vfs_bio.c revision 58345
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 58345 2000-03-20 10:44:49Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/conf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/proc.h>
41#include <sys/reboot.h>
42#include <sys/resourcevar.h>
43#include <sys/sysctl.h>
44#include <sys/vmmeter.h>
45#include <sys/vnode.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_kern.h>
49#include <vm/vm_pageout.h>
50#include <vm/vm_page.h>
51#include <vm/vm_object.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_map.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59struct buf *buf;		/* buffer header pool */
60struct swqueue bswlist;
61
62static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
63		vm_offset_t to);
64static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
65		vm_offset_t to);
66static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
67			       int pageno, vm_page_t m);
68static void vfs_clean_pages(struct buf * bp);
69static void vfs_setdirty(struct buf *bp);
70static void vfs_vmio_release(struct buf *bp);
71static void vfs_backgroundwritedone(struct buf *bp);
72static int flushbufqueues(void);
73
74static int bd_request;
75
76static void buf_daemon __P((void));
77/*
78 * bogus page -- for I/O to/from partially complete buffers
79 * this is a temporary solution to the problem, but it is not
80 * really that bad.  it would be better to split the buffer
81 * for input in the case of buffers partially already in memory,
82 * but the code is intricate enough already.
83 */
84vm_page_t bogus_page;
85int runningbufspace;
86int vmiodirenable = FALSE;
87int buf_maxio = DFLTPHYS;
88static vm_offset_t bogus_offset;
89
90static int bufspace, maxbufspace, vmiospace,
91	bufmallocspace, maxbufmallocspace, hibufspace;
92static int maxbdrun;
93static int needsbuffer;
94static int numdirtybuffers, hidirtybuffers;
95static int numfreebuffers, lofreebuffers, hifreebuffers;
96static int getnewbufcalls;
97static int getnewbufrestarts;
98static int kvafreespace;
99
100SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
101	&numdirtybuffers, 0, "");
102SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
103	&hidirtybuffers, 0, "");
104SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
105	&numfreebuffers, 0, "");
106SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
107	&lofreebuffers, 0, "");
108SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
109	&hifreebuffers, 0, "");
110SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
111	&runningbufspace, 0, "");
112SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
113	&maxbufspace, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
115	&hibufspace, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
117	&bufspace, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
119	&maxbdrun, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
121	&vmiospace, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
123	&maxbufmallocspace, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
125	&bufmallocspace, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
127	&kvafreespace, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
129	&getnewbufcalls, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
131	&getnewbufrestarts, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
133	&vmiodirenable, 0, "");
134
135
136static int bufhashmask;
137static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
138struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
139char *buf_wmesg = BUF_WMESG;
140
141extern int vm_swap_size;
142
143#define BUF_MAXUSE		24
144
145#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
146#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
147#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
148#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
149#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
150
151/*
152 * Buffer hash table code.  Note that the logical block scans linearly, which
153 * gives us some L1 cache locality.
154 */
155
156static __inline
157struct bufhashhdr *
158bufhash(struct vnode *vnp, daddr_t bn)
159{
160	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
161}
162
163/*
164 *	kvaspacewakeup:
165 *
166 *	Called when kva space is potential available for recovery or when
167 *	kva space is recovered in the buffer_map.  This function wakes up
168 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
169 *	is larger then maxbufspace, this situation will typically occur
170 *	when the buffer_map gets fragmented.
171 */
172
173static __inline void
174kvaspacewakeup(void)
175{
176	/*
177	 * If someone is waiting for KVA space, wake them up.  Even
178	 * though we haven't freed the kva space yet, the waiting
179	 * process will be able to now.
180	 */
181	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
182		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
183		wakeup(&needsbuffer);
184	}
185}
186
187/*
188 *	numdirtywakeup:
189 *
190 *	If someone is blocked due to there being too many dirty buffers,
191 *	and numdirtybuffers is now reasonable, wake them up.
192 */
193
194static __inline void
195numdirtywakeup(void)
196{
197	if (numdirtybuffers < hidirtybuffers) {
198		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
199			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
200			wakeup(&needsbuffer);
201		}
202	}
203}
204
205/*
206 *	bufspacewakeup:
207 *
208 *	Called when buffer space is potentially available for recovery or when
209 *	buffer space is recovered.  getnewbuf() will block on this flag when
210 *	it is unable to free sufficient buffer space.  Buffer space becomes
211 *	recoverable when bp's get placed back in the queues.
212 */
213
214static __inline void
215bufspacewakeup(void)
216{
217	/*
218	 * If someone is waiting for BUF space, wake them up.  Even
219	 * though we haven't freed the kva space yet, the waiting
220	 * process will be able to now.
221	 */
222	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
223		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
224		wakeup(&needsbuffer);
225	}
226}
227
228/*
229 *	bufcountwakeup:
230 *
231 *	Called when a buffer has been added to one of the free queues to
232 *	account for the buffer and to wakeup anyone waiting for free buffers.
233 *	This typically occurs when large amounts of metadata are being handled
234 *	by the buffer cache ( else buffer space runs out first, usually ).
235 */
236
237static __inline void
238bufcountwakeup(void)
239{
240	++numfreebuffers;
241	if (needsbuffer) {
242		needsbuffer &= ~VFS_BIO_NEED_ANY;
243		if (numfreebuffers >= hifreebuffers)
244			needsbuffer &= ~VFS_BIO_NEED_FREE;
245		wakeup(&needsbuffer);
246	}
247}
248
249/*
250 *	vfs_buf_test_cache:
251 *
252 *	Called when a buffer is extended.  This function clears the B_CACHE
253 *	bit if the newly extended portion of the buffer does not contain
254 *	valid data.
255 */
256static __inline__
257void
258vfs_buf_test_cache(struct buf *bp,
259		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
260		  vm_page_t m)
261{
262	if (bp->b_flags & B_CACHE) {
263		int base = (foff + off) & PAGE_MASK;
264		if (vm_page_is_valid(m, base, size) == 0)
265			bp->b_flags &= ~B_CACHE;
266	}
267}
268
269static __inline__
270void
271bd_wakeup(int dirtybuflevel)
272{
273	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
274		bd_request = 1;
275		wakeup(&bd_request);
276	}
277}
278
279/*
280 * bd_speedup - speedup the buffer cache flushing code
281 */
282
283static __inline__
284void
285bd_speedup(void)
286{
287	bd_wakeup(1);
288}
289
290/*
291 * Initialize buffer headers and related structures.
292 */
293
294caddr_t
295bufhashinit(caddr_t vaddr)
296{
297	/* first, make a null hash table */
298	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
299		;
300	bufhashtbl = (void *)vaddr;
301	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
302	--bufhashmask;
303	return(vaddr);
304}
305
306void
307bufinit(void)
308{
309	struct buf *bp;
310	int i;
311
312	TAILQ_INIT(&bswlist);
313	LIST_INIT(&invalhash);
314	simple_lock_init(&buftimelock);
315
316	for (i = 0; i <= bufhashmask; i++)
317		LIST_INIT(&bufhashtbl[i]);
318
319	/* next, make a null set of free lists */
320	for (i = 0; i < BUFFER_QUEUES; i++)
321		TAILQ_INIT(&bufqueues[i]);
322
323	/* finally, initialize each buffer header and stick on empty q */
324	for (i = 0; i < nbuf; i++) {
325		bp = &buf[i];
326		bzero(bp, sizeof *bp);
327		bp->b_flags = B_INVAL;	/* we're just an empty header */
328		bp->b_dev = NODEV;
329		bp->b_rcred = NOCRED;
330		bp->b_wcred = NOCRED;
331		bp->b_qindex = QUEUE_EMPTY;
332		bp->b_xflags = 0;
333		LIST_INIT(&bp->b_dep);
334		BUF_LOCKINIT(bp);
335		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
336		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
337	}
338
339	/*
340	 * maxbufspace is currently calculated to be maximally efficient
341	 * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2
342	 * (4K or 8K).  To reduce the number of stall points our calculation
343	 * is based on DFLTBSIZE which should reduce the chances of actually
344	 * running out of buffer headers.  The maxbufspace calculation is also
345	 * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to
346	 * reduce the chance that a KVA allocation will fail due to
347	 * fragmentation.  While this does not usually create a stall,
348	 * the KVA map allocation/free functions are O(N) rather then O(1)
349	 * so running them constantly would result in inefficient O(N*M)
350	 * buffer cache operation.
351	 */
352	maxbufspace = (nbuf + 8) * DFLTBSIZE;
353	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
354/*
355 * Limit the amount of malloc memory since it is wired permanently into
356 * the kernel space.  Even though this is accounted for in the buffer
357 * allocation, we don't want the malloced region to grow uncontrolled.
358 * The malloc scheme improves memory utilization significantly on average
359 * (small) directories.
360 */
361	maxbufmallocspace = hibufspace / 20;
362
363/*
364 * Reduce the chance of a deadlock occuring by limiting the number
365 * of delayed-write dirty buffers we allow to stack up.
366 */
367	hidirtybuffers = nbuf / 4 + 20;
368	numdirtybuffers = 0;
369/*
370 * To support extreme low-memory systems, make sure hidirtybuffers cannot
371 * eat up all available buffer space.  This occurs when our minimum cannot
372 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
373 * BKVASIZE'd (8K) buffers.  We also reduce buf_maxio in this case (used
374 * by the clustering code) in an attempt to further reduce the load on
375 * the buffer cache.
376 */
377	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
378		hidirtybuffers >>= 1;
379		buf_maxio >>= 1;
380	}
381
382	/*
383	 * Temporary, BKVASIZE may be manipulated soon, make sure we don't
384	 * do something illegal. XXX
385	 */
386#if BKVASIZE < MAXBSIZE
387	if (buf_maxio < BKVASIZE * 2)
388		buf_maxio = BKVASIZE * 2;
389#else
390	if (buf_maxio < MAXBSIZE)
391		buf_maxio = MAXBSIZE;
392#endif
393
394/*
395 * Try to keep the number of free buffers in the specified range,
396 * and give the syncer access to an emergency reserve.
397 */
398	lofreebuffers = nbuf / 18 + 5;
399	hifreebuffers = 2 * lofreebuffers;
400	numfreebuffers = nbuf;
401
402/*
403 * Maximum number of async ops initiated per buf_daemon loop.  This is
404 * somewhat of a hack at the moment, we really need to limit ourselves
405 * based on the number of bytes of I/O in-transit that were initiated
406 * from buf_daemon.
407 */
408	if ((maxbdrun = nswbuf / 4) < 4)
409		maxbdrun = 4;
410
411	kvafreespace = 0;
412
413	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
414	bogus_page = vm_page_alloc(kernel_object,
415			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
416			VM_ALLOC_NORMAL);
417	cnt.v_wire_count++;
418
419}
420
421/*
422 * Free the kva allocation for a buffer
423 * Must be called only at splbio or higher,
424 *  as this is the only locking for buffer_map.
425 */
426static void
427bfreekva(struct buf * bp)
428{
429	if (bp->b_kvasize) {
430		vm_map_delete(buffer_map,
431		    (vm_offset_t) bp->b_kvabase,
432		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
433		);
434		bp->b_kvasize = 0;
435		kvaspacewakeup();
436	}
437}
438
439/*
440 *	bremfree:
441 *
442 *	Remove the buffer from the appropriate free list.
443 */
444void
445bremfree(struct buf * bp)
446{
447	int s = splbio();
448	int old_qindex = bp->b_qindex;
449
450	if (bp->b_qindex != QUEUE_NONE) {
451		if (bp->b_qindex == QUEUE_EMPTYKVA) {
452			kvafreespace -= bp->b_kvasize;
453		}
454		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
455		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
456		bp->b_qindex = QUEUE_NONE;
457		runningbufspace += bp->b_bufsize;
458	} else {
459		if (BUF_REFCNT(bp) <= 1)
460			panic("bremfree: removing a buffer not on a queue");
461	}
462
463	/*
464	 * Fixup numfreebuffers count.  If the buffer is invalid or not
465	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
466	 * the buffer was free and we must decrement numfreebuffers.
467	 */
468	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
469		switch(old_qindex) {
470		case QUEUE_DIRTY:
471		case QUEUE_CLEAN:
472		case QUEUE_EMPTY:
473		case QUEUE_EMPTYKVA:
474			--numfreebuffers;
475			break;
476		default:
477			break;
478		}
479	}
480	splx(s);
481}
482
483
484/*
485 * Get a buffer with the specified data.  Look in the cache first.  We
486 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
487 * is set, the buffer is valid and we do not have to do anything ( see
488 * getblk() ).
489 */
490int
491bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
492    struct buf ** bpp)
493{
494	struct buf *bp;
495
496	bp = getblk(vp, blkno, size, 0, 0);
497	*bpp = bp;
498
499	/* if not found in cache, do some I/O */
500	if ((bp->b_flags & B_CACHE) == 0) {
501		if (curproc != NULL)
502			curproc->p_stats->p_ru.ru_inblock++;
503		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
504		bp->b_iocmd = BIO_READ;
505		bp->b_flags &= ~(B_ERROR | B_INVAL);
506		if (bp->b_rcred == NOCRED) {
507			if (cred != NOCRED)
508				crhold(cred);
509			bp->b_rcred = cred;
510		}
511		vfs_busy_pages(bp, 0);
512		VOP_STRATEGY(vp, bp);
513		return (biowait(bp));
514	}
515	return (0);
516}
517
518/*
519 * Operates like bread, but also starts asynchronous I/O on
520 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
521 * to initiating I/O . If B_CACHE is set, the buffer is valid
522 * and we do not have to do anything.
523 */
524int
525breadn(struct vnode * vp, daddr_t blkno, int size,
526    daddr_t * rablkno, int *rabsize,
527    int cnt, struct ucred * cred, struct buf ** bpp)
528{
529	struct buf *bp, *rabp;
530	int i;
531	int rv = 0, readwait = 0;
532
533	*bpp = bp = getblk(vp, blkno, size, 0, 0);
534
535	/* if not found in cache, do some I/O */
536	if ((bp->b_flags & B_CACHE) == 0) {
537		if (curproc != NULL)
538			curproc->p_stats->p_ru.ru_inblock++;
539		bp->b_iocmd = BIO_READ;
540		bp->b_flags &= ~(B_ERROR | B_INVAL);
541		if (bp->b_rcred == NOCRED) {
542			if (cred != NOCRED)
543				crhold(cred);
544			bp->b_rcred = cred;
545		}
546		vfs_busy_pages(bp, 0);
547		VOP_STRATEGY(vp, bp);
548		++readwait;
549	}
550
551	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
552		if (inmem(vp, *rablkno))
553			continue;
554		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
555
556		if ((rabp->b_flags & B_CACHE) == 0) {
557			if (curproc != NULL)
558				curproc->p_stats->p_ru.ru_inblock++;
559			rabp->b_flags |= B_ASYNC;
560			rabp->b_flags &= ~(B_ERROR | B_INVAL);
561			rabp->b_iocmd = BIO_READ;
562			if (rabp->b_rcred == NOCRED) {
563				if (cred != NOCRED)
564					crhold(cred);
565				rabp->b_rcred = cred;
566			}
567			vfs_busy_pages(rabp, 0);
568			BUF_KERNPROC(rabp);
569			VOP_STRATEGY(vp, rabp);
570		} else {
571			brelse(rabp);
572		}
573	}
574
575	if (readwait) {
576		rv = biowait(bp);
577	}
578	return (rv);
579}
580
581/*
582 * Write, release buffer on completion.  (Done by iodone
583 * if async).  Do not bother writing anything if the buffer
584 * is invalid.
585 *
586 * Note that we set B_CACHE here, indicating that buffer is
587 * fully valid and thus cacheable.  This is true even of NFS
588 * now so we set it generally.  This could be set either here
589 * or in biodone() since the I/O is synchronous.  We put it
590 * here.
591 */
592int
593bwrite(struct buf * bp)
594{
595	int oldflags, s;
596	struct buf *newbp;
597
598	if (bp->b_flags & B_INVAL) {
599		brelse(bp);
600		return (0);
601	}
602
603	oldflags = bp->b_flags;
604
605	if (BUF_REFCNT(bp) == 0)
606		panic("bwrite: buffer is not busy???");
607	s = splbio();
608	/*
609	 * If a background write is already in progress, delay
610	 * writing this block if it is asynchronous. Otherwise
611	 * wait for the background write to complete.
612	 */
613	if (bp->b_xflags & BX_BKGRDINPROG) {
614		if (bp->b_flags & B_ASYNC) {
615			splx(s);
616			bdwrite(bp);
617			return (0);
618		}
619		bp->b_xflags |= BX_BKGRDWAIT;
620		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
621		if (bp->b_xflags & BX_BKGRDINPROG)
622			panic("bwrite: still writing");
623	}
624
625	/* Mark the buffer clean */
626	bundirty(bp);
627
628	/*
629	 * If this buffer is marked for background writing and we
630	 * do not have to wait for it, make a copy and write the
631	 * copy so as to leave this buffer ready for further use.
632	 */
633	if ((bp->b_xflags & BX_BKGRDWRITE) && (bp->b_flags & B_ASYNC)) {
634		if (bp->b_iodone != NULL) {
635			printf("bp->b_iodone = %p\n", bp->b_iodone);
636			panic("bwrite: need chained iodone");
637		}
638
639		/* get a new block */
640		newbp = geteblk(bp->b_bufsize);
641
642		/* set it to be identical to the old block */
643		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
644		bgetvp(bp->b_vp, newbp);
645		newbp->b_lblkno = bp->b_lblkno;
646		newbp->b_blkno = bp->b_blkno;
647		newbp->b_offset = bp->b_offset;
648		newbp->b_iodone = vfs_backgroundwritedone;
649		newbp->b_flags |= B_ASYNC;
650		newbp->b_flags &= ~B_INVAL;
651
652		/* move over the dependencies */
653		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
654			(*bioops.io_movedeps)(bp, newbp);
655
656		/*
657		 * Initiate write on the copy, release the original to
658		 * the B_LOCKED queue so that it cannot go away until
659		 * the background write completes. If not locked it could go
660		 * away and then be reconstituted while it was being written.
661		 * If the reconstituted buffer were written, we could end up
662		 * with two background copies being written at the same time.
663		 */
664		bp->b_xflags |= BX_BKGRDINPROG;
665		bp->b_flags |= B_LOCKED;
666		bqrelse(bp);
667		bp = newbp;
668	}
669
670	bp->b_flags &= ~(B_DONE | B_ERROR);
671	bp->b_flags |= B_WRITEINPROG | B_CACHE;
672	bp->b_iocmd = BIO_WRITE;
673
674	bp->b_vp->v_numoutput++;
675	vfs_busy_pages(bp, 1);
676	if (curproc != NULL)
677		curproc->p_stats->p_ru.ru_oublock++;
678	splx(s);
679	if (oldflags & B_ASYNC)
680		BUF_KERNPROC(bp);
681	VOP_STRATEGY(bp->b_vp, bp);
682
683	if ((oldflags & B_ASYNC) == 0) {
684		int rtval = biowait(bp);
685		brelse(bp);
686		return (rtval);
687	}
688
689	return (0);
690}
691
692/*
693 * Complete a background write started from bwrite.
694 */
695static void
696vfs_backgroundwritedone(bp)
697	struct buf *bp;
698{
699	struct buf *origbp;
700
701	/*
702	 * Find the original buffer that we are writing.
703	 */
704	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
705		panic("backgroundwritedone: lost buffer");
706	/*
707	 * Process dependencies then return any unfinished ones.
708	 */
709	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
710		(*bioops.io_complete)(bp);
711	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
712		(*bioops.io_movedeps)(bp, origbp);
713	/*
714	 * Clear the BX_BKGRDINPROG flag in the original buffer
715	 * and awaken it if it is waiting for the write to complete.
716	 */
717	origbp->b_xflags &= ~BX_BKGRDINPROG;
718	if (origbp->b_xflags & BX_BKGRDWAIT) {
719		origbp->b_xflags &= ~BX_BKGRDWAIT;
720		wakeup(&origbp->b_xflags);
721	}
722	/*
723	 * Clear the B_LOCKED flag and remove it from the locked
724	 * queue if it currently resides there.
725	 */
726	origbp->b_flags &= ~B_LOCKED;
727	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
728		bremfree(origbp);
729		bqrelse(origbp);
730	}
731	/*
732	 * This buffer is marked B_NOCACHE, so when it is released
733	 * by biodone, it will be tossed. We mark it with BIO_READ
734	 * to avoid biodone doing a second vwakeup.
735	 */
736	bp->b_flags |= B_NOCACHE;
737	bp->b_iocmd = BIO_READ;
738	bp->b_flags &= ~(B_CACHE | B_DONE);
739	bp->b_iodone = 0;
740	biodone(bp);
741}
742
743/*
744 * Delayed write. (Buffer is marked dirty).  Do not bother writing
745 * anything if the buffer is marked invalid.
746 *
747 * Note that since the buffer must be completely valid, we can safely
748 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
749 * biodone() in order to prevent getblk from writing the buffer
750 * out synchronously.
751 */
752void
753bdwrite(struct buf * bp)
754{
755	if (BUF_REFCNT(bp) == 0)
756		panic("bdwrite: buffer is not busy");
757
758	if (bp->b_flags & B_INVAL) {
759		brelse(bp);
760		return;
761	}
762	bdirty(bp);
763
764	/*
765	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
766	 * true even of NFS now.
767	 */
768	bp->b_flags |= B_CACHE;
769
770	/*
771	 * This bmap keeps the system from needing to do the bmap later,
772	 * perhaps when the system is attempting to do a sync.  Since it
773	 * is likely that the indirect block -- or whatever other datastructure
774	 * that the filesystem needs is still in memory now, it is a good
775	 * thing to do this.  Note also, that if the pageout daemon is
776	 * requesting a sync -- there might not be enough memory to do
777	 * the bmap then...  So, this is important to do.
778	 */
779	if (bp->b_lblkno == bp->b_blkno) {
780		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
781	}
782
783	/*
784	 * Set the *dirty* buffer range based upon the VM system dirty pages.
785	 */
786	vfs_setdirty(bp);
787
788	/*
789	 * We need to do this here to satisfy the vnode_pager and the
790	 * pageout daemon, so that it thinks that the pages have been
791	 * "cleaned".  Note that since the pages are in a delayed write
792	 * buffer -- the VFS layer "will" see that the pages get written
793	 * out on the next sync, or perhaps the cluster will be completed.
794	 */
795	vfs_clean_pages(bp);
796	bqrelse(bp);
797
798	/*
799	 * Wakeup the buffer flushing daemon if we have saturated the
800	 * buffer cache.
801	 */
802
803	bd_wakeup(hidirtybuffers);
804
805	/*
806	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
807	 * due to the softdep code.
808	 */
809}
810
811/*
812 *	bdirty:
813 *
814 *	Turn buffer into delayed write request.  We must clear BIO_READ and
815 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
816 *	itself to properly update it in the dirty/clean lists.  We mark it
817 *	B_DONE to ensure that any asynchronization of the buffer properly
818 *	clears B_DONE ( else a panic will occur later ).
819 *
820 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
821 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
822 *	should only be called if the buffer is known-good.
823 *
824 *	Since the buffer is not on a queue, we do not update the numfreebuffers
825 *	count.
826 *
827 *	Must be called at splbio().
828 *	The buffer must be on QUEUE_NONE.
829 */
830void
831bdirty(bp)
832	struct buf *bp;
833{
834	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
835	bp->b_flags &= ~(B_RELBUF);
836	bp->b_iocmd = BIO_WRITE;
837
838	if ((bp->b_flags & B_DELWRI) == 0) {
839		bp->b_flags |= B_DONE | B_DELWRI;
840		reassignbuf(bp, bp->b_vp);
841		++numdirtybuffers;
842		bd_wakeup(hidirtybuffers);
843	}
844}
845
846/*
847 *	bundirty:
848 *
849 *	Clear B_DELWRI for buffer.
850 *
851 *	Since the buffer is not on a queue, we do not update the numfreebuffers
852 *	count.
853 *
854 *	Must be called at splbio().
855 *	The buffer must be on QUEUE_NONE.
856 */
857
858void
859bundirty(bp)
860	struct buf *bp;
861{
862	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
863
864	if (bp->b_flags & B_DELWRI) {
865		bp->b_flags &= ~B_DELWRI;
866		reassignbuf(bp, bp->b_vp);
867		--numdirtybuffers;
868		numdirtywakeup();
869	}
870	/*
871	 * Since it is now being written, we can clear its deferred write flag.
872	 */
873	bp->b_flags &= ~B_DEFERRED;
874}
875
876/*
877 *	bawrite:
878 *
879 *	Asynchronous write.  Start output on a buffer, but do not wait for
880 *	it to complete.  The buffer is released when the output completes.
881 *
882 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
883 *	B_INVAL buffers.  Not us.
884 */
885void
886bawrite(struct buf * bp)
887{
888	bp->b_flags |= B_ASYNC;
889	(void) VOP_BWRITE(bp->b_vp, bp);
890}
891
892/*
893 *	bowrite:
894 *
895 *	Ordered write.  Start output on a buffer, and flag it so that the
896 *	device will write it in the order it was queued.  The buffer is
897 *	released when the output completes.  bwrite() ( or the VOP routine
898 *	anyway ) is responsible for handling B_INVAL buffers.
899 */
900int
901bowrite(struct buf * bp)
902{
903	bp->b_flags |= B_ORDERED | B_ASYNC;
904	return (VOP_BWRITE(bp->b_vp, bp));
905}
906
907/*
908 *	bwillwrite:
909 *
910 *	Called prior to the locking of any vnodes when we are expecting to
911 *	write.  We do not want to starve the buffer cache with too many
912 *	dirty buffers so we block here.  By blocking prior to the locking
913 *	of any vnodes we attempt to avoid the situation where a locked vnode
914 *	prevents the various system daemons from flushing related buffers.
915 */
916
917void
918bwillwrite(void)
919{
920	int slop = hidirtybuffers / 10;
921
922	if (numdirtybuffers > hidirtybuffers + slop) {
923		int s;
924
925		s = splbio();
926		while (numdirtybuffers > hidirtybuffers) {
927			bd_wakeup(hidirtybuffers);
928			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
929			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
930		}
931		splx(s);
932	}
933}
934
935/*
936 *	brelse:
937 *
938 *	Release a busy buffer and, if requested, free its resources.  The
939 *	buffer will be stashed in the appropriate bufqueue[] allowing it
940 *	to be accessed later as a cache entity or reused for other purposes.
941 */
942void
943brelse(struct buf * bp)
944{
945	int s;
946	int kvawakeup = 0;
947
948	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
949
950	s = splbio();
951
952	if (bp->b_flags & B_LOCKED)
953		bp->b_flags &= ~B_ERROR;
954
955	if (bp->b_iocmd == BIO_WRITE &&
956	    (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
957		/*
958		 * Failed write, redirty.  Must clear B_ERROR to prevent
959		 * pages from being scrapped.  If B_INVAL is set then
960		 * this case is not run and the next case is run to
961		 * destroy the buffer.  B_INVAL can occur if the buffer
962		 * is outside the range supported by the underlying device.
963		 */
964		bp->b_flags &= ~B_ERROR;
965		bdirty(bp);
966	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
967	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
968		/*
969		 * Either a failed I/O or we were asked to free or not
970		 * cache the buffer.
971		 */
972		bp->b_flags |= B_INVAL;
973		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
974			(*bioops.io_deallocate)(bp);
975		if (bp->b_flags & B_DELWRI) {
976			--numdirtybuffers;
977			numdirtywakeup();
978		}
979		bp->b_flags &= ~(B_DELWRI | B_CACHE);
980		if ((bp->b_flags & B_VMIO) == 0) {
981			if (bp->b_bufsize)
982				allocbuf(bp, 0);
983			if (bp->b_vp)
984				brelvp(bp);
985		}
986	}
987
988	/*
989	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
990	 * is called with B_DELWRI set, the underlying pages may wind up
991	 * getting freed causing a previous write (bdwrite()) to get 'lost'
992	 * because pages associated with a B_DELWRI bp are marked clean.
993	 *
994	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
995	 * if B_DELWRI is set.
996	 */
997
998	if (bp->b_flags & B_DELWRI)
999		bp->b_flags &= ~B_RELBUF;
1000
1001	/*
1002	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1003	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1004	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1005	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1006	 *
1007	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1008	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1009	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1010	 *
1011	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1012	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1013	 * the commit state and we cannot afford to lose the buffer. If the
1014	 * buffer has a background write in progress, we need to keep it
1015	 * around to prevent it from being reconstituted and starting a second
1016	 * background write.
1017	 */
1018	if ((bp->b_flags & B_VMIO)
1019	    && !(bp->b_vp->v_tag == VT_NFS &&
1020		 !vn_isdisk(bp->b_vp, NULL) &&
1021		 (bp->b_flags & B_DELWRI) &&
1022		 (bp->b_xflags & BX_BKGRDINPROG))
1023	    ) {
1024
1025		int i, j, resid;
1026		vm_page_t m;
1027		off_t foff;
1028		vm_pindex_t poff;
1029		vm_object_t obj;
1030		struct vnode *vp;
1031
1032		vp = bp->b_vp;
1033
1034		/*
1035		 * Get the base offset and length of the buffer.  Note that
1036		 * for block sizes that are less then PAGE_SIZE, the b_data
1037		 * base of the buffer does not represent exactly b_offset and
1038		 * neither b_offset nor b_size are necessarily page aligned.
1039		 * Instead, the starting position of b_offset is:
1040		 *
1041		 * 	b_data + (b_offset & PAGE_MASK)
1042		 *
1043		 * block sizes less then DEV_BSIZE (usually 512) are not
1044		 * supported due to the page granularity bits (m->valid,
1045		 * m->dirty, etc...).
1046		 *
1047		 * See man buf(9) for more information
1048		 */
1049
1050		resid = bp->b_bufsize;
1051		foff = bp->b_offset;
1052
1053		for (i = 0; i < bp->b_npages; i++) {
1054			m = bp->b_pages[i];
1055			vm_page_flag_clear(m, PG_ZERO);
1056			if (m == bogus_page) {
1057
1058				obj = (vm_object_t) vp->v_object;
1059				poff = OFF_TO_IDX(bp->b_offset);
1060
1061				for (j = i; j < bp->b_npages; j++) {
1062					m = bp->b_pages[j];
1063					if (m == bogus_page) {
1064						m = vm_page_lookup(obj, poff + j);
1065						if (!m) {
1066							panic("brelse: page missing\n");
1067						}
1068						bp->b_pages[j] = m;
1069					}
1070				}
1071
1072				if ((bp->b_flags & B_INVAL) == 0) {
1073					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1074				}
1075			}
1076			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1077				int poffset = foff & PAGE_MASK;
1078				int presid = resid > (PAGE_SIZE - poffset) ?
1079					(PAGE_SIZE - poffset) : resid;
1080
1081				KASSERT(presid >= 0, ("brelse: extra page"));
1082				vm_page_set_invalid(m, poffset, presid);
1083			}
1084			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1085			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
1086		}
1087
1088		if (bp->b_flags & (B_INVAL | B_RELBUF))
1089			vfs_vmio_release(bp);
1090
1091	} else if (bp->b_flags & B_VMIO) {
1092
1093		if (bp->b_flags & (B_INVAL | B_RELBUF))
1094			vfs_vmio_release(bp);
1095
1096	}
1097
1098	if (bp->b_qindex != QUEUE_NONE)
1099		panic("brelse: free buffer onto another queue???");
1100	if (BUF_REFCNT(bp) > 1) {
1101		/* Temporary panic to verify exclusive locking */
1102		/* This panic goes away when we allow shared refs */
1103		panic("brelse: multiple refs");
1104		/* do not release to free list */
1105		BUF_UNLOCK(bp);
1106		splx(s);
1107		return;
1108	}
1109
1110	/* enqueue */
1111
1112	/* buffers with no memory */
1113	if (bp->b_bufsize == 0) {
1114		bp->b_flags |= B_INVAL;
1115		bp->b_xflags &= ~BX_BKGRDWRITE;
1116		if (bp->b_xflags & BX_BKGRDINPROG)
1117			panic("losing buffer 1");
1118		if (bp->b_kvasize) {
1119			bp->b_qindex = QUEUE_EMPTYKVA;
1120			kvawakeup = 1;
1121		} else {
1122			bp->b_qindex = QUEUE_EMPTY;
1123		}
1124		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1125		LIST_REMOVE(bp, b_hash);
1126		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1127		bp->b_dev = NODEV;
1128		kvafreespace += bp->b_kvasize;
1129	/* buffers with junk contents */
1130	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1131		bp->b_flags |= B_INVAL;
1132		bp->b_xflags &= ~BX_BKGRDWRITE;
1133		if (bp->b_xflags & BX_BKGRDINPROG)
1134			panic("losing buffer 2");
1135		bp->b_qindex = QUEUE_CLEAN;
1136		if (bp->b_kvasize)
1137			kvawakeup = 1;
1138		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1139		LIST_REMOVE(bp, b_hash);
1140		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1141		bp->b_dev = NODEV;
1142
1143	/* buffers that are locked */
1144	} else if (bp->b_flags & B_LOCKED) {
1145		bp->b_qindex = QUEUE_LOCKED;
1146		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1147
1148	/* remaining buffers */
1149	} else {
1150		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1151		case B_DELWRI | B_AGE:
1152		    bp->b_qindex = QUEUE_DIRTY;
1153		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1154		    break;
1155		case B_DELWRI:
1156		    bp->b_qindex = QUEUE_DIRTY;
1157		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1158		    break;
1159		case B_AGE:
1160		    bp->b_qindex = QUEUE_CLEAN;
1161		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1162		    if (bp->b_kvasize)
1163			    kvawakeup = 1;
1164		    break;
1165		default:
1166		    bp->b_qindex = QUEUE_CLEAN;
1167		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1168		    if (bp->b_kvasize)
1169			    kvawakeup = 1;
1170		    break;
1171		}
1172	}
1173
1174	/*
1175	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1176	 * on the correct queue.
1177	 */
1178	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1179		bp->b_flags &= ~B_DELWRI;
1180		--numdirtybuffers;
1181		numdirtywakeup();
1182	}
1183
1184	runningbufspace -= bp->b_bufsize;
1185
1186	/*
1187	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1188	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1189	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1190	 * if B_INVAL is set ).
1191	 */
1192
1193	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1194		bufcountwakeup();
1195
1196	/*
1197	 * Something we can maybe free.
1198	 */
1199
1200	if (bp->b_bufsize)
1201		bufspacewakeup();
1202	if (kvawakeup)
1203		kvaspacewakeup();
1204
1205	/* unlock */
1206	BUF_UNLOCK(bp);
1207	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1208	splx(s);
1209}
1210
1211/*
1212 * Release a buffer back to the appropriate queue but do not try to free
1213 * it.
1214 *
1215 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1216 * biodone() to requeue an async I/O on completion.  It is also used when
1217 * known good buffers need to be requeued but we think we may need the data
1218 * again soon.
1219 */
1220void
1221bqrelse(struct buf * bp)
1222{
1223	int s;
1224
1225	s = splbio();
1226
1227	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1228
1229	if (bp->b_qindex != QUEUE_NONE)
1230		panic("bqrelse: free buffer onto another queue???");
1231	if (BUF_REFCNT(bp) > 1) {
1232		/* do not release to free list */
1233		panic("bqrelse: multiple refs");
1234		BUF_UNLOCK(bp);
1235		splx(s);
1236		return;
1237	}
1238	if (bp->b_flags & B_LOCKED) {
1239		bp->b_flags &= ~B_ERROR;
1240		bp->b_qindex = QUEUE_LOCKED;
1241		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1242		/* buffers with stale but valid contents */
1243	} else if (bp->b_flags & B_DELWRI) {
1244		bp->b_qindex = QUEUE_DIRTY;
1245		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1246	} else {
1247		bp->b_qindex = QUEUE_CLEAN;
1248		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1249	}
1250
1251	runningbufspace -= bp->b_bufsize;
1252
1253	if ((bp->b_flags & B_LOCKED) == 0 &&
1254	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1255		bufcountwakeup();
1256	}
1257
1258	/*
1259	 * Something we can maybe wakeup
1260	 */
1261	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1262		bufspacewakeup();
1263
1264	/* unlock */
1265	BUF_UNLOCK(bp);
1266	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1267	splx(s);
1268}
1269
1270static void
1271vfs_vmio_release(bp)
1272	struct buf *bp;
1273{
1274	int i, s;
1275	vm_page_t m;
1276
1277	s = splvm();
1278	for (i = 0; i < bp->b_npages; i++) {
1279		m = bp->b_pages[i];
1280		bp->b_pages[i] = NULL;
1281		/*
1282		 * In order to keep page LRU ordering consistent, put
1283		 * everything on the inactive queue.
1284		 */
1285		vm_page_unwire(m, 0);
1286		/*
1287		 * We don't mess with busy pages, it is
1288		 * the responsibility of the process that
1289		 * busied the pages to deal with them.
1290		 */
1291		if ((m->flags & PG_BUSY) || (m->busy != 0))
1292			continue;
1293
1294		if (m->wire_count == 0) {
1295			vm_page_flag_clear(m, PG_ZERO);
1296			/*
1297			 * Might as well free the page if we can and it has
1298			 * no valid data.
1299			 */
1300			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1301				vm_page_busy(m);
1302				vm_page_protect(m, VM_PROT_NONE);
1303				vm_page_free(m);
1304			}
1305		}
1306	}
1307	bufspace -= bp->b_bufsize;
1308	vmiospace -= bp->b_bufsize;
1309	runningbufspace -= bp->b_bufsize;
1310	splx(s);
1311	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1312	if (bp->b_bufsize)
1313		bufspacewakeup();
1314	bp->b_npages = 0;
1315	bp->b_bufsize = 0;
1316	bp->b_flags &= ~B_VMIO;
1317	if (bp->b_vp)
1318		brelvp(bp);
1319}
1320
1321/*
1322 * Check to see if a block is currently memory resident.
1323 */
1324struct buf *
1325gbincore(struct vnode * vp, daddr_t blkno)
1326{
1327	struct buf *bp;
1328	struct bufhashhdr *bh;
1329
1330	bh = bufhash(vp, blkno);
1331
1332	/* Search hash chain */
1333	LIST_FOREACH(bp, bh, b_hash) {
1334		/* hit */
1335		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1336		    (bp->b_flags & B_INVAL) == 0) {
1337			break;
1338		}
1339	}
1340	return (bp);
1341}
1342
1343/*
1344 *	vfs_bio_awrite:
1345 *
1346 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1347 *	This is much better then the old way of writing only one buffer at
1348 *	a time.  Note that we may not be presented with the buffers in the
1349 *	correct order, so we search for the cluster in both directions.
1350 */
1351int
1352vfs_bio_awrite(struct buf * bp)
1353{
1354	int i;
1355	int j;
1356	daddr_t lblkno = bp->b_lblkno;
1357	struct vnode *vp = bp->b_vp;
1358	int s;
1359	int ncl;
1360	struct buf *bpa;
1361	int nwritten;
1362	int size;
1363	int maxcl;
1364
1365	s = splbio();
1366	/*
1367	 * right now we support clustered writing only to regular files.  If
1368	 * we find a clusterable block we could be in the middle of a cluster
1369	 * rather then at the beginning.
1370	 */
1371	if ((vp->v_type == VREG) &&
1372	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1373	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1374
1375		size = vp->v_mount->mnt_stat.f_iosize;
1376		maxcl = MAXPHYS / size;
1377
1378		for (i = 1; i < maxcl; i++) {
1379			if ((bpa = gbincore(vp, lblkno + i)) &&
1380			    BUF_REFCNT(bpa) == 0 &&
1381			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1382			    (B_DELWRI | B_CLUSTEROK)) &&
1383			    (bpa->b_bufsize == size)) {
1384				if ((bpa->b_blkno == bpa->b_lblkno) ||
1385				    (bpa->b_blkno !=
1386				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1387					break;
1388			} else {
1389				break;
1390			}
1391		}
1392		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1393			if ((bpa = gbincore(vp, lblkno - j)) &&
1394			    BUF_REFCNT(bpa) == 0 &&
1395			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1396			    (B_DELWRI | B_CLUSTEROK)) &&
1397			    (bpa->b_bufsize == size)) {
1398				if ((bpa->b_blkno == bpa->b_lblkno) ||
1399				    (bpa->b_blkno !=
1400				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1401					break;
1402			} else {
1403				break;
1404			}
1405		}
1406		--j;
1407		ncl = i + j;
1408		/*
1409		 * this is a possible cluster write
1410		 */
1411		if (ncl != 1) {
1412			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1413			splx(s);
1414			return nwritten;
1415		}
1416	}
1417
1418	BUF_LOCK(bp, LK_EXCLUSIVE);
1419	bremfree(bp);
1420	bp->b_flags |= B_ASYNC;
1421
1422	splx(s);
1423	/*
1424	 * default (old) behavior, writing out only one block
1425	 *
1426	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1427	 */
1428	nwritten = bp->b_bufsize;
1429	(void) VOP_BWRITE(bp->b_vp, bp);
1430
1431	return nwritten;
1432}
1433
1434/*
1435 *	getnewbuf:
1436 *
1437 *	Find and initialize a new buffer header, freeing up existing buffers
1438 *	in the bufqueues as necessary.  The new buffer is returned locked.
1439 *
1440 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1441 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1442 *
1443 *	We block if:
1444 *		We have insufficient buffer headers
1445 *		We have insufficient buffer space
1446 *		buffer_map is too fragmented ( space reservation fails )
1447 *		If we have to flush dirty buffers ( but we try to avoid this )
1448 *
1449 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1450 *	Instead we ask the buf daemon to do it for us.  We attempt to
1451 *	avoid piecemeal wakeups of the pageout daemon.
1452 */
1453
1454static struct buf *
1455getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1456{
1457	struct buf *bp;
1458	struct buf *nbp;
1459	struct buf *dbp;
1460	int outofspace;
1461	int nqindex;
1462	int defrag = 0;
1463
1464	++getnewbufcalls;
1465	--getnewbufrestarts;
1466restart:
1467	++getnewbufrestarts;
1468
1469	/*
1470	 * Calculate whether we are out of buffer space.  This state is
1471	 * recalculated on every restart.  If we are out of space, we
1472	 * have to turn off defragmentation.  Setting defrag to -1 when
1473	 * outofspace is positive means "defrag while freeing buffers".
1474	 * The looping conditional will be muffed up if defrag is left
1475	 * positive when outofspace is positive.
1476	 */
1477
1478	dbp = NULL;
1479	outofspace = 0;
1480	if (bufspace >= hibufspace) {
1481		if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
1482		    bufspace >= maxbufspace) {
1483			outofspace = 1;
1484			if (defrag > 0)
1485				defrag = -1;
1486		}
1487	}
1488
1489	/*
1490	 * defrag state is semi-persistant.  1 means we are flagged for
1491	 * defragging.  -1 means we actually defragged something.
1492	 */
1493	/* nop */
1494
1495	/*
1496	 * Setup for scan.  If we do not have enough free buffers,
1497	 * we setup a degenerate case that immediately fails.  Note
1498	 * that if we are specially marked process, we are allowed to
1499	 * dip into our reserves.
1500	 *
1501	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1502	 * buffer with kva already allocated.  If there are no EMPTYKVA
1503	 * buffers we back up to the truely EMPTY buffers.  When defragging
1504	 * we do not bother backing up since we have to locate buffers with
1505	 * kva to defrag.  If we are out of space we skip both EMPTY and
1506	 * EMPTYKVA and dig right into the CLEAN queue.
1507	 *
1508	 * In this manner we avoid scanning unnecessary buffers.  It is very
1509	 * important for us to do this because the buffer cache is almost
1510	 * constantly out of space or in need of defragmentation.
1511	 */
1512
1513	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
1514	    numfreebuffers < lofreebuffers) {
1515		nqindex = QUEUE_CLEAN;
1516		nbp = NULL;
1517	} else {
1518		nqindex = QUEUE_EMPTYKVA;
1519		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1520		if (nbp == NULL) {
1521			if (defrag <= 0) {
1522				nqindex = QUEUE_EMPTY;
1523				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1524			}
1525		}
1526		if (outofspace || nbp == NULL) {
1527			nqindex = QUEUE_CLEAN;
1528			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1529		}
1530	}
1531
1532	/*
1533	 * Run scan, possibly freeing data and/or kva mappings on the fly
1534	 * depending.
1535	 */
1536
1537	while ((bp = nbp) != NULL) {
1538		int qindex = nqindex;
1539
1540		/*
1541		 * Calculate next bp ( we can only use it if we do not block
1542		 * or do other fancy things ).
1543		 */
1544		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1545			switch(qindex) {
1546			case QUEUE_EMPTY:
1547				nqindex = QUEUE_EMPTYKVA;
1548				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1549					break;
1550				/* fall through */
1551			case QUEUE_EMPTYKVA:
1552				nqindex = QUEUE_CLEAN;
1553				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1554					break;
1555				/* fall through */
1556			case QUEUE_CLEAN:
1557				/*
1558				 * nbp is NULL.
1559				 */
1560				break;
1561			}
1562		}
1563
1564		/*
1565		 * Sanity Checks
1566		 */
1567		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1568
1569		/*
1570		 * Note: we no longer distinguish between VMIO and non-VMIO
1571		 * buffers.
1572		 */
1573
1574		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1575
1576		/*
1577		 * If we are defragging and the buffer isn't useful for fixing
1578		 * that problem we continue.  If we are out of space and the
1579		 * buffer isn't useful for fixing that problem we continue.
1580		 */
1581
1582		if (defrag > 0 && bp->b_kvasize == 0)
1583			continue;
1584		if (outofspace > 0 && bp->b_bufsize == 0)
1585			continue;
1586
1587		/*
1588		 * Start freeing the bp.  This is somewhat involved.  nbp
1589		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1590		 */
1591
1592		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1593			panic("getnewbuf: locked buf");
1594		bremfree(bp);
1595
1596		if (qindex == QUEUE_CLEAN) {
1597			if (bp->b_flags & B_VMIO) {
1598				bp->b_flags &= ~B_ASYNC;
1599				vfs_vmio_release(bp);
1600			}
1601			if (bp->b_vp)
1602				brelvp(bp);
1603		}
1604
1605		/*
1606		 * NOTE:  nbp is now entirely invalid.  We can only restart
1607		 * the scan from this point on.
1608		 *
1609		 * Get the rest of the buffer freed up.  b_kva* is still
1610		 * valid after this operation.
1611		 */
1612
1613		if (bp->b_rcred != NOCRED) {
1614			crfree(bp->b_rcred);
1615			bp->b_rcred = NOCRED;
1616		}
1617		if (bp->b_wcred != NOCRED) {
1618			crfree(bp->b_wcred);
1619			bp->b_wcred = NOCRED;
1620		}
1621		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1622			(*bioops.io_deallocate)(bp);
1623		if (bp->b_xflags & BX_BKGRDINPROG)
1624			panic("losing buffer 3");
1625		LIST_REMOVE(bp, b_hash);
1626		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1627
1628		if (bp->b_bufsize)
1629			allocbuf(bp, 0);
1630
1631		bp->b_flags = 0;
1632		bp->b_xflags = 0;
1633		bp->b_dev = NODEV;
1634		bp->b_vp = NULL;
1635		bp->b_blkno = bp->b_lblkno = 0;
1636		bp->b_offset = NOOFFSET;
1637		bp->b_iodone = 0;
1638		bp->b_error = 0;
1639		bp->b_resid = 0;
1640		bp->b_bcount = 0;
1641		bp->b_npages = 0;
1642		bp->b_dirtyoff = bp->b_dirtyend = 0;
1643
1644		LIST_INIT(&bp->b_dep);
1645
1646		/*
1647		 * Ok, now that we have a free buffer, if we are defragging
1648		 * we have to recover the kvaspace.  If we are out of space
1649		 * we have to free the buffer (which we just did), but we
1650		 * do not have to recover kva space unless we hit a defrag
1651		 * hicup.  Being able to avoid freeing the kva space leads
1652		 * to a significant reduction in overhead.
1653		 */
1654
1655		if (defrag > 0) {
1656			defrag = -1;
1657			bp->b_flags |= B_INVAL;
1658			bfreekva(bp);
1659			brelse(bp);
1660			goto restart;
1661		}
1662
1663		if (outofspace > 0) {
1664			outofspace = -1;
1665			bp->b_flags |= B_INVAL;
1666			if (defrag < 0)
1667				bfreekva(bp);
1668			brelse(bp);
1669			goto restart;
1670		}
1671
1672		/*
1673		 * We are done
1674		 */
1675		break;
1676	}
1677
1678	/*
1679	 * If we exhausted our list, sleep as appropriate.  We may have to
1680	 * wakeup various daemons and write out some dirty buffers.
1681	 *
1682	 * Generally we are sleeping due to insufficient buffer space.
1683	 */
1684
1685	if (bp == NULL) {
1686		int flags;
1687		char *waitmsg;
1688
1689		if (defrag > 0) {
1690			flags = VFS_BIO_NEED_KVASPACE;
1691			waitmsg = "nbufkv";
1692		} else if (outofspace > 0) {
1693			waitmsg = "nbufbs";
1694			flags = VFS_BIO_NEED_BUFSPACE;
1695		} else {
1696			waitmsg = "newbuf";
1697			flags = VFS_BIO_NEED_ANY;
1698		}
1699
1700		bd_speedup();	/* heeeelp */
1701
1702		needsbuffer |= flags;
1703		while (needsbuffer & flags) {
1704			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1705			    waitmsg, slptimeo))
1706				return (NULL);
1707		}
1708	} else {
1709		/*
1710		 * We finally have a valid bp.  We aren't quite out of the
1711		 * woods, we still have to reserve kva space.
1712		 */
1713		vm_offset_t addr = 0;
1714
1715		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1716
1717		if (maxsize != bp->b_kvasize) {
1718			bfreekva(bp);
1719
1720			if (vm_map_findspace(buffer_map,
1721				vm_map_min(buffer_map), maxsize, &addr)) {
1722				/*
1723				 * Uh oh.  Buffer map is to fragmented.  Try
1724				 * to defragment.
1725				 */
1726				if (defrag <= 0) {
1727					defrag = 1;
1728					bp->b_flags |= B_INVAL;
1729					brelse(bp);
1730					goto restart;
1731				}
1732				/*
1733				 * Uh oh.  We couldn't seem to defragment
1734				 */
1735				panic("getnewbuf: unreachable code reached");
1736			}
1737		}
1738		if (addr) {
1739			vm_map_insert(buffer_map, NULL, 0,
1740				addr, addr + maxsize,
1741				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1742
1743			bp->b_kvabase = (caddr_t) addr;
1744			bp->b_kvasize = maxsize;
1745		}
1746		bp->b_data = bp->b_kvabase;
1747	}
1748	return(bp);
1749}
1750
1751/*
1752 *	waitfreebuffers:
1753 *
1754 *	Wait for sufficient free buffers.  Only called from normal processes.
1755 */
1756
1757static void
1758waitfreebuffers(int slpflag, int slptimeo)
1759{
1760	while (numfreebuffers < hifreebuffers) {
1761		if (numfreebuffers >= hifreebuffers)
1762			break;
1763		needsbuffer |= VFS_BIO_NEED_FREE;
1764		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1765			break;
1766	}
1767}
1768
1769/*
1770 *	buf_daemon:
1771 *
1772 *	buffer flushing daemon.  Buffers are normally flushed by the
1773 *	update daemon but if it cannot keep up this process starts to
1774 *	take the load in an attempt to prevent getnewbuf() from blocking.
1775 */
1776
1777static struct proc *bufdaemonproc;
1778static int bd_interval;
1779static int bd_flushto;
1780static int bd_flushinc;
1781
1782static struct kproc_desc buf_kp = {
1783	"bufdaemon",
1784	buf_daemon,
1785	&bufdaemonproc
1786};
1787SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1788
1789static void
1790buf_daemon()
1791{
1792	int s;
1793
1794	/*
1795	 * This process needs to be suspended prior to shutdown sync.
1796	 */
1797	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, bufdaemonproc,
1798	    SHUTDOWN_PRI_LAST);
1799
1800	/*
1801	 * This process is allowed to take the buffer cache to the limit
1802	 */
1803	curproc->p_flag |= P_BUFEXHAUST;
1804	s = splbio();
1805
1806	bd_interval = 5 * hz;	/* dynamically adjusted */
1807	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1808	bd_flushinc = 1;
1809
1810	for (;;) {
1811		kproc_suspend_loop(bufdaemonproc);
1812
1813		bd_request = 0;
1814
1815		/*
1816		 * Do the flush.  Limit the number of buffers we flush in one
1817		 * go.  The failure condition occurs when processes are writing
1818		 * buffers faster then we can dispose of them.  In this case
1819		 * we may be flushing so often that the previous set of flushes
1820		 * have not had time to complete, causing us to run out of
1821		 * physical buffers and block.
1822		 */
1823		{
1824			int runcount = maxbdrun;
1825
1826			while (numdirtybuffers > bd_flushto && runcount) {
1827				--runcount;
1828				if (flushbufqueues() == 0)
1829					break;
1830			}
1831		}
1832
1833		if (bd_request ||
1834		    tsleep(&bd_request, PVM, "psleep", bd_interval) == 0) {
1835			/*
1836			 * Another request is pending or we were woken up
1837			 * without timing out.  Flush more.
1838			 */
1839			--bd_flushto;
1840			if (bd_flushto >= numdirtybuffers - 5) {
1841				bd_flushto = numdirtybuffers - 10;
1842				bd_flushinc = 1;
1843			}
1844			if (bd_flushto < 2)
1845				bd_flushto = 2;
1846		} else {
1847			/*
1848			 * We slept and timed out, we can slow down.
1849			 */
1850			bd_flushto += bd_flushinc;
1851			if (bd_flushto > hidirtybuffers)
1852				bd_flushto = hidirtybuffers;
1853			++bd_flushinc;
1854			if (bd_flushinc > hidirtybuffers / 20 + 1)
1855				bd_flushinc = hidirtybuffers / 20 + 1;
1856		}
1857
1858		/*
1859		 * Set the interval on a linear scale based on hidirtybuffers
1860		 * with a maximum frequency of 1/10 second.
1861		 */
1862		bd_interval = bd_flushto * 5 * hz / hidirtybuffers;
1863		if (bd_interval < hz / 10)
1864			bd_interval = hz / 10;
1865	}
1866}
1867
1868/*
1869 *	flushbufqueues:
1870 *
1871 *	Try to flush a buffer in the dirty queue.  We must be careful to
1872 *	free up B_INVAL buffers instead of write them, which NFS is
1873 *	particularly sensitive to.
1874 */
1875
1876static int
1877flushbufqueues(void)
1878{
1879	struct buf *bp;
1880	int r = 0;
1881
1882	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1883
1884	while (bp) {
1885		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1886		if ((bp->b_flags & B_DELWRI) != 0 &&
1887		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1888			if (bp->b_flags & B_INVAL) {
1889				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1890					panic("flushbufqueues: locked buf");
1891				bremfree(bp);
1892				brelse(bp);
1893				++r;
1894				break;
1895			}
1896			if (LIST_FIRST(&bp->b_dep) != NULL &&
1897			    bioops.io_countdeps &&
1898			    (bp->b_flags & B_DEFERRED) == 0 &&
1899			    (*bioops.io_countdeps)(bp, 0)) {
1900				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1901				    bp, b_freelist);
1902				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1903				    bp, b_freelist);
1904				bp->b_flags |= B_DEFERRED;
1905				bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1906				continue;
1907			}
1908			vfs_bio_awrite(bp);
1909			++r;
1910			break;
1911		}
1912		bp = TAILQ_NEXT(bp, b_freelist);
1913	}
1914	return (r);
1915}
1916
1917/*
1918 * Check to see if a block is currently memory resident.
1919 */
1920struct buf *
1921incore(struct vnode * vp, daddr_t blkno)
1922{
1923	struct buf *bp;
1924
1925	int s = splbio();
1926	bp = gbincore(vp, blkno);
1927	splx(s);
1928	return (bp);
1929}
1930
1931/*
1932 * Returns true if no I/O is needed to access the
1933 * associated VM object.  This is like incore except
1934 * it also hunts around in the VM system for the data.
1935 */
1936
1937int
1938inmem(struct vnode * vp, daddr_t blkno)
1939{
1940	vm_object_t obj;
1941	vm_offset_t toff, tinc, size;
1942	vm_page_t m;
1943	vm_ooffset_t off;
1944
1945	if (incore(vp, blkno))
1946		return 1;
1947	if (vp->v_mount == NULL)
1948		return 0;
1949	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1950		return 0;
1951
1952	obj = vp->v_object;
1953	size = PAGE_SIZE;
1954	if (size > vp->v_mount->mnt_stat.f_iosize)
1955		size = vp->v_mount->mnt_stat.f_iosize;
1956	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1957
1958	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1959		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1960		if (!m)
1961			return 0;
1962		tinc = size;
1963		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1964			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1965		if (vm_page_is_valid(m,
1966		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1967			return 0;
1968	}
1969	return 1;
1970}
1971
1972/*
1973 *	vfs_setdirty:
1974 *
1975 *	Sets the dirty range for a buffer based on the status of the dirty
1976 *	bits in the pages comprising the buffer.
1977 *
1978 *	The range is limited to the size of the buffer.
1979 *
1980 *	This routine is primarily used by NFS, but is generalized for the
1981 *	B_VMIO case.
1982 */
1983static void
1984vfs_setdirty(struct buf *bp)
1985{
1986	int i;
1987	vm_object_t object;
1988
1989	/*
1990	 * Degenerate case - empty buffer
1991	 */
1992
1993	if (bp->b_bufsize == 0)
1994		return;
1995
1996	/*
1997	 * We qualify the scan for modified pages on whether the
1998	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1999	 * is not cleared simply by protecting pages off.
2000	 */
2001
2002	if ((bp->b_flags & B_VMIO) == 0)
2003		return;
2004
2005	object = bp->b_pages[0]->object;
2006
2007	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2008		printf("Warning: object %p writeable but not mightbedirty\n", object);
2009	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2010		printf("Warning: object %p mightbedirty but not writeable\n", object);
2011
2012	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2013		vm_offset_t boffset;
2014		vm_offset_t eoffset;
2015
2016		/*
2017		 * test the pages to see if they have been modified directly
2018		 * by users through the VM system.
2019		 */
2020		for (i = 0; i < bp->b_npages; i++) {
2021			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2022			vm_page_test_dirty(bp->b_pages[i]);
2023		}
2024
2025		/*
2026		 * Calculate the encompassing dirty range, boffset and eoffset,
2027		 * (eoffset - boffset) bytes.
2028		 */
2029
2030		for (i = 0; i < bp->b_npages; i++) {
2031			if (bp->b_pages[i]->dirty)
2032				break;
2033		}
2034		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2035
2036		for (i = bp->b_npages - 1; i >= 0; --i) {
2037			if (bp->b_pages[i]->dirty) {
2038				break;
2039			}
2040		}
2041		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2042
2043		/*
2044		 * Fit it to the buffer.
2045		 */
2046
2047		if (eoffset > bp->b_bcount)
2048			eoffset = bp->b_bcount;
2049
2050		/*
2051		 * If we have a good dirty range, merge with the existing
2052		 * dirty range.
2053		 */
2054
2055		if (boffset < eoffset) {
2056			if (bp->b_dirtyoff > boffset)
2057				bp->b_dirtyoff = boffset;
2058			if (bp->b_dirtyend < eoffset)
2059				bp->b_dirtyend = eoffset;
2060		}
2061	}
2062}
2063
2064/*
2065 *	getblk:
2066 *
2067 *	Get a block given a specified block and offset into a file/device.
2068 *	The buffers B_DONE bit will be cleared on return, making it almost
2069 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2070 *	return.  The caller should clear B_INVAL prior to initiating a
2071 *	READ.
2072 *
2073 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2074 *	an existing buffer.
2075 *
2076 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2077 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2078 *	and then cleared based on the backing VM.  If the previous buffer is
2079 *	non-0-sized but invalid, B_CACHE will be cleared.
2080 *
2081 *	If getblk() must create a new buffer, the new buffer is returned with
2082 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2083 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2084 *	backing VM.
2085 *
2086 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2087 *	B_CACHE bit is clear.
2088 *
2089 *	What this means, basically, is that the caller should use B_CACHE to
2090 *	determine whether the buffer is fully valid or not and should clear
2091 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2092 *	the buffer by loading its data area with something, the caller needs
2093 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2094 *	the caller should set B_CACHE ( as an optimization ), else the caller
2095 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2096 *	a write attempt or if it was a successfull read.  If the caller
2097 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2098 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2099 */
2100struct buf *
2101getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2102{
2103	struct buf *bp;
2104	int s;
2105	struct bufhashhdr *bh;
2106
2107	if (size > MAXBSIZE)
2108		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2109
2110	s = splbio();
2111loop:
2112	/*
2113	 * Block if we are low on buffers.   Certain processes are allowed
2114	 * to completely exhaust the buffer cache.
2115         *
2116         * If this check ever becomes a bottleneck it may be better to
2117         * move it into the else, when gbincore() fails.  At the moment
2118         * it isn't a problem.
2119         */
2120	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
2121		if (numfreebuffers == 0) {
2122			if (!curproc)
2123				return NULL;
2124			needsbuffer |= VFS_BIO_NEED_ANY;
2125			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2126			    slptimeo);
2127		}
2128	} else if (numfreebuffers < lofreebuffers) {
2129		waitfreebuffers(slpflag, slptimeo);
2130	}
2131
2132	if ((bp = gbincore(vp, blkno))) {
2133		/*
2134		 * Buffer is in-core.  If the buffer is not busy, it must
2135		 * be on a queue.
2136		 */
2137
2138		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2139			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2140			    "getblk", slpflag, slptimeo) == ENOLCK)
2141				goto loop;
2142			splx(s);
2143			return (struct buf *) NULL;
2144		}
2145
2146		/*
2147		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2148		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2149		 * and for a VMIO buffer B_CACHE is adjusted according to the
2150		 * backing VM cache.
2151		 */
2152		if (bp->b_flags & B_INVAL)
2153			bp->b_flags &= ~B_CACHE;
2154		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2155			bp->b_flags |= B_CACHE;
2156		bremfree(bp);
2157
2158		/*
2159		 * check for size inconsistancies for non-VMIO case.
2160		 */
2161
2162		if (bp->b_bcount != size) {
2163			if ((bp->b_flags & B_VMIO) == 0 ||
2164			    (size > bp->b_kvasize)) {
2165				if (bp->b_flags & B_DELWRI) {
2166					bp->b_flags |= B_NOCACHE;
2167					VOP_BWRITE(bp->b_vp, bp);
2168				} else {
2169					if ((bp->b_flags & B_VMIO) &&
2170					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2171						bp->b_flags |= B_RELBUF;
2172						brelse(bp);
2173					} else {
2174						bp->b_flags |= B_NOCACHE;
2175						VOP_BWRITE(bp->b_vp, bp);
2176					}
2177				}
2178				goto loop;
2179			}
2180		}
2181
2182		/*
2183		 * If the size is inconsistant in the VMIO case, we can resize
2184		 * the buffer.  This might lead to B_CACHE getting set or
2185		 * cleared.  If the size has not changed, B_CACHE remains
2186		 * unchanged from its previous state.
2187		 */
2188
2189		if (bp->b_bcount != size)
2190			allocbuf(bp, size);
2191
2192		KASSERT(bp->b_offset != NOOFFSET,
2193		    ("getblk: no buffer offset"));
2194
2195		/*
2196		 * A buffer with B_DELWRI set and B_CACHE clear must
2197		 * be committed before we can return the buffer in
2198		 * order to prevent the caller from issuing a read
2199		 * ( due to B_CACHE not being set ) and overwriting
2200		 * it.
2201		 *
2202		 * Most callers, including NFS and FFS, need this to
2203		 * operate properly either because they assume they
2204		 * can issue a read if B_CACHE is not set, or because
2205		 * ( for example ) an uncached B_DELWRI might loop due
2206		 * to softupdates re-dirtying the buffer.  In the latter
2207		 * case, B_CACHE is set after the first write completes,
2208		 * preventing further loops.
2209		 */
2210
2211		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2212			VOP_BWRITE(bp->b_vp, bp);
2213			goto loop;
2214		}
2215
2216		splx(s);
2217		bp->b_flags &= ~B_DONE;
2218	} else {
2219		/*
2220		 * Buffer is not in-core, create new buffer.  The buffer
2221		 * returned by getnewbuf() is locked.  Note that the returned
2222		 * buffer is also considered valid (not marked B_INVAL).
2223		 */
2224		int bsize, maxsize, vmio;
2225		off_t offset;
2226
2227		if (vn_isdisk(vp, NULL))
2228			bsize = DEV_BSIZE;
2229		else if (vp->v_mountedhere)
2230			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2231		else if (vp->v_mount)
2232			bsize = vp->v_mount->mnt_stat.f_iosize;
2233		else
2234			bsize = size;
2235
2236		offset = (off_t)blkno * bsize;
2237		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2238		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2239		maxsize = imax(maxsize, bsize);
2240
2241		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2242			if (slpflag || slptimeo) {
2243				splx(s);
2244				return NULL;
2245			}
2246			goto loop;
2247		}
2248
2249		/*
2250		 * This code is used to make sure that a buffer is not
2251		 * created while the getnewbuf routine is blocked.
2252		 * This can be a problem whether the vnode is locked or not.
2253		 * If the buffer is created out from under us, we have to
2254		 * throw away the one we just created.  There is now window
2255		 * race because we are safely running at splbio() from the
2256		 * point of the duplicate buffer creation through to here,
2257		 * and we've locked the buffer.
2258		 */
2259		if (gbincore(vp, blkno)) {
2260			bp->b_flags |= B_INVAL;
2261			brelse(bp);
2262			goto loop;
2263		}
2264
2265		/*
2266		 * Insert the buffer into the hash, so that it can
2267		 * be found by incore.
2268		 */
2269		bp->b_blkno = bp->b_lblkno = blkno;
2270		bp->b_offset = offset;
2271
2272		bgetvp(vp, bp);
2273		LIST_REMOVE(bp, b_hash);
2274		bh = bufhash(vp, blkno);
2275		LIST_INSERT_HEAD(bh, bp, b_hash);
2276
2277		/*
2278		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2279		 * buffer size starts out as 0, B_CACHE will be set by
2280		 * allocbuf() for the VMIO case prior to it testing the
2281		 * backing store for validity.
2282		 */
2283
2284		if (vmio) {
2285			bp->b_flags |= B_VMIO;
2286#if defined(VFS_BIO_DEBUG)
2287			if (vp->v_type != VREG && vp->v_type != VBLK)
2288				printf("getblk: vmioing file type %d???\n", vp->v_type);
2289#endif
2290		} else {
2291			bp->b_flags &= ~B_VMIO;
2292		}
2293
2294		allocbuf(bp, size);
2295
2296		splx(s);
2297		bp->b_flags &= ~B_DONE;
2298	}
2299	return (bp);
2300}
2301
2302/*
2303 * Get an empty, disassociated buffer of given size.  The buffer is initially
2304 * set to B_INVAL.
2305 */
2306struct buf *
2307geteblk(int size)
2308{
2309	struct buf *bp;
2310	int s;
2311
2312	s = splbio();
2313	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2314	splx(s);
2315	allocbuf(bp, size);
2316	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2317	return (bp);
2318}
2319
2320
2321/*
2322 * This code constitutes the buffer memory from either anonymous system
2323 * memory (in the case of non-VMIO operations) or from an associated
2324 * VM object (in the case of VMIO operations).  This code is able to
2325 * resize a buffer up or down.
2326 *
2327 * Note that this code is tricky, and has many complications to resolve
2328 * deadlock or inconsistant data situations.  Tread lightly!!!
2329 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2330 * the caller.  Calling this code willy nilly can result in the loss of data.
2331 *
2332 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2333 * B_CACHE for the non-VMIO case.
2334 */
2335
2336int
2337allocbuf(struct buf *bp, int size)
2338{
2339	int newbsize, mbsize;
2340	int i;
2341
2342	if (BUF_REFCNT(bp) == 0)
2343		panic("allocbuf: buffer not busy");
2344
2345	if (bp->b_kvasize < size)
2346		panic("allocbuf: buffer too small");
2347
2348	if ((bp->b_flags & B_VMIO) == 0) {
2349		caddr_t origbuf;
2350		int origbufsize;
2351		/*
2352		 * Just get anonymous memory from the kernel.  Don't
2353		 * mess with B_CACHE.
2354		 */
2355		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2356#if !defined(NO_B_MALLOC)
2357		if (bp->b_flags & B_MALLOC)
2358			newbsize = mbsize;
2359		else
2360#endif
2361			newbsize = round_page(size);
2362
2363		if (newbsize < bp->b_bufsize) {
2364#if !defined(NO_B_MALLOC)
2365			/*
2366			 * malloced buffers are not shrunk
2367			 */
2368			if (bp->b_flags & B_MALLOC) {
2369				if (newbsize) {
2370					bp->b_bcount = size;
2371				} else {
2372					free(bp->b_data, M_BIOBUF);
2373					bufspace -= bp->b_bufsize;
2374					bufmallocspace -= bp->b_bufsize;
2375					runningbufspace -= bp->b_bufsize;
2376					if (bp->b_bufsize)
2377						bufspacewakeup();
2378					bp->b_data = bp->b_kvabase;
2379					bp->b_bufsize = 0;
2380					bp->b_bcount = 0;
2381					bp->b_flags &= ~B_MALLOC;
2382				}
2383				return 1;
2384			}
2385#endif
2386			vm_hold_free_pages(
2387			    bp,
2388			    (vm_offset_t) bp->b_data + newbsize,
2389			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2390		} else if (newbsize > bp->b_bufsize) {
2391#if !defined(NO_B_MALLOC)
2392			/*
2393			 * We only use malloced memory on the first allocation.
2394			 * and revert to page-allocated memory when the buffer
2395			 * grows.
2396			 */
2397			if ( (bufmallocspace < maxbufmallocspace) &&
2398				(bp->b_bufsize == 0) &&
2399				(mbsize <= PAGE_SIZE/2)) {
2400
2401				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2402				bp->b_bufsize = mbsize;
2403				bp->b_bcount = size;
2404				bp->b_flags |= B_MALLOC;
2405				bufspace += mbsize;
2406				bufmallocspace += mbsize;
2407				runningbufspace += bp->b_bufsize;
2408				return 1;
2409			}
2410#endif
2411			origbuf = NULL;
2412			origbufsize = 0;
2413#if !defined(NO_B_MALLOC)
2414			/*
2415			 * If the buffer is growing on its other-than-first allocation,
2416			 * then we revert to the page-allocation scheme.
2417			 */
2418			if (bp->b_flags & B_MALLOC) {
2419				origbuf = bp->b_data;
2420				origbufsize = bp->b_bufsize;
2421				bp->b_data = bp->b_kvabase;
2422				bufspace -= bp->b_bufsize;
2423				bufmallocspace -= bp->b_bufsize;
2424				runningbufspace -= bp->b_bufsize;
2425				if (bp->b_bufsize)
2426					bufspacewakeup();
2427				bp->b_bufsize = 0;
2428				bp->b_flags &= ~B_MALLOC;
2429				newbsize = round_page(newbsize);
2430			}
2431#endif
2432			vm_hold_load_pages(
2433			    bp,
2434			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2435			    (vm_offset_t) bp->b_data + newbsize);
2436#if !defined(NO_B_MALLOC)
2437			if (origbuf) {
2438				bcopy(origbuf, bp->b_data, origbufsize);
2439				free(origbuf, M_BIOBUF);
2440			}
2441#endif
2442		}
2443	} else {
2444		vm_page_t m;
2445		int desiredpages;
2446
2447		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2448		desiredpages = (size == 0) ? 0 :
2449			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2450
2451#if !defined(NO_B_MALLOC)
2452		if (bp->b_flags & B_MALLOC)
2453			panic("allocbuf: VMIO buffer can't be malloced");
2454#endif
2455		/*
2456		 * Set B_CACHE initially if buffer is 0 length or will become
2457		 * 0-length.
2458		 */
2459		if (size == 0 || bp->b_bufsize == 0)
2460			bp->b_flags |= B_CACHE;
2461
2462		if (newbsize < bp->b_bufsize) {
2463			/*
2464			 * DEV_BSIZE aligned new buffer size is less then the
2465			 * DEV_BSIZE aligned existing buffer size.  Figure out
2466			 * if we have to remove any pages.
2467			 */
2468			if (desiredpages < bp->b_npages) {
2469				for (i = desiredpages; i < bp->b_npages; i++) {
2470					/*
2471					 * the page is not freed here -- it
2472					 * is the responsibility of
2473					 * vnode_pager_setsize
2474					 */
2475					m = bp->b_pages[i];
2476					KASSERT(m != bogus_page,
2477					    ("allocbuf: bogus page found"));
2478					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2479						;
2480
2481					bp->b_pages[i] = NULL;
2482					vm_page_unwire(m, 0);
2483				}
2484				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2485				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2486				bp->b_npages = desiredpages;
2487			}
2488		} else if (size > bp->b_bcount) {
2489			/*
2490			 * We are growing the buffer, possibly in a
2491			 * byte-granular fashion.
2492			 */
2493			struct vnode *vp;
2494			vm_object_t obj;
2495			vm_offset_t toff;
2496			vm_offset_t tinc;
2497
2498			/*
2499			 * Step 1, bring in the VM pages from the object,
2500			 * allocating them if necessary.  We must clear
2501			 * B_CACHE if these pages are not valid for the
2502			 * range covered by the buffer.
2503			 */
2504
2505			vp = bp->b_vp;
2506			obj = vp->v_object;
2507
2508			while (bp->b_npages < desiredpages) {
2509				vm_page_t m;
2510				vm_pindex_t pi;
2511
2512				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2513				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2514					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2515					if (m == NULL) {
2516						VM_WAIT;
2517						vm_pageout_deficit += desiredpages - bp->b_npages;
2518					} else {
2519						vm_page_wire(m);
2520						vm_page_wakeup(m);
2521						bp->b_flags &= ~B_CACHE;
2522						bp->b_pages[bp->b_npages] = m;
2523						++bp->b_npages;
2524					}
2525					continue;
2526				}
2527
2528				/*
2529				 * We found a page.  If we have to sleep on it,
2530				 * retry because it might have gotten freed out
2531				 * from under us.
2532				 *
2533				 * We can only test PG_BUSY here.  Blocking on
2534				 * m->busy might lead to a deadlock:
2535				 *
2536				 *  vm_fault->getpages->cluster_read->allocbuf
2537				 *
2538				 */
2539
2540				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2541					continue;
2542
2543				/*
2544				 * We have a good page.  Should we wakeup the
2545				 * page daemon?
2546				 */
2547				if ((curproc != pageproc) &&
2548				    ((m->queue - m->pc) == PQ_CACHE) &&
2549				    ((cnt.v_free_count + cnt.v_cache_count) <
2550					(cnt.v_free_min + cnt.v_cache_min))) {
2551					pagedaemon_wakeup();
2552				}
2553				vm_page_flag_clear(m, PG_ZERO);
2554				vm_page_wire(m);
2555				bp->b_pages[bp->b_npages] = m;
2556				++bp->b_npages;
2557			}
2558
2559			/*
2560			 * Step 2.  We've loaded the pages into the buffer,
2561			 * we have to figure out if we can still have B_CACHE
2562			 * set.  Note that B_CACHE is set according to the
2563			 * byte-granular range ( bcount and size ), new the
2564			 * aligned range ( newbsize ).
2565			 *
2566			 * The VM test is against m->valid, which is DEV_BSIZE
2567			 * aligned.  Needless to say, the validity of the data
2568			 * needs to also be DEV_BSIZE aligned.  Note that this
2569			 * fails with NFS if the server or some other client
2570			 * extends the file's EOF.  If our buffer is resized,
2571			 * B_CACHE may remain set! XXX
2572			 */
2573
2574			toff = bp->b_bcount;
2575			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2576
2577			while ((bp->b_flags & B_CACHE) && toff < size) {
2578				vm_pindex_t pi;
2579
2580				if (tinc > (size - toff))
2581					tinc = size - toff;
2582
2583				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2584				    PAGE_SHIFT;
2585
2586				vfs_buf_test_cache(
2587				    bp,
2588				    bp->b_offset,
2589				    toff,
2590				    tinc,
2591				    bp->b_pages[pi]
2592				);
2593				toff += tinc;
2594				tinc = PAGE_SIZE;
2595			}
2596
2597			/*
2598			 * Step 3, fixup the KVM pmap.  Remember that
2599			 * bp->b_data is relative to bp->b_offset, but
2600			 * bp->b_offset may be offset into the first page.
2601			 */
2602
2603			bp->b_data = (caddr_t)
2604			    trunc_page((vm_offset_t)bp->b_data);
2605			pmap_qenter(
2606			    (vm_offset_t)bp->b_data,
2607			    bp->b_pages,
2608			    bp->b_npages
2609			);
2610			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2611			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2612		}
2613	}
2614	if (bp->b_flags & B_VMIO)
2615		vmiospace += (newbsize - bp->b_bufsize);
2616	bufspace += (newbsize - bp->b_bufsize);
2617	runningbufspace += (newbsize - bp->b_bufsize);
2618	if (newbsize < bp->b_bufsize)
2619		bufspacewakeup();
2620	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2621	bp->b_bcount = size;		/* requested buffer size	*/
2622	return 1;
2623}
2624
2625/*
2626 *	biowait:
2627 *
2628 *	Wait for buffer I/O completion, returning error status.  The buffer
2629 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2630 *	error and cleared.
2631 */
2632int
2633biowait(register struct buf * bp)
2634{
2635	int s;
2636
2637	s = splbio();
2638	while ((bp->b_flags & B_DONE) == 0) {
2639#if defined(NO_SCHEDULE_MODS)
2640		tsleep(bp, PRIBIO, "biowait", 0);
2641#else
2642		if (bp->b_iocmd == BIO_READ)
2643			tsleep(bp, PRIBIO, "biord", 0);
2644		else
2645			tsleep(bp, PRIBIO, "biowr", 0);
2646#endif
2647	}
2648	splx(s);
2649	if (bp->b_flags & B_EINTR) {
2650		bp->b_flags &= ~B_EINTR;
2651		return (EINTR);
2652	}
2653	if (bp->b_flags & B_ERROR) {
2654		return (bp->b_error ? bp->b_error : EIO);
2655	} else {
2656		return (0);
2657	}
2658}
2659
2660/*
2661 *	biodone:
2662 *
2663 *	Finish I/O on a buffer, optionally calling a completion function.
2664 *	This is usually called from an interrupt so process blocking is
2665 *	not allowed.
2666 *
2667 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2668 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2669 *	assuming B_INVAL is clear.
2670 *
2671 *	For the VMIO case, we set B_CACHE if the op was a read and no
2672 *	read error occured, or if the op was a write.  B_CACHE is never
2673 *	set if the buffer is invalid or otherwise uncacheable.
2674 *
2675 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2676 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2677 *	in the biodone routine.
2678 */
2679void
2680biodone(register struct buf * bp)
2681{
2682	int s;
2683	void    (*b_iodone) __P((struct buf *));
2684
2685	s = splbio();
2686
2687	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2688	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2689
2690	bp->b_flags |= B_DONE;
2691
2692	if (bp->b_iocmd == BIO_DELETE) {
2693		brelse(bp);
2694		splx(s);
2695		return;
2696	}
2697
2698	if (bp->b_iocmd == BIO_WRITE) {
2699		vwakeup(bp);
2700	}
2701
2702	/* call optional completion function if requested */
2703	if (bp->b_iodone != NULL) {
2704		b_iodone = bp->b_iodone;
2705		bp->b_iodone = NULL;
2706		(*b_iodone) (bp);
2707		splx(s);
2708		return;
2709	}
2710	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2711		(*bioops.io_complete)(bp);
2712
2713	if (bp->b_flags & B_VMIO) {
2714		int i, resid;
2715		vm_ooffset_t foff;
2716		vm_page_t m;
2717		vm_object_t obj;
2718		int iosize;
2719		struct vnode *vp = bp->b_vp;
2720
2721		obj = vp->v_object;
2722
2723#if defined(VFS_BIO_DEBUG)
2724		if (vp->v_usecount == 0) {
2725			panic("biodone: zero vnode ref count");
2726		}
2727
2728		if (vp->v_object == NULL) {
2729			panic("biodone: missing VM object");
2730		}
2731
2732		if ((vp->v_flag & VOBJBUF) == 0) {
2733			panic("biodone: vnode is not setup for merged cache");
2734		}
2735#endif
2736
2737		foff = bp->b_offset;
2738		KASSERT(bp->b_offset != NOOFFSET,
2739		    ("biodone: no buffer offset"));
2740
2741		if (!obj) {
2742			panic("biodone: no object");
2743		}
2744#if defined(VFS_BIO_DEBUG)
2745		if (obj->paging_in_progress < bp->b_npages) {
2746			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2747			    obj->paging_in_progress, bp->b_npages);
2748		}
2749#endif
2750
2751		/*
2752		 * Set B_CACHE if the op was a normal read and no error
2753		 * occured.  B_CACHE is set for writes in the b*write()
2754		 * routines.
2755		 */
2756		iosize = bp->b_bcount - bp->b_resid;
2757		if (bp->b_iocmd == BIO_READ &&
2758		    !(bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR))) {
2759			bp->b_flags |= B_CACHE;
2760		}
2761
2762		for (i = 0; i < bp->b_npages; i++) {
2763			int bogusflag = 0;
2764			m = bp->b_pages[i];
2765			if (m == bogus_page) {
2766				bogusflag = 1;
2767				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2768				if (!m) {
2769#if defined(VFS_BIO_DEBUG)
2770					printf("biodone: page disappeared\n");
2771#endif
2772					vm_object_pip_subtract(obj, 1);
2773					bp->b_flags &= ~B_CACHE;
2774					continue;
2775				}
2776				bp->b_pages[i] = m;
2777				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2778			}
2779#if defined(VFS_BIO_DEBUG)
2780			if (OFF_TO_IDX(foff) != m->pindex) {
2781				printf(
2782"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2783				    (unsigned long)foff, m->pindex);
2784			}
2785#endif
2786			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2787			if (resid > iosize)
2788				resid = iosize;
2789
2790			/*
2791			 * In the write case, the valid and clean bits are
2792			 * already changed correctly ( see bdwrite() ), so we
2793			 * only need to do this here in the read case.
2794			 */
2795			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
2796				vfs_page_set_valid(bp, foff, i, m);
2797			}
2798			vm_page_flag_clear(m, PG_ZERO);
2799
2800			/*
2801			 * when debugging new filesystems or buffer I/O methods, this
2802			 * is the most common error that pops up.  if you see this, you
2803			 * have not set the page busy flag correctly!!!
2804			 */
2805			if (m->busy == 0) {
2806				printf("biodone: page busy < 0, "
2807				    "pindex: %d, foff: 0x(%x,%x), "
2808				    "resid: %d, index: %d\n",
2809				    (int) m->pindex, (int)(foff >> 32),
2810						(int) foff & 0xffffffff, resid, i);
2811				if (!vn_isdisk(vp, NULL))
2812					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2813					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2814					    (int) bp->b_lblkno,
2815					    bp->b_flags, bp->b_npages);
2816				else
2817					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2818					    (int) bp->b_lblkno,
2819					    bp->b_flags, bp->b_npages);
2820				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2821				    m->valid, m->dirty, m->wire_count);
2822				panic("biodone: page busy < 0\n");
2823			}
2824			vm_page_io_finish(m);
2825			vm_object_pip_subtract(obj, 1);
2826			foff += resid;
2827			iosize -= resid;
2828		}
2829		if (obj)
2830			vm_object_pip_wakeupn(obj, 0);
2831	}
2832	/*
2833	 * For asynchronous completions, release the buffer now. The brelse
2834	 * will do a wakeup there if necessary - so no need to do a wakeup
2835	 * here in the async case. The sync case always needs to do a wakeup.
2836	 */
2837
2838	if (bp->b_flags & B_ASYNC) {
2839		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2840			brelse(bp);
2841		else
2842			bqrelse(bp);
2843	} else {
2844		wakeup(bp);
2845	}
2846	splx(s);
2847}
2848
2849/*
2850 * This routine is called in lieu of iodone in the case of
2851 * incomplete I/O.  This keeps the busy status for pages
2852 * consistant.
2853 */
2854void
2855vfs_unbusy_pages(struct buf * bp)
2856{
2857	int i;
2858
2859	if (bp->b_flags & B_VMIO) {
2860		struct vnode *vp = bp->b_vp;
2861		vm_object_t obj = vp->v_object;
2862
2863		for (i = 0; i < bp->b_npages; i++) {
2864			vm_page_t m = bp->b_pages[i];
2865
2866			if (m == bogus_page) {
2867				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2868				if (!m) {
2869					panic("vfs_unbusy_pages: page missing\n");
2870				}
2871				bp->b_pages[i] = m;
2872				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2873			}
2874			vm_object_pip_subtract(obj, 1);
2875			vm_page_flag_clear(m, PG_ZERO);
2876			vm_page_io_finish(m);
2877		}
2878		vm_object_pip_wakeupn(obj, 0);
2879	}
2880}
2881
2882/*
2883 * vfs_page_set_valid:
2884 *
2885 *	Set the valid bits in a page based on the supplied offset.   The
2886 *	range is restricted to the buffer's size.
2887 *
2888 *	This routine is typically called after a read completes.
2889 */
2890static void
2891vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2892{
2893	vm_ooffset_t soff, eoff;
2894
2895	/*
2896	 * Start and end offsets in buffer.  eoff - soff may not cross a
2897	 * page boundry or cross the end of the buffer.  The end of the
2898	 * buffer, in this case, is our file EOF, not the allocation size
2899	 * of the buffer.
2900	 */
2901	soff = off;
2902	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2903	if (eoff > bp->b_offset + bp->b_bcount)
2904		eoff = bp->b_offset + bp->b_bcount;
2905
2906	/*
2907	 * Set valid range.  This is typically the entire buffer and thus the
2908	 * entire page.
2909	 */
2910	if (eoff > soff) {
2911		vm_page_set_validclean(
2912		    m,
2913		   (vm_offset_t) (soff & PAGE_MASK),
2914		   (vm_offset_t) (eoff - soff)
2915		);
2916	}
2917}
2918
2919/*
2920 * This routine is called before a device strategy routine.
2921 * It is used to tell the VM system that paging I/O is in
2922 * progress, and treat the pages associated with the buffer
2923 * almost as being PG_BUSY.  Also the object paging_in_progress
2924 * flag is handled to make sure that the object doesn't become
2925 * inconsistant.
2926 *
2927 * Since I/O has not been initiated yet, certain buffer flags
2928 * such as B_ERROR or B_INVAL may be in an inconsistant state
2929 * and should be ignored.
2930 */
2931void
2932vfs_busy_pages(struct buf * bp, int clear_modify)
2933{
2934	int i, bogus;
2935
2936	if (bp->b_flags & B_VMIO) {
2937		struct vnode *vp = bp->b_vp;
2938		vm_object_t obj = vp->v_object;
2939		vm_ooffset_t foff;
2940
2941		foff = bp->b_offset;
2942		KASSERT(bp->b_offset != NOOFFSET,
2943		    ("vfs_busy_pages: no buffer offset"));
2944		vfs_setdirty(bp);
2945
2946retry:
2947		for (i = 0; i < bp->b_npages; i++) {
2948			vm_page_t m = bp->b_pages[i];
2949			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2950				goto retry;
2951		}
2952
2953		bogus = 0;
2954		for (i = 0; i < bp->b_npages; i++) {
2955			vm_page_t m = bp->b_pages[i];
2956
2957			vm_page_flag_clear(m, PG_ZERO);
2958			if ((bp->b_flags & B_CLUSTER) == 0) {
2959				vm_object_pip_add(obj, 1);
2960				vm_page_io_start(m);
2961			}
2962
2963			/*
2964			 * When readying a buffer for a read ( i.e
2965			 * clear_modify == 0 ), it is important to do
2966			 * bogus_page replacement for valid pages in
2967			 * partially instantiated buffers.  Partially
2968			 * instantiated buffers can, in turn, occur when
2969			 * reconstituting a buffer from its VM backing store
2970			 * base.  We only have to do this if B_CACHE is
2971			 * clear ( which causes the I/O to occur in the
2972			 * first place ).  The replacement prevents the read
2973			 * I/O from overwriting potentially dirty VM-backed
2974			 * pages.  XXX bogus page replacement is, uh, bogus.
2975			 * It may not work properly with small-block devices.
2976			 * We need to find a better way.
2977			 */
2978
2979			vm_page_protect(m, VM_PROT_NONE);
2980			if (clear_modify)
2981				vfs_page_set_valid(bp, foff, i, m);
2982			else if (m->valid == VM_PAGE_BITS_ALL &&
2983				(bp->b_flags & B_CACHE) == 0) {
2984				bp->b_pages[i] = bogus_page;
2985				bogus++;
2986			}
2987			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2988		}
2989		if (bogus)
2990			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2991	}
2992}
2993
2994/*
2995 * Tell the VM system that the pages associated with this buffer
2996 * are clean.  This is used for delayed writes where the data is
2997 * going to go to disk eventually without additional VM intevention.
2998 *
2999 * Note that while we only really need to clean through to b_bcount, we
3000 * just go ahead and clean through to b_bufsize.
3001 */
3002static void
3003vfs_clean_pages(struct buf * bp)
3004{
3005	int i;
3006
3007	if (bp->b_flags & B_VMIO) {
3008		vm_ooffset_t foff;
3009
3010		foff = bp->b_offset;
3011		KASSERT(bp->b_offset != NOOFFSET,
3012		    ("vfs_clean_pages: no buffer offset"));
3013		for (i = 0; i < bp->b_npages; i++) {
3014			vm_page_t m = bp->b_pages[i];
3015			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
3016			vm_ooffset_t eoff = noff;
3017
3018			if (eoff > bp->b_offset + bp->b_bufsize)
3019				eoff = bp->b_offset + bp->b_bufsize;
3020			vfs_page_set_valid(bp, foff, i, m);
3021			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3022			foff = noff;
3023		}
3024	}
3025}
3026
3027/*
3028 *	vfs_bio_set_validclean:
3029 *
3030 *	Set the range within the buffer to valid and clean.  The range is
3031 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3032 *	itself may be offset from the beginning of the first page.
3033 */
3034
3035void
3036vfs_bio_set_validclean(struct buf *bp, int base, int size)
3037{
3038	if (bp->b_flags & B_VMIO) {
3039		int i;
3040		int n;
3041
3042		/*
3043		 * Fixup base to be relative to beginning of first page.
3044		 * Set initial n to be the maximum number of bytes in the
3045		 * first page that can be validated.
3046		 */
3047
3048		base += (bp->b_offset & PAGE_MASK);
3049		n = PAGE_SIZE - (base & PAGE_MASK);
3050
3051		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3052			vm_page_t m = bp->b_pages[i];
3053
3054			if (n > size)
3055				n = size;
3056
3057			vm_page_set_validclean(m, base & PAGE_MASK, n);
3058			base += n;
3059			size -= n;
3060			n = PAGE_SIZE;
3061		}
3062	}
3063}
3064
3065/*
3066 *	vfs_bio_clrbuf:
3067 *
3068 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3069 *	to clear B_ERROR and B_INVAL.
3070 *
3071 *	Note that while we only theoretically need to clear through b_bcount,
3072 *	we go ahead and clear through b_bufsize.
3073 */
3074
3075void
3076vfs_bio_clrbuf(struct buf *bp) {
3077	int i, mask = 0;
3078	caddr_t sa, ea;
3079	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3080		bp->b_flags &= ~(B_INVAL|B_ERROR);
3081		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3082		    (bp->b_offset & PAGE_MASK) == 0) {
3083			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3084			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3085			    ((bp->b_pages[0]->valid & mask) != mask)) {
3086				bzero(bp->b_data, bp->b_bufsize);
3087			}
3088			bp->b_pages[0]->valid |= mask;
3089			bp->b_resid = 0;
3090			return;
3091		}
3092		ea = sa = bp->b_data;
3093		for(i=0;i<bp->b_npages;i++,sa=ea) {
3094			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3095			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3096			ea = (caddr_t)(vm_offset_t)ulmin(
3097			    (u_long)(vm_offset_t)ea,
3098			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3099			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3100			if ((bp->b_pages[i]->valid & mask) == mask)
3101				continue;
3102			if ((bp->b_pages[i]->valid & mask) == 0) {
3103				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3104					bzero(sa, ea - sa);
3105				}
3106			} else {
3107				for (; sa < ea; sa += DEV_BSIZE, j++) {
3108					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3109						(bp->b_pages[i]->valid & (1<<j)) == 0)
3110						bzero(sa, DEV_BSIZE);
3111				}
3112			}
3113			bp->b_pages[i]->valid |= mask;
3114			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3115		}
3116		bp->b_resid = 0;
3117	} else {
3118		clrbuf(bp);
3119	}
3120}
3121
3122/*
3123 * vm_hold_load_pages and vm_hold_unload pages get pages into
3124 * a buffers address space.  The pages are anonymous and are
3125 * not associated with a file object.
3126 */
3127void
3128vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3129{
3130	vm_offset_t pg;
3131	vm_page_t p;
3132	int index;
3133
3134	to = round_page(to);
3135	from = round_page(from);
3136	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3137
3138	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3139
3140tryagain:
3141
3142		p = vm_page_alloc(kernel_object,
3143			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3144		    VM_ALLOC_NORMAL);
3145		if (!p) {
3146			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3147			VM_WAIT;
3148			goto tryagain;
3149		}
3150		vm_page_wire(p);
3151		p->valid = VM_PAGE_BITS_ALL;
3152		vm_page_flag_clear(p, PG_ZERO);
3153		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3154		bp->b_pages[index] = p;
3155		vm_page_wakeup(p);
3156	}
3157	bp->b_npages = index;
3158}
3159
3160void
3161vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3162{
3163	vm_offset_t pg;
3164	vm_page_t p;
3165	int index, newnpages;
3166
3167	from = round_page(from);
3168	to = round_page(to);
3169	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3170
3171	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3172		p = bp->b_pages[index];
3173		if (p && (index < bp->b_npages)) {
3174			if (p->busy) {
3175				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3176					bp->b_blkno, bp->b_lblkno);
3177			}
3178			bp->b_pages[index] = NULL;
3179			pmap_kremove(pg);
3180			vm_page_busy(p);
3181			vm_page_unwire(p, 0);
3182			vm_page_free(p);
3183		}
3184	}
3185	bp->b_npages = newnpages;
3186}
3187
3188
3189#include "opt_ddb.h"
3190#ifdef DDB
3191#include <ddb/ddb.h>
3192
3193DB_SHOW_COMMAND(buffer, db_show_buffer)
3194{
3195	/* get args */
3196	struct buf *bp = (struct buf *)addr;
3197
3198	if (!have_addr) {
3199		db_printf("usage: show buffer <addr>\n");
3200		return;
3201	}
3202
3203	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3204	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3205		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3206		  "b_blkno = %d, b_pblkno = %d\n",
3207		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3208		  major(bp->b_dev), minor(bp->b_dev),
3209		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3210	if (bp->b_npages) {
3211		int i;
3212		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3213		for (i = 0; i < bp->b_npages; i++) {
3214			vm_page_t m;
3215			m = bp->b_pages[i];
3216			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3217			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3218			if ((i + 1) < bp->b_npages)
3219				db_printf(",");
3220		}
3221		db_printf("\n");
3222	}
3223}
3224#endif /* DDB */
3225