blocking.
1729 */
1730
1731static struct proc *bufdaemonproc;
1732static int bd_interval;
1733static int bd_flushto;
1734static int bd_flushinc;
1735
1736static struct kproc_desc buf_kp = {
1737	"bufdaemon",
1738	buf_daemon,
1739	&bufdaemonproc
1740};
1741SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1742
1743static void
1744buf_daemon()
1745{
1746	int s;
1747
1748	/*
1749	 * This process needs to be suspended prior to shutdown sync.
1750	 */
1751	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, bufdaemonproc,
1752	    SHUTDOWN_PRI_LAST);
1753
1754	/*
1755	 * This process is allowed to take the buffer cache to the limit
1756	 */
1757	curproc->p_flag |= P_BUFEXHAUST;
1758	s = splbio();
1759
1760	bd_interval = 5 * hz;	/* dynamically adjusted */
1761	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1762	bd_flushinc = 1;
1763
1764	for (;;) {
1765		kproc_suspend_loop(bufdaemonproc);
1766
1767		bd_request = 0;
1768
1769		/*
1770		 * Do the flush.  Limit the number of buffers we flush in one
1771		 * go.  The failure condition occurs when processes are writing
1772		 * buffers faster then we can dispose of them.  In this case
1773		 * we may be flushing so often that the previous set of flushes
1774		 * have not had time to complete, causing us to run out of
1775		 * physical buffers and block.
1776		 */
1777		{
1778			int runcount = maxbdrun;
1779
1780			while (numdirtybuffers > bd_flushto && runcount) {
1781				--runcount;
1782				if (flushbufqueues() == 0)
1783					break;
1784			}
1785		}
1786
1787		if (bd_request ||
1788		    tsleep(&bd_request, PVM, "psleep", bd_interval) == 0) {
1789			/*
1790			 * Another request is pending or we were woken up
1791			 * without timing out.  Flush more.
1792			 */
1793			--bd_flushto;
1794			if (bd_flushto >= numdirtybuffers - 5) {
1795				bd_flushto = numdirtybuffers - 10;
1796				bd_flushinc = 1;
1797			}
1798			if (bd_flushto < 2)
1799				bd_flushto = 2;
1800		} else {
1801			/*
1802			 * We slept and timed out, we can slow down.
1803			 */
1804			bd_flushto += bd_flushinc;
1805			if (bd_flushto > hidirtybuffers)
1806				bd_flushto = hidirtybuffers;
1807			++bd_flushinc;
1808			if (bd_flushinc > hidirtybuffers / 20 + 1)
1809				bd_flushinc = hidirtybuffers / 20 + 1;
1810		}
1811
1812		/*
1813		 * Set the interval on a linear scale based on hidirtybuffers
1814		 * with a maximum frequency of 1/10 second.
1815		 */
1816		bd_interval = bd_flushto * 5 * hz / hidirtybuffers;
1817		if (bd_interval < hz / 10)
1818			bd_interval = hz / 10;
1819	}
1820}
1821
1822/*
1823 *	flushbufqueues:
1824 *
1825 *	Try to flush a buffer in the dirty queue.  We must be careful to
1826 *	free up B_INVAL buffers instead of write them, which NFS is
1827 *	particularly sensitive to.
1828 */
1829
1830static int
1831flushbufqueues(void)
1832{
1833	struct buf *bp;
1834	int r = 0;
1835
1836	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1837
1838	while (bp) {
1839		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1840		if ((bp->b_flags & B_DELWRI) != 0 &&
1841		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1842			if (bp->b_flags & B_INVAL) {
1843				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1844					panic("flushbufqueues: locked buf");
1845				bremfree(bp);
1846				brelse(bp);
1847				++r;
1848				break;
1849			}
1850			if (LIST_FIRST(&bp->b_dep) != NULL &&
1851			    bioops.io_countdeps &&
1852			    (bp->b_flags & B_DEFERRED) == 0 &&
1853			    (*bioops.io_countdeps)(bp, 0)) {
1854				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1855				    bp, b_freelist);
1856				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1857				    bp, b_freelist);
1858				bp->b_flags |= B_DEFERRED;
1859				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1860				continue;
1861			}
1862			vfs_bio_awrite(bp);
1863			++r;
1864			break;
1865		}
1866		bp = TAILQ_NEXT(bp, b_freelist);
1867	}
1868	return (r);
1869}
1870
1871/*
1872 * Check to see if a block is currently memory resident.
1873 */
1874struct buf *
1875incore(struct vnode * vp, daddr_t blkno)
1876{
1877	struct buf *bp;
1878
1879	int s = splbio();
1880	bp = gbincore(vp, blkno);
1881	splx(s);
1882	return (bp);
1883}
1884
1885/*
1886 * Returns true if no I/O is needed to access the
1887 * associated VM object.  This is like incore except
1888 * it also hunts around in the VM system for the data.
1889 */
1890
1891int
1892inmem(struct vnode * vp, daddr_t blkno)
1893{
1894	vm_object_t obj;
1895	vm_offset_t toff, tinc, size;
1896	vm_page_t m;
1897	vm_ooffset_t off;
1898
1899	if (incore(vp, blkno))
1900		return 1;
1901	if (vp->v_mount == NULL)
1902		return 0;
1903	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1904		return 0;
1905
1906	obj = vp->v_object;
1907	size = PAGE_SIZE;
1908	if (size > vp->v_mount->mnt_stat.f_iosize)
1909		size = vp->v_mount->mnt_stat.f_iosize;
1910	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1911
1912	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1913		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1914		if (!m)
1915			return 0;
1916		tinc = size;
1917		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1918			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1919		if (vm_page_is_valid(m,
1920		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1921			return 0;
1922	}
1923	return 1;
1924}
1925
1926/*
1927 *	vfs_setdirty:
1928 *
1929 *	Sets the dirty range for a buffer based on the status of the dirty
1930 *	bits in the pages comprising the buffer.
1931 *
1932 *	The range is limited to the size of the buffer.
1933 *
1934 *	This routine is primarily used by NFS, but is generalized for the
1935 *	B_VMIO case.
1936 */
1937static void
1938vfs_setdirty(struct buf *bp)
1939{
1940	int i;
1941	vm_object_t object;
1942
1943	/*
1944	 * Degenerate case - empty buffer
1945	 */
1946
1947	if (bp->b_bufsize == 0)
1948		return;
1949
1950	/*
1951	 * We qualify the scan for modified pages on whether the
1952	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1953	 * is not cleared simply by protecting pages off.
1954	 */
1955
1956	if ((bp->b_flags & B_VMIO) == 0)
1957		return;
1958
1959	object = bp->b_pages[0]->object;
1960
1961	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1962		printf("Warning: object %p writeable but not mightbedirty\n", object);
1963	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1964		printf("Warning: object %p mightbedirty but not writeable\n", object);
1965
1966	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1967		vm_offset_t boffset;
1968		vm_offset_t eoffset;
1969
1970		/*
1971		 * test the pages to see if they have been modified directly
1972		 * by users through the VM system.
1973		 */
1974		for (i = 0; i < bp->b_npages; i++) {
1975			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1976			vm_page_test_dirty(bp->b_pages[i]);
1977		}
1978
1979		/*
1980		 * Calculate the encompassing dirty range, boffset and eoffset,
1981		 * (eoffset - boffset) bytes.
1982		 */
1983
1984		for (i = 0; i < bp->b_npages; i++) {
1985			if (bp->b_pages[i]->dirty)
1986				break;
1987		}
1988		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1989
1990		for (i = bp->b_npages - 1; i >= 0; --i) {
1991			if (bp->b_pages[i]->dirty) {
1992				break;
1993			}
1994		}
1995		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1996
1997		/*
1998		 * Fit it to the buffer.
1999		 */
2000
2001		if (eoffset > bp->b_bcount)
2002			eoffset = bp->b_bcount;
2003
2004		/*
2005		 * If we have a good dirty range, merge with the existing
2006		 * dirty range.
2007		 */
2008
2009		if (boffset < eoffset) {
2010			if (bp->b_dirtyoff > boffset)
2011				bp->b_dirtyoff = boffset;
2012			if (bp->b_dirtyend < eoffset)
2013				bp->b_dirtyend = eoffset;
2014		}
2015	}
2016}
2017
2018/*
2019 *	getblk:
2020 *
2021 *	Get a block given a specified block and offset into a file/device.
2022 *	The buffers B_DONE bit will be cleared on return, making it almost
2023 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2024 *	return.  The caller should clear B_INVAL prior to initiating a
2025 *	READ.
2026 *
2027 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2028 *	an existing buffer.
2029 *
2030 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2031 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2032 *	and then cleared based on the backing VM.  If the previous buffer is
2033 *	non-0-sized but invalid, B_CACHE will be cleared.
2034 *
2035 *	If getblk() must create a new buffer, the new buffer is returned with
2036 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2037 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2038 *	backing VM.
2039 *
2040 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2041 *	B_CACHE bit is clear.
2042 *
2043 *	What this means, basically, is that the caller should use B_CACHE to
2044 *	determine whether the buffer is fully valid or not and should clear
2045 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2046 *	the buffer by loading its data area with something, the caller needs
2047 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2048 *	the caller should set B_CACHE ( as an optimization ), else the caller
2049 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2050 *	a write attempt or if it was a successfull read.  If the caller
2051 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2052 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2053 */
2054struct buf *
2055getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2056{
2057	struct buf *bp;
2058	int s;
2059	struct bufhashhdr *bh;
2060
2061	if (size > MAXBSIZE)
2062		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2063
2064	s = splbio();
2065loop:
2066	/*
2067	 * Block if we are low on buffers.   Certain processes are allowed
2068	 * to completely exhaust the buffer cache.
2069         *
2070         * If this check ever becomes a bottleneck it may be better to
2071         * move it into the else, when gbincore() fails.  At the moment
2072         * it isn't a problem.
2073         */
2074	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
2075		if (numfreebuffers == 0) {
2076			if (!curproc)
2077				return NULL;
2078			needsbuffer |= VFS_BIO_NEED_ANY;
2079			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2080			    slptimeo);
2081		}
2082	} else if (numfreebuffers < lofreebuffers) {
2083		waitfreebuffers(slpflag, slptimeo);
2084	}
2085
2086	if ((bp = gbincore(vp, blkno))) {
2087		/*
2088		 * Buffer is in-core.  If the buffer is not busy, it must
2089		 * be on a queue.
2090		 */
2091
2092		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2093			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2094			    "getblk", slpflag, slptimeo) == ENOLCK)
2095				goto loop;
2096			splx(s);
2097			return (struct buf *) NULL;
2098		}
2099
2100		/*
2101		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2102		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2103		 * and for a VMIO buffer B_CACHE is adjusted according to the
2104		 * backing VM cache.
2105		 */
2106		if (bp->b_flags & B_INVAL)
2107			bp->b_flags &= ~B_CACHE;
2108		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2109			bp->b_flags |= B_CACHE;
2110		bremfree(bp);
2111
2112		/*
2113		 * check for size inconsistancies for non-VMIO case.
2114		 */
2115
2116		if (bp->b_bcount != size) {
2117			if ((bp->b_flags & B_VMIO) == 0 ||
2118			    (size > bp->b_kvasize)) {
2119				if (bp->b_flags & B_DELWRI) {
2120					bp->b_flags |= B_NOCACHE;
2121					BUF_WRITE(bp);
2122				} else {
2123					if ((bp->b_flags & B_VMIO) &&
2124					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2125						bp->b_flags |= B_RELBUF;
2126						brelse(bp);
2127					} else {
2128						bp->b_flags |= B_NOCACHE;
2129						BUF_WRITE(bp);
2130					}
2131				}
2132				goto loop;
2133			}
2134		}
2135
2136		/*
2137		 * If the size is inconsistant in the VMIO case, we can resize
2138		 * the buffer.  This might lead to B_CACHE getting set or
2139		 * cleared.  If the size has not changed, B_CACHE remains
2140		 * unchanged from its previous state.
2141		 */
2142
2143		if (bp->b_bcount != size)
2144			allocbuf(bp, size);
2145
2146		KASSERT(bp->b_offset != NOOFFSET,
2147		    ("getblk: no buffer offset"));
2148
2149		/*
2150		 * A buffer with B_DELWRI set and B_CACHE clear must
2151		 * be committed before we can return the buffer in
2152		 * order to prevent the caller from issuing a read
2153		 * ( due to B_CACHE not being set ) and overwriting
2154		 * it.
2155		 *
2156		 * Most callers, including NFS and FFS, need this to
2157		 * operate properly either because they assume they
2158		 * can issue a read if B_CACHE is not set, or because
2159		 * ( for example ) an uncached B_DELWRI might loop due
2160		 * to softupdates re-dirtying the buffer.  In the latter
2161		 * case, B_CACHE is set after the first write completes,
2162		 * preventing further loops.
2163		 */
2164
2165		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2166			BUF_WRITE(bp);
2167			goto loop;
2168		}
2169
2170		splx(s);
2171		bp->b_flags &= ~B_DONE;
2172	} else {
2173		/*
2174		 * Buffer is not in-core, create new buffer.  The buffer
2175		 * returned by getnewbuf() is locked.  Note that the returned
2176		 * buffer is also considered valid (not marked B_INVAL).
2177		 */
2178		int bsize, maxsize, vmio;
2179		off_t offset;
2180
2181		if (vn_isdisk(vp, NULL))
2182			bsize = DEV_BSIZE;
2183		else if (vp->v_mountedhere)
2184			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2185		else if (vp->v_mount)
2186			bsize = vp->v_mount->mnt_stat.f_iosize;
2187		else
2188			bsize = size;
2189
2190		offset = (off_t)blkno * bsize;
2191		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2192		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2193		maxsize = imax(maxsize, bsize);
2194
2195		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2196			if (slpflag || slptimeo) {
2197				splx(s);
2198				return NULL;
2199			}
2200			goto loop;
2201		}
2202
2203		/*
2204		 * This code is used to make sure that a buffer is not
2205		 * created while the getnewbuf routine is blocked.
2206		 * This can be a problem whether the vnode is locked or not.
2207		 * If the buffer is created out from under us, we have to
2208		 * throw away the one we just created.  There is now window
2209		 * race because we are safely running at splbio() from the
2210		 * point of the duplicate buffer creation through to here,
2211		 * and we've locked the buffer.
2212		 */
2213		if (gbincore(vp, blkno)) {
2214			bp->b_flags |= B_INVAL;
2215			brelse(bp);
2216			goto loop;
2217		}
2218
2219		/*
2220		 * Insert the buffer into the hash, so that it can
2221		 * be found by incore.
2222		 */
2223		bp->b_blkno = bp->b_lblkno = blkno;
2224		bp->b_offset = offset;
2225
2226		bgetvp(vp, bp);
2227		LIST_REMOVE(bp, b_hash);
2228		bh = bufhash(vp, blkno);
2229		LIST_INSERT_HEAD(bh, bp, b_hash);
2230
2231		/*
2232		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2233		 * buffer size starts out as 0, B_CACHE will be set by
2234		 * allocbuf() for the VMIO case prior to it testing the
2235		 * backing store for validity.
2236		 */
2237
2238		if (vmio) {
2239			bp->b_flags |= B_VMIO;
2240#if defined(VFS_BIO_DEBUG)
2241			if (vp->v_type != VREG && vp->v_type != VBLK)
2242				printf("getblk: vmioing file type %d???\n", vp->v_type);
2243#endif
2244		} else {
2245			bp->b_flags &= ~B_VMIO;
2246		}
2247
2248		allocbuf(bp, size);
2249
2250		splx(s);
2251		bp->b_flags &= ~B_DONE;
2252	}
2253	return (bp);
2254}
2255
2256/*
2257 * Get an empty, disassociated buffer of given size.  The buffer is initially
2258 * set to B_INVAL.
2259 */
2260struct buf *
2261geteblk(int size)
2262{
2263	struct buf *bp;
2264	int s;
2265	int maxsize;
2266
2267	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2268
2269	s = splbio();
2270	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0);
2271	splx(s);
2272	allocbuf(bp, size);
2273	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2274	return (bp);
2275}
2276
2277
2278/*
2279 * This code constitutes the buffer memory from either anonymous system
2280 * memory (in the case of non-VMIO operations) or from an associated
2281 * VM object (in the case of VMIO operations).  This code is able to
2282 * resize a buffer up or down.
2283 *
2284 * Note that this code is tricky, and has many complications to resolve
2285 * deadlock or inconsistant data situations.  Tread lightly!!!
2286 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2287 * the caller.  Calling this code willy nilly can result in the loss of data.
2288 *
2289 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2290 * B_CACHE for the non-VMIO case.
2291 */
2292
2293int
2294allocbuf(struct buf *bp, int size)
2295{
2296	int newbsize, mbsize;
2297	int i;
2298
2299	if (BUF_REFCNT(bp) == 0)
2300		panic("allocbuf: buffer not busy");
2301
2302	if (bp->b_kvasize < size)
2303		panic("allocbuf: buffer too small");
2304
2305	if ((bp->b_flags & B_VMIO) == 0) {
2306		caddr_t origbuf;
2307		int origbufsize;
2308		/*
2309		 * Just get anonymous memory from the kernel.  Don't
2310		 * mess with B_CACHE.
2311		 */
2312		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2313#if !defined(NO_B_MALLOC)
2314		if (bp->b_flags & B_MALLOC)
2315			newbsize = mbsize;
2316		else
2317#endif
2318			newbsize = round_page(size);
2319
2320		if (newbsize < bp->b_bufsize) {
2321#if !defined(NO_B_MALLOC)
2322			/*
2323			 * malloced buffers are not shrunk
2324			 */
2325			if (bp->b_flags & B_MALLOC) {
2326				if (newbsize) {
2327					bp->b_bcount = size;
2328				} else {
2329					free(bp->b_data, M_BIOBUF);
2330					bufmallocspace -= bp->b_bufsize;
2331					runningbufspace -= bp->b_bufsize;
2332					if (bp->b_bufsize)
2333						bufspacewakeup();
2334					bp->b_data = bp->b_kvabase;
2335					bp->b_bufsize = 0;
2336					bp->b_bcount = 0;
2337					bp->b_flags &= ~B_MALLOC;
2338				}
2339				return 1;
2340			}
2341#endif
2342			vm_hold_free_pages(
2343			    bp,
2344			    (vm_offset_t) bp->b_data + newbsize,
2345			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2346		} else if (newbsize > bp->b_bufsize) {
2347#if !defined(NO_B_MALLOC)
2348			/*
2349			 * We only use malloced memory on the first allocation.
2350			 * and revert to page-allocated memory when the buffer
2351			 * grows.
2352			 */
2353			if ( (bufmallocspace < maxbufmallocspace) &&
2354				(bp->b_bufsize == 0) &&
2355				(mbsize <= PAGE_SIZE/2)) {
2356
2357				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2358				bp->b_bufsize = mbsize;
2359				bp->b_bcount = size;
2360				bp->b_flags |= B_MALLOC;
2361				bufmallocspace += mbsize;
2362				runningbufspace += bp->b_bufsize;
2363				return 1;
2364			}
2365#endif
2366			origbuf = NULL;
2367			origbufsize = 0;
2368#if !defined(NO_B_MALLOC)
2369			/*
2370			 * If the buffer is growing on its other-than-first allocation,
2371			 * then we revert to the page-allocation scheme.
2372			 */
2373			if (bp->b_flags & B_MALLOC) {
2374				origbuf = bp->b_data;
2375				origbufsize = bp->b_bufsize;
2376				bp->b_data = bp->b_kvabase;
2377				bufmallocspace -= bp->b_bufsize;
2378				runningbufspace -= bp->b_bufsize;
2379				if (bp->b_bufsize)
2380					bufspacewakeup();
2381				bp->b_bufsize = 0;
2382				bp->b_flags &= ~B_MALLOC;
2383				newbsize = round_page(newbsize);
2384			}
2385#endif
2386			vm_hold_load_pages(
2387			    bp,
2388			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2389			    (vm_offset_t) bp->b_data + newbsize);
2390#if !defined(NO_B_MALLOC)
2391			if (origbuf) {
2392				bcopy(origbuf, bp->b_data, origbufsize);
2393				free(origbuf, M_BIOBUF);
2394			}
2395#endif
2396		}
2397	} else {
2398		vm_page_t m;
2399		int desiredpages;
2400
2401		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2402		desiredpages = (size == 0) ? 0 :
2403			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2404
2405#if !defined(NO_B_MALLOC)
2406		if (bp->b_flags & B_MALLOC)
2407			panic("allocbuf: VMIO buffer can't be malloced");
2408#endif
2409		/*
2410		 * Set B_CACHE initially if buffer is 0 length or will become
2411		 * 0-length.
2412		 */
2413		if (size == 0 || bp->b_bufsize == 0)
2414			bp->b_flags |= B_CACHE;
2415
2416		if (newbsize < bp->b_bufsize) {
2417			/*
2418			 * DEV_BSIZE aligned new buffer size is less then the
2419			 * DEV_BSIZE aligned existing buffer size.  Figure out
2420			 * if we have to remove any pages.
2421			 */
2422			if (desiredpages < bp->b_npages) {
2423				for (i = desiredpages; i < bp->b_npages; i++) {
2424					/*
2425					 * the page is not freed here -- it
2426					 * is the responsibility of
2427					 * vnode_pager_setsize
2428					 */
2429					m = bp->b_pages[i];
2430					KASSERT(m != bogus_page,
2431					    ("allocbuf: bogus page found"));
2432					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2433						;
2434
2435					bp->b_pages[i] = NULL;
2436					vm_page_unwire(m, 0);
2437				}
2438				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2439				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2440				bp->b_npages = desiredpages;
2441			}
2442		} else if (size > bp->b_bcount) {
2443			/*
2444			 * We are growing the buffer, possibly in a
2445			 * byte-granular fashion.
2446			 */
2447			struct vnode *vp;
2448			vm_object_t obj;
2449			vm_offset_t toff;
2450			vm_offset_t tinc;
2451
2452			/*
2453			 * Step 1, bring in the VM pages from the object,
2454			 * allocating them if necessary.  We must clear
2455			 * B_CACHE if these pages are not valid for the
2456			 * range covered by the buffer.
2457			 */
2458
2459			vp = bp->b_vp;
2460			obj = vp->v_object;
2461
2462			while (bp->b_npages < desiredpages) {
2463				vm_page_t m;
2464				vm_pindex_t pi;
2465
2466				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2467				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2468					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2469					if (m == NULL) {
2470						VM_WAIT;
2471						vm_pageout_deficit += desiredpages - bp->b_npages;
2472					} else {
2473						vm_page_wire(m);
2474						vm_page_wakeup(m);
2475						bp->b_flags &= ~B_CACHE;
2476						bp->b_pages[bp->b_npages] = m;
2477						++bp->b_npages;
2478					}
2479					continue;
2480				}
2481
2482				/*
2483				 * We found a page.  If we have to sleep on it,
2484				 * retry because it might have gotten freed out
2485				 * from under us.
2486				 *
2487				 * We can only test PG_BUSY here.  Blocking on
2488				 * m->busy might lead to a deadlock:
2489				 *
2490				 *  vm_fault->getpages->cluster_read->allocbuf
2491				 *
2492				 */
2493
2494				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2495					continue;
2496
2497				/*
2498				 * We have a good page.  Should we wakeup the
2499				 * page daemon?
2500				 */
2501				if ((curproc != pageproc) &&
2502				    ((m->queue - m->pc) == PQ_CACHE) &&
2503				    ((cnt.v_free_count + cnt.v_cache_count) <
2504					(cnt.v_free_min + cnt.v_cache_min))) {
2505					pagedaemon_wakeup();
2506				}
2507				vm_page_flag_clear(m, PG_ZERO);
2508				vm_page_wire(m);
2509				bp->b_pages[bp->b_npages] = m;
2510				++bp->b_npages;
2511			}
2512
2513			/*
2514			 * Step 2.  We've loaded the pages into the buffer,
2515			 * we have to figure out if we can still have B_CACHE
2516			 * set.  Note that B_CACHE is set according to the
2517			 * byte-granular range ( bcount and size ), new the
2518			 * aligned range ( newbsize ).
2519			 *
2520			 * The VM test is against m->valid, which is DEV_BSIZE
2521			 * aligned.  Needless to say, the validity of the data
2522			 * needs to also be DEV_BSIZE aligned.  Note that this
2523			 * fails with NFS if the server or some other client
2524			 * extends the file's EOF.  If our buffer is resized,
2525			 * B_CACHE may remain set! XXX
2526			 */
2527
2528			toff = bp->b_bcount;
2529			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2530
2531			while ((bp->b_flags & B_CACHE) && toff < size) {
2532				vm_pindex_t pi;
2533
2534				if (tinc > (size - toff))
2535					tinc = size - toff;
2536
2537				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2538				    PAGE_SHIFT;
2539
2540				vfs_buf_test_cache(
2541				    bp,
2542				    bp->b_offset,
2543				    toff,
2544				    tinc,
2545				    bp->b_pages[pi]
2546				);
2547				toff += tinc;
2548				tinc = PAGE_SIZE;
2549			}
2550
2551			/*
2552			 * Step 3, fixup the KVM pmap.  Remember that
2553			 * bp->b_data is relative to bp->b_offset, but
2554			 * bp->b_offset may be offset into the first page.
2555			 */
2556
2557			bp->b_data = (caddr_t)
2558			    trunc_page((vm_offset_t)bp->b_data);
2559			pmap_qenter(
2560			    (vm_offset_t)bp->b_data,
2561			    bp->b_pages,
2562			    bp->b_npages
2563			);
2564			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2565			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2566		}
2567	}
2568	runningbufspace += (newbsize - bp->b_bufsize);
2569	if (newbsize < bp->b_bufsize)
2570		bufspacewakeup();
2571	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2572	bp->b_bcount = size;		/* requested buffer size	*/
2573	return 1;
2574}
2575
2576/*
2577 *	bufwait:
2578 *
2579 *	Wait for buffer I/O completion, returning error status.  The buffer
2580 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2581 *	error and cleared.
2582 */
2583int
2584bufwait(register struct buf * bp)
2585{
2586	int s;
2587
2588	s = splbio();
2589	while ((bp->b_flags & B_DONE) == 0) {
2590		if (bp->b_iocmd == BIO_READ)
2591			tsleep(bp, PRIBIO, "biord", 0);
2592		else
2593			tsleep(bp, PRIBIO, "biowr", 0);
2594	}
2595	splx(s);
2596	if (bp->b_flags & B_EINTR) {
2597		bp->b_flags &= ~B_EINTR;
2598		return (EINTR);
2599	}
2600	if (bp->b_ioflags & BIO_ERROR) {
2601		return (bp->b_error ? bp->b_error : EIO);
2602	} else {
2603		return (0);
2604	}
2605}
2606
2607 /*
2608  * Call back function from struct bio back up to struct buf.
2609  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
2610  */
2611void
2612bufdonebio(struct bio *bp)
2613{
2614	bufdone(bp->bio_caller2);
2615}
2616
2617/*
2618 *	bufdone:
2619 *
2620 *	Finish I/O on a buffer, optionally calling a completion function.
2621 *	This is usually called from an interrupt so process blocking is
2622 *	not allowed.
2623 *
2624 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2625 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2626 *	assuming B_INVAL is clear.
2627 *
2628 *	For the VMIO case, we set B_CACHE if the op was a read and no
2629 *	read error occured, or if the op was a write.  B_CACHE is never
2630 *	set if the buffer is invalid or otherwise uncacheable.
2631 *
2632 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2633 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2634 *	in the biodone routine.
2635 */
2636void
2637bufdone(struct buf *bp)
2638{
2639	int s;
2640	void    (*biodone) __P((struct buf *));
2641
2642	s = splbio();
2643
2644	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2645	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2646
2647	bp->b_flags |= B_DONE;
2648
2649	if (bp->b_iocmd == BIO_DELETE) {
2650		brelse(bp);
2651		splx(s);
2652		return;
2653	}
2654
2655	if (bp->b_iocmd == BIO_WRITE) {
2656		vwakeup(bp);
2657	}
2658
2659	/* call optional completion function if requested */
2660	if (bp->b_iodone != NULL) {
2661		biodone = bp->b_iodone;
2662		bp->b_iodone = NULL;
2663		(*biodone) (bp);
2664		splx(s);
2665		return;
2666	}
2667	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2668		(*bioops.io_complete)(bp);
2669
2670	if (bp->b_flags & B_VMIO) {
2671		int i, resid;
2672		vm_ooffset_t foff;
2673		vm_page_t m;
2674		vm_object_t obj;
2675		int iosize;
2676		struct vnode *vp = bp->b_vp;
2677
2678		obj = vp->v_object;
2679
2680#if defined(VFS_BIO_DEBUG)
2681		if (vp->v_usecount == 0) {
2682			panic("biodone: zero vnode ref count");
2683		}
2684
2685		if (vp->v_object == NULL) {
2686			panic("biodone: missing VM object");
2687		}
2688
2689		if ((vp->v_flag & VOBJBUF) == 0) {
2690			panic("biodone: vnode is not setup for merged cache");
2691		}
2692#endif
2693
2694		foff = bp->b_offset;
2695		KASSERT(bp->b_offset != NOOFFSET,
2696		    ("biodone: no buffer offset"));
2697
2698		if (!obj) {
2699			panic("biodone: no object");
2700		}
2701#if defined(VFS_BIO_DEBUG)
2702		if (obj->paging_in_progress < bp->b_npages) {
2703			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2704			    obj->paging_in_progress, bp->b_npages);
2705		}
2706#endif
2707
2708		/*
2709		 * Set B_CACHE if the op was a normal read and no error
2710		 * occured.  B_CACHE is set for writes in the b*write()
2711		 * routines.
2712		 */
2713		iosize = bp->b_bcount - bp->b_resid;
2714		if (bp->b_iocmd == BIO_READ &&
2715		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
2716		    !(bp->b_ioflags & BIO_ERROR)) {
2717			bp->b_flags |= B_CACHE;
2718		}
2719
2720		for (i = 0; i < bp->b_npages; i++) {
2721			int bogusflag = 0;
2722			m = bp->b_pages[i];
2723			if (m == bogus_page) {
2724				bogusflag = 1;
2725				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2726				if (!m) {
2727#if defined(VFS_BIO_DEBUG)
2728					printf("biodone: page disappeared\n");
2729#endif
2730					vm_object_pip_subtract(obj, 1);
2731					bp->b_flags &= ~B_CACHE;
2732					continue;
2733				}
2734				bp->b_pages[i] = m;
2735				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2736			}
2737#if defined(VFS_BIO_DEBUG)
2738			if (OFF_TO_IDX(foff) != m->pindex) {
2739				printf(
2740"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2741				    (unsigned long)foff, m->pindex);
2742			}
2743#endif
2744			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2745			if (resid > iosize)
2746				resid = iosize;
2747
2748			/*
2749			 * In the write case, the valid and clean bits are
2750			 * already changed correctly ( see bdwrite() ), so we
2751			 * only need to do this here in the read case.
2752			 */
2753			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2754				vfs_page_set_valid(bp, foff, i, m);
2755			}
2756			vm_page_flag_clear(m, PG_ZERO);
2757
2758			/*
2759			 * when debugging new filesystems or buffer I/O methods, this
2760			 * is the most common error that pops up.  if you see this, you
2761			 * have not set the page busy flag correctly!!!
2762			 */
2763			if (m->busy == 0) {
2764				printf("biodone: page busy < 0, "
2765				    "pindex: %d, foff: 0x(%x,%x), "
2766				    "resid: %d, index: %d\n",
2767				    (int) m->pindex, (int)(foff >> 32),
2768						(int) foff & 0xffffffff, resid, i);
2769				if (!vn_isdisk(vp, NULL))
2770					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2771					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2772					    (int) bp->b_lblkno,
2773					    bp->b_flags, bp->b_npages);
2774				else
2775					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2776					    (int) bp->b_lblkno,
2777					    bp->b_flags, bp->b_npages);
2778				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2779				    m->valid, m->dirty, m->wire_count);
2780				panic("biodone: page busy < 0\n");
2781			}
2782			vm_page_io_finish(m);
2783			vm_object_pip_subtract(obj, 1);
2784			foff += resid;
2785			iosize -= resid;
2786		}
2787		if (obj)
2788			vm_object_pip_wakeupn(obj, 0);
2789	}
2790	/*
2791	 * For asynchronous completions, release the buffer now. The brelse
2792	 * will do a wakeup there if necessary - so no need to do a wakeup
2793	 * here in the async case. The sync case always needs to do a wakeup.
2794	 */
2795
2796	if (bp->b_flags & B_ASYNC) {
2797		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
2798			brelse(bp);
2799		else
2800			bqrelse(bp);
2801	} else {
2802		wakeup(bp);
2803	}
2804	splx(s);
2805}
2806
2807/*
2808 * This routine is called in lieu of iodone in the case of
2809 * incomplete I/O.  This keeps the busy status for pages
2810 * consistant.
2811 */
2812void
2813vfs_unbusy_pages(struct buf * bp)
2814{
2815	int i;
2816
2817	if (bp->b_flags & B_VMIO) {
2818		struct vnode *vp = bp->b_vp;
2819		vm_object_t obj = vp->v_object;
2820
2821		for (i = 0; i < bp->b_npages; i++) {
2822			vm_page_t m = bp->b_pages[i];
2823
2824			if (m == bogus_page) {
2825				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2826				if (!m) {
2827					panic("vfs_unbusy_pages: page missing\n");
2828				}
2829				bp->b_pages[i] = m;
2830				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2831			}
2832			vm_object_pip_subtract(obj, 1);
2833			vm_page_flag_clear(m, PG_ZERO);
2834			vm_page_io_finish(m);
2835		}
2836		vm_object_pip_wakeupn(obj, 0);
2837	}
2838}
2839
2840/*
2841 * vfs_page_set_valid:
2842 *
2843 *	Set the valid bits in a page based on the supplied offset.   The
2844 *	range is restricted to the buffer's size.
2845 *
2846 *	This routine is typically called after a read completes.
2847 */
2848static void
2849vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2850{
2851	vm_ooffset_t soff, eoff;
2852
2853	/*
2854	 * Start and end offsets in buffer.  eoff - soff may not cross a
2855	 * page boundry or cross the end of the buffer.  The end of the
2856	 * buffer, in this case, is our file EOF, not the allocation size
2857	 * of the buffer.
2858	 */
2859	soff = off;
2860	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2861	if (eoff > bp->b_offset + bp->b_bcount)
2862		eoff = bp->b_offset + bp->b_bcount;
2863
2864	/*
2865	 * Set valid range.  This is typically the entire buffer and thus the
2866	 * entire page.
2867	 */
2868	if (eoff > soff) {
2869		vm_page_set_validclean(
2870		    m,
2871		   (vm_offset_t) (soff & PAGE_MASK),
2872		   (vm_offset_t) (eoff - soff)
2873		);
2874	}
2875}
2876
2877/*
2878 * This routine is called before a device strategy routine.
2879 * It is used to tell the VM system that paging I/O is in
2880 * progress, and treat the pages associated with the buffer
2881 * almost as being PG_BUSY.  Also the object paging_in_progress
2882 * flag is handled to make sure that the object doesn't become
2883 * inconsistant.
2884 *
2885 * Since I/O has not been initiated yet, certain buffer flags
2886 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
2887 * and should be ignored.
2888 */
2889void
2890vfs_busy_pages(struct buf * bp, int clear_modify)
2891{
2892	int i, bogus;
2893
2894	if (bp->b_flags & B_VMIO) {
2895		struct vnode *vp = bp->b_vp;
2896		vm_object_t obj = vp->v_object;
2897		vm_ooffset_t foff;
2898
2899		foff = bp->b_offset;
2900		KASSERT(bp->b_offset != NOOFFSET,
2901		    ("vfs_busy_pages: no buffer offset"));
2902		vfs_setdirty(bp);
2903
2904retry:
2905		for (i = 0; i < bp->b_npages; i++) {
2906			vm_page_t m = bp->b_pages[i];
2907			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2908				goto retry;
2909		}
2910
2911		bogus = 0;
2912		for (i = 0; i < bp->b_npages; i++) {
2913			vm_page_t m = bp->b_pages[i];
2914
2915			vm_page_flag_clear(m, PG_ZERO);
2916			if ((bp->b_flags & B_CLUSTER) == 0) {
2917				vm_object_pip_add(obj, 1);
2918				vm_page_io_start(m);
2919			}
2920
2921			/*
2922			 * When readying a buffer for a read ( i.e
2923			 * clear_modify == 0 ), it is important to do
2924			 * bogus_page replacement for valid pages in
2925			 * partially instantiated buffers.  Partially
2926			 * instantiated buffers can, in turn, occur when
2927			 * reconstituting a buffer from its VM backing store
2928			 * base.  We only have to do this if B_CACHE is
2929			 * clear ( which causes the I/O to occur in the
2930			 * first place ).  The replacement prevents the read
2931			 * I/O from overwriting potentially dirty VM-backed
2932			 * pages.  XXX bogus page replacement is, uh, bogus.
2933			 * It may not work properly with small-block devices.
2934			 * We need to find a better way.
2935			 */
2936
2937			vm_page_protect(m, VM_PROT_NONE);
2938			if (clear_modify)
2939				vfs_page_set_valid(bp, foff, i, m);
2940			else if (m->valid == VM_PAGE_BITS_ALL &&
2941				(bp->b_flags & B_CACHE) == 0) {
2942				bp->b_pages[i] = bogus_page;
2943				bogus++;
2944			}
2945			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2946		}
2947		if (bogus)
2948			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2949	}
2950}
2951
2952/*
2953 * Tell the VM system that the pages associated with this buffer
2954 * are clean.  This is used for delayed writes where the data is
2955 * going to go to disk eventually without additional VM intevention.
2956 *
2957 * Note that while we only really need to clean through to b_bcount, we
2958 * just go ahead and clean through to b_bufsize.
2959 */
2960static void
2961vfs_clean_pages(struct buf * bp)
2962{
2963	int i;
2964
2965	if (bp->b_flags & B_VMIO) {
2966		vm_ooffset_t foff;
2967
2968		foff = bp->b_offset;
2969		KASSERT(bp->b_offset != NOOFFSET,
2970		    ("vfs_clean_pages: no buffer offset"));
2971		for (i = 0; i < bp->b_npages; i++) {
2972			vm_page_t m = bp->b_pages[i];
2973			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2974			vm_ooffset_t eoff = noff;
2975
2976			if (eoff > bp->b_offset + bp->b_bufsize)
2977				eoff = bp->b_offset + bp->b_bufsize;
2978			vfs_page_set_valid(bp, foff, i, m);
2979			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2980			foff = noff;
2981		}
2982	}
2983}
2984
2985/*
2986 *	vfs_bio_set_validclean:
2987 *
2988 *	Set the range within the buffer to valid and clean.  The range is
2989 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2990 *	itself may be offset from the beginning of the first page.
2991 */
2992
2993void
2994vfs_bio_set_validclean(struct buf *bp, int base, int size)
2995{
2996	if (bp->b_flags & B_VMIO) {
2997		int i;
2998		int n;
2999
3000		/*
3001		 * Fixup base to be relative to beginning of first page.
3002		 * Set initial n to be the maximum number of bytes in the
3003		 * first page that can be validated.
3004		 */
3005
3006		base += (bp->b_offset & PAGE_MASK);
3007		n = PAGE_SIZE - (base & PAGE_MASK);
3008
3009		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3010			vm_page_t m = bp->b_pages[i];
3011
3012			if (n > size)
3013				n = size;
3014
3015			vm_page_set_validclean(m, base & PAGE_MASK, n);
3016			base += n;
3017			size -= n;
3018			n = PAGE_SIZE;
3019		}
3020	}
3021}
3022
3023/*
3024 *	vfs_bio_clrbuf:
3025 *
3026 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3027 *	to clear BIO_ERROR and B_INVAL.
3028 *
3029 *	Note that while we only theoretically need to clear through b_bcount,
3030 *	we go ahead and clear through b_bufsize.
3031 */
3032
3033void
3034vfs_bio_clrbuf(struct buf *bp) {
3035	int i, mask = 0;
3036	caddr_t sa, ea;
3037	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3038		bp->b_flags &= ~B_INVAL;
3039		bp->b_ioflags &= ~BIO_ERROR;
3040		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3041		    (bp->b_offset & PAGE_MASK) == 0) {
3042			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3043			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3044			    ((bp->b_pages[0]->valid & mask) != mask)) {
3045				bzero(bp->b_data, bp->b_bufsize);
3046			}
3047			bp->b_pages[0]->valid |= mask;
3048			bp->b_resid = 0;
3049			return;
3050		}
3051		ea = sa = bp->b_data;
3052		for(i=0;i<bp->b_npages;i++,sa=ea) {
3053			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3054			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3055			ea = (caddr_t)(vm_offset_t)ulmin(
3056			    (u_long)(vm_offset_t)ea,
3057			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3058			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3059			if ((bp->b_pages[i]->valid & mask) == mask)
3060				continue;
3061			if ((bp->b_pages[i]->valid & mask) == 0) {
3062				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3063					bzero(sa, ea - sa);
3064				}
3065			} else {
3066				for (; sa < ea; sa += DEV_BSIZE, j++) {
3067					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3068						(bp->b_pages[i]->valid & (1<<j)) == 0)
3069						bzero(sa, DEV_BSIZE);
3070				}
3071			}
3072			bp->b_pages[i]->valid |= mask;
3073			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3074		}
3075		bp->b_resid = 0;
3076	} else {
3077		clrbuf(bp);
3078	}
3079}
3080
3081/*
3082 * vm_hold_load_pages and vm_hold_unload pages get pages into
3083 * a buffers address space.  The pages are anonymous and are
3084 * not associated with a file object.
3085 */
3086void
3087vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3088{
3089	vm_offset_t pg;
3090	vm_page_t p;
3091	int index;
3092
3093	to = round_page(to);
3094	from = round_page(from);
3095	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3096
3097	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3098
3099tryagain:
3100
3101		p = vm_page_alloc(kernel_object,
3102			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3103		    VM_ALLOC_NORMAL);
3104		if (!p) {
3105			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3106			VM_WAIT;
3107			goto tryagain;
3108		}
3109		vm_page_wire(p);
3110		p->valid = VM_PAGE_BITS_ALL;
3111		vm_page_flag_clear(p, PG_ZERO);
3112		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3113		bp->b_pages[index] = p;
3114		vm_page_wakeup(p);
3115	}
3116	bp->b_npages = index;
3117}
3118
3119void
3120vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3121{
3122	vm_offset_t pg;
3123	vm_page_t p;
3124	int index, newnpages;
3125
3126	from = round_page(from);
3127	to = round_page(to);
3128	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3129
3130	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3131		p = bp->b_pages[index];
3132		if (p && (index < bp->b_npages)) {
3133			if (p->busy) {
3134				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3135					bp->b_blkno, bp->b_lblkno);
3136			}
3137			bp->b_pages[index] = NULL;
3138			pmap_kremove(pg);
3139			vm_page_busy(p);
3140			vm_page_unwire(p, 0);
3141			vm_page_free(p);
3142		}
3143	}
3144	bp->b_npages = newnpages;
3145}
3146
3147
3148#include "opt_ddb.h"
3149#ifdef DDB
3150#include <ddb/ddb.h>
3151
3152DB_SHOW_COMMAND(buffer, db_show_buffer)
3153{
3154	/* get args */
3155	struct buf *bp = (struct buf *)addr;
3156
3157	if (!have_addr) {
3158		db_printf("usage: show buffer <addr>\n");
3159		return;
3160	}
3161
3162	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3163	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3164		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3165		  "b_blkno = %d, b_pblkno = %d\n",
3166		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3167		  major(bp->b_dev), minor(bp->b_dev),
3168		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3169	if (bp->b_npages) {
3170		int i;
3171		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3172		for (i = 0; i < bp->b_npages; i++) {
3173			vm_page_t m;
3174			m = bp->b_pages[i];
3175			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3176			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3177			if ((i + 1) < bp->b_npages)
3178				db_printf(",");
3179		}
3180		db_printf("\n");
3181	}
3182}
3183#endif /* DDB */
3184