vfs_bio.c revision 55756
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 55756 2000-01-10 12:04:27Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/conf.h>
34#include <sys/eventhandler.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mount.h>
38#include <sys/kernel.h>
39#include <sys/kthread.h>
40#include <sys/proc.h>
41#include <sys/reboot.h>
42#include <sys/resourcevar.h>
43#include <sys/sysctl.h>
44#include <sys/vmmeter.h>
45#include <sys/vnode.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_kern.h>
49#include <vm/vm_pageout.h>
50#include <vm/vm_page.h>
51#include <vm/vm_object.h>
52#include <vm/vm_extern.h>
53#include <vm/vm_map.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59struct buf *buf;		/* buffer header pool */
60struct swqueue bswlist;
61
62static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
63		vm_offset_t to);
64static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
65		vm_offset_t to);
66static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
67			       int pageno, vm_page_t m);
68static void vfs_clean_pages(struct buf * bp);
69static void vfs_setdirty(struct buf *bp);
70static void vfs_vmio_release(struct buf *bp);
71static void vfs_backgroundwritedone(struct buf *bp);
72static int flushbufqueues(void);
73
74static int bd_request;
75
76static void buf_daemon __P((void));
77/*
78 * bogus page -- for I/O to/from partially complete buffers
79 * this is a temporary solution to the problem, but it is not
80 * really that bad.  it would be better to split the buffer
81 * for input in the case of buffers partially already in memory,
82 * but the code is intricate enough already.
83 */
84vm_page_t bogus_page;
85int runningbufspace;
86int vmiodirenable = FALSE;
87int buf_maxio = DFLTPHYS;
88static vm_offset_t bogus_offset;
89
90static int bufspace, maxbufspace, vmiospace,
91	bufmallocspace, maxbufmallocspace, hibufspace;
92static int maxbdrun;
93static int needsbuffer;
94static int numdirtybuffers, hidirtybuffers;
95static int numfreebuffers, lofreebuffers, hifreebuffers;
96static int getnewbufcalls;
97static int getnewbufrestarts;
98static int kvafreespace;
99
100SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
101	&numdirtybuffers, 0, "");
102SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
103	&hidirtybuffers, 0, "");
104SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
105	&numfreebuffers, 0, "");
106SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
107	&lofreebuffers, 0, "");
108SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
109	&hifreebuffers, 0, "");
110SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
111	&runningbufspace, 0, "");
112SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
113	&maxbufspace, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
115	&hibufspace, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
117	&bufspace, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
119	&maxbdrun, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
121	&vmiospace, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
123	&maxbufmallocspace, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
125	&bufmallocspace, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
127	&kvafreespace, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
129	&getnewbufcalls, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
131	&getnewbufrestarts, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
133	&vmiodirenable, 0, "");
134
135
136static int bufhashmask;
137static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
138struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
139char *buf_wmesg = BUF_WMESG;
140
141extern int vm_swap_size;
142
143#define BUF_MAXUSE		24
144
145#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
146#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
147#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
148#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
149#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
150
151/*
152 * Buffer hash table code.  Note that the logical block scans linearly, which
153 * gives us some L1 cache locality.
154 */
155
156static __inline
157struct bufhashhdr *
158bufhash(struct vnode *vnp, daddr_t bn)
159{
160	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
161}
162
163/*
164 *	kvaspacewakeup:
165 *
166 *	Called when kva space is potential available for recovery or when
167 *	kva space is recovered in the buffer_map.  This function wakes up
168 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
169 *	is larger then maxbufspace, this situation will typically occur
170 *	when the buffer_map gets fragmented.
171 */
172
173static __inline void
174kvaspacewakeup(void)
175{
176	/*
177	 * If someone is waiting for KVA space, wake them up.  Even
178	 * though we haven't freed the kva space yet, the waiting
179	 * process will be able to now.
180	 */
181	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
182		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
183		wakeup(&needsbuffer);
184	}
185}
186
187/*
188 *	numdirtywakeup:
189 *
190 *	If someone is blocked due to there being too many dirty buffers,
191 *	and numdirtybuffers is now reasonable, wake them up.
192 */
193
194static __inline void
195numdirtywakeup(void)
196{
197	if (numdirtybuffers < hidirtybuffers) {
198		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
199			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
200			wakeup(&needsbuffer);
201		}
202	}
203}
204
205/*
206 *	bufspacewakeup:
207 *
208 *	Called when buffer space is potentially available for recovery or when
209 *	buffer space is recovered.  getnewbuf() will block on this flag when
210 *	it is unable to free sufficient buffer space.  Buffer space becomes
211 *	recoverable when bp's get placed back in the queues.
212 */
213
214static __inline void
215bufspacewakeup(void)
216{
217	/*
218	 * If someone is waiting for BUF space, wake them up.  Even
219	 * though we haven't freed the kva space yet, the waiting
220	 * process will be able to now.
221	 */
222	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
223		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
224		wakeup(&needsbuffer);
225	}
226}
227
228/*
229 *	bufcountwakeup:
230 *
231 *	Called when a buffer has been added to one of the free queues to
232 *	account for the buffer and to wakeup anyone waiting for free buffers.
233 *	This typically occurs when large amounts of metadata are being handled
234 *	by the buffer cache ( else buffer space runs out first, usually ).
235 */
236
237static __inline void
238bufcountwakeup(void)
239{
240	++numfreebuffers;
241	if (needsbuffer) {
242		needsbuffer &= ~VFS_BIO_NEED_ANY;
243		if (numfreebuffers >= hifreebuffers)
244			needsbuffer &= ~VFS_BIO_NEED_FREE;
245		wakeup(&needsbuffer);
246	}
247}
248
249/*
250 *	vfs_buf_test_cache:
251 *
252 *	Called when a buffer is extended.  This function clears the B_CACHE
253 *	bit if the newly extended portion of the buffer does not contain
254 *	valid data.
255 */
256static __inline__
257void
258vfs_buf_test_cache(struct buf *bp,
259		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
260		  vm_page_t m)
261{
262	if (bp->b_flags & B_CACHE) {
263		int base = (foff + off) & PAGE_MASK;
264		if (vm_page_is_valid(m, base, size) == 0)
265			bp->b_flags &= ~B_CACHE;
266	}
267}
268
269static __inline__
270void
271bd_wakeup(int dirtybuflevel)
272{
273	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
274		bd_request = 1;
275		wakeup(&bd_request);
276	}
277}
278
279/*
280 * bd_speedup - speedup the buffer cache flushing code
281 */
282
283static __inline__
284void
285bd_speedup(void)
286{
287	bd_wakeup(1);
288}
289
290/*
291 * Initialize buffer headers and related structures.
292 */
293
294caddr_t
295bufhashinit(caddr_t vaddr)
296{
297	/* first, make a null hash table */
298	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
299		;
300	bufhashtbl = (void *)vaddr;
301	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
302	--bufhashmask;
303	return(vaddr);
304}
305
306void
307bufinit(void)
308{
309	struct buf *bp;
310	int i;
311
312	TAILQ_INIT(&bswlist);
313	LIST_INIT(&invalhash);
314	simple_lock_init(&buftimelock);
315
316	for (i = 0; i <= bufhashmask; i++)
317		LIST_INIT(&bufhashtbl[i]);
318
319	/* next, make a null set of free lists */
320	for (i = 0; i < BUFFER_QUEUES; i++)
321		TAILQ_INIT(&bufqueues[i]);
322
323	/* finally, initialize each buffer header and stick on empty q */
324	for (i = 0; i < nbuf; i++) {
325		bp = &buf[i];
326		bzero(bp, sizeof *bp);
327		bp->b_flags = B_INVAL;	/* we're just an empty header */
328		bp->b_dev = NODEV;
329		bp->b_rcred = NOCRED;
330		bp->b_wcred = NOCRED;
331		bp->b_qindex = QUEUE_EMPTY;
332		bp->b_xflags = 0;
333		LIST_INIT(&bp->b_dep);
334		BUF_LOCKINIT(bp);
335		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
336		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
337	}
338
339	/*
340	 * maxbufspace is currently calculated to be maximally efficient
341	 * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2
342	 * (4K or 8K).  To reduce the number of stall points our calculation
343	 * is based on DFLTBSIZE which should reduce the chances of actually
344	 * running out of buffer headers.  The maxbufspace calculation is also
345	 * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to
346	 * reduce the chance that a KVA allocation will fail due to
347	 * fragmentation.  While this does not usually create a stall,
348	 * the KVA map allocation/free functions are O(N) rather then O(1)
349	 * so running them constantly would result in inefficient O(N*M)
350	 * buffer cache operation.
351	 */
352	maxbufspace = (nbuf + 8) * DFLTBSIZE;
353	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
354/*
355 * Limit the amount of malloc memory since it is wired permanently into
356 * the kernel space.  Even though this is accounted for in the buffer
357 * allocation, we don't want the malloced region to grow uncontrolled.
358 * The malloc scheme improves memory utilization significantly on average
359 * (small) directories.
360 */
361	maxbufmallocspace = hibufspace / 20;
362
363/*
364 * Reduce the chance of a deadlock occuring by limiting the number
365 * of delayed-write dirty buffers we allow to stack up.
366 */
367	hidirtybuffers = nbuf / 4 + 20;
368	numdirtybuffers = 0;
369/*
370 * To support extreme low-memory systems, make sure hidirtybuffers cannot
371 * eat up all available buffer space.  This occurs when our minimum cannot
372 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
373 * BKVASIZE'd (8K) buffers.  We also reduce buf_maxio in this case (used
374 * by the clustering code) in an attempt to further reduce the load on
375 * the buffer cache.
376 */
377	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
378		hidirtybuffers >>= 1;
379		buf_maxio >>= 1;
380	}
381
382	/*
383	 * Temporary, BKVASIZE may be manipulated soon, make sure we don't
384	 * do something illegal. XXX
385	 */
386#if BKVASIZE < MAXBSIZE
387	if (buf_maxio < BKVASIZE * 2)
388		buf_maxio = BKVASIZE * 2;
389#else
390	if (buf_maxio < MAXBSIZE)
391		buf_maxio = MAXBSIZE;
392#endif
393
394/*
395 * Try to keep the number of free buffers in the specified range,
396 * and give the syncer access to an emergency reserve.
397 */
398	lofreebuffers = nbuf / 18 + 5;
399	hifreebuffers = 2 * lofreebuffers;
400	numfreebuffers = nbuf;
401
402/*
403 * Maximum number of async ops initiated per buf_daemon loop.  This is
404 * somewhat of a hack at the moment, we really need to limit ourselves
405 * based on the number of bytes of I/O in-transit that were initiated
406 * from buf_daemon.
407 */
408	if ((maxbdrun = nswbuf / 4) < 4)
409		maxbdrun = 4;
410
411	kvafreespace = 0;
412
413	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
414	bogus_page = vm_page_alloc(kernel_object,
415			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
416			VM_ALLOC_NORMAL);
417	cnt.v_wire_count++;
418
419}
420
421/*
422 * Free the kva allocation for a buffer
423 * Must be called only at splbio or higher,
424 *  as this is the only locking for buffer_map.
425 */
426static void
427bfreekva(struct buf * bp)
428{
429	if (bp->b_kvasize) {
430		vm_map_delete(buffer_map,
431		    (vm_offset_t) bp->b_kvabase,
432		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
433		);
434		bp->b_kvasize = 0;
435		kvaspacewakeup();
436	}
437}
438
439/*
440 *	bremfree:
441 *
442 *	Remove the buffer from the appropriate free list.
443 */
444void
445bremfree(struct buf * bp)
446{
447	int s = splbio();
448	int old_qindex = bp->b_qindex;
449
450	if (bp->b_qindex != QUEUE_NONE) {
451		if (bp->b_qindex == QUEUE_EMPTYKVA) {
452			kvafreespace -= bp->b_kvasize;
453		}
454		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
455		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
456		bp->b_qindex = QUEUE_NONE;
457		runningbufspace += bp->b_bufsize;
458	} else {
459#if !defined(MAX_PERF)
460		if (BUF_REFCNT(bp) <= 1)
461			panic("bremfree: removing a buffer not on a queue");
462#endif
463	}
464
465	/*
466	 * Fixup numfreebuffers count.  If the buffer is invalid or not
467	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
468	 * the buffer was free and we must decrement numfreebuffers.
469	 */
470	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
471		switch(old_qindex) {
472		case QUEUE_DIRTY:
473		case QUEUE_CLEAN:
474		case QUEUE_EMPTY:
475		case QUEUE_EMPTYKVA:
476			--numfreebuffers;
477			break;
478		default:
479			break;
480		}
481	}
482	splx(s);
483}
484
485
486/*
487 * Get a buffer with the specified data.  Look in the cache first.  We
488 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
489 * is set, the buffer is valid and we do not have to do anything ( see
490 * getblk() ).
491 */
492int
493bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
494    struct buf ** bpp)
495{
496	struct buf *bp;
497
498	bp = getblk(vp, blkno, size, 0, 0);
499	*bpp = bp;
500
501	/* if not found in cache, do some I/O */
502	if ((bp->b_flags & B_CACHE) == 0) {
503		if (curproc != NULL)
504			curproc->p_stats->p_ru.ru_inblock++;
505		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
506		bp->b_flags |= B_READ;
507		bp->b_flags &= ~(B_ERROR | B_INVAL);
508		if (bp->b_rcred == NOCRED) {
509			if (cred != NOCRED)
510				crhold(cred);
511			bp->b_rcred = cred;
512		}
513		vfs_busy_pages(bp, 0);
514		VOP_STRATEGY(vp, bp);
515		return (biowait(bp));
516	}
517	return (0);
518}
519
520/*
521 * Operates like bread, but also starts asynchronous I/O on
522 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
523 * to initiating I/O . If B_CACHE is set, the buffer is valid
524 * and we do not have to do anything.
525 */
526int
527breadn(struct vnode * vp, daddr_t blkno, int size,
528    daddr_t * rablkno, int *rabsize,
529    int cnt, struct ucred * cred, struct buf ** bpp)
530{
531	struct buf *bp, *rabp;
532	int i;
533	int rv = 0, readwait = 0;
534
535	*bpp = bp = getblk(vp, blkno, size, 0, 0);
536
537	/* if not found in cache, do some I/O */
538	if ((bp->b_flags & B_CACHE) == 0) {
539		if (curproc != NULL)
540			curproc->p_stats->p_ru.ru_inblock++;
541		bp->b_flags |= B_READ;
542		bp->b_flags &= ~(B_ERROR | B_INVAL);
543		if (bp->b_rcred == NOCRED) {
544			if (cred != NOCRED)
545				crhold(cred);
546			bp->b_rcred = cred;
547		}
548		vfs_busy_pages(bp, 0);
549		VOP_STRATEGY(vp, bp);
550		++readwait;
551	}
552
553	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
554		if (inmem(vp, *rablkno))
555			continue;
556		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
557
558		if ((rabp->b_flags & B_CACHE) == 0) {
559			if (curproc != NULL)
560				curproc->p_stats->p_ru.ru_inblock++;
561			rabp->b_flags |= B_READ | B_ASYNC;
562			rabp->b_flags &= ~(B_ERROR | B_INVAL);
563			if (rabp->b_rcred == NOCRED) {
564				if (cred != NOCRED)
565					crhold(cred);
566				rabp->b_rcred = cred;
567			}
568			vfs_busy_pages(rabp, 0);
569			BUF_KERNPROC(rabp);
570			VOP_STRATEGY(vp, rabp);
571		} else {
572			brelse(rabp);
573		}
574	}
575
576	if (readwait) {
577		rv = biowait(bp);
578	}
579	return (rv);
580}
581
582/*
583 * Write, release buffer on completion.  (Done by iodone
584 * if async).  Do not bother writing anything if the buffer
585 * is invalid.
586 *
587 * Note that we set B_CACHE here, indicating that buffer is
588 * fully valid and thus cacheable.  This is true even of NFS
589 * now so we set it generally.  This could be set either here
590 * or in biodone() since the I/O is synchronous.  We put it
591 * here.
592 */
593int
594bwrite(struct buf * bp)
595{
596	int oldflags, s;
597	struct buf *newbp;
598
599	if (bp->b_flags & B_INVAL) {
600		brelse(bp);
601		return (0);
602	}
603
604	oldflags = bp->b_flags;
605
606#if !defined(MAX_PERF)
607	if (BUF_REFCNT(bp) == 0)
608		panic("bwrite: buffer is not busy???");
609#endif
610	s = splbio();
611	/*
612	 * If a background write is already in progress, delay
613	 * writing this block if it is asynchronous. Otherwise
614	 * wait for the background write to complete.
615	 */
616	if (bp->b_xflags & BX_BKGRDINPROG) {
617		if (bp->b_flags & B_ASYNC) {
618			splx(s);
619			bdwrite(bp);
620			return (0);
621		}
622		bp->b_xflags |= BX_BKGRDWAIT;
623		tsleep(&bp->b_xflags, PRIBIO, "biord", 0);
624		if (bp->b_xflags & BX_BKGRDINPROG)
625			panic("bwrite: still writing");
626	}
627
628	/* Mark the buffer clean */
629	bundirty(bp);
630
631	/*
632	 * If this buffer is marked for background writing and we
633	 * do not have to wait for it, make a copy and write the
634	 * copy so as to leave this buffer ready for further use.
635	 */
636	if ((bp->b_xflags & BX_BKGRDWRITE) && (bp->b_flags & B_ASYNC)) {
637		if (bp->b_flags & B_CALL)
638			panic("bwrite: need chained iodone");
639
640		/* get a new block */
641		newbp = geteblk(bp->b_bufsize);
642
643		/* set it to be identical to the old block */
644		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
645		bgetvp(bp->b_vp, newbp);
646		newbp->b_lblkno = bp->b_lblkno;
647		newbp->b_blkno = bp->b_blkno;
648		newbp->b_offset = bp->b_offset;
649		newbp->b_iodone = vfs_backgroundwritedone;
650		newbp->b_flags |= B_ASYNC | B_CALL;
651		newbp->b_flags &= ~B_INVAL;
652
653		/* move over the dependencies */
654		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
655			(*bioops.io_movedeps)(bp, newbp);
656
657		/*
658		 * Initiate write on the copy, release the original to
659		 * the B_LOCKED queue so that it cannot go away until
660		 * the background write completes. If not locked it could go
661		 * away and then be reconstituted while it was being written.
662		 * If the reconstituted buffer were written, we could end up
663		 * with two background copies being written at the same time.
664		 */
665		bp->b_xflags |= BX_BKGRDINPROG;
666		bp->b_flags |= B_LOCKED;
667		bqrelse(bp);
668		bp = newbp;
669	}
670
671	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
672	bp->b_flags |= B_WRITEINPROG | B_CACHE;
673
674	bp->b_vp->v_numoutput++;
675	vfs_busy_pages(bp, 1);
676	if (curproc != NULL)
677		curproc->p_stats->p_ru.ru_oublock++;
678	splx(s);
679	if (oldflags & B_ASYNC)
680		BUF_KERNPROC(bp);
681	VOP_STRATEGY(bp->b_vp, bp);
682
683	if ((oldflags & B_ASYNC) == 0) {
684		int rtval = biowait(bp);
685		brelse(bp);
686		return (rtval);
687	}
688
689	return (0);
690}
691
692/*
693 * Complete a background write started from bwrite.
694 */
695static void
696vfs_backgroundwritedone(bp)
697	struct buf *bp;
698{
699	struct buf *origbp;
700
701	/*
702	 * Find the original buffer that we are writing.
703	 */
704	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
705		panic("backgroundwritedone: lost buffer");
706	/*
707	 * Process dependencies then return any unfinished ones.
708	 */
709	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
710		(*bioops.io_complete)(bp);
711	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_movedeps)
712		(*bioops.io_movedeps)(bp, origbp);
713	/*
714	 * Clear the BX_BKGRDINPROG flag in the original buffer
715	 * and awaken it if it is waiting for the write to complete.
716	 */
717	origbp->b_xflags &= ~BX_BKGRDINPROG;
718	if (origbp->b_xflags & BX_BKGRDWAIT) {
719		origbp->b_xflags &= ~BX_BKGRDWAIT;
720		wakeup(&origbp->b_xflags);
721	}
722	/*
723	 * Clear the B_LOCKED flag and remove it from the locked
724	 * queue if it currently resides there.
725	 */
726	origbp->b_flags &= ~B_LOCKED;
727	if (BUF_LOCK(origbp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
728		bremfree(origbp);
729		bqrelse(origbp);
730	}
731	/*
732	 * This buffer is marked B_NOCACHE, so when it is released
733	 * by biodone, it will be tossed. We mark it with B_READ
734	 * to avoid biodone doing a second vwakeup.
735	 */
736	bp->b_flags |= B_NOCACHE | B_READ;
737	bp->b_flags &= ~(B_CACHE | B_CALL | B_DONE);
738	bp->b_iodone = 0;
739	biodone(bp);
740}
741
742/*
743 * Delayed write. (Buffer is marked dirty).  Do not bother writing
744 * anything if the buffer is marked invalid.
745 *
746 * Note that since the buffer must be completely valid, we can safely
747 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
748 * biodone() in order to prevent getblk from writing the buffer
749 * out synchronously.
750 */
751void
752bdwrite(struct buf * bp)
753{
754#if !defined(MAX_PERF)
755	if (BUF_REFCNT(bp) == 0)
756		panic("bdwrite: buffer is not busy");
757#endif
758
759	if (bp->b_flags & B_INVAL) {
760		brelse(bp);
761		return;
762	}
763	bdirty(bp);
764
765	/*
766	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
767	 * true even of NFS now.
768	 */
769	bp->b_flags |= B_CACHE;
770
771	/*
772	 * This bmap keeps the system from needing to do the bmap later,
773	 * perhaps when the system is attempting to do a sync.  Since it
774	 * is likely that the indirect block -- or whatever other datastructure
775	 * that the filesystem needs is still in memory now, it is a good
776	 * thing to do this.  Note also, that if the pageout daemon is
777	 * requesting a sync -- there might not be enough memory to do
778	 * the bmap then...  So, this is important to do.
779	 */
780	if (bp->b_lblkno == bp->b_blkno) {
781		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
782	}
783
784	/*
785	 * Set the *dirty* buffer range based upon the VM system dirty pages.
786	 */
787	vfs_setdirty(bp);
788
789	/*
790	 * We need to do this here to satisfy the vnode_pager and the
791	 * pageout daemon, so that it thinks that the pages have been
792	 * "cleaned".  Note that since the pages are in a delayed write
793	 * buffer -- the VFS layer "will" see that the pages get written
794	 * out on the next sync, or perhaps the cluster will be completed.
795	 */
796	vfs_clean_pages(bp);
797	bqrelse(bp);
798
799	/*
800	 * Wakeup the buffer flushing daemon if we have saturated the
801	 * buffer cache.
802	 */
803
804	bd_wakeup(hidirtybuffers);
805
806	/*
807	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
808	 * due to the softdep code.
809	 */
810}
811
812/*
813 *	bdirty:
814 *
815 *	Turn buffer into delayed write request.  We must clear B_READ and
816 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
817 *	itself to properly update it in the dirty/clean lists.  We mark it
818 *	B_DONE to ensure that any asynchronization of the buffer properly
819 *	clears B_DONE ( else a panic will occur later ).
820 *
821 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
822 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
823 *	should only be called if the buffer is known-good.
824 *
825 *	Since the buffer is not on a queue, we do not update the numfreebuffers
826 *	count.
827 *
828 *	Must be called at splbio().
829 *	The buffer must be on QUEUE_NONE.
830 */
831void
832bdirty(bp)
833	struct buf *bp;
834{
835	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
836	bp->b_flags &= ~(B_READ|B_RELBUF);
837
838	if ((bp->b_flags & B_DELWRI) == 0) {
839		bp->b_flags |= B_DONE | B_DELWRI;
840		reassignbuf(bp, bp->b_vp);
841		++numdirtybuffers;
842		bd_wakeup(hidirtybuffers);
843	}
844}
845
846/*
847 *	bundirty:
848 *
849 *	Clear B_DELWRI for buffer.
850 *
851 *	Since the buffer is not on a queue, we do not update the numfreebuffers
852 *	count.
853 *
854 *	Must be called at splbio().
855 *	The buffer must be on QUEUE_NONE.
856 */
857
858void
859bundirty(bp)
860	struct buf *bp;
861{
862	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
863
864	if (bp->b_flags & B_DELWRI) {
865		bp->b_flags &= ~B_DELWRI;
866		reassignbuf(bp, bp->b_vp);
867		--numdirtybuffers;
868		numdirtywakeup();
869	}
870	/*
871	 * Since it is now being written, we can clear its deferred write flag.
872	 */
873	bp->b_flags &= ~B_DEFERRED;
874}
875
876/*
877 *	bawrite:
878 *
879 *	Asynchronous write.  Start output on a buffer, but do not wait for
880 *	it to complete.  The buffer is released when the output completes.
881 *
882 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
883 *	B_INVAL buffers.  Not us.
884 */
885void
886bawrite(struct buf * bp)
887{
888	bp->b_flags |= B_ASYNC;
889	(void) VOP_BWRITE(bp->b_vp, bp);
890}
891
892/*
893 *	bowrite:
894 *
895 *	Ordered write.  Start output on a buffer, and flag it so that the
896 *	device will write it in the order it was queued.  The buffer is
897 *	released when the output completes.  bwrite() ( or the VOP routine
898 *	anyway ) is responsible for handling B_INVAL buffers.
899 */
900int
901bowrite(struct buf * bp)
902{
903	bp->b_flags |= B_ORDERED | B_ASYNC;
904	return (VOP_BWRITE(bp->b_vp, bp));
905}
906
907/*
908 *	bwillwrite:
909 *
910 *	Called prior to the locking of any vnodes when we are expecting to
911 *	write.  We do not want to starve the buffer cache with too many
912 *	dirty buffers so we block here.  By blocking prior to the locking
913 *	of any vnodes we attempt to avoid the situation where a locked vnode
914 *	prevents the various system daemons from flushing related buffers.
915 */
916
917void
918bwillwrite(void)
919{
920	int slop = hidirtybuffers / 10;
921
922	if (numdirtybuffers > hidirtybuffers + slop) {
923		int s;
924
925		s = splbio();
926		while (numdirtybuffers > hidirtybuffers) {
927			bd_wakeup(hidirtybuffers);
928			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
929			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
930		}
931		splx(s);
932	}
933}
934
935/*
936 *	brelse:
937 *
938 *	Release a busy buffer and, if requested, free its resources.  The
939 *	buffer will be stashed in the appropriate bufqueue[] allowing it
940 *	to be accessed later as a cache entity or reused for other purposes.
941 */
942void
943brelse(struct buf * bp)
944{
945	int s;
946	int kvawakeup = 0;
947
948	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
949
950	s = splbio();
951
952	if (bp->b_flags & B_LOCKED)
953		bp->b_flags &= ~B_ERROR;
954
955	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
956		/*
957		 * Failed write, redirty.  Must clear B_ERROR to prevent
958		 * pages from being scrapped.  If B_INVAL is set then
959		 * this case is not run and the next case is run to
960		 * destroy the buffer.  B_INVAL can occur if the buffer
961		 * is outside the range supported by the underlying device.
962		 */
963		bp->b_flags &= ~B_ERROR;
964		bdirty(bp);
965	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
966	    (bp->b_bufsize <= 0)) {
967		/*
968		 * Either a failed I/O or we were asked to free or not
969		 * cache the buffer.
970		 */
971		bp->b_flags |= B_INVAL;
972		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
973			(*bioops.io_deallocate)(bp);
974		if (bp->b_flags & B_DELWRI) {
975			--numdirtybuffers;
976			numdirtywakeup();
977		}
978		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
979		if ((bp->b_flags & B_VMIO) == 0) {
980			if (bp->b_bufsize)
981				allocbuf(bp, 0);
982			if (bp->b_vp)
983				brelvp(bp);
984		}
985	}
986
987	/*
988	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
989	 * is called with B_DELWRI set, the underlying pages may wind up
990	 * getting freed causing a previous write (bdwrite()) to get 'lost'
991	 * because pages associated with a B_DELWRI bp are marked clean.
992	 *
993	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
994	 * if B_DELWRI is set.
995	 */
996
997	if (bp->b_flags & B_DELWRI)
998		bp->b_flags &= ~B_RELBUF;
999
1000	/*
1001	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1002	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1003	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1004	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1005	 *
1006	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
1007	 * invalidated.  B_ERROR cannot be set for a failed write unless the
1008	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1009	 *
1010	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1011	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1012	 * the commit state and we cannot afford to lose the buffer. If the
1013	 * buffer has a background write in progress, we need to keep it
1014	 * around to prevent it from being reconstituted and starting a second
1015	 * background write.
1016	 */
1017	if ((bp->b_flags & B_VMIO)
1018	    && !(bp->b_vp->v_tag == VT_NFS &&
1019		 !vn_isdisk(bp->b_vp, NULL) &&
1020		 (bp->b_flags & B_DELWRI) &&
1021		 (bp->b_xflags & BX_BKGRDINPROG))
1022	    ) {
1023
1024		int i, j, resid;
1025		vm_page_t m;
1026		off_t foff;
1027		vm_pindex_t poff;
1028		vm_object_t obj;
1029		struct vnode *vp;
1030
1031		vp = bp->b_vp;
1032
1033		/*
1034		 * Get the base offset and length of the buffer.  Note that
1035		 * for block sizes that are less then PAGE_SIZE, the b_data
1036		 * base of the buffer does not represent exactly b_offset and
1037		 * neither b_offset nor b_size are necessarily page aligned.
1038		 * Instead, the starting position of b_offset is:
1039		 *
1040		 * 	b_data + (b_offset & PAGE_MASK)
1041		 *
1042		 * block sizes less then DEV_BSIZE (usually 512) are not
1043		 * supported due to the page granularity bits (m->valid,
1044		 * m->dirty, etc...).
1045		 *
1046		 * See man buf(9) for more information
1047		 */
1048
1049		resid = bp->b_bufsize;
1050		foff = bp->b_offset;
1051
1052		for (i = 0; i < bp->b_npages; i++) {
1053			m = bp->b_pages[i];
1054			vm_page_flag_clear(m, PG_ZERO);
1055			if (m == bogus_page) {
1056
1057				obj = (vm_object_t) vp->v_object;
1058				poff = OFF_TO_IDX(bp->b_offset);
1059
1060				for (j = i; j < bp->b_npages; j++) {
1061					m = bp->b_pages[j];
1062					if (m == bogus_page) {
1063						m = vm_page_lookup(obj, poff + j);
1064#if !defined(MAX_PERF)
1065						if (!m) {
1066							panic("brelse: page missing\n");
1067						}
1068#endif
1069						bp->b_pages[j] = m;
1070					}
1071				}
1072
1073				if ((bp->b_flags & B_INVAL) == 0) {
1074					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1075				}
1076			}
1077			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1078				int poffset = foff & PAGE_MASK;
1079				int presid = resid > (PAGE_SIZE - poffset) ?
1080					(PAGE_SIZE - poffset) : resid;
1081
1082				KASSERT(presid >= 0, ("brelse: extra page"));
1083				vm_page_set_invalid(m, poffset, presid);
1084			}
1085			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1086			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
1087		}
1088
1089		if (bp->b_flags & (B_INVAL | B_RELBUF))
1090			vfs_vmio_release(bp);
1091
1092	} else if (bp->b_flags & B_VMIO) {
1093
1094		if (bp->b_flags & (B_INVAL | B_RELBUF))
1095			vfs_vmio_release(bp);
1096
1097	}
1098
1099#if !defined(MAX_PERF)
1100	if (bp->b_qindex != QUEUE_NONE)
1101		panic("brelse: free buffer onto another queue???");
1102#endif
1103	if (BUF_REFCNT(bp) > 1) {
1104		/* Temporary panic to verify exclusive locking */
1105		/* This panic goes away when we allow shared refs */
1106		panic("brelse: multiple refs");
1107		/* do not release to free list */
1108		BUF_UNLOCK(bp);
1109		splx(s);
1110		return;
1111	}
1112
1113	/* enqueue */
1114
1115	/* buffers with no memory */
1116	if (bp->b_bufsize == 0) {
1117		bp->b_flags |= B_INVAL;
1118		bp->b_xflags &= ~BX_BKGRDWRITE;
1119		if (bp->b_xflags & BX_BKGRDINPROG)
1120			panic("losing buffer 1");
1121		if (bp->b_kvasize) {
1122			bp->b_qindex = QUEUE_EMPTYKVA;
1123			kvawakeup = 1;
1124		} else {
1125			bp->b_qindex = QUEUE_EMPTY;
1126		}
1127		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1128		LIST_REMOVE(bp, b_hash);
1129		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1130		bp->b_dev = NODEV;
1131		kvafreespace += bp->b_kvasize;
1132	/* buffers with junk contents */
1133	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1134		bp->b_flags |= B_INVAL;
1135		bp->b_xflags &= ~BX_BKGRDWRITE;
1136		if (bp->b_xflags & BX_BKGRDINPROG)
1137			panic("losing buffer 2");
1138		bp->b_qindex = QUEUE_CLEAN;
1139		if (bp->b_kvasize)
1140			kvawakeup = 1;
1141		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1142		LIST_REMOVE(bp, b_hash);
1143		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1144		bp->b_dev = NODEV;
1145
1146	/* buffers that are locked */
1147	} else if (bp->b_flags & B_LOCKED) {
1148		bp->b_qindex = QUEUE_LOCKED;
1149		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1150
1151	/* remaining buffers */
1152	} else {
1153		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1154		case B_DELWRI | B_AGE:
1155		    bp->b_qindex = QUEUE_DIRTY;
1156		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1157		    break;
1158		case B_DELWRI:
1159		    bp->b_qindex = QUEUE_DIRTY;
1160		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1161		    break;
1162		case B_AGE:
1163		    bp->b_qindex = QUEUE_CLEAN;
1164		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1165		    if (bp->b_kvasize)
1166			    kvawakeup = 1;
1167		    break;
1168		default:
1169		    bp->b_qindex = QUEUE_CLEAN;
1170		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1171		    if (bp->b_kvasize)
1172			    kvawakeup = 1;
1173		    break;
1174		}
1175	}
1176
1177	/*
1178	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1179	 * on the correct queue.
1180	 */
1181	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1182		bp->b_flags &= ~B_DELWRI;
1183		--numdirtybuffers;
1184		numdirtywakeup();
1185	}
1186
1187	runningbufspace -= bp->b_bufsize;
1188
1189	/*
1190	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1191	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1192	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1193	 * if B_INVAL is set ).
1194	 */
1195
1196	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1197		bufcountwakeup();
1198
1199	/*
1200	 * Something we can maybe free.
1201	 */
1202
1203	if (bp->b_bufsize)
1204		bufspacewakeup();
1205	if (kvawakeup)
1206		kvaspacewakeup();
1207
1208	/* unlock */
1209	BUF_UNLOCK(bp);
1210	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1211	splx(s);
1212}
1213
1214/*
1215 * Release a buffer back to the appropriate queue but do not try to free
1216 * it.
1217 *
1218 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1219 * biodone() to requeue an async I/O on completion.  It is also used when
1220 * known good buffers need to be requeued but we think we may need the data
1221 * again soon.
1222 */
1223void
1224bqrelse(struct buf * bp)
1225{
1226	int s;
1227
1228	s = splbio();
1229
1230	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1231
1232#if !defined(MAX_PERF)
1233	if (bp->b_qindex != QUEUE_NONE)
1234		panic("bqrelse: free buffer onto another queue???");
1235#endif
1236	if (BUF_REFCNT(bp) > 1) {
1237		/* do not release to free list */
1238		panic("bqrelse: multiple refs");
1239		BUF_UNLOCK(bp);
1240		splx(s);
1241		return;
1242	}
1243	if (bp->b_flags & B_LOCKED) {
1244		bp->b_flags &= ~B_ERROR;
1245		bp->b_qindex = QUEUE_LOCKED;
1246		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1247		/* buffers with stale but valid contents */
1248	} else if (bp->b_flags & B_DELWRI) {
1249		bp->b_qindex = QUEUE_DIRTY;
1250		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1251	} else {
1252		bp->b_qindex = QUEUE_CLEAN;
1253		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1254	}
1255
1256	runningbufspace -= bp->b_bufsize;
1257
1258	if ((bp->b_flags & B_LOCKED) == 0 &&
1259	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1260		bufcountwakeup();
1261	}
1262
1263	/*
1264	 * Something we can maybe wakeup
1265	 */
1266	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1267		bufspacewakeup();
1268
1269	/* unlock */
1270	BUF_UNLOCK(bp);
1271	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1272	splx(s);
1273}
1274
1275static void
1276vfs_vmio_release(bp)
1277	struct buf *bp;
1278{
1279	int i, s;
1280	vm_page_t m;
1281
1282	s = splvm();
1283	for (i = 0; i < bp->b_npages; i++) {
1284		m = bp->b_pages[i];
1285		bp->b_pages[i] = NULL;
1286		/*
1287		 * In order to keep page LRU ordering consistent, put
1288		 * everything on the inactive queue.
1289		 */
1290		vm_page_unwire(m, 0);
1291		/*
1292		 * We don't mess with busy pages, it is
1293		 * the responsibility of the process that
1294		 * busied the pages to deal with them.
1295		 */
1296		if ((m->flags & PG_BUSY) || (m->busy != 0))
1297			continue;
1298
1299		if (m->wire_count == 0) {
1300			vm_page_flag_clear(m, PG_ZERO);
1301			/*
1302			 * Might as well free the page if we can and it has
1303			 * no valid data.
1304			 */
1305			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1306				vm_page_busy(m);
1307				vm_page_protect(m, VM_PROT_NONE);
1308				vm_page_free(m);
1309			}
1310		}
1311	}
1312	bufspace -= bp->b_bufsize;
1313	vmiospace -= bp->b_bufsize;
1314	runningbufspace -= bp->b_bufsize;
1315	splx(s);
1316	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1317	if (bp->b_bufsize)
1318		bufspacewakeup();
1319	bp->b_npages = 0;
1320	bp->b_bufsize = 0;
1321	bp->b_flags &= ~B_VMIO;
1322	if (bp->b_vp)
1323		brelvp(bp);
1324}
1325
1326/*
1327 * Check to see if a block is currently memory resident.
1328 */
1329struct buf *
1330gbincore(struct vnode * vp, daddr_t blkno)
1331{
1332	struct buf *bp;
1333	struct bufhashhdr *bh;
1334
1335	bh = bufhash(vp, blkno);
1336
1337	/* Search hash chain */
1338	LIST_FOREACH(bp, bh, b_hash) {
1339		/* hit */
1340		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1341		    (bp->b_flags & B_INVAL) == 0) {
1342			break;
1343		}
1344	}
1345	return (bp);
1346}
1347
1348/*
1349 *	vfs_bio_awrite:
1350 *
1351 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1352 *	This is much better then the old way of writing only one buffer at
1353 *	a time.  Note that we may not be presented with the buffers in the
1354 *	correct order, so we search for the cluster in both directions.
1355 */
1356int
1357vfs_bio_awrite(struct buf * bp)
1358{
1359	int i;
1360	int j;
1361	daddr_t lblkno = bp->b_lblkno;
1362	struct vnode *vp = bp->b_vp;
1363	int s;
1364	int ncl;
1365	struct buf *bpa;
1366	int nwritten;
1367	int size;
1368	int maxcl;
1369
1370	s = splbio();
1371	/*
1372	 * right now we support clustered writing only to regular files.  If
1373	 * we find a clusterable block we could be in the middle of a cluster
1374	 * rather then at the beginning.
1375	 */
1376	if ((vp->v_type == VREG) &&
1377	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1378	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1379
1380		size = vp->v_mount->mnt_stat.f_iosize;
1381		maxcl = MAXPHYS / size;
1382
1383		for (i = 1; i < maxcl; i++) {
1384			if ((bpa = gbincore(vp, lblkno + i)) &&
1385			    BUF_REFCNT(bpa) == 0 &&
1386			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1387			    (B_DELWRI | B_CLUSTEROK)) &&
1388			    (bpa->b_bufsize == size)) {
1389				if ((bpa->b_blkno == bpa->b_lblkno) ||
1390				    (bpa->b_blkno !=
1391				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1392					break;
1393			} else {
1394				break;
1395			}
1396		}
1397		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1398			if ((bpa = gbincore(vp, lblkno - j)) &&
1399			    BUF_REFCNT(bpa) == 0 &&
1400			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1401			    (B_DELWRI | B_CLUSTEROK)) &&
1402			    (bpa->b_bufsize == size)) {
1403				if ((bpa->b_blkno == bpa->b_lblkno) ||
1404				    (bpa->b_blkno !=
1405				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1406					break;
1407			} else {
1408				break;
1409			}
1410		}
1411		--j;
1412		ncl = i + j;
1413		/*
1414		 * this is a possible cluster write
1415		 */
1416		if (ncl != 1) {
1417			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1418			splx(s);
1419			return nwritten;
1420		}
1421	}
1422
1423	BUF_LOCK(bp, LK_EXCLUSIVE);
1424	bremfree(bp);
1425	bp->b_flags |= B_ASYNC;
1426
1427	splx(s);
1428	/*
1429	 * default (old) behavior, writing out only one block
1430	 *
1431	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1432	 */
1433	nwritten = bp->b_bufsize;
1434	(void) VOP_BWRITE(bp->b_vp, bp);
1435
1436	return nwritten;
1437}
1438
1439/*
1440 *	getnewbuf:
1441 *
1442 *	Find and initialize a new buffer header, freeing up existing buffers
1443 *	in the bufqueues as necessary.  The new buffer is returned locked.
1444 *
1445 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1446 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1447 *
1448 *	We block if:
1449 *		We have insufficient buffer headers
1450 *		We have insufficient buffer space
1451 *		buffer_map is too fragmented ( space reservation fails )
1452 *		If we have to flush dirty buffers ( but we try to avoid this )
1453 *
1454 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1455 *	Instead we ask the buf daemon to do it for us.  We attempt to
1456 *	avoid piecemeal wakeups of the pageout daemon.
1457 */
1458
1459static struct buf *
1460getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1461{
1462	struct buf *bp;
1463	struct buf *nbp;
1464	struct buf *dbp;
1465	int outofspace;
1466	int nqindex;
1467	int defrag = 0;
1468
1469	++getnewbufcalls;
1470	--getnewbufrestarts;
1471restart:
1472	++getnewbufrestarts;
1473
1474	/*
1475	 * Calculate whether we are out of buffer space.  This state is
1476	 * recalculated on every restart.  If we are out of space, we
1477	 * have to turn off defragmentation.  Setting defrag to -1 when
1478	 * outofspace is positive means "defrag while freeing buffers".
1479	 * The looping conditional will be muffed up if defrag is left
1480	 * positive when outofspace is positive.
1481	 */
1482
1483	dbp = NULL;
1484	outofspace = 0;
1485	if (bufspace >= hibufspace) {
1486		if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
1487		    bufspace >= maxbufspace) {
1488			outofspace = 1;
1489			if (defrag > 0)
1490				defrag = -1;
1491		}
1492	}
1493
1494	/*
1495	 * defrag state is semi-persistant.  1 means we are flagged for
1496	 * defragging.  -1 means we actually defragged something.
1497	 */
1498	/* nop */
1499
1500	/*
1501	 * Setup for scan.  If we do not have enough free buffers,
1502	 * we setup a degenerate case that immediately fails.  Note
1503	 * that if we are specially marked process, we are allowed to
1504	 * dip into our reserves.
1505	 *
1506	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1507	 * buffer with kva already allocated.  If there are no EMPTYKVA
1508	 * buffers we back up to the truely EMPTY buffers.  When defragging
1509	 * we do not bother backing up since we have to locate buffers with
1510	 * kva to defrag.  If we are out of space we skip both EMPTY and
1511	 * EMPTYKVA and dig right into the CLEAN queue.
1512	 *
1513	 * In this manner we avoid scanning unnecessary buffers.  It is very
1514	 * important for us to do this because the buffer cache is almost
1515	 * constantly out of space or in need of defragmentation.
1516	 */
1517
1518	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
1519	    numfreebuffers < lofreebuffers) {
1520		nqindex = QUEUE_CLEAN;
1521		nbp = NULL;
1522	} else {
1523		nqindex = QUEUE_EMPTYKVA;
1524		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1525		if (nbp == NULL) {
1526			if (defrag <= 0) {
1527				nqindex = QUEUE_EMPTY;
1528				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1529			}
1530		}
1531		if (outofspace || nbp == NULL) {
1532			nqindex = QUEUE_CLEAN;
1533			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1534		}
1535	}
1536
1537	/*
1538	 * Run scan, possibly freeing data and/or kva mappings on the fly
1539	 * depending.
1540	 */
1541
1542	while ((bp = nbp) != NULL) {
1543		int qindex = nqindex;
1544
1545		/*
1546		 * Calculate next bp ( we can only use it if we do not block
1547		 * or do other fancy things ).
1548		 */
1549		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1550			switch(qindex) {
1551			case QUEUE_EMPTY:
1552				nqindex = QUEUE_EMPTYKVA;
1553				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1554					break;
1555				/* fall through */
1556			case QUEUE_EMPTYKVA:
1557				nqindex = QUEUE_CLEAN;
1558				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1559					break;
1560				/* fall through */
1561			case QUEUE_CLEAN:
1562				/*
1563				 * nbp is NULL.
1564				 */
1565				break;
1566			}
1567		}
1568
1569		/*
1570		 * Sanity Checks
1571		 */
1572		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1573
1574		/*
1575		 * Note: we no longer distinguish between VMIO and non-VMIO
1576		 * buffers.
1577		 */
1578
1579		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1580
1581		/*
1582		 * If we are defragging and the buffer isn't useful for fixing
1583		 * that problem we continue.  If we are out of space and the
1584		 * buffer isn't useful for fixing that problem we continue.
1585		 */
1586
1587		if (defrag > 0 && bp->b_kvasize == 0)
1588			continue;
1589		if (outofspace > 0 && bp->b_bufsize == 0)
1590			continue;
1591
1592		/*
1593		 * Start freeing the bp.  This is somewhat involved.  nbp
1594		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1595		 */
1596
1597		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1598			panic("getnewbuf: locked buf");
1599		bremfree(bp);
1600
1601		if (qindex == QUEUE_CLEAN) {
1602			if (bp->b_flags & B_VMIO) {
1603				bp->b_flags &= ~B_ASYNC;
1604				vfs_vmio_release(bp);
1605			}
1606			if (bp->b_vp)
1607				brelvp(bp);
1608		}
1609
1610		/*
1611		 * NOTE:  nbp is now entirely invalid.  We can only restart
1612		 * the scan from this point on.
1613		 *
1614		 * Get the rest of the buffer freed up.  b_kva* is still
1615		 * valid after this operation.
1616		 */
1617
1618		if (bp->b_rcred != NOCRED) {
1619			crfree(bp->b_rcred);
1620			bp->b_rcred = NOCRED;
1621		}
1622		if (bp->b_wcred != NOCRED) {
1623			crfree(bp->b_wcred);
1624			bp->b_wcred = NOCRED;
1625		}
1626		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1627			(*bioops.io_deallocate)(bp);
1628		if (bp->b_xflags & BX_BKGRDINPROG)
1629			panic("losing buffer 3");
1630		LIST_REMOVE(bp, b_hash);
1631		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1632
1633		if (bp->b_bufsize)
1634			allocbuf(bp, 0);
1635
1636		bp->b_flags = 0;
1637		bp->b_xflags = 0;
1638		bp->b_dev = NODEV;
1639		bp->b_vp = NULL;
1640		bp->b_blkno = bp->b_lblkno = 0;
1641		bp->b_offset = NOOFFSET;
1642		bp->b_iodone = 0;
1643		bp->b_error = 0;
1644		bp->b_resid = 0;
1645		bp->b_bcount = 0;
1646		bp->b_npages = 0;
1647		bp->b_dirtyoff = bp->b_dirtyend = 0;
1648
1649		LIST_INIT(&bp->b_dep);
1650
1651		/*
1652		 * Ok, now that we have a free buffer, if we are defragging
1653		 * we have to recover the kvaspace.  If we are out of space
1654		 * we have to free the buffer (which we just did), but we
1655		 * do not have to recover kva space unless we hit a defrag
1656		 * hicup.  Being able to avoid freeing the kva space leads
1657		 * to a significant reduction in overhead.
1658		 */
1659
1660		if (defrag > 0) {
1661			defrag = -1;
1662			bp->b_flags |= B_INVAL;
1663			bfreekva(bp);
1664			brelse(bp);
1665			goto restart;
1666		}
1667
1668		if (outofspace > 0) {
1669			outofspace = -1;
1670			bp->b_flags |= B_INVAL;
1671			if (defrag < 0)
1672				bfreekva(bp);
1673			brelse(bp);
1674			goto restart;
1675		}
1676
1677		/*
1678		 * We are done
1679		 */
1680		break;
1681	}
1682
1683	/*
1684	 * If we exhausted our list, sleep as appropriate.  We may have to
1685	 * wakeup various daemons and write out some dirty buffers.
1686	 *
1687	 * Generally we are sleeping due to insufficient buffer space.
1688	 */
1689
1690	if (bp == NULL) {
1691		int flags;
1692		char *waitmsg;
1693
1694		if (defrag > 0) {
1695			flags = VFS_BIO_NEED_KVASPACE;
1696			waitmsg = "nbufkv";
1697		} else if (outofspace > 0) {
1698			waitmsg = "nbufbs";
1699			flags = VFS_BIO_NEED_BUFSPACE;
1700		} else {
1701			waitmsg = "newbuf";
1702			flags = VFS_BIO_NEED_ANY;
1703		}
1704
1705		bd_speedup();	/* heeeelp */
1706
1707		needsbuffer |= flags;
1708		while (needsbuffer & flags) {
1709			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1710			    waitmsg, slptimeo))
1711				return (NULL);
1712		}
1713	} else {
1714		/*
1715		 * We finally have a valid bp.  We aren't quite out of the
1716		 * woods, we still have to reserve kva space.
1717		 */
1718		vm_offset_t addr = 0;
1719
1720		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1721
1722		if (maxsize != bp->b_kvasize) {
1723			bfreekva(bp);
1724
1725			if (vm_map_findspace(buffer_map,
1726				vm_map_min(buffer_map), maxsize, &addr)) {
1727				/*
1728				 * Uh oh.  Buffer map is to fragmented.  Try
1729				 * to defragment.
1730				 */
1731				if (defrag <= 0) {
1732					defrag = 1;
1733					bp->b_flags |= B_INVAL;
1734					brelse(bp);
1735					goto restart;
1736				}
1737				/*
1738				 * Uh oh.  We couldn't seem to defragment
1739				 */
1740				panic("getnewbuf: unreachable code reached");
1741			}
1742		}
1743		if (addr) {
1744			vm_map_insert(buffer_map, NULL, 0,
1745				addr, addr + maxsize,
1746				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1747
1748			bp->b_kvabase = (caddr_t) addr;
1749			bp->b_kvasize = maxsize;
1750		}
1751		bp->b_data = bp->b_kvabase;
1752	}
1753	return(bp);
1754}
1755
1756/*
1757 *	waitfreebuffers:
1758 *
1759 *	Wait for sufficient free buffers.  Only called from normal processes.
1760 */
1761
1762static void
1763waitfreebuffers(int slpflag, int slptimeo)
1764{
1765	while (numfreebuffers < hifreebuffers) {
1766		if (numfreebuffers >= hifreebuffers)
1767			break;
1768		needsbuffer |= VFS_BIO_NEED_FREE;
1769		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1770			break;
1771	}
1772}
1773
1774/*
1775 *	buf_daemon:
1776 *
1777 *	buffer flushing daemon.  Buffers are normally flushed by the
1778 *	update daemon but if it cannot keep up this process starts to
1779 *	take the load in an attempt to prevent getnewbuf() from blocking.
1780 */
1781
1782static struct proc *bufdaemonproc;
1783static int bd_interval;
1784static int bd_flushto;
1785static int bd_flushinc;
1786
1787static struct kproc_desc buf_kp = {
1788	"bufdaemon",
1789	buf_daemon,
1790	&bufdaemonproc
1791};
1792SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1793
1794static void
1795buf_daemon()
1796{
1797	int s;
1798
1799	/*
1800	 * This process needs to be suspended prior to shutdown sync.
1801	 */
1802	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, bufdaemonproc,
1803	    SHUTDOWN_PRI_LAST);
1804
1805	/*
1806	 * This process is allowed to take the buffer cache to the limit
1807	 */
1808	curproc->p_flag |= P_BUFEXHAUST;
1809	s = splbio();
1810
1811	bd_interval = 5 * hz;	/* dynamically adjusted */
1812	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1813	bd_flushinc = 1;
1814
1815	for (;;) {
1816		kproc_suspend_loop(bufdaemonproc);
1817
1818		bd_request = 0;
1819
1820		/*
1821		 * Do the flush.  Limit the number of buffers we flush in one
1822		 * go.  The failure condition occurs when processes are writing
1823		 * buffers faster then we can dispose of them.  In this case
1824		 * we may be flushing so often that the previous set of flushes
1825		 * have not had time to complete, causing us to run out of
1826		 * physical buffers and block.
1827		 */
1828		{
1829			int runcount = maxbdrun;
1830
1831			while (numdirtybuffers > bd_flushto && runcount) {
1832				--runcount;
1833				if (flushbufqueues() == 0)
1834					break;
1835			}
1836		}
1837
1838		if (bd_request ||
1839		    tsleep(&bd_request, PVM, "psleep", bd_interval) == 0) {
1840			/*
1841			 * Another request is pending or we were woken up
1842			 * without timing out.  Flush more.
1843			 */
1844			--bd_flushto;
1845			if (bd_flushto >= numdirtybuffers - 5) {
1846				bd_flushto = numdirtybuffers - 10;
1847				bd_flushinc = 1;
1848			}
1849			if (bd_flushto < 2)
1850				bd_flushto = 2;
1851		} else {
1852			/*
1853			 * We slept and timed out, we can slow down.
1854			 */
1855			bd_flushto += bd_flushinc;
1856			if (bd_flushto > hidirtybuffers)
1857				bd_flushto = hidirtybuffers;
1858			++bd_flushinc;
1859			if (bd_flushinc > hidirtybuffers / 20 + 1)
1860				bd_flushinc = hidirtybuffers / 20 + 1;
1861		}
1862
1863		/*
1864		 * Set the interval on a linear scale based on hidirtybuffers
1865		 * with a maximum frequency of 1/10 second.
1866		 */
1867		bd_interval = bd_flushto * 5 * hz / hidirtybuffers;
1868		if (bd_interval < hz / 10)
1869			bd_interval = hz / 10;
1870	}
1871}
1872
1873/*
1874 *	flushbufqueues:
1875 *
1876 *	Try to flush a buffer in the dirty queue.  We must be careful to
1877 *	free up B_INVAL buffers instead of write them, which NFS is
1878 *	particularly sensitive to.
1879 */
1880
1881static int
1882flushbufqueues(void)
1883{
1884	struct buf *bp;
1885	int r = 0;
1886
1887	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1888
1889	while (bp) {
1890		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1891		if ((bp->b_flags & B_DELWRI) != 0 &&
1892		    (bp->b_xflags & BX_BKGRDINPROG) == 0) {
1893			if (bp->b_flags & B_INVAL) {
1894				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1895					panic("flushbufqueues: locked buf");
1896				bremfree(bp);
1897				brelse(bp);
1898				++r;
1899				break;
1900			}
1901			if (LIST_FIRST(&bp->b_dep) != NULL &&
1902			    bioops.io_countdeps &&
1903			    (bp->b_flags & B_DEFERRED) == 0 &&
1904			    (*bioops.io_countdeps)(bp, 0)) {
1905				TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY],
1906				    bp, b_freelist);
1907				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY],
1908				    bp, b_freelist);
1909				bp->b_flags |= B_DEFERRED;
1910				continue;
1911			}
1912			vfs_bio_awrite(bp);
1913			++r;
1914			break;
1915		}
1916		bp = TAILQ_NEXT(bp, b_freelist);
1917	}
1918	return (r);
1919}
1920
1921/*
1922 * Check to see if a block is currently memory resident.
1923 */
1924struct buf *
1925incore(struct vnode * vp, daddr_t blkno)
1926{
1927	struct buf *bp;
1928
1929	int s = splbio();
1930	bp = gbincore(vp, blkno);
1931	splx(s);
1932	return (bp);
1933}
1934
1935/*
1936 * Returns true if no I/O is needed to access the
1937 * associated VM object.  This is like incore except
1938 * it also hunts around in the VM system for the data.
1939 */
1940
1941int
1942inmem(struct vnode * vp, daddr_t blkno)
1943{
1944	vm_object_t obj;
1945	vm_offset_t toff, tinc, size;
1946	vm_page_t m;
1947	vm_ooffset_t off;
1948
1949	if (incore(vp, blkno))
1950		return 1;
1951	if (vp->v_mount == NULL)
1952		return 0;
1953	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1954		return 0;
1955
1956	obj = vp->v_object;
1957	size = PAGE_SIZE;
1958	if (size > vp->v_mount->mnt_stat.f_iosize)
1959		size = vp->v_mount->mnt_stat.f_iosize;
1960	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1961
1962	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1963		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1964		if (!m)
1965			return 0;
1966		tinc = size;
1967		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1968			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1969		if (vm_page_is_valid(m,
1970		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1971			return 0;
1972	}
1973	return 1;
1974}
1975
1976/*
1977 *	vfs_setdirty:
1978 *
1979 *	Sets the dirty range for a buffer based on the status of the dirty
1980 *	bits in the pages comprising the buffer.
1981 *
1982 *	The range is limited to the size of the buffer.
1983 *
1984 *	This routine is primarily used by NFS, but is generalized for the
1985 *	B_VMIO case.
1986 */
1987static void
1988vfs_setdirty(struct buf *bp)
1989{
1990	int i;
1991	vm_object_t object;
1992
1993	/*
1994	 * Degenerate case - empty buffer
1995	 */
1996
1997	if (bp->b_bufsize == 0)
1998		return;
1999
2000	/*
2001	 * We qualify the scan for modified pages on whether the
2002	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2003	 * is not cleared simply by protecting pages off.
2004	 */
2005
2006	if ((bp->b_flags & B_VMIO) == 0)
2007		return;
2008
2009	object = bp->b_pages[0]->object;
2010
2011	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2012		printf("Warning: object %p writeable but not mightbedirty\n", object);
2013	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2014		printf("Warning: object %p mightbedirty but not writeable\n", object);
2015
2016	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2017		vm_offset_t boffset;
2018		vm_offset_t eoffset;
2019
2020		/*
2021		 * test the pages to see if they have been modified directly
2022		 * by users through the VM system.
2023		 */
2024		for (i = 0; i < bp->b_npages; i++) {
2025			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2026			vm_page_test_dirty(bp->b_pages[i]);
2027		}
2028
2029		/*
2030		 * Calculate the encompassing dirty range, boffset and eoffset,
2031		 * (eoffset - boffset) bytes.
2032		 */
2033
2034		for (i = 0; i < bp->b_npages; i++) {
2035			if (bp->b_pages[i]->dirty)
2036				break;
2037		}
2038		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2039
2040		for (i = bp->b_npages - 1; i >= 0; --i) {
2041			if (bp->b_pages[i]->dirty) {
2042				break;
2043			}
2044		}
2045		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2046
2047		/*
2048		 * Fit it to the buffer.
2049		 */
2050
2051		if (eoffset > bp->b_bcount)
2052			eoffset = bp->b_bcount;
2053
2054		/*
2055		 * If we have a good dirty range, merge with the existing
2056		 * dirty range.
2057		 */
2058
2059		if (boffset < eoffset) {
2060			if (bp->b_dirtyoff > boffset)
2061				bp->b_dirtyoff = boffset;
2062			if (bp->b_dirtyend < eoffset)
2063				bp->b_dirtyend = eoffset;
2064		}
2065	}
2066}
2067
2068/*
2069 *	getblk:
2070 *
2071 *	Get a block given a specified block and offset into a file/device.
2072 *	The buffers B_DONE bit will be cleared on return, making it almost
2073 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2074 *	return.  The caller should clear B_INVAL prior to initiating a
2075 *	READ.
2076 *
2077 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2078 *	an existing buffer.
2079 *
2080 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2081 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2082 *	and then cleared based on the backing VM.  If the previous buffer is
2083 *	non-0-sized but invalid, B_CACHE will be cleared.
2084 *
2085 *	If getblk() must create a new buffer, the new buffer is returned with
2086 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2087 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2088 *	backing VM.
2089 *
2090 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
2091 *	B_CACHE bit is clear.
2092 *
2093 *	What this means, basically, is that the caller should use B_CACHE to
2094 *	determine whether the buffer is fully valid or not and should clear
2095 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2096 *	the buffer by loading its data area with something, the caller needs
2097 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2098 *	the caller should set B_CACHE ( as an optimization ), else the caller
2099 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2100 *	a write attempt or if it was a successfull read.  If the caller
2101 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2102 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2103 */
2104struct buf *
2105getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
2106{
2107	struct buf *bp;
2108	int s;
2109	struct bufhashhdr *bh;
2110
2111#if !defined(MAX_PERF)
2112	if (size > MAXBSIZE)
2113		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2114#endif
2115
2116	s = splbio();
2117loop:
2118	/*
2119	 * Block if we are low on buffers.   Certain processes are allowed
2120	 * to completely exhaust the buffer cache.
2121         *
2122         * If this check ever becomes a bottleneck it may be better to
2123         * move it into the else, when gbincore() fails.  At the moment
2124         * it isn't a problem.
2125         */
2126	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
2127		if (numfreebuffers == 0) {
2128			if (!curproc)
2129				return NULL;
2130			needsbuffer |= VFS_BIO_NEED_ANY;
2131			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2132			    slptimeo);
2133		}
2134	} else if (numfreebuffers < lofreebuffers) {
2135		waitfreebuffers(slpflag, slptimeo);
2136	}
2137
2138	if ((bp = gbincore(vp, blkno))) {
2139		/*
2140		 * Buffer is in-core.  If the buffer is not busy, it must
2141		 * be on a queue.
2142		 */
2143
2144		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2145			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2146			    "getblk", slpflag, slptimeo) == ENOLCK)
2147				goto loop;
2148			splx(s);
2149			return (struct buf *) NULL;
2150		}
2151
2152		/*
2153		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2154		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2155		 * and for a VMIO buffer B_CACHE is adjusted according to the
2156		 * backing VM cache.
2157		 */
2158		if (bp->b_flags & B_INVAL)
2159			bp->b_flags &= ~B_CACHE;
2160		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2161			bp->b_flags |= B_CACHE;
2162		bremfree(bp);
2163
2164		/*
2165		 * check for size inconsistancies for non-VMIO case.
2166		 */
2167
2168		if (bp->b_bcount != size) {
2169			if ((bp->b_flags & B_VMIO) == 0 ||
2170			    (size > bp->b_kvasize)) {
2171				if (bp->b_flags & B_DELWRI) {
2172					bp->b_flags |= B_NOCACHE;
2173					VOP_BWRITE(bp->b_vp, bp);
2174				} else {
2175					if ((bp->b_flags & B_VMIO) &&
2176					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2177						bp->b_flags |= B_RELBUF;
2178						brelse(bp);
2179					} else {
2180						bp->b_flags |= B_NOCACHE;
2181						VOP_BWRITE(bp->b_vp, bp);
2182					}
2183				}
2184				goto loop;
2185			}
2186		}
2187
2188		/*
2189		 * If the size is inconsistant in the VMIO case, we can resize
2190		 * the buffer.  This might lead to B_CACHE getting set or
2191		 * cleared.  If the size has not changed, B_CACHE remains
2192		 * unchanged from its previous state.
2193		 */
2194
2195		if (bp->b_bcount != size)
2196			allocbuf(bp, size);
2197
2198		KASSERT(bp->b_offset != NOOFFSET,
2199		    ("getblk: no buffer offset"));
2200
2201		/*
2202		 * A buffer with B_DELWRI set and B_CACHE clear must
2203		 * be committed before we can return the buffer in
2204		 * order to prevent the caller from issuing a read
2205		 * ( due to B_CACHE not being set ) and overwriting
2206		 * it.
2207		 *
2208		 * Most callers, including NFS and FFS, need this to
2209		 * operate properly either because they assume they
2210		 * can issue a read if B_CACHE is not set, or because
2211		 * ( for example ) an uncached B_DELWRI might loop due
2212		 * to softupdates re-dirtying the buffer.  In the latter
2213		 * case, B_CACHE is set after the first write completes,
2214		 * preventing further loops.
2215		 */
2216
2217		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2218			VOP_BWRITE(bp->b_vp, bp);
2219			goto loop;
2220		}
2221
2222		splx(s);
2223		bp->b_flags &= ~B_DONE;
2224	} else {
2225		/*
2226		 * Buffer is not in-core, create new buffer.  The buffer
2227		 * returned by getnewbuf() is locked.  Note that the returned
2228		 * buffer is also considered valid (not marked B_INVAL).
2229		 */
2230		int bsize, maxsize, vmio;
2231		off_t offset;
2232
2233		if (vn_isdisk(vp, NULL))
2234			bsize = DEV_BSIZE;
2235		else if (vp->v_mountedhere)
2236			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2237		else if (vp->v_mount)
2238			bsize = vp->v_mount->mnt_stat.f_iosize;
2239		else
2240			bsize = size;
2241
2242		offset = (off_t)blkno * bsize;
2243		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2244		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2245		maxsize = imax(maxsize, bsize);
2246
2247		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2248			if (slpflag || slptimeo) {
2249				splx(s);
2250				return NULL;
2251			}
2252			goto loop;
2253		}
2254
2255		/*
2256		 * This code is used to make sure that a buffer is not
2257		 * created while the getnewbuf routine is blocked.
2258		 * This can be a problem whether the vnode is locked or not.
2259		 * If the buffer is created out from under us, we have to
2260		 * throw away the one we just created.  There is now window
2261		 * race because we are safely running at splbio() from the
2262		 * point of the duplicate buffer creation through to here,
2263		 * and we've locked the buffer.
2264		 */
2265		if (gbincore(vp, blkno)) {
2266			bp->b_flags |= B_INVAL;
2267			brelse(bp);
2268			goto loop;
2269		}
2270
2271		/*
2272		 * Insert the buffer into the hash, so that it can
2273		 * be found by incore.
2274		 */
2275		bp->b_blkno = bp->b_lblkno = blkno;
2276		bp->b_offset = offset;
2277
2278		bgetvp(vp, bp);
2279		LIST_REMOVE(bp, b_hash);
2280		bh = bufhash(vp, blkno);
2281		LIST_INSERT_HEAD(bh, bp, b_hash);
2282
2283		/*
2284		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2285		 * buffer size starts out as 0, B_CACHE will be set by
2286		 * allocbuf() for the VMIO case prior to it testing the
2287		 * backing store for validity.
2288		 */
2289
2290		if (vmio) {
2291			bp->b_flags |= B_VMIO;
2292#if defined(VFS_BIO_DEBUG)
2293			if (vp->v_type != VREG && vp->v_type != VBLK)
2294				printf("getblk: vmioing file type %d???\n", vp->v_type);
2295#endif
2296		} else {
2297			bp->b_flags &= ~B_VMIO;
2298		}
2299
2300		allocbuf(bp, size);
2301
2302		splx(s);
2303		bp->b_flags &= ~B_DONE;
2304	}
2305	return (bp);
2306}
2307
2308/*
2309 * Get an empty, disassociated buffer of given size.  The buffer is initially
2310 * set to B_INVAL.
2311 */
2312struct buf *
2313geteblk(int size)
2314{
2315	struct buf *bp;
2316	int s;
2317
2318	s = splbio();
2319	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2320	splx(s);
2321	allocbuf(bp, size);
2322	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2323	return (bp);
2324}
2325
2326
2327/*
2328 * This code constitutes the buffer memory from either anonymous system
2329 * memory (in the case of non-VMIO operations) or from an associated
2330 * VM object (in the case of VMIO operations).  This code is able to
2331 * resize a buffer up or down.
2332 *
2333 * Note that this code is tricky, and has many complications to resolve
2334 * deadlock or inconsistant data situations.  Tread lightly!!!
2335 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2336 * the caller.  Calling this code willy nilly can result in the loss of data.
2337 *
2338 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2339 * B_CACHE for the non-VMIO case.
2340 */
2341
2342int
2343allocbuf(struct buf *bp, int size)
2344{
2345	int newbsize, mbsize;
2346	int i;
2347
2348#if !defined(MAX_PERF)
2349	if (BUF_REFCNT(bp) == 0)
2350		panic("allocbuf: buffer not busy");
2351
2352	if (bp->b_kvasize < size)
2353		panic("allocbuf: buffer too small");
2354#endif
2355
2356	if ((bp->b_flags & B_VMIO) == 0) {
2357		caddr_t origbuf;
2358		int origbufsize;
2359		/*
2360		 * Just get anonymous memory from the kernel.  Don't
2361		 * mess with B_CACHE.
2362		 */
2363		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2364#if !defined(NO_B_MALLOC)
2365		if (bp->b_flags & B_MALLOC)
2366			newbsize = mbsize;
2367		else
2368#endif
2369			newbsize = round_page(size);
2370
2371		if (newbsize < bp->b_bufsize) {
2372#if !defined(NO_B_MALLOC)
2373			/*
2374			 * malloced buffers are not shrunk
2375			 */
2376			if (bp->b_flags & B_MALLOC) {
2377				if (newbsize) {
2378					bp->b_bcount = size;
2379				} else {
2380					free(bp->b_data, M_BIOBUF);
2381					bufspace -= bp->b_bufsize;
2382					bufmallocspace -= bp->b_bufsize;
2383					runningbufspace -= bp->b_bufsize;
2384					if (bp->b_bufsize)
2385						bufspacewakeup();
2386					bp->b_data = bp->b_kvabase;
2387					bp->b_bufsize = 0;
2388					bp->b_bcount = 0;
2389					bp->b_flags &= ~B_MALLOC;
2390				}
2391				return 1;
2392			}
2393#endif
2394			vm_hold_free_pages(
2395			    bp,
2396			    (vm_offset_t) bp->b_data + newbsize,
2397			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2398		} else if (newbsize > bp->b_bufsize) {
2399#if !defined(NO_B_MALLOC)
2400			/*
2401			 * We only use malloced memory on the first allocation.
2402			 * and revert to page-allocated memory when the buffer
2403			 * grows.
2404			 */
2405			if ( (bufmallocspace < maxbufmallocspace) &&
2406				(bp->b_bufsize == 0) &&
2407				(mbsize <= PAGE_SIZE/2)) {
2408
2409				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2410				bp->b_bufsize = mbsize;
2411				bp->b_bcount = size;
2412				bp->b_flags |= B_MALLOC;
2413				bufspace += mbsize;
2414				bufmallocspace += mbsize;
2415				runningbufspace += bp->b_bufsize;
2416				return 1;
2417			}
2418#endif
2419			origbuf = NULL;
2420			origbufsize = 0;
2421#if !defined(NO_B_MALLOC)
2422			/*
2423			 * If the buffer is growing on its other-than-first allocation,
2424			 * then we revert to the page-allocation scheme.
2425			 */
2426			if (bp->b_flags & B_MALLOC) {
2427				origbuf = bp->b_data;
2428				origbufsize = bp->b_bufsize;
2429				bp->b_data = bp->b_kvabase;
2430				bufspace -= bp->b_bufsize;
2431				bufmallocspace -= bp->b_bufsize;
2432				runningbufspace -= bp->b_bufsize;
2433				if (bp->b_bufsize)
2434					bufspacewakeup();
2435				bp->b_bufsize = 0;
2436				bp->b_flags &= ~B_MALLOC;
2437				newbsize = round_page(newbsize);
2438			}
2439#endif
2440			vm_hold_load_pages(
2441			    bp,
2442			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2443			    (vm_offset_t) bp->b_data + newbsize);
2444#if !defined(NO_B_MALLOC)
2445			if (origbuf) {
2446				bcopy(origbuf, bp->b_data, origbufsize);
2447				free(origbuf, M_BIOBUF);
2448			}
2449#endif
2450		}
2451	} else {
2452		vm_page_t m;
2453		int desiredpages;
2454
2455		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2456		desiredpages = (size == 0) ? 0 :
2457			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2458
2459#if !defined(NO_B_MALLOC)
2460		if (bp->b_flags & B_MALLOC)
2461			panic("allocbuf: VMIO buffer can't be malloced");
2462#endif
2463		/*
2464		 * Set B_CACHE initially if buffer is 0 length or will become
2465		 * 0-length.
2466		 */
2467		if (size == 0 || bp->b_bufsize == 0)
2468			bp->b_flags |= B_CACHE;
2469
2470		if (newbsize < bp->b_bufsize) {
2471			/*
2472			 * DEV_BSIZE aligned new buffer size is less then the
2473			 * DEV_BSIZE aligned existing buffer size.  Figure out
2474			 * if we have to remove any pages.
2475			 */
2476			if (desiredpages < bp->b_npages) {
2477				for (i = desiredpages; i < bp->b_npages; i++) {
2478					/*
2479					 * the page is not freed here -- it
2480					 * is the responsibility of
2481					 * vnode_pager_setsize
2482					 */
2483					m = bp->b_pages[i];
2484					KASSERT(m != bogus_page,
2485					    ("allocbuf: bogus page found"));
2486					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2487						;
2488
2489					bp->b_pages[i] = NULL;
2490					vm_page_unwire(m, 0);
2491				}
2492				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2493				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2494				bp->b_npages = desiredpages;
2495			}
2496		} else if (size > bp->b_bcount) {
2497			/*
2498			 * We are growing the buffer, possibly in a
2499			 * byte-granular fashion.
2500			 */
2501			struct vnode *vp;
2502			vm_object_t obj;
2503			vm_offset_t toff;
2504			vm_offset_t tinc;
2505
2506			/*
2507			 * Step 1, bring in the VM pages from the object,
2508			 * allocating them if necessary.  We must clear
2509			 * B_CACHE if these pages are not valid for the
2510			 * range covered by the buffer.
2511			 */
2512
2513			vp = bp->b_vp;
2514			obj = vp->v_object;
2515
2516			while (bp->b_npages < desiredpages) {
2517				vm_page_t m;
2518				vm_pindex_t pi;
2519
2520				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2521				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2522					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2523					if (m == NULL) {
2524						VM_WAIT;
2525						vm_pageout_deficit += desiredpages - bp->b_npages;
2526					} else {
2527						vm_page_wire(m);
2528						vm_page_wakeup(m);
2529						bp->b_flags &= ~B_CACHE;
2530						bp->b_pages[bp->b_npages] = m;
2531						++bp->b_npages;
2532					}
2533					continue;
2534				}
2535
2536				/*
2537				 * We found a page.  If we have to sleep on it,
2538				 * retry because it might have gotten freed out
2539				 * from under us.
2540				 *
2541				 * We can only test PG_BUSY here.  Blocking on
2542				 * m->busy might lead to a deadlock:
2543				 *
2544				 *  vm_fault->getpages->cluster_read->allocbuf
2545				 *
2546				 */
2547
2548				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2549					continue;
2550
2551				/*
2552				 * We have a good page.  Should we wakeup the
2553				 * page daemon?
2554				 */
2555				if ((curproc != pageproc) &&
2556				    ((m->queue - m->pc) == PQ_CACHE) &&
2557				    ((cnt.v_free_count + cnt.v_cache_count) <
2558					(cnt.v_free_min + cnt.v_cache_min))) {
2559					pagedaemon_wakeup();
2560				}
2561				vm_page_flag_clear(m, PG_ZERO);
2562				vm_page_wire(m);
2563				bp->b_pages[bp->b_npages] = m;
2564				++bp->b_npages;
2565			}
2566
2567			/*
2568			 * Step 2.  We've loaded the pages into the buffer,
2569			 * we have to figure out if we can still have B_CACHE
2570			 * set.  Note that B_CACHE is set according to the
2571			 * byte-granular range ( bcount and size ), new the
2572			 * aligned range ( newbsize ).
2573			 *
2574			 * The VM test is against m->valid, which is DEV_BSIZE
2575			 * aligned.  Needless to say, the validity of the data
2576			 * needs to also be DEV_BSIZE aligned.  Note that this
2577			 * fails with NFS if the server or some other client
2578			 * extends the file's EOF.  If our buffer is resized,
2579			 * B_CACHE may remain set! XXX
2580			 */
2581
2582			toff = bp->b_bcount;
2583			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2584
2585			while ((bp->b_flags & B_CACHE) && toff < size) {
2586				vm_pindex_t pi;
2587
2588				if (tinc > (size - toff))
2589					tinc = size - toff;
2590
2591				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2592				    PAGE_SHIFT;
2593
2594				vfs_buf_test_cache(
2595				    bp,
2596				    bp->b_offset,
2597				    toff,
2598				    tinc,
2599				    bp->b_pages[pi]
2600				);
2601				toff += tinc;
2602				tinc = PAGE_SIZE;
2603			}
2604
2605			/*
2606			 * Step 3, fixup the KVM pmap.  Remember that
2607			 * bp->b_data is relative to bp->b_offset, but
2608			 * bp->b_offset may be offset into the first page.
2609			 */
2610
2611			bp->b_data = (caddr_t)
2612			    trunc_page((vm_offset_t)bp->b_data);
2613			pmap_qenter(
2614			    (vm_offset_t)bp->b_data,
2615			    bp->b_pages,
2616			    bp->b_npages
2617			);
2618			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2619			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2620		}
2621	}
2622	if (bp->b_flags & B_VMIO)
2623		vmiospace += (newbsize - bp->b_bufsize);
2624	bufspace += (newbsize - bp->b_bufsize);
2625	runningbufspace += (newbsize - bp->b_bufsize);
2626	if (newbsize < bp->b_bufsize)
2627		bufspacewakeup();
2628	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2629	bp->b_bcount = size;		/* requested buffer size	*/
2630	return 1;
2631}
2632
2633/*
2634 *	biowait:
2635 *
2636 *	Wait for buffer I/O completion, returning error status.  The buffer
2637 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2638 *	error and cleared.
2639 */
2640int
2641biowait(register struct buf * bp)
2642{
2643	int s;
2644
2645	s = splbio();
2646	while ((bp->b_flags & B_DONE) == 0) {
2647#if defined(NO_SCHEDULE_MODS)
2648		tsleep(bp, PRIBIO, "biowait", 0);
2649#else
2650		if (bp->b_flags & B_READ)
2651			tsleep(bp, PRIBIO, "biord", 0);
2652		else
2653			tsleep(bp, PRIBIO, "biowr", 0);
2654#endif
2655	}
2656	splx(s);
2657	if (bp->b_flags & B_EINTR) {
2658		bp->b_flags &= ~B_EINTR;
2659		return (EINTR);
2660	}
2661	if (bp->b_flags & B_ERROR) {
2662		return (bp->b_error ? bp->b_error : EIO);
2663	} else {
2664		return (0);
2665	}
2666}
2667
2668/*
2669 *	biodone:
2670 *
2671 *	Finish I/O on a buffer, optionally calling a completion function.
2672 *	This is usually called from an interrupt so process blocking is
2673 *	not allowed.
2674 *
2675 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2676 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2677 *	assuming B_INVAL is clear.
2678 *
2679 *	For the VMIO case, we set B_CACHE if the op was a read and no
2680 *	read error occured, or if the op was a write.  B_CACHE is never
2681 *	set if the buffer is invalid or otherwise uncacheable.
2682 *
2683 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2684 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2685 *	in the biodone routine.
2686 */
2687void
2688biodone(register struct buf * bp)
2689{
2690	int s;
2691
2692	s = splbio();
2693
2694	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2695	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2696
2697	bp->b_flags |= B_DONE;
2698
2699	if (bp->b_flags & B_FREEBUF) {
2700		brelse(bp);
2701		splx(s);
2702		return;
2703	}
2704
2705	if ((bp->b_flags & B_READ) == 0) {
2706		vwakeup(bp);
2707	}
2708
2709	/* call optional completion function if requested */
2710	if (bp->b_flags & B_CALL) {
2711		bp->b_flags &= ~B_CALL;
2712		(*bp->b_iodone) (bp);
2713		splx(s);
2714		return;
2715	}
2716	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2717		(*bioops.io_complete)(bp);
2718
2719	if (bp->b_flags & B_VMIO) {
2720		int i, resid;
2721		vm_ooffset_t foff;
2722		vm_page_t m;
2723		vm_object_t obj;
2724		int iosize;
2725		struct vnode *vp = bp->b_vp;
2726
2727		obj = vp->v_object;
2728
2729#if defined(VFS_BIO_DEBUG)
2730		if (vp->v_usecount == 0) {
2731			panic("biodone: zero vnode ref count");
2732		}
2733
2734		if (vp->v_object == NULL) {
2735			panic("biodone: missing VM object");
2736		}
2737
2738		if ((vp->v_flag & VOBJBUF) == 0) {
2739			panic("biodone: vnode is not setup for merged cache");
2740		}
2741#endif
2742
2743		foff = bp->b_offset;
2744		KASSERT(bp->b_offset != NOOFFSET,
2745		    ("biodone: no buffer offset"));
2746
2747#if !defined(MAX_PERF)
2748		if (!obj) {
2749			panic("biodone: no object");
2750		}
2751#endif
2752#if defined(VFS_BIO_DEBUG)
2753		if (obj->paging_in_progress < bp->b_npages) {
2754			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2755			    obj->paging_in_progress, bp->b_npages);
2756		}
2757#endif
2758
2759		/*
2760		 * Set B_CACHE if the op was a normal read and no error
2761		 * occured.  B_CACHE is set for writes in the b*write()
2762		 * routines.
2763		 */
2764		iosize = bp->b_bcount - bp->b_resid;
2765		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2766			bp->b_flags |= B_CACHE;
2767		}
2768
2769		for (i = 0; i < bp->b_npages; i++) {
2770			int bogusflag = 0;
2771			m = bp->b_pages[i];
2772			if (m == bogus_page) {
2773				bogusflag = 1;
2774				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2775				if (!m) {
2776#if defined(VFS_BIO_DEBUG)
2777					printf("biodone: page disappeared\n");
2778#endif
2779					vm_object_pip_subtract(obj, 1);
2780					bp->b_flags &= ~B_CACHE;
2781					continue;
2782				}
2783				bp->b_pages[i] = m;
2784				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2785			}
2786#if defined(VFS_BIO_DEBUG)
2787			if (OFF_TO_IDX(foff) != m->pindex) {
2788				printf(
2789"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2790				    (unsigned long)foff, m->pindex);
2791			}
2792#endif
2793			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2794			if (resid > iosize)
2795				resid = iosize;
2796
2797			/*
2798			 * In the write case, the valid and clean bits are
2799			 * already changed correctly ( see bdwrite() ), so we
2800			 * only need to do this here in the read case.
2801			 */
2802			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2803				vfs_page_set_valid(bp, foff, i, m);
2804			}
2805			vm_page_flag_clear(m, PG_ZERO);
2806
2807			/*
2808			 * when debugging new filesystems or buffer I/O methods, this
2809			 * is the most common error that pops up.  if you see this, you
2810			 * have not set the page busy flag correctly!!!
2811			 */
2812			if (m->busy == 0) {
2813#if !defined(MAX_PERF)
2814				printf("biodone: page busy < 0, "
2815				    "pindex: %d, foff: 0x(%x,%x), "
2816				    "resid: %d, index: %d\n",
2817				    (int) m->pindex, (int)(foff >> 32),
2818						(int) foff & 0xffffffff, resid, i);
2819#endif
2820				if (!vn_isdisk(vp, NULL))
2821#if !defined(MAX_PERF)
2822					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2823					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2824					    (int) bp->b_lblkno,
2825					    bp->b_flags, bp->b_npages);
2826				else
2827					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2828					    (int) bp->b_lblkno,
2829					    bp->b_flags, bp->b_npages);
2830				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2831				    m->valid, m->dirty, m->wire_count);
2832#endif
2833				panic("biodone: page busy < 0\n");
2834			}
2835			vm_page_io_finish(m);
2836			vm_object_pip_subtract(obj, 1);
2837			foff += resid;
2838			iosize -= resid;
2839		}
2840		if (obj)
2841			vm_object_pip_wakeupn(obj, 0);
2842	}
2843	/*
2844	 * For asynchronous completions, release the buffer now. The brelse
2845	 * will do a wakeup there if necessary - so no need to do a wakeup
2846	 * here in the async case. The sync case always needs to do a wakeup.
2847	 */
2848
2849	if (bp->b_flags & B_ASYNC) {
2850		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2851			brelse(bp);
2852		else
2853			bqrelse(bp);
2854	} else {
2855		wakeup(bp);
2856	}
2857	splx(s);
2858}
2859
2860/*
2861 * This routine is called in lieu of iodone in the case of
2862 * incomplete I/O.  This keeps the busy status for pages
2863 * consistant.
2864 */
2865void
2866vfs_unbusy_pages(struct buf * bp)
2867{
2868	int i;
2869
2870	if (bp->b_flags & B_VMIO) {
2871		struct vnode *vp = bp->b_vp;
2872		vm_object_t obj = vp->v_object;
2873
2874		for (i = 0; i < bp->b_npages; i++) {
2875			vm_page_t m = bp->b_pages[i];
2876
2877			if (m == bogus_page) {
2878				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2879#if !defined(MAX_PERF)
2880				if (!m) {
2881					panic("vfs_unbusy_pages: page missing\n");
2882				}
2883#endif
2884				bp->b_pages[i] = m;
2885				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2886			}
2887			vm_object_pip_subtract(obj, 1);
2888			vm_page_flag_clear(m, PG_ZERO);
2889			vm_page_io_finish(m);
2890		}
2891		vm_object_pip_wakeupn(obj, 0);
2892	}
2893}
2894
2895/*
2896 * vfs_page_set_valid:
2897 *
2898 *	Set the valid bits in a page based on the supplied offset.   The
2899 *	range is restricted to the buffer's size.
2900 *
2901 *	This routine is typically called after a read completes.
2902 */
2903static void
2904vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2905{
2906	vm_ooffset_t soff, eoff;
2907
2908	/*
2909	 * Start and end offsets in buffer.  eoff - soff may not cross a
2910	 * page boundry or cross the end of the buffer.  The end of the
2911	 * buffer, in this case, is our file EOF, not the allocation size
2912	 * of the buffer.
2913	 */
2914	soff = off;
2915	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2916	if (eoff > bp->b_offset + bp->b_bcount)
2917		eoff = bp->b_offset + bp->b_bcount;
2918
2919	/*
2920	 * Set valid range.  This is typically the entire buffer and thus the
2921	 * entire page.
2922	 */
2923	if (eoff > soff) {
2924		vm_page_set_validclean(
2925		    m,
2926		   (vm_offset_t) (soff & PAGE_MASK),
2927		   (vm_offset_t) (eoff - soff)
2928		);
2929	}
2930}
2931
2932/*
2933 * This routine is called before a device strategy routine.
2934 * It is used to tell the VM system that paging I/O is in
2935 * progress, and treat the pages associated with the buffer
2936 * almost as being PG_BUSY.  Also the object paging_in_progress
2937 * flag is handled to make sure that the object doesn't become
2938 * inconsistant.
2939 *
2940 * Since I/O has not been initiated yet, certain buffer flags
2941 * such as B_ERROR or B_INVAL may be in an inconsistant state
2942 * and should be ignored.
2943 */
2944void
2945vfs_busy_pages(struct buf * bp, int clear_modify)
2946{
2947	int i, bogus;
2948
2949	if (bp->b_flags & B_VMIO) {
2950		struct vnode *vp = bp->b_vp;
2951		vm_object_t obj = vp->v_object;
2952		vm_ooffset_t foff;
2953
2954		foff = bp->b_offset;
2955		KASSERT(bp->b_offset != NOOFFSET,
2956		    ("vfs_busy_pages: no buffer offset"));
2957		vfs_setdirty(bp);
2958
2959retry:
2960		for (i = 0; i < bp->b_npages; i++) {
2961			vm_page_t m = bp->b_pages[i];
2962			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2963				goto retry;
2964		}
2965
2966		bogus = 0;
2967		for (i = 0; i < bp->b_npages; i++) {
2968			vm_page_t m = bp->b_pages[i];
2969
2970			vm_page_flag_clear(m, PG_ZERO);
2971			if ((bp->b_flags & B_CLUSTER) == 0) {
2972				vm_object_pip_add(obj, 1);
2973				vm_page_io_start(m);
2974			}
2975
2976			/*
2977			 * When readying a buffer for a read ( i.e
2978			 * clear_modify == 0 ), it is important to do
2979			 * bogus_page replacement for valid pages in
2980			 * partially instantiated buffers.  Partially
2981			 * instantiated buffers can, in turn, occur when
2982			 * reconstituting a buffer from its VM backing store
2983			 * base.  We only have to do this if B_CACHE is
2984			 * clear ( which causes the I/O to occur in the
2985			 * first place ).  The replacement prevents the read
2986			 * I/O from overwriting potentially dirty VM-backed
2987			 * pages.  XXX bogus page replacement is, uh, bogus.
2988			 * It may not work properly with small-block devices.
2989			 * We need to find a better way.
2990			 */
2991
2992			vm_page_protect(m, VM_PROT_NONE);
2993			if (clear_modify)
2994				vfs_page_set_valid(bp, foff, i, m);
2995			else if (m->valid == VM_PAGE_BITS_ALL &&
2996				(bp->b_flags & B_CACHE) == 0) {
2997				bp->b_pages[i] = bogus_page;
2998				bogus++;
2999			}
3000			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
3001		}
3002		if (bogus)
3003			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3004	}
3005}
3006
3007/*
3008 * Tell the VM system that the pages associated with this buffer
3009 * are clean.  This is used for delayed writes where the data is
3010 * going to go to disk eventually without additional VM intevention.
3011 *
3012 * Note that while we only really need to clean through to b_bcount, we
3013 * just go ahead and clean through to b_bufsize.
3014 */
3015static void
3016vfs_clean_pages(struct buf * bp)
3017{
3018	int i;
3019
3020	if (bp->b_flags & B_VMIO) {
3021		vm_ooffset_t foff;
3022
3023		foff = bp->b_offset;
3024		KASSERT(bp->b_offset != NOOFFSET,
3025		    ("vfs_clean_pages: no buffer offset"));
3026		for (i = 0; i < bp->b_npages; i++) {
3027			vm_page_t m = bp->b_pages[i];
3028			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
3029			vm_ooffset_t eoff = noff;
3030
3031			if (eoff > bp->b_offset + bp->b_bufsize)
3032				eoff = bp->b_offset + bp->b_bufsize;
3033			vfs_page_set_valid(bp, foff, i, m);
3034			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3035			foff = noff;
3036		}
3037	}
3038}
3039
3040/*
3041 *	vfs_bio_set_validclean:
3042 *
3043 *	Set the range within the buffer to valid and clean.  The range is
3044 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3045 *	itself may be offset from the beginning of the first page.
3046 */
3047
3048void
3049vfs_bio_set_validclean(struct buf *bp, int base, int size)
3050{
3051	if (bp->b_flags & B_VMIO) {
3052		int i;
3053		int n;
3054
3055		/*
3056		 * Fixup base to be relative to beginning of first page.
3057		 * Set initial n to be the maximum number of bytes in the
3058		 * first page that can be validated.
3059		 */
3060
3061		base += (bp->b_offset & PAGE_MASK);
3062		n = PAGE_SIZE - (base & PAGE_MASK);
3063
3064		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3065			vm_page_t m = bp->b_pages[i];
3066
3067			if (n > size)
3068				n = size;
3069
3070			vm_page_set_validclean(m, base & PAGE_MASK, n);
3071			base += n;
3072			size -= n;
3073			n = PAGE_SIZE;
3074		}
3075	}
3076}
3077
3078/*
3079 *	vfs_bio_clrbuf:
3080 *
3081 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3082 *	to clear B_ERROR and B_INVAL.
3083 *
3084 *	Note that while we only theoretically need to clear through b_bcount,
3085 *	we go ahead and clear through b_bufsize.
3086 */
3087
3088void
3089vfs_bio_clrbuf(struct buf *bp) {
3090	int i, mask = 0;
3091	caddr_t sa, ea;
3092	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3093		bp->b_flags &= ~(B_INVAL|B_ERROR);
3094		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3095		    (bp->b_offset & PAGE_MASK) == 0) {
3096			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3097			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3098			    ((bp->b_pages[0]->valid & mask) != mask)) {
3099				bzero(bp->b_data, bp->b_bufsize);
3100			}
3101			bp->b_pages[0]->valid |= mask;
3102			bp->b_resid = 0;
3103			return;
3104		}
3105		ea = sa = bp->b_data;
3106		for(i=0;i<bp->b_npages;i++,sa=ea) {
3107			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3108			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3109			ea = (caddr_t)(vm_offset_t)ulmin(
3110			    (u_long)(vm_offset_t)ea,
3111			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3112			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3113			if ((bp->b_pages[i]->valid & mask) == mask)
3114				continue;
3115			if ((bp->b_pages[i]->valid & mask) == 0) {
3116				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3117					bzero(sa, ea - sa);
3118				}
3119			} else {
3120				for (; sa < ea; sa += DEV_BSIZE, j++) {
3121					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3122						(bp->b_pages[i]->valid & (1<<j)) == 0)
3123						bzero(sa, DEV_BSIZE);
3124				}
3125			}
3126			bp->b_pages[i]->valid |= mask;
3127			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3128		}
3129		bp->b_resid = 0;
3130	} else {
3131		clrbuf(bp);
3132	}
3133}
3134
3135/*
3136 * vm_hold_load_pages and vm_hold_unload pages get pages into
3137 * a buffers address space.  The pages are anonymous and are
3138 * not associated with a file object.
3139 */
3140void
3141vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3142{
3143	vm_offset_t pg;
3144	vm_page_t p;
3145	int index;
3146
3147	to = round_page(to);
3148	from = round_page(from);
3149	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3150
3151	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3152
3153tryagain:
3154
3155		p = vm_page_alloc(kernel_object,
3156			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3157		    VM_ALLOC_NORMAL);
3158		if (!p) {
3159			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3160			VM_WAIT;
3161			goto tryagain;
3162		}
3163		vm_page_wire(p);
3164		p->valid = VM_PAGE_BITS_ALL;
3165		vm_page_flag_clear(p, PG_ZERO);
3166		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3167		bp->b_pages[index] = p;
3168		vm_page_wakeup(p);
3169	}
3170	bp->b_npages = index;
3171}
3172
3173void
3174vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3175{
3176	vm_offset_t pg;
3177	vm_page_t p;
3178	int index, newnpages;
3179
3180	from = round_page(from);
3181	to = round_page(to);
3182	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3183
3184	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3185		p = bp->b_pages[index];
3186		if (p && (index < bp->b_npages)) {
3187#if !defined(MAX_PERF)
3188			if (p->busy) {
3189				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3190					bp->b_blkno, bp->b_lblkno);
3191			}
3192#endif
3193			bp->b_pages[index] = NULL;
3194			pmap_kremove(pg);
3195			vm_page_busy(p);
3196			vm_page_unwire(p, 0);
3197			vm_page_free(p);
3198		}
3199	}
3200	bp->b_npages = newnpages;
3201}
3202
3203
3204#include "opt_ddb.h"
3205#ifdef DDB
3206#include <ddb/ddb.h>
3207
3208DB_SHOW_COMMAND(buffer, db_show_buffer)
3209{
3210	/* get args */
3211	struct buf *bp = (struct buf *)addr;
3212
3213	if (!have_addr) {
3214		db_printf("usage: show buffer <addr>\n");
3215		return;
3216	}
3217
3218	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3219	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3220		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3221		  "b_blkno = %d, b_pblkno = %d\n",
3222		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3223		  major(bp->b_dev), minor(bp->b_dev),
3224		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3225	if (bp->b_npages) {
3226		int i;
3227		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3228		for (i = 0; i < bp->b_npages; i++) {
3229			vm_page_t m;
3230			m = bp->b_pages[i];
3231			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3232			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3233			if ((i + 1) < bp->b_npages)
3234				db_printf(",");
3235		}
3236		db_printf("\n");
3237	}
3238}
3239#endif /* DDB */
3240