vfs_bio.c revision 53975
1114402Sru/*
2114402Sru * Copyright (c) 1994,1997 John S. Dyson
3114402Sru * All rights reserved.
4114402Sru *
5114402Sru * Redistribution and use in source and binary forms, with or without
6114402Sru * modification, are permitted provided that the following conditions
7114402Sru * are met:
8114402Sru * 1. Redistributions of source code must retain the above copyright
9114402Sru *    notice immediately at the beginning of the file, without modification,
10114402Sru *    this list of conditions, and the following disclaimer.
11114402Sru * 2. Absolutely no warranty of function or purpose is made by the author
12114402Sru *		John S. Dyson.
13114402Sru *
14114402Sru * $FreeBSD: head/sys/kern/vfs_bio.c 53975 1999-12-01 02:09:30Z mckusick $
15114402Sru */
16114402Sru
17114402Sru/*
18114402Sru * this file contains a new buffer I/O scheme implementing a coherent
19114402Sru * VM object and buffer cache scheme.  Pains have been taken to make
20114402Sru * sure that the performance degradation associated with schemes such
21114402Sru * as this is not realized.
22114402Sru *
23114402Sru * Author:  John S. Dyson
24114402Sru * Significant help during the development and debugging phases
25114402Sru * had been provided by David Greenman, also of the FreeBSD core team.
26114402Sru *
27114402Sru * see man buf(9) for more info.
28114402Sru */
29114402Sru
30114402Sru#include <sys/param.h>
31114402Sru#include <sys/systm.h>
32114402Sru#include <sys/kernel.h>
33114402Sru#include <sys/sysctl.h>
34114402Sru#include <sys/proc.h>
35114402Sru#include <sys/kthread.h>
36114402Sru#include <sys/vnode.h>
37114402Sru#include <sys/vmmeter.h>
38114402Sru#include <sys/lock.h>
39#include <vm/vm.h>
40#include <vm/vm_param.h>
41#include <vm/vm_kern.h>
42#include <vm/vm_pageout.h>
43#include <vm/vm_page.h>
44#include <vm/vm_object.h>
45#include <vm/vm_extern.h>
46#include <vm/vm_map.h>
47#include <sys/buf.h>
48#include <sys/mount.h>
49#include <sys/malloc.h>
50#include <sys/resourcevar.h>
51#include <sys/conf.h>
52
53static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
54
55struct	bio_ops bioops;		/* I/O operation notification */
56
57struct buf *buf;		/* buffer header pool */
58struct swqueue bswlist;
59
60static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
61		vm_offset_t to);
62static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
63		vm_offset_t to);
64static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
65			       int pageno, vm_page_t m);
66static void vfs_clean_pages(struct buf * bp);
67static void vfs_setdirty(struct buf *bp);
68static void vfs_vmio_release(struct buf *bp);
69static int flushbufqueues(void);
70
71static int bd_request;
72
73static void buf_daemon __P((void));
74/*
75 * bogus page -- for I/O to/from partially complete buffers
76 * this is a temporary solution to the problem, but it is not
77 * really that bad.  it would be better to split the buffer
78 * for input in the case of buffers partially already in memory,
79 * but the code is intricate enough already.
80 */
81vm_page_t bogus_page;
82int runningbufspace;
83int vmiodirenable = FALSE;
84int buf_maxio = DFLTPHYS;
85static vm_offset_t bogus_offset;
86
87static int bufspace, maxbufspace, vmiospace,
88	bufmallocspace, maxbufmallocspace, hibufspace;
89static int maxbdrun;
90static int needsbuffer;
91static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
92static int numfreebuffers, lofreebuffers, hifreebuffers;
93static int getnewbufcalls;
94static int getnewbufrestarts;
95static int kvafreespace;
96
97SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
98	&numdirtybuffers, 0, "");
99SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
100	&lodirtybuffers, 0, "");
101SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
102	&hidirtybuffers, 0, "");
103SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
104	&numfreebuffers, 0, "");
105SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
106	&lofreebuffers, 0, "");
107SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
108	&hifreebuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
110	&runningbufspace, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
112	&maxbufspace, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
114	&hibufspace, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
116	&bufspace, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
118	&maxbdrun, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
120	&vmiospace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
122	&maxbufmallocspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
124	&bufmallocspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
126	&kvafreespace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
128	&getnewbufcalls, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
130	&getnewbufrestarts, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
132	&vmiodirenable, 0, "");
133
134
135static int bufhashmask;
136static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
137struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
138char *buf_wmesg = BUF_WMESG;
139
140extern int vm_swap_size;
141
142#define BUF_MAXUSE		24
143
144#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
145#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
146#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
147#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
148#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
149
150/*
151 * Buffer hash table code.  Note that the logical block scans linearly, which
152 * gives us some L1 cache locality.
153 */
154
155static __inline
156struct bufhashhdr *
157bufhash(struct vnode *vnp, daddr_t bn)
158{
159	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
160}
161
162/*
163 *	kvaspacewakeup:
164 *
165 *	Called when kva space is potential available for recovery or when
166 *	kva space is recovered in the buffer_map.  This function wakes up
167 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
168 *	is larger then maxbufspace, this situation will typically occur
169 *	when the buffer_map gets fragmented.
170 */
171
172static __inline void
173kvaspacewakeup(void)
174{
175	/*
176	 * If someone is waiting for KVA space, wake them up.  Even
177	 * though we haven't freed the kva space yet, the waiting
178	 * process will be able to now.
179	 */
180	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
181		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
182		wakeup(&needsbuffer);
183	}
184}
185
186/*
187 *	numdirtywakeup:
188 *
189 *	If someone is blocked due to there being too many dirty buffers,
190 *	and numdirtybuffers is now reasonable, wake them up.
191 */
192
193static __inline void
194numdirtywakeup(void)
195{
196	if (numdirtybuffers < hidirtybuffers) {
197		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
198			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
199			wakeup(&needsbuffer);
200		}
201	}
202}
203
204/*
205 *	bufspacewakeup:
206 *
207 *	Called when buffer space is potentially available for recovery or when
208 *	buffer space is recovered.  getnewbuf() will block on this flag when
209 *	it is unable to free sufficient buffer space.  Buffer space becomes
210 *	recoverable when bp's get placed back in the queues.
211 */
212
213static __inline void
214bufspacewakeup(void)
215{
216	/*
217	 * If someone is waiting for BUF space, wake them up.  Even
218	 * though we haven't freed the kva space yet, the waiting
219	 * process will be able to now.
220	 */
221	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
222		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
223		wakeup(&needsbuffer);
224	}
225}
226
227/*
228 *	bufcountwakeup:
229 *
230 *	Called when a buffer has been added to one of the free queues to
231 *	account for the buffer and to wakeup anyone waiting for free buffers.
232 *	This typically occurs when large amounts of metadata are being handled
233 *	by the buffer cache ( else buffer space runs out first, usually ).
234 */
235
236static __inline void
237bufcountwakeup(void)
238{
239	++numfreebuffers;
240	if (needsbuffer) {
241		needsbuffer &= ~VFS_BIO_NEED_ANY;
242		if (numfreebuffers >= hifreebuffers)
243			needsbuffer &= ~VFS_BIO_NEED_FREE;
244		wakeup(&needsbuffer);
245	}
246}
247
248/*
249 *	vfs_buf_test_cache:
250 *
251 *	Called when a buffer is extended.  This function clears the B_CACHE
252 *	bit if the newly extended portion of the buffer does not contain
253 *	valid data.
254 */
255static __inline__
256void
257vfs_buf_test_cache(struct buf *bp,
258		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
259		  vm_page_t m)
260{
261	if (bp->b_flags & B_CACHE) {
262		int base = (foff + off) & PAGE_MASK;
263		if (vm_page_is_valid(m, base, size) == 0)
264			bp->b_flags &= ~B_CACHE;
265	}
266}
267
268static __inline__
269void
270bd_wakeup(int dirtybuflevel)
271{
272	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
273		bd_request = 1;
274		wakeup(&bd_request);
275	}
276}
277
278
279/*
280 * Initialize buffer headers and related structures.
281 */
282
283caddr_t
284bufhashinit(caddr_t vaddr)
285{
286	/* first, make a null hash table */
287	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
288		;
289	bufhashtbl = (void *)vaddr;
290	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
291	--bufhashmask;
292	return(vaddr);
293}
294
295void
296bufinit(void)
297{
298	struct buf *bp;
299	int i;
300
301	TAILQ_INIT(&bswlist);
302	LIST_INIT(&invalhash);
303	simple_lock_init(&buftimelock);
304
305	for (i = 0; i <= bufhashmask; i++)
306		LIST_INIT(&bufhashtbl[i]);
307
308	/* next, make a null set of free lists */
309	for (i = 0; i < BUFFER_QUEUES; i++)
310		TAILQ_INIT(&bufqueues[i]);
311
312	/* finally, initialize each buffer header and stick on empty q */
313	for (i = 0; i < nbuf; i++) {
314		bp = &buf[i];
315		bzero(bp, sizeof *bp);
316		bp->b_flags = B_INVAL;	/* we're just an empty header */
317		bp->b_dev = NODEV;
318		bp->b_rcred = NOCRED;
319		bp->b_wcred = NOCRED;
320		bp->b_qindex = QUEUE_EMPTY;
321		bp->b_xflags = 0;
322		LIST_INIT(&bp->b_dep);
323		BUF_LOCKINIT(bp);
324		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
325		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
326	}
327
328	/*
329	 * maxbufspace is currently calculated to be maximally efficient
330	 * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2
331	 * (4K or 8K).  To reduce the number of stall points our calculation
332	 * is based on DFLTBSIZE which should reduce the chances of actually
333	 * running out of buffer headers.  The maxbufspace calculation is also
334	 * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to
335	 * reduce the chance that a KVA allocation will fail due to
336	 * fragmentation.  While this does not usually create a stall,
337	 * the KVA map allocation/free functions are O(N) rather then O(1)
338	 * so running them constantly would result in inefficient O(N*M)
339	 * buffer cache operation.
340	 */
341	maxbufspace = (nbuf + 8) * DFLTBSIZE;
342	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 5);
343/*
344 * Limit the amount of malloc memory since it is wired permanently into
345 * the kernel space.  Even though this is accounted for in the buffer
346 * allocation, we don't want the malloced region to grow uncontrolled.
347 * The malloc scheme improves memory utilization significantly on average
348 * (small) directories.
349 */
350	maxbufmallocspace = hibufspace / 20;
351
352/*
353 * Reduce the chance of a deadlock occuring by limiting the number
354 * of delayed-write dirty buffers we allow to stack up.
355 */
356	lodirtybuffers = nbuf / 7 + 10;
357	hidirtybuffers = nbuf / 4 + 20;
358	numdirtybuffers = 0;
359/*
360 * To support extreme low-memory systems, make sure hidirtybuffers cannot
361 * eat up all available buffer space.  This occurs when our minimum cannot
362 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
363 * BKVASIZE'd (8K) buffers.  We also reduce buf_maxio in this case (used
364 * by the clustering code) in an attempt to further reduce the load on
365 * the buffer cache.
366 */
367	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
368		lodirtybuffers >>= 1;
369		hidirtybuffers >>= 1;
370		buf_maxio >>= 1;
371	}
372	if (lodirtybuffers < 2) {
373		lodirtybuffers = 2;
374		hidirtybuffers = 4;
375	}
376
377	/*
378	 * Temporary, BKVASIZE may be manipulated soon, make sure we don't
379	 * do something illegal. XXX
380	 */
381#if BKVASIZE < MAXBSIZE
382	if (buf_maxio < BKVASIZE * 2)
383		buf_maxio = BKVASIZE * 2;
384#else
385	if (buf_maxio < MAXBSIZE)
386		buf_maxio = MAXBSIZE;
387#endif
388
389/*
390 * Try to keep the number of free buffers in the specified range,
391 * and give the syncer access to an emergency reserve.
392 */
393	lofreebuffers = nbuf / 18 + 5;
394	hifreebuffers = 2 * lofreebuffers;
395	numfreebuffers = nbuf;
396
397/*
398 * Maximum number of async ops initiated per buf_daemon loop.  This is
399 * somewhat of a hack at the moment, we really need to limit ourselves
400 * based on the number of bytes of I/O in-transit that were initiated
401 * from buf_daemon.
402 */
403	if ((maxbdrun = nswbuf / 4) < 4)
404		maxbdrun = 4;
405
406	kvafreespace = 0;
407
408	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
409	bogus_page = vm_page_alloc(kernel_object,
410			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
411			VM_ALLOC_NORMAL);
412	cnt.v_wire_count++;
413
414}
415
416/*
417 * Free the kva allocation for a buffer
418 * Must be called only at splbio or higher,
419 *  as this is the only locking for buffer_map.
420 */
421static void
422bfreekva(struct buf * bp)
423{
424	if (bp->b_kvasize) {
425		vm_map_delete(buffer_map,
426		    (vm_offset_t) bp->b_kvabase,
427		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
428		);
429		bp->b_kvasize = 0;
430		kvaspacewakeup();
431	}
432}
433
434/*
435 *	bremfree:
436 *
437 *	Remove the buffer from the appropriate free list.
438 */
439void
440bremfree(struct buf * bp)
441{
442	int s = splbio();
443	int old_qindex = bp->b_qindex;
444
445	if (bp->b_qindex != QUEUE_NONE) {
446		if (bp->b_qindex == QUEUE_EMPTYKVA) {
447			kvafreespace -= bp->b_kvasize;
448		}
449		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
450		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
451		bp->b_qindex = QUEUE_NONE;
452		runningbufspace += bp->b_bufsize;
453	} else {
454#if !defined(MAX_PERF)
455		if (BUF_REFCNT(bp) <= 1)
456			panic("bremfree: removing a buffer not on a queue");
457#endif
458	}
459
460	/*
461	 * Fixup numfreebuffers count.  If the buffer is invalid or not
462	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
463	 * the buffer was free and we must decrement numfreebuffers.
464	 */
465	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
466		switch(old_qindex) {
467		case QUEUE_DIRTY:
468		case QUEUE_CLEAN:
469		case QUEUE_EMPTY:
470		case QUEUE_EMPTYKVA:
471			--numfreebuffers;
472			break;
473		default:
474			break;
475		}
476	}
477	splx(s);
478}
479
480
481/*
482 * Get a buffer with the specified data.  Look in the cache first.  We
483 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
484 * is set, the buffer is valid and we do not have to do anything ( see
485 * getblk() ).
486 */
487int
488bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
489    struct buf ** bpp)
490{
491	struct buf *bp;
492
493	bp = getblk(vp, blkno, size, 0, 0);
494	*bpp = bp;
495
496	/* if not found in cache, do some I/O */
497	if ((bp->b_flags & B_CACHE) == 0) {
498		if (curproc != NULL)
499			curproc->p_stats->p_ru.ru_inblock++;
500		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
501		bp->b_flags |= B_READ;
502		bp->b_flags &= ~(B_ERROR | B_INVAL);
503		if (bp->b_rcred == NOCRED) {
504			if (cred != NOCRED)
505				crhold(cred);
506			bp->b_rcred = cred;
507		}
508		vfs_busy_pages(bp, 0);
509		VOP_STRATEGY(vp, bp);
510		return (biowait(bp));
511	}
512	return (0);
513}
514
515/*
516 * Operates like bread, but also starts asynchronous I/O on
517 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
518 * to initiating I/O . If B_CACHE is set, the buffer is valid
519 * and we do not have to do anything.
520 */
521int
522breadn(struct vnode * vp, daddr_t blkno, int size,
523    daddr_t * rablkno, int *rabsize,
524    int cnt, struct ucred * cred, struct buf ** bpp)
525{
526	struct buf *bp, *rabp;
527	int i;
528	int rv = 0, readwait = 0;
529
530	*bpp = bp = getblk(vp, blkno, size, 0, 0);
531
532	/* if not found in cache, do some I/O */
533	if ((bp->b_flags & B_CACHE) == 0) {
534		if (curproc != NULL)
535			curproc->p_stats->p_ru.ru_inblock++;
536		bp->b_flags |= B_READ;
537		bp->b_flags &= ~(B_ERROR | B_INVAL);
538		if (bp->b_rcred == NOCRED) {
539			if (cred != NOCRED)
540				crhold(cred);
541			bp->b_rcred = cred;
542		}
543		vfs_busy_pages(bp, 0);
544		VOP_STRATEGY(vp, bp);
545		++readwait;
546	}
547
548	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
549		if (inmem(vp, *rablkno))
550			continue;
551		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
552
553		if ((rabp->b_flags & B_CACHE) == 0) {
554			if (curproc != NULL)
555				curproc->p_stats->p_ru.ru_inblock++;
556			rabp->b_flags |= B_READ | B_ASYNC;
557			rabp->b_flags &= ~(B_ERROR | B_INVAL);
558			if (rabp->b_rcred == NOCRED) {
559				if (cred != NOCRED)
560					crhold(cred);
561				rabp->b_rcred = cred;
562			}
563			vfs_busy_pages(rabp, 0);
564			BUF_KERNPROC(rabp);
565			VOP_STRATEGY(vp, rabp);
566		} else {
567			brelse(rabp);
568		}
569	}
570
571	if (readwait) {
572		rv = biowait(bp);
573	}
574	return (rv);
575}
576
577/*
578 * Write, release buffer on completion.  (Done by iodone
579 * if async).  Do not bother writing anything if the buffer
580 * is invalid.
581 *
582 * Note that we set B_CACHE here, indicating that buffer is
583 * fully valid and thus cacheable.  This is true even of NFS
584 * now so we set it generally.  This could be set either here
585 * or in biodone() since the I/O is synchronous.  We put it
586 * here.
587 */
588int
589bwrite(struct buf * bp)
590{
591	int oldflags, s;
592
593	if (bp->b_flags & B_INVAL) {
594		brelse(bp);
595		return (0);
596	}
597
598	oldflags = bp->b_flags;
599
600#if !defined(MAX_PERF)
601	if (BUF_REFCNT(bp) == 0)
602		panic("bwrite: buffer is not busy???");
603#endif
604	s = splbio();
605	bundirty(bp);
606
607	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
608	bp->b_flags |= B_WRITEINPROG | B_CACHE;
609
610	bp->b_vp->v_numoutput++;
611	vfs_busy_pages(bp, 1);
612	if (curproc != NULL)
613		curproc->p_stats->p_ru.ru_oublock++;
614	splx(s);
615	if (oldflags & B_ASYNC)
616		BUF_KERNPROC(bp);
617	VOP_STRATEGY(bp->b_vp, bp);
618
619	if ((oldflags & B_ASYNC) == 0) {
620		int rtval = biowait(bp);
621		brelse(bp);
622		return (rtval);
623	}
624
625	return (0);
626}
627
628/*
629 * Delayed write. (Buffer is marked dirty).  Do not bother writing
630 * anything if the buffer is marked invalid.
631 *
632 * Note that since the buffer must be completely valid, we can safely
633 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
634 * biodone() in order to prevent getblk from writing the buffer
635 * out synchronously.
636 */
637void
638bdwrite(struct buf * bp)
639{
640#if !defined(MAX_PERF)
641	if (BUF_REFCNT(bp) == 0)
642		panic("bdwrite: buffer is not busy");
643#endif
644
645	if (bp->b_flags & B_INVAL) {
646		brelse(bp);
647		return;
648	}
649	bdirty(bp);
650
651	/*
652	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
653	 * true even of NFS now.
654	 */
655	bp->b_flags |= B_CACHE;
656
657	/*
658	 * This bmap keeps the system from needing to do the bmap later,
659	 * perhaps when the system is attempting to do a sync.  Since it
660	 * is likely that the indirect block -- or whatever other datastructure
661	 * that the filesystem needs is still in memory now, it is a good
662	 * thing to do this.  Note also, that if the pageout daemon is
663	 * requesting a sync -- there might not be enough memory to do
664	 * the bmap then...  So, this is important to do.
665	 */
666	if (bp->b_lblkno == bp->b_blkno) {
667		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
668	}
669
670	/*
671	 * Set the *dirty* buffer range based upon the VM system dirty pages.
672	 */
673	vfs_setdirty(bp);
674
675	/*
676	 * We need to do this here to satisfy the vnode_pager and the
677	 * pageout daemon, so that it thinks that the pages have been
678	 * "cleaned".  Note that since the pages are in a delayed write
679	 * buffer -- the VFS layer "will" see that the pages get written
680	 * out on the next sync, or perhaps the cluster will be completed.
681	 */
682	vfs_clean_pages(bp);
683	bqrelse(bp);
684
685	/*
686	 * Wakeup the buffer flushing daemon if we have saturated the
687	 * buffer cache.
688	 */
689
690	bd_wakeup(hidirtybuffers);
691
692	/*
693	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
694	 * due to the softdep code.
695	 */
696}
697
698/*
699 *	bdirty:
700 *
701 *	Turn buffer into delayed write request.  We must clear B_READ and
702 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
703 *	itself to properly update it in the dirty/clean lists.  We mark it
704 *	B_DONE to ensure that any asynchronization of the buffer properly
705 *	clears B_DONE ( else a panic will occur later ).
706 *
707 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
708 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
709 *	should only be called if the buffer is known-good.
710 *
711 *	Since the buffer is not on a queue, we do not update the numfreebuffers
712 *	count.
713 *
714 *	Must be called at splbio().
715 *	The buffer must be on QUEUE_NONE.
716 */
717void
718bdirty(bp)
719	struct buf *bp;
720{
721	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
722	bp->b_flags &= ~(B_READ|B_RELBUF);
723
724	if ((bp->b_flags & B_DELWRI) == 0) {
725		bp->b_flags |= B_DONE | B_DELWRI;
726		reassignbuf(bp, bp->b_vp);
727		++numdirtybuffers;
728		bd_wakeup(hidirtybuffers);
729	}
730}
731
732/*
733 *	bundirty:
734 *
735 *	Clear B_DELWRI for buffer.
736 *
737 *	Since the buffer is not on a queue, we do not update the numfreebuffers
738 *	count.
739 *
740 *	Must be called at splbio().
741 *	The buffer must be on QUEUE_NONE.
742 */
743
744void
745bundirty(bp)
746	struct buf *bp;
747{
748	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
749
750	if (bp->b_flags & B_DELWRI) {
751		bp->b_flags &= ~B_DELWRI;
752		reassignbuf(bp, bp->b_vp);
753		--numdirtybuffers;
754		numdirtywakeup();
755	}
756}
757
758/*
759 *	bawrite:
760 *
761 *	Asynchronous write.  Start output on a buffer, but do not wait for
762 *	it to complete.  The buffer is released when the output completes.
763 *
764 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
765 *	B_INVAL buffers.  Not us.
766 */
767void
768bawrite(struct buf * bp)
769{
770	bp->b_flags |= B_ASYNC;
771	(void) VOP_BWRITE(bp->b_vp, bp);
772}
773
774/*
775 *	bowrite:
776 *
777 *	Ordered write.  Start output on a buffer, and flag it so that the
778 *	device will write it in the order it was queued.  The buffer is
779 *	released when the output completes.  bwrite() ( or the VOP routine
780 *	anyway ) is responsible for handling B_INVAL buffers.
781 */
782int
783bowrite(struct buf * bp)
784{
785	bp->b_flags |= B_ORDERED | B_ASYNC;
786	return (VOP_BWRITE(bp->b_vp, bp));
787}
788
789/*
790 *	bwillwrite:
791 *
792 *	Called prior to the locking of any vnodes when we are expecting to
793 *	write.  We do not want to starve the buffer cache with too many
794 *	dirty buffers so we block here.  By blocking prior to the locking
795 *	of any vnodes we attempt to avoid the situation where a locked vnode
796 *	prevents the various system daemons from flushing related buffers.
797 */
798
799void
800bwillwrite(void)
801{
802	int twenty = (hidirtybuffers - lodirtybuffers) / 5;
803
804	if (numdirtybuffers > hidirtybuffers + twenty) {
805		int s;
806
807		s = splbio();
808		while (numdirtybuffers > hidirtybuffers) {
809			bd_wakeup(hidirtybuffers);
810			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
811			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
812		}
813		splx(s);
814	}
815}
816
817/*
818 *	brelse:
819 *
820 *	Release a busy buffer and, if requested, free its resources.  The
821 *	buffer will be stashed in the appropriate bufqueue[] allowing it
822 *	to be accessed later as a cache entity or reused for other purposes.
823 */
824void
825brelse(struct buf * bp)
826{
827	int s;
828	int kvawakeup = 0;
829
830	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
831
832	s = splbio();
833
834	if (bp->b_flags & B_LOCKED)
835		bp->b_flags &= ~B_ERROR;
836
837	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
838		/*
839		 * Failed write, redirty.  Must clear B_ERROR to prevent
840		 * pages from being scrapped.  If B_INVAL is set then
841		 * this case is not run and the next case is run to
842		 * destroy the buffer.  B_INVAL can occur if the buffer
843		 * is outside the range supported by the underlying device.
844		 */
845		bp->b_flags &= ~B_ERROR;
846		bdirty(bp);
847	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
848	    (bp->b_bufsize <= 0)) {
849		/*
850		 * Either a failed I/O or we were asked to free or not
851		 * cache the buffer.
852		 */
853		bp->b_flags |= B_INVAL;
854		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
855			(*bioops.io_deallocate)(bp);
856		if (bp->b_flags & B_DELWRI) {
857			--numdirtybuffers;
858			numdirtywakeup();
859		}
860		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
861		if ((bp->b_flags & B_VMIO) == 0) {
862			if (bp->b_bufsize)
863				allocbuf(bp, 0);
864			if (bp->b_vp)
865				brelvp(bp);
866		}
867	}
868
869	/*
870	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
871	 * is called with B_DELWRI set, the underlying pages may wind up
872	 * getting freed causing a previous write (bdwrite()) to get 'lost'
873	 * because pages associated with a B_DELWRI bp are marked clean.
874	 *
875	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
876	 * if B_DELWRI is set.
877	 */
878
879	if (bp->b_flags & B_DELWRI)
880		bp->b_flags &= ~B_RELBUF;
881
882	/*
883	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
884	 * constituted, not even NFS buffers now.  Two flags effect this.  If
885	 * B_INVAL, the struct buf is invalidated but the VM object is kept
886	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
887	 *
888	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
889	 * invalidated.  B_ERROR cannot be set for a failed write unless the
890	 * buffer is also B_INVAL because it hits the re-dirtying code above.
891	 *
892	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
893	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
894	 * the commit state and we cannot afford to lose the buffer.
895	 */
896	if ((bp->b_flags & B_VMIO)
897	    && !(bp->b_vp->v_tag == VT_NFS &&
898		 !vn_isdisk(bp->b_vp) &&
899		 (bp->b_flags & B_DELWRI))
900	    ) {
901
902		int i, j, resid;
903		vm_page_t m;
904		off_t foff;
905		vm_pindex_t poff;
906		vm_object_t obj;
907		struct vnode *vp;
908
909		vp = bp->b_vp;
910
911		/*
912		 * Get the base offset and length of the buffer.  Note that
913		 * for block sizes that are less then PAGE_SIZE, the b_data
914		 * base of the buffer does not represent exactly b_offset and
915		 * neither b_offset nor b_size are necessarily page aligned.
916		 * Instead, the starting position of b_offset is:
917		 *
918		 * 	b_data + (b_offset & PAGE_MASK)
919		 *
920		 * block sizes less then DEV_BSIZE (usually 512) are not
921		 * supported due to the page granularity bits (m->valid,
922		 * m->dirty, etc...).
923		 *
924		 * See man buf(9) for more information
925		 */
926
927		resid = bp->b_bufsize;
928		foff = bp->b_offset;
929
930		for (i = 0; i < bp->b_npages; i++) {
931			m = bp->b_pages[i];
932			vm_page_flag_clear(m, PG_ZERO);
933			if (m == bogus_page) {
934
935				obj = (vm_object_t) vp->v_object;
936				poff = OFF_TO_IDX(bp->b_offset);
937
938				for (j = i; j < bp->b_npages; j++) {
939					m = bp->b_pages[j];
940					if (m == bogus_page) {
941						m = vm_page_lookup(obj, poff + j);
942#if !defined(MAX_PERF)
943						if (!m) {
944							panic("brelse: page missing\n");
945						}
946#endif
947						bp->b_pages[j] = m;
948					}
949				}
950
951				if ((bp->b_flags & B_INVAL) == 0) {
952					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
953				}
954			}
955			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
956				int poffset = foff & PAGE_MASK;
957				int presid = resid > (PAGE_SIZE - poffset) ?
958					(PAGE_SIZE - poffset) : resid;
959
960				KASSERT(presid >= 0, ("brelse: extra page"));
961				vm_page_set_invalid(m, poffset, presid);
962			}
963			resid -= PAGE_SIZE - (foff & PAGE_MASK);
964			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
965		}
966
967		if (bp->b_flags & (B_INVAL | B_RELBUF))
968			vfs_vmio_release(bp);
969
970	} else if (bp->b_flags & B_VMIO) {
971
972		if (bp->b_flags & (B_INVAL | B_RELBUF))
973			vfs_vmio_release(bp);
974
975	}
976
977#if !defined(MAX_PERF)
978	if (bp->b_qindex != QUEUE_NONE)
979		panic("brelse: free buffer onto another queue???");
980#endif
981	if (BUF_REFCNT(bp) > 1) {
982		/* Temporary panic to verify exclusive locking */
983		/* This panic goes away when we allow shared refs */
984		panic("brelse: multiple refs");
985		/* do not release to free list */
986		BUF_UNLOCK(bp);
987		splx(s);
988		return;
989	}
990
991	/* enqueue */
992
993	/* buffers with no memory */
994	if (bp->b_bufsize == 0) {
995		bp->b_flags |= B_INVAL;
996		if (bp->b_kvasize) {
997			bp->b_qindex = QUEUE_EMPTYKVA;
998			kvawakeup = 1;
999		} else {
1000			bp->b_qindex = QUEUE_EMPTY;
1001		}
1002		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1003		LIST_REMOVE(bp, b_hash);
1004		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1005		bp->b_dev = NODEV;
1006		kvafreespace += bp->b_kvasize;
1007	/* buffers with junk contents */
1008	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1009		bp->b_flags |= B_INVAL;
1010		bp->b_qindex = QUEUE_CLEAN;
1011		if (bp->b_kvasize)
1012			kvawakeup = 1;
1013		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1014		LIST_REMOVE(bp, b_hash);
1015		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1016		bp->b_dev = NODEV;
1017
1018	/* buffers that are locked */
1019	} else if (bp->b_flags & B_LOCKED) {
1020		bp->b_qindex = QUEUE_LOCKED;
1021		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1022
1023	/* remaining buffers */
1024	} else {
1025		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1026		case B_DELWRI | B_AGE:
1027		    bp->b_qindex = QUEUE_DIRTY;
1028		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1029		    break;
1030		case B_DELWRI:
1031		    bp->b_qindex = QUEUE_DIRTY;
1032		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1033		    break;
1034		case B_AGE:
1035		    bp->b_qindex = QUEUE_CLEAN;
1036		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1037		    if (bp->b_kvasize)
1038			    kvawakeup = 1;
1039		    break;
1040		default:
1041		    bp->b_qindex = QUEUE_CLEAN;
1042		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1043		    if (bp->b_kvasize)
1044			    kvawakeup = 1;
1045		    break;
1046		}
1047	}
1048
1049	/*
1050	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1051	 * on the correct queue.
1052	 */
1053	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1054		bp->b_flags &= ~B_DELWRI;
1055		--numdirtybuffers;
1056		numdirtywakeup();
1057	}
1058
1059	runningbufspace -= bp->b_bufsize;
1060
1061	/*
1062	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1063	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1064	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1065	 * if B_INVAL is set ).
1066	 */
1067
1068	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1069		bufcountwakeup();
1070
1071	/*
1072	 * Something we can maybe free.
1073	 */
1074
1075	if (bp->b_bufsize)
1076		bufspacewakeup();
1077	if (kvawakeup)
1078		kvaspacewakeup();
1079
1080	/* unlock */
1081	BUF_UNLOCK(bp);
1082	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1083	splx(s);
1084}
1085
1086/*
1087 * Release a buffer back to the appropriate queue but do not try to free
1088 * it.
1089 *
1090 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1091 * biodone() to requeue an async I/O on completion.  It is also used when
1092 * known good buffers need to be requeued but we think we may need the data
1093 * again soon.
1094 */
1095void
1096bqrelse(struct buf * bp)
1097{
1098	int s;
1099
1100	s = splbio();
1101
1102	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1103
1104#if !defined(MAX_PERF)
1105	if (bp->b_qindex != QUEUE_NONE)
1106		panic("bqrelse: free buffer onto another queue???");
1107#endif
1108	if (BUF_REFCNT(bp) > 1) {
1109		/* do not release to free list */
1110		panic("bqrelse: multiple refs");
1111		BUF_UNLOCK(bp);
1112		splx(s);
1113		return;
1114	}
1115	if (bp->b_flags & B_LOCKED) {
1116		bp->b_flags &= ~B_ERROR;
1117		bp->b_qindex = QUEUE_LOCKED;
1118		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1119		/* buffers with stale but valid contents */
1120	} else if (bp->b_flags & B_DELWRI) {
1121		bp->b_qindex = QUEUE_DIRTY;
1122		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1123	} else {
1124		bp->b_qindex = QUEUE_CLEAN;
1125		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1126	}
1127
1128	runningbufspace -= bp->b_bufsize;
1129
1130	if ((bp->b_flags & B_LOCKED) == 0 &&
1131	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1132		bufcountwakeup();
1133	}
1134
1135	/*
1136	 * Something we can maybe wakeup
1137	 */
1138	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1139		bufspacewakeup();
1140
1141	/* unlock */
1142	BUF_UNLOCK(bp);
1143	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1144	splx(s);
1145}
1146
1147static void
1148vfs_vmio_release(bp)
1149	struct buf *bp;
1150{
1151	int i, s;
1152	vm_page_t m;
1153
1154	s = splvm();
1155	for (i = 0; i < bp->b_npages; i++) {
1156		m = bp->b_pages[i];
1157		bp->b_pages[i] = NULL;
1158		/*
1159		 * In order to keep page LRU ordering consistent, put
1160		 * everything on the inactive queue.
1161		 */
1162		vm_page_unwire(m, 0);
1163		/*
1164		 * We don't mess with busy pages, it is
1165		 * the responsibility of the process that
1166		 * busied the pages to deal with them.
1167		 */
1168		if ((m->flags & PG_BUSY) || (m->busy != 0))
1169			continue;
1170
1171		if (m->wire_count == 0) {
1172			vm_page_flag_clear(m, PG_ZERO);
1173			/*
1174			 * Might as well free the page if we can and it has
1175			 * no valid data.
1176			 */
1177			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1178				vm_page_busy(m);
1179				vm_page_protect(m, VM_PROT_NONE);
1180				vm_page_free(m);
1181			}
1182		}
1183	}
1184	bufspace -= bp->b_bufsize;
1185	vmiospace -= bp->b_bufsize;
1186	runningbufspace -= bp->b_bufsize;
1187	splx(s);
1188	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1189	if (bp->b_bufsize)
1190		bufspacewakeup();
1191	bp->b_npages = 0;
1192	bp->b_bufsize = 0;
1193	bp->b_flags &= ~B_VMIO;
1194	if (bp->b_vp)
1195		brelvp(bp);
1196}
1197
1198/*
1199 * Check to see if a block is currently memory resident.
1200 */
1201struct buf *
1202gbincore(struct vnode * vp, daddr_t blkno)
1203{
1204	struct buf *bp;
1205	struct bufhashhdr *bh;
1206
1207	bh = bufhash(vp, blkno);
1208
1209	/* Search hash chain */
1210	LIST_FOREACH(bp, bh, b_hash) {
1211		/* hit */
1212		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1213		    (bp->b_flags & B_INVAL) == 0) {
1214			break;
1215		}
1216	}
1217	return (bp);
1218}
1219
1220/*
1221 *	vfs_bio_awrite:
1222 *
1223 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1224 *	This is much better then the old way of writing only one buffer at
1225 *	a time.  Note that we may not be presented with the buffers in the
1226 *	correct order, so we search for the cluster in both directions.
1227 */
1228int
1229vfs_bio_awrite(struct buf * bp)
1230{
1231	int i;
1232	int j;
1233	daddr_t lblkno = bp->b_lblkno;
1234	struct vnode *vp = bp->b_vp;
1235	int s;
1236	int ncl;
1237	struct buf *bpa;
1238	int nwritten;
1239	int size;
1240	int maxcl;
1241
1242	s = splbio();
1243	/*
1244	 * right now we support clustered writing only to regular files.  If
1245	 * we find a clusterable block we could be in the middle of a cluster
1246	 * rather then at the beginning.
1247	 */
1248	if ((vp->v_type == VREG) &&
1249	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1250	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1251
1252		size = vp->v_mount->mnt_stat.f_iosize;
1253		maxcl = MAXPHYS / size;
1254
1255		for (i = 1; i < maxcl; i++) {
1256			if ((bpa = gbincore(vp, lblkno + i)) &&
1257			    BUF_REFCNT(bpa) == 0 &&
1258			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1259			    (B_DELWRI | B_CLUSTEROK)) &&
1260			    (bpa->b_bufsize == size)) {
1261				if ((bpa->b_blkno == bpa->b_lblkno) ||
1262				    (bpa->b_blkno !=
1263				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1264					break;
1265			} else {
1266				break;
1267			}
1268		}
1269		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1270			if ((bpa = gbincore(vp, lblkno - j)) &&
1271			    BUF_REFCNT(bpa) == 0 &&
1272			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1273			    (B_DELWRI | B_CLUSTEROK)) &&
1274			    (bpa->b_bufsize == size)) {
1275				if ((bpa->b_blkno == bpa->b_lblkno) ||
1276				    (bpa->b_blkno !=
1277				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1278					break;
1279			} else {
1280				break;
1281			}
1282		}
1283		--j;
1284		ncl = i + j;
1285		/*
1286		 * this is a possible cluster write
1287		 */
1288		if (ncl != 1) {
1289			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1290			splx(s);
1291			return nwritten;
1292		}
1293	}
1294
1295	BUF_LOCK(bp, LK_EXCLUSIVE);
1296	bremfree(bp);
1297	bp->b_flags |= B_ASYNC;
1298
1299	splx(s);
1300	/*
1301	 * default (old) behavior, writing out only one block
1302	 *
1303	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1304	 */
1305	nwritten = bp->b_bufsize;
1306	(void) VOP_BWRITE(bp->b_vp, bp);
1307
1308	return nwritten;
1309}
1310
1311/*
1312 *	getnewbuf:
1313 *
1314 *	Find and initialize a new buffer header, freeing up existing buffers
1315 *	in the bufqueues as necessary.  The new buffer is returned locked.
1316 *
1317 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1318 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1319 *
1320 *	We block if:
1321 *		We have insufficient buffer headers
1322 *		We have insufficient buffer space
1323 *		buffer_map is too fragmented ( space reservation fails )
1324 *		If we have to flush dirty buffers ( but we try to avoid this )
1325 *
1326 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1327 *	Instead we ask the buf daemon to do it for us.  We attempt to
1328 *	avoid piecemeal wakeups of the pageout daemon.
1329 */
1330
1331static struct buf *
1332getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1333{
1334	struct buf *bp;
1335	struct buf *nbp;
1336	struct buf *dbp;
1337	int outofspace;
1338	int nqindex;
1339	int defrag = 0;
1340
1341	++getnewbufcalls;
1342	--getnewbufrestarts;
1343restart:
1344	++getnewbufrestarts;
1345
1346	/*
1347	 * Calculate whether we are out of buffer space.  This state is
1348	 * recalculated on every restart.  If we are out of space, we
1349	 * have to turn off defragmentation.  Setting defrag to -1 when
1350	 * outofspace is positive means "defrag while freeing buffers".
1351	 * The looping conditional will be muffed up if defrag is left
1352	 * positive when outofspace is positive.
1353	 */
1354
1355	dbp = NULL;
1356	outofspace = 0;
1357	if (bufspace >= hibufspace) {
1358		if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
1359		    bufspace >= maxbufspace) {
1360			outofspace = 1;
1361			if (defrag > 0)
1362				defrag = -1;
1363		}
1364	}
1365
1366	/*
1367	 * defrag state is semi-persistant.  1 means we are flagged for
1368	 * defragging.  -1 means we actually defragged something.
1369	 */
1370	/* nop */
1371
1372	/*
1373	 * Setup for scan.  If we do not have enough free buffers,
1374	 * we setup a degenerate case that immediately fails.  Note
1375	 * that if we are specially marked process, we are allowed to
1376	 * dip into our reserves.
1377	 *
1378	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1379	 * buffer with kva already allocated.  If there are no EMPTYKVA
1380	 * buffers we back up to the truely EMPTY buffers.  When defragging
1381	 * we do not bother backing up since we have to locate buffers with
1382	 * kva to defrag.  If we are out of space we skip both EMPTY and
1383	 * EMPTYKVA and dig right into the CLEAN queue.
1384	 *
1385	 * In this manner we avoid scanning unnecessary buffers.  It is very
1386	 * important for us to do this because the buffer cache is almost
1387	 * constantly out of space or in need of defragmentation.
1388	 */
1389
1390	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
1391	    numfreebuffers < lofreebuffers) {
1392		nqindex = QUEUE_CLEAN;
1393		nbp = NULL;
1394	} else {
1395		nqindex = QUEUE_EMPTYKVA;
1396		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1397		if (nbp == NULL) {
1398			if (defrag <= 0) {
1399				nqindex = QUEUE_EMPTY;
1400				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1401			}
1402		}
1403		if (outofspace || nbp == NULL) {
1404			nqindex = QUEUE_CLEAN;
1405			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1406		}
1407	}
1408
1409	/*
1410	 * Run scan, possibly freeing data and/or kva mappings on the fly
1411	 * depending.
1412	 */
1413
1414	while ((bp = nbp) != NULL) {
1415		int qindex = nqindex;
1416
1417		/*
1418		 * Calculate next bp ( we can only use it if we do not block
1419		 * or do other fancy things ).
1420		 */
1421		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1422			switch(qindex) {
1423			case QUEUE_EMPTY:
1424				nqindex = QUEUE_EMPTYKVA;
1425				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1426					break;
1427				/* fall through */
1428			case QUEUE_EMPTYKVA:
1429				nqindex = QUEUE_CLEAN;
1430				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1431					break;
1432				/* fall through */
1433			case QUEUE_CLEAN:
1434				/*
1435				 * nbp is NULL.
1436				 */
1437				break;
1438			}
1439		}
1440
1441		/*
1442		 * Sanity Checks
1443		 */
1444		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1445
1446		/*
1447		 * Note: we no longer distinguish between VMIO and non-VMIO
1448		 * buffers.
1449		 */
1450
1451		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1452
1453		/*
1454		 * If we are defragging and the buffer isn't useful for fixing
1455		 * that problem we continue.  If we are out of space and the
1456		 * buffer isn't useful for fixing that problem we continue.
1457		 */
1458
1459		if (defrag > 0 && bp->b_kvasize == 0)
1460			continue;
1461		if (outofspace > 0 && bp->b_bufsize == 0)
1462			continue;
1463
1464		/*
1465		 * Start freeing the bp.  This is somewhat involved.  nbp
1466		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1467		 */
1468
1469		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1470			panic("getnewbuf: locked buf");
1471		bremfree(bp);
1472
1473		if (qindex == QUEUE_CLEAN) {
1474			if (bp->b_flags & B_VMIO) {
1475				bp->b_flags &= ~B_ASYNC;
1476				vfs_vmio_release(bp);
1477			}
1478			if (bp->b_vp)
1479				brelvp(bp);
1480		}
1481
1482		/*
1483		 * NOTE:  nbp is now entirely invalid.  We can only restart
1484		 * the scan from this point on.
1485		 *
1486		 * Get the rest of the buffer freed up.  b_kva* is still
1487		 * valid after this operation.
1488		 */
1489
1490		if (bp->b_rcred != NOCRED) {
1491			crfree(bp->b_rcred);
1492			bp->b_rcred = NOCRED;
1493		}
1494		if (bp->b_wcred != NOCRED) {
1495			crfree(bp->b_wcred);
1496			bp->b_wcred = NOCRED;
1497		}
1498		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1499			(*bioops.io_deallocate)(bp);
1500		LIST_REMOVE(bp, b_hash);
1501		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1502
1503		if (bp->b_bufsize)
1504			allocbuf(bp, 0);
1505
1506		bp->b_flags = 0;
1507		bp->b_dev = NODEV;
1508		bp->b_vp = NULL;
1509		bp->b_blkno = bp->b_lblkno = 0;
1510		bp->b_offset = NOOFFSET;
1511		bp->b_iodone = 0;
1512		bp->b_error = 0;
1513		bp->b_resid = 0;
1514		bp->b_bcount = 0;
1515		bp->b_npages = 0;
1516		bp->b_dirtyoff = bp->b_dirtyend = 0;
1517
1518		LIST_INIT(&bp->b_dep);
1519
1520		/*
1521		 * Ok, now that we have a free buffer, if we are defragging
1522		 * we have to recover the kvaspace.  If we are out of space
1523		 * we have to free the buffer (which we just did), but we
1524		 * do not have to recover kva space unless we hit a defrag
1525		 * hicup.  Being able to avoid freeing the kva space leads
1526		 * to a significant reduction in overhead.
1527		 */
1528
1529		if (defrag > 0) {
1530			defrag = -1;
1531			bp->b_flags |= B_INVAL;
1532			bfreekva(bp);
1533			brelse(bp);
1534			goto restart;
1535		}
1536
1537		if (outofspace > 0) {
1538			outofspace = -1;
1539			bp->b_flags |= B_INVAL;
1540			if (defrag < 0)
1541				bfreekva(bp);
1542			brelse(bp);
1543			goto restart;
1544		}
1545
1546		/*
1547		 * We are done
1548		 */
1549		break;
1550	}
1551
1552	/*
1553	 * If we exhausted our list, sleep as appropriate.  We may have to
1554	 * wakeup various daemons and write out some dirty buffers.
1555	 *
1556	 * Generally we are sleeping due to insufficient buffer space.
1557	 */
1558
1559	if (bp == NULL) {
1560		int flags;
1561		char *waitmsg;
1562
1563		if (defrag > 0) {
1564			flags = VFS_BIO_NEED_KVASPACE;
1565			waitmsg = "nbufkv";
1566		} else if (outofspace > 0) {
1567			waitmsg = "nbufbs";
1568			flags = VFS_BIO_NEED_BUFSPACE;
1569		} else {
1570			waitmsg = "newbuf";
1571			flags = VFS_BIO_NEED_ANY;
1572		}
1573
1574		/* XXX */
1575
1576		(void) speedup_syncer();
1577		needsbuffer |= flags;
1578		while (needsbuffer & flags) {
1579			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1580			    waitmsg, slptimeo))
1581				return (NULL);
1582		}
1583	} else {
1584		/*
1585		 * We finally have a valid bp.  We aren't quite out of the
1586		 * woods, we still have to reserve kva space.
1587		 */
1588		vm_offset_t addr = 0;
1589
1590		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1591
1592		if (maxsize != bp->b_kvasize) {
1593			bfreekva(bp);
1594
1595			if (vm_map_findspace(buffer_map,
1596				vm_map_min(buffer_map), maxsize, &addr)) {
1597				/*
1598				 * Uh oh.  Buffer map is to fragmented.  Try
1599				 * to defragment.
1600				 */
1601				if (defrag <= 0) {
1602					defrag = 1;
1603					bp->b_flags |= B_INVAL;
1604					brelse(bp);
1605					goto restart;
1606				}
1607				/*
1608				 * Uh oh.  We couldn't seem to defragment
1609				 */
1610				panic("getnewbuf: unreachable code reached");
1611			}
1612		}
1613		if (addr) {
1614			vm_map_insert(buffer_map, NULL, 0,
1615				addr, addr + maxsize,
1616				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1617
1618			bp->b_kvabase = (caddr_t) addr;
1619			bp->b_kvasize = maxsize;
1620		}
1621		bp->b_data = bp->b_kvabase;
1622	}
1623	return(bp);
1624}
1625
1626/*
1627 *	waitfreebuffers:
1628 *
1629 *	Wait for sufficient free buffers.  Only called from normal processes.
1630 */
1631
1632static void
1633waitfreebuffers(int slpflag, int slptimeo)
1634{
1635	while (numfreebuffers < hifreebuffers) {
1636		if (numfreebuffers >= hifreebuffers)
1637			break;
1638		needsbuffer |= VFS_BIO_NEED_FREE;
1639		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1640			break;
1641	}
1642}
1643
1644/*
1645 *	buf_daemon:
1646 *
1647 *	buffer flushing daemon.  Buffers are normally flushed by the
1648 *	update daemon but if it cannot keep up this process starts to
1649 *	take the load in an attempt to prevent getnewbuf() from blocking.
1650 */
1651
1652static struct proc *bufdaemonproc;
1653static int bd_interval;
1654static int bd_flushto;
1655
1656static struct kproc_desc buf_kp = {
1657	"bufdaemon",
1658	buf_daemon,
1659	&bufdaemonproc
1660};
1661SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1662
1663static void
1664buf_daemon()
1665{
1666	int s;
1667	/*
1668	 * This process is allowed to take the buffer cache to the limit
1669	 */
1670	curproc->p_flag |= P_BUFEXHAUST;
1671	s = splbio();
1672
1673	bd_interval = 5 * hz;	/* dynamically adjusted */
1674	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1675
1676	while (TRUE) {
1677		bd_request = 0;
1678
1679		/*
1680		 * Do the flush.  Limit the number of buffers we flush in one
1681		 * go.  The failure condition occurs when processes are writing
1682		 * buffers faster then we can dispose of them.  In this case
1683		 * we may be flushing so often that the previous set of flushes
1684		 * have not had time to complete, causing us to run out of
1685		 * physical buffers and block.
1686		 */
1687		{
1688			int runcount = maxbdrun;
1689
1690			while (numdirtybuffers > bd_flushto && runcount) {
1691				--runcount;
1692				if (flushbufqueues() == 0)
1693					break;
1694			}
1695		}
1696
1697		/*
1698		 * If nobody is requesting anything we sleep
1699		 */
1700		if (bd_request == 0)
1701			tsleep(&bd_request, PVM, "psleep", bd_interval);
1702
1703		/*
1704		 * We calculate how much to add or subtract from bd_flushto
1705		 * and bd_interval based on how far off we are from the
1706		 * optimal number of dirty buffers, which is 20% below the
1707		 * hidirtybuffers mark.  We cannot use hidirtybuffers straight
1708		 * because being right on the mark will cause getnewbuf()
1709		 * to oscillate our wakeup.
1710		 *
1711		 * The larger the error in either direction, the more we adjust
1712		 * bd_flushto and bd_interval.  The time interval is adjusted
1713		 * by 2 seconds per whole-buffer-range of error.  This is an
1714		 * exponential convergence algorithm, with large errors
1715		 * producing large changes and small errors producing small
1716		 * changes.
1717		 */
1718
1719		{
1720			int brange = hidirtybuffers - lodirtybuffers;
1721			int middb = hidirtybuffers - brange / 5;
1722			int deltabuf = middb - numdirtybuffers;
1723
1724			bd_flushto += deltabuf / 20;
1725			bd_interval += deltabuf * (2 * hz) / (brange * 1);
1726		}
1727		if (bd_flushto < lodirtybuffers)
1728			bd_flushto = lodirtybuffers;
1729		if (bd_flushto > hidirtybuffers)
1730			bd_flushto = hidirtybuffers;
1731		if (bd_interval < hz / 10)
1732			bd_interval = hz / 10;
1733		if (bd_interval > 5 * hz)
1734			bd_interval = 5 * hz;
1735	}
1736}
1737
1738/*
1739 *	flushbufqueues:
1740 *
1741 *	Try to flush a buffer in the dirty queue.  We must be careful to
1742 *	free up B_INVAL buffers instead of write them, which NFS is
1743 *	particularly sensitive to.
1744 */
1745
1746static int
1747flushbufqueues(void)
1748{
1749	struct buf *bp;
1750	int r = 0;
1751
1752	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1753
1754	while (bp) {
1755		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1756		if ((bp->b_flags & B_DELWRI) != 0) {
1757			if (bp->b_flags & B_INVAL) {
1758				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1759					panic("flushbufqueues: locked buf");
1760				bremfree(bp);
1761				brelse(bp);
1762				++r;
1763				break;
1764			}
1765			vfs_bio_awrite(bp);
1766			++r;
1767			break;
1768		}
1769		bp = TAILQ_NEXT(bp, b_freelist);
1770	}
1771	return(r);
1772}
1773
1774/*
1775 * Check to see if a block is currently memory resident.
1776 */
1777struct buf *
1778incore(struct vnode * vp, daddr_t blkno)
1779{
1780	struct buf *bp;
1781
1782	int s = splbio();
1783	bp = gbincore(vp, blkno);
1784	splx(s);
1785	return (bp);
1786}
1787
1788/*
1789 * Returns true if no I/O is needed to access the
1790 * associated VM object.  This is like incore except
1791 * it also hunts around in the VM system for the data.
1792 */
1793
1794int
1795inmem(struct vnode * vp, daddr_t blkno)
1796{
1797	vm_object_t obj;
1798	vm_offset_t toff, tinc, size;
1799	vm_page_t m;
1800	vm_ooffset_t off;
1801
1802	if (incore(vp, blkno))
1803		return 1;
1804	if (vp->v_mount == NULL)
1805		return 0;
1806	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1807		return 0;
1808
1809	obj = vp->v_object;
1810	size = PAGE_SIZE;
1811	if (size > vp->v_mount->mnt_stat.f_iosize)
1812		size = vp->v_mount->mnt_stat.f_iosize;
1813	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1814
1815	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1816		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1817		if (!m)
1818			return 0;
1819		tinc = size;
1820		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1821			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1822		if (vm_page_is_valid(m,
1823		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1824			return 0;
1825	}
1826	return 1;
1827}
1828
1829/*
1830 *	vfs_setdirty:
1831 *
1832 *	Sets the dirty range for a buffer based on the status of the dirty
1833 *	bits in the pages comprising the buffer.
1834 *
1835 *	The range is limited to the size of the buffer.
1836 *
1837 *	This routine is primarily used by NFS, but is generalized for the
1838 *	B_VMIO case.
1839 */
1840static void
1841vfs_setdirty(struct buf *bp)
1842{
1843	int i;
1844	vm_object_t object;
1845
1846	/*
1847	 * Degenerate case - empty buffer
1848	 */
1849
1850	if (bp->b_bufsize == 0)
1851		return;
1852
1853	/*
1854	 * We qualify the scan for modified pages on whether the
1855	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1856	 * is not cleared simply by protecting pages off.
1857	 */
1858
1859	if ((bp->b_flags & B_VMIO) == 0)
1860		return;
1861
1862	object = bp->b_pages[0]->object;
1863
1864	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1865		printf("Warning: object %p writeable but not mightbedirty\n", object);
1866	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1867		printf("Warning: object %p mightbedirty but not writeable\n", object);
1868
1869	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1870		vm_offset_t boffset;
1871		vm_offset_t eoffset;
1872
1873		/*
1874		 * test the pages to see if they have been modified directly
1875		 * by users through the VM system.
1876		 */
1877		for (i = 0; i < bp->b_npages; i++) {
1878			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1879			vm_page_test_dirty(bp->b_pages[i]);
1880		}
1881
1882		/*
1883		 * Calculate the encompassing dirty range, boffset and eoffset,
1884		 * (eoffset - boffset) bytes.
1885		 */
1886
1887		for (i = 0; i < bp->b_npages; i++) {
1888			if (bp->b_pages[i]->dirty)
1889				break;
1890		}
1891		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1892
1893		for (i = bp->b_npages - 1; i >= 0; --i) {
1894			if (bp->b_pages[i]->dirty) {
1895				break;
1896			}
1897		}
1898		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1899
1900		/*
1901		 * Fit it to the buffer.
1902		 */
1903
1904		if (eoffset > bp->b_bcount)
1905			eoffset = bp->b_bcount;
1906
1907		/*
1908		 * If we have a good dirty range, merge with the existing
1909		 * dirty range.
1910		 */
1911
1912		if (boffset < eoffset) {
1913			if (bp->b_dirtyoff > boffset)
1914				bp->b_dirtyoff = boffset;
1915			if (bp->b_dirtyend < eoffset)
1916				bp->b_dirtyend = eoffset;
1917		}
1918	}
1919}
1920
1921/*
1922 *	getblk:
1923 *
1924 *	Get a block given a specified block and offset into a file/device.
1925 *	The buffers B_DONE bit will be cleared on return, making it almost
1926 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1927 *	return.  The caller should clear B_INVAL prior to initiating a
1928 *	READ.
1929 *
1930 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1931 *	an existing buffer.
1932 *
1933 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1934 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1935 *	and then cleared based on the backing VM.  If the previous buffer is
1936 *	non-0-sized but invalid, B_CACHE will be cleared.
1937 *
1938 *	If getblk() must create a new buffer, the new buffer is returned with
1939 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1940 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1941 *	backing VM.
1942 *
1943 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1944 *	B_CACHE bit is clear.
1945 *
1946 *	What this means, basically, is that the caller should use B_CACHE to
1947 *	determine whether the buffer is fully valid or not and should clear
1948 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1949 *	the buffer by loading its data area with something, the caller needs
1950 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1951 *	the caller should set B_CACHE ( as an optimization ), else the caller
1952 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1953 *	a write attempt or if it was a successfull read.  If the caller
1954 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1955 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1956 */
1957struct buf *
1958getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1959{
1960	struct buf *bp;
1961	int s;
1962	struct bufhashhdr *bh;
1963
1964#if !defined(MAX_PERF)
1965	if (size > MAXBSIZE)
1966		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1967#endif
1968
1969	s = splbio();
1970loop:
1971	/*
1972	 * Block if we are low on buffers.   Certain processes are allowed
1973	 * to completely exhaust the buffer cache.
1974         *
1975         * If this check ever becomes a bottleneck it may be better to
1976         * move it into the else, when gbincore() fails.  At the moment
1977         * it isn't a problem.
1978         */
1979	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
1980		if (numfreebuffers == 0) {
1981			if (!curproc)
1982				return NULL;
1983			needsbuffer |= VFS_BIO_NEED_ANY;
1984			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
1985			    slptimeo);
1986		}
1987	} else if (numfreebuffers < lofreebuffers) {
1988		waitfreebuffers(slpflag, slptimeo);
1989	}
1990
1991	if ((bp = gbincore(vp, blkno))) {
1992		/*
1993		 * Buffer is in-core.  If the buffer is not busy, it must
1994		 * be on a queue.
1995		 */
1996
1997		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1998			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
1999			    "getblk", slpflag, slptimeo) == ENOLCK)
2000				goto loop;
2001			splx(s);
2002			return (struct buf *) NULL;
2003		}
2004
2005		/*
2006		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2007		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2008		 * and for a VMIO buffer B_CACHE is adjusted according to the
2009		 * backing VM cache.
2010		 */
2011		if (bp->b_flags & B_INVAL)
2012			bp->b_flags &= ~B_CACHE;
2013		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2014			bp->b_flags |= B_CACHE;
2015		bremfree(bp);
2016
2017		/*
2018		 * check for size inconsistancies for non-VMIO case.
2019		 */
2020
2021		if (bp->b_bcount != size) {
2022			if ((bp->b_flags & B_VMIO) == 0 ||
2023			    (size > bp->b_kvasize)) {
2024				if (bp->b_flags & B_DELWRI) {
2025					bp->b_flags |= B_NOCACHE;
2026					VOP_BWRITE(bp->b_vp, bp);
2027				} else {
2028					if ((bp->b_flags & B_VMIO) &&
2029					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2030						bp->b_flags |= B_RELBUF;
2031						brelse(bp);
2032					} else {
2033						bp->b_flags |= B_NOCACHE;
2034						VOP_BWRITE(bp->b_vp, bp);
2035					}
2036				}
2037				goto loop;
2038			}
2039		}
2040
2041		/*
2042		 * If the size is inconsistant in the VMIO case, we can resize
2043		 * the buffer.  This might lead to B_CACHE getting set or
2044		 * cleared.  If the size has not changed, B_CACHE remains
2045		 * unchanged from its previous state.
2046		 */
2047
2048		if (bp->b_bcount != size)
2049			allocbuf(bp, size);
2050
2051		KASSERT(bp->b_offset != NOOFFSET,
2052		    ("getblk: no buffer offset"));
2053
2054		/*
2055		 * A buffer with B_DELWRI set and B_CACHE clear must
2056		 * be committed before we can return the buffer in
2057		 * order to prevent the caller from issuing a read
2058		 * ( due to B_CACHE not being set ) and overwriting
2059		 * it.
2060		 *
2061		 * Most callers, including NFS and FFS, need this to
2062		 * operate properly either because they assume they
2063		 * can issue a read if B_CACHE is not set, or because
2064		 * ( for example ) an uncached B_DELWRI might loop due
2065		 * to softupdates re-dirtying the buffer.  In the latter
2066		 * case, B_CACHE is set after the first write completes,
2067		 * preventing further loops.
2068		 */
2069
2070		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2071			VOP_BWRITE(bp->b_vp, bp);
2072			goto loop;
2073		}
2074
2075		splx(s);
2076		bp->b_flags &= ~B_DONE;
2077	} else {
2078		/*
2079		 * Buffer is not in-core, create new buffer.  The buffer
2080		 * returned by getnewbuf() is locked.  Note that the returned
2081		 * buffer is also considered valid (not marked B_INVAL).
2082		 */
2083		int bsize, maxsize, vmio;
2084		off_t offset;
2085
2086		if (vn_isdisk(vp))
2087			bsize = DEV_BSIZE;
2088		else if (vp->v_mountedhere)
2089			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2090		else if (vp->v_mount)
2091			bsize = vp->v_mount->mnt_stat.f_iosize;
2092		else
2093			bsize = size;
2094
2095		offset = (off_t)blkno * bsize;
2096		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2097		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2098		maxsize = imax(maxsize, bsize);
2099
2100		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2101			if (slpflag || slptimeo) {
2102				splx(s);
2103				return NULL;
2104			}
2105			goto loop;
2106		}
2107
2108		/*
2109		 * This code is used to make sure that a buffer is not
2110		 * created while the getnewbuf routine is blocked.
2111		 * This can be a problem whether the vnode is locked or not.
2112		 * If the buffer is created out from under us, we have to
2113		 * throw away the one we just created.  There is now window
2114		 * race because we are safely running at splbio() from the
2115		 * point of the duplicate buffer creation through to here,
2116		 * and we've locked the buffer.
2117		 */
2118		if (gbincore(vp, blkno)) {
2119			bp->b_flags |= B_INVAL;
2120			brelse(bp);
2121			goto loop;
2122		}
2123
2124		/*
2125		 * Insert the buffer into the hash, so that it can
2126		 * be found by incore.
2127		 */
2128		bp->b_blkno = bp->b_lblkno = blkno;
2129		bp->b_offset = offset;
2130
2131		bgetvp(vp, bp);
2132		LIST_REMOVE(bp, b_hash);
2133		bh = bufhash(vp, blkno);
2134		LIST_INSERT_HEAD(bh, bp, b_hash);
2135
2136		/*
2137		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2138		 * buffer size starts out as 0, B_CACHE will be set by
2139		 * allocbuf() for the VMIO case prior to it testing the
2140		 * backing store for validity.
2141		 */
2142
2143		if (vmio) {
2144			bp->b_flags |= B_VMIO;
2145#if defined(VFS_BIO_DEBUG)
2146			if (vp->v_type != VREG && vp->v_type != VBLK)
2147				printf("getblk: vmioing file type %d???\n", vp->v_type);
2148#endif
2149		} else {
2150			bp->b_flags &= ~B_VMIO;
2151		}
2152
2153		allocbuf(bp, size);
2154
2155		splx(s);
2156		bp->b_flags &= ~B_DONE;
2157	}
2158	return (bp);
2159}
2160
2161/*
2162 * Get an empty, disassociated buffer of given size.  The buffer is initially
2163 * set to B_INVAL.
2164 */
2165struct buf *
2166geteblk(int size)
2167{
2168	struct buf *bp;
2169	int s;
2170
2171	s = splbio();
2172	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2173	splx(s);
2174	allocbuf(bp, size);
2175	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2176	return (bp);
2177}
2178
2179
2180/*
2181 * This code constitutes the buffer memory from either anonymous system
2182 * memory (in the case of non-VMIO operations) or from an associated
2183 * VM object (in the case of VMIO operations).  This code is able to
2184 * resize a buffer up or down.
2185 *
2186 * Note that this code is tricky, and has many complications to resolve
2187 * deadlock or inconsistant data situations.  Tread lightly!!!
2188 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2189 * the caller.  Calling this code willy nilly can result in the loss of data.
2190 *
2191 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2192 * B_CACHE for the non-VMIO case.
2193 */
2194
2195int
2196allocbuf(struct buf *bp, int size)
2197{
2198	int newbsize, mbsize;
2199	int i;
2200
2201#if !defined(MAX_PERF)
2202	if (BUF_REFCNT(bp) == 0)
2203		panic("allocbuf: buffer not busy");
2204
2205	if (bp->b_kvasize < size)
2206		panic("allocbuf: buffer too small");
2207#endif
2208
2209	if ((bp->b_flags & B_VMIO) == 0) {
2210		caddr_t origbuf;
2211		int origbufsize;
2212		/*
2213		 * Just get anonymous memory from the kernel.  Don't
2214		 * mess with B_CACHE.
2215		 */
2216		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2217#if !defined(NO_B_MALLOC)
2218		if (bp->b_flags & B_MALLOC)
2219			newbsize = mbsize;
2220		else
2221#endif
2222			newbsize = round_page(size);
2223
2224		if (newbsize < bp->b_bufsize) {
2225#if !defined(NO_B_MALLOC)
2226			/*
2227			 * malloced buffers are not shrunk
2228			 */
2229			if (bp->b_flags & B_MALLOC) {
2230				if (newbsize) {
2231					bp->b_bcount = size;
2232				} else {
2233					free(bp->b_data, M_BIOBUF);
2234					bufspace -= bp->b_bufsize;
2235					bufmallocspace -= bp->b_bufsize;
2236					runningbufspace -= bp->b_bufsize;
2237					if (bp->b_bufsize)
2238						bufspacewakeup();
2239					bp->b_data = bp->b_kvabase;
2240					bp->b_bufsize = 0;
2241					bp->b_bcount = 0;
2242					bp->b_flags &= ~B_MALLOC;
2243				}
2244				return 1;
2245			}
2246#endif
2247			vm_hold_free_pages(
2248			    bp,
2249			    (vm_offset_t) bp->b_data + newbsize,
2250			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2251		} else if (newbsize > bp->b_bufsize) {
2252#if !defined(NO_B_MALLOC)
2253			/*
2254			 * We only use malloced memory on the first allocation.
2255			 * and revert to page-allocated memory when the buffer
2256			 * grows.
2257			 */
2258			if ( (bufmallocspace < maxbufmallocspace) &&
2259				(bp->b_bufsize == 0) &&
2260				(mbsize <= PAGE_SIZE/2)) {
2261
2262				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2263				bp->b_bufsize = mbsize;
2264				bp->b_bcount = size;
2265				bp->b_flags |= B_MALLOC;
2266				bufspace += mbsize;
2267				bufmallocspace += mbsize;
2268				runningbufspace += bp->b_bufsize;
2269				return 1;
2270			}
2271#endif
2272			origbuf = NULL;
2273			origbufsize = 0;
2274#if !defined(NO_B_MALLOC)
2275			/*
2276			 * If the buffer is growing on its other-than-first allocation,
2277			 * then we revert to the page-allocation scheme.
2278			 */
2279			if (bp->b_flags & B_MALLOC) {
2280				origbuf = bp->b_data;
2281				origbufsize = bp->b_bufsize;
2282				bp->b_data = bp->b_kvabase;
2283				bufspace -= bp->b_bufsize;
2284				bufmallocspace -= bp->b_bufsize;
2285				runningbufspace -= bp->b_bufsize;
2286				if (bp->b_bufsize)
2287					bufspacewakeup();
2288				bp->b_bufsize = 0;
2289				bp->b_flags &= ~B_MALLOC;
2290				newbsize = round_page(newbsize);
2291			}
2292#endif
2293			vm_hold_load_pages(
2294			    bp,
2295			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2296			    (vm_offset_t) bp->b_data + newbsize);
2297#if !defined(NO_B_MALLOC)
2298			if (origbuf) {
2299				bcopy(origbuf, bp->b_data, origbufsize);
2300				free(origbuf, M_BIOBUF);
2301			}
2302#endif
2303		}
2304	} else {
2305		vm_page_t m;
2306		int desiredpages;
2307
2308		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2309		desiredpages = (size == 0) ? 0 :
2310			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2311
2312#if !defined(NO_B_MALLOC)
2313		if (bp->b_flags & B_MALLOC)
2314			panic("allocbuf: VMIO buffer can't be malloced");
2315#endif
2316		/*
2317		 * Set B_CACHE initially if buffer is 0 length or will become
2318		 * 0-length.
2319		 */
2320		if (size == 0 || bp->b_bufsize == 0)
2321			bp->b_flags |= B_CACHE;
2322
2323		if (newbsize < bp->b_bufsize) {
2324			/*
2325			 * DEV_BSIZE aligned new buffer size is less then the
2326			 * DEV_BSIZE aligned existing buffer size.  Figure out
2327			 * if we have to remove any pages.
2328			 */
2329			if (desiredpages < bp->b_npages) {
2330				for (i = desiredpages; i < bp->b_npages; i++) {
2331					/*
2332					 * the page is not freed here -- it
2333					 * is the responsibility of
2334					 * vnode_pager_setsize
2335					 */
2336					m = bp->b_pages[i];
2337					KASSERT(m != bogus_page,
2338					    ("allocbuf: bogus page found"));
2339					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2340						;
2341
2342					bp->b_pages[i] = NULL;
2343					vm_page_unwire(m, 0);
2344				}
2345				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2346				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2347				bp->b_npages = desiredpages;
2348			}
2349		} else if (size > bp->b_bcount) {
2350			/*
2351			 * We are growing the buffer, possibly in a
2352			 * byte-granular fashion.
2353			 */
2354			struct vnode *vp;
2355			vm_object_t obj;
2356			vm_offset_t toff;
2357			vm_offset_t tinc;
2358
2359			/*
2360			 * Step 1, bring in the VM pages from the object,
2361			 * allocating them if necessary.  We must clear
2362			 * B_CACHE if these pages are not valid for the
2363			 * range covered by the buffer.
2364			 */
2365
2366			vp = bp->b_vp;
2367			obj = vp->v_object;
2368
2369			while (bp->b_npages < desiredpages) {
2370				vm_page_t m;
2371				vm_pindex_t pi;
2372
2373				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2374				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2375					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2376					if (m == NULL) {
2377						VM_WAIT;
2378						vm_pageout_deficit += desiredpages - bp->b_npages;
2379					} else {
2380						vm_page_wire(m);
2381						vm_page_wakeup(m);
2382						bp->b_flags &= ~B_CACHE;
2383						bp->b_pages[bp->b_npages] = m;
2384						++bp->b_npages;
2385					}
2386					continue;
2387				}
2388
2389				/*
2390				 * We found a page.  If we have to sleep on it,
2391				 * retry because it might have gotten freed out
2392				 * from under us.
2393				 *
2394				 * We can only test PG_BUSY here.  Blocking on
2395				 * m->busy might lead to a deadlock:
2396				 *
2397				 *  vm_fault->getpages->cluster_read->allocbuf
2398				 *
2399				 */
2400
2401				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2402					continue;
2403
2404				/*
2405				 * We have a good page.  Should we wakeup the
2406				 * page daemon?
2407				 */
2408				if ((curproc != pageproc) &&
2409				    ((m->queue - m->pc) == PQ_CACHE) &&
2410				    ((cnt.v_free_count + cnt.v_cache_count) <
2411					(cnt.v_free_min + cnt.v_cache_min))) {
2412					pagedaemon_wakeup();
2413				}
2414				vm_page_flag_clear(m, PG_ZERO);
2415				vm_page_wire(m);
2416				bp->b_pages[bp->b_npages] = m;
2417				++bp->b_npages;
2418			}
2419
2420			/*
2421			 * Step 2.  We've loaded the pages into the buffer,
2422			 * we have to figure out if we can still have B_CACHE
2423			 * set.  Note that B_CACHE is set according to the
2424			 * byte-granular range ( bcount and size ), new the
2425			 * aligned range ( newbsize ).
2426			 *
2427			 * The VM test is against m->valid, which is DEV_BSIZE
2428			 * aligned.  Needless to say, the validity of the data
2429			 * needs to also be DEV_BSIZE aligned.  Note that this
2430			 * fails with NFS if the server or some other client
2431			 * extends the file's EOF.  If our buffer is resized,
2432			 * B_CACHE may remain set! XXX
2433			 */
2434
2435			toff = bp->b_bcount;
2436			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2437
2438			while ((bp->b_flags & B_CACHE) && toff < size) {
2439				vm_pindex_t pi;
2440
2441				if (tinc > (size - toff))
2442					tinc = size - toff;
2443
2444				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2445				    PAGE_SHIFT;
2446
2447				vfs_buf_test_cache(
2448				    bp,
2449				    bp->b_offset,
2450				    toff,
2451				    tinc,
2452				    bp->b_pages[pi]
2453				);
2454				toff += tinc;
2455				tinc = PAGE_SIZE;
2456			}
2457
2458			/*
2459			 * Step 3, fixup the KVM pmap.  Remember that
2460			 * bp->b_data is relative to bp->b_offset, but
2461			 * bp->b_offset may be offset into the first page.
2462			 */
2463
2464			bp->b_data = (caddr_t)
2465			    trunc_page((vm_offset_t)bp->b_data);
2466			pmap_qenter(
2467			    (vm_offset_t)bp->b_data,
2468			    bp->b_pages,
2469			    bp->b_npages
2470			);
2471			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2472			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2473		}
2474	}
2475	if (bp->b_flags & B_VMIO)
2476		vmiospace += (newbsize - bp->b_bufsize);
2477	bufspace += (newbsize - bp->b_bufsize);
2478	runningbufspace += (newbsize - bp->b_bufsize);
2479	if (newbsize < bp->b_bufsize)
2480		bufspacewakeup();
2481	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2482	bp->b_bcount = size;		/* requested buffer size	*/
2483	return 1;
2484}
2485
2486/*
2487 *	biowait:
2488 *
2489 *	Wait for buffer I/O completion, returning error status.  The buffer
2490 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2491 *	error and cleared.
2492 */
2493int
2494biowait(register struct buf * bp)
2495{
2496	int s;
2497
2498	s = splbio();
2499	while ((bp->b_flags & B_DONE) == 0) {
2500#if defined(NO_SCHEDULE_MODS)
2501		tsleep(bp, PRIBIO, "biowait", 0);
2502#else
2503		if (bp->b_flags & B_READ)
2504			tsleep(bp, PRIBIO, "biord", 0);
2505		else
2506			tsleep(bp, PRIBIO, "biowr", 0);
2507#endif
2508	}
2509	splx(s);
2510	if (bp->b_flags & B_EINTR) {
2511		bp->b_flags &= ~B_EINTR;
2512		return (EINTR);
2513	}
2514	if (bp->b_flags & B_ERROR) {
2515		return (bp->b_error ? bp->b_error : EIO);
2516	} else {
2517		return (0);
2518	}
2519}
2520
2521/*
2522 *	biodone:
2523 *
2524 *	Finish I/O on a buffer, optionally calling a completion function.
2525 *	This is usually called from an interrupt so process blocking is
2526 *	not allowed.
2527 *
2528 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2529 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2530 *	assuming B_INVAL is clear.
2531 *
2532 *	For the VMIO case, we set B_CACHE if the op was a read and no
2533 *	read error occured, or if the op was a write.  B_CACHE is never
2534 *	set if the buffer is invalid or otherwise uncacheable.
2535 *
2536 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2537 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2538 *	in the biodone routine.
2539 */
2540void
2541biodone(register struct buf * bp)
2542{
2543	int s;
2544
2545	s = splbio();
2546
2547	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2548	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2549
2550	bp->b_flags |= B_DONE;
2551
2552	if (bp->b_flags & B_FREEBUF) {
2553		brelse(bp);
2554		splx(s);
2555		return;
2556	}
2557
2558	if ((bp->b_flags & B_READ) == 0) {
2559		vwakeup(bp);
2560	}
2561
2562	/* call optional completion function if requested */
2563	if (bp->b_flags & B_CALL) {
2564		bp->b_flags &= ~B_CALL;
2565		(*bp->b_iodone) (bp);
2566		splx(s);
2567		return;
2568	}
2569	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2570		(*bioops.io_complete)(bp);
2571
2572	if (bp->b_flags & B_VMIO) {
2573		int i, resid;
2574		vm_ooffset_t foff;
2575		vm_page_t m;
2576		vm_object_t obj;
2577		int iosize;
2578		struct vnode *vp = bp->b_vp;
2579
2580		obj = vp->v_object;
2581
2582#if defined(VFS_BIO_DEBUG)
2583		if (vp->v_usecount == 0) {
2584			panic("biodone: zero vnode ref count");
2585		}
2586
2587		if (vp->v_object == NULL) {
2588			panic("biodone: missing VM object");
2589		}
2590
2591		if ((vp->v_flag & VOBJBUF) == 0) {
2592			panic("biodone: vnode is not setup for merged cache");
2593		}
2594#endif
2595
2596		foff = bp->b_offset;
2597		KASSERT(bp->b_offset != NOOFFSET,
2598		    ("biodone: no buffer offset"));
2599
2600#if !defined(MAX_PERF)
2601		if (!obj) {
2602			panic("biodone: no object");
2603		}
2604#endif
2605#if defined(VFS_BIO_DEBUG)
2606		if (obj->paging_in_progress < bp->b_npages) {
2607			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2608			    obj->paging_in_progress, bp->b_npages);
2609		}
2610#endif
2611
2612		/*
2613		 * Set B_CACHE if the op was a normal read and no error
2614		 * occured.  B_CACHE is set for writes in the b*write()
2615		 * routines.
2616		 */
2617		iosize = bp->b_bcount - bp->b_resid;
2618		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2619			bp->b_flags |= B_CACHE;
2620		}
2621
2622		for (i = 0; i < bp->b_npages; i++) {
2623			int bogusflag = 0;
2624			m = bp->b_pages[i];
2625			if (m == bogus_page) {
2626				bogusflag = 1;
2627				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2628				if (!m) {
2629#if defined(VFS_BIO_DEBUG)
2630					printf("biodone: page disappeared\n");
2631#endif
2632					vm_object_pip_subtract(obj, 1);
2633					bp->b_flags &= ~B_CACHE;
2634					continue;
2635				}
2636				bp->b_pages[i] = m;
2637				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2638			}
2639#if defined(VFS_BIO_DEBUG)
2640			if (OFF_TO_IDX(foff) != m->pindex) {
2641				printf(
2642"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2643				    (unsigned long)foff, m->pindex);
2644			}
2645#endif
2646			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2647			if (resid > iosize)
2648				resid = iosize;
2649
2650			/*
2651			 * In the write case, the valid and clean bits are
2652			 * already changed correctly ( see bdwrite() ), so we
2653			 * only need to do this here in the read case.
2654			 */
2655			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2656				vfs_page_set_valid(bp, foff, i, m);
2657			}
2658			vm_page_flag_clear(m, PG_ZERO);
2659
2660			/*
2661			 * when debugging new filesystems or buffer I/O methods, this
2662			 * is the most common error that pops up.  if you see this, you
2663			 * have not set the page busy flag correctly!!!
2664			 */
2665			if (m->busy == 0) {
2666#if !defined(MAX_PERF)
2667				printf("biodone: page busy < 0, "
2668				    "pindex: %d, foff: 0x(%x,%x), "
2669				    "resid: %d, index: %d\n",
2670				    (int) m->pindex, (int)(foff >> 32),
2671						(int) foff & 0xffffffff, resid, i);
2672#endif
2673				if (!vn_isdisk(vp))
2674#if !defined(MAX_PERF)
2675					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2676					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2677					    (int) bp->b_lblkno,
2678					    bp->b_flags, bp->b_npages);
2679				else
2680					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2681					    (int) bp->b_lblkno,
2682					    bp->b_flags, bp->b_npages);
2683				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2684				    m->valid, m->dirty, m->wire_count);
2685#endif
2686				panic("biodone: page busy < 0\n");
2687			}
2688			vm_page_io_finish(m);
2689			vm_object_pip_subtract(obj, 1);
2690			foff += resid;
2691			iosize -= resid;
2692		}
2693		if (obj)
2694			vm_object_pip_wakeupn(obj, 0);
2695	}
2696	/*
2697	 * For asynchronous completions, release the buffer now. The brelse
2698	 * will do a wakeup there if necessary - so no need to do a wakeup
2699	 * here in the async case. The sync case always needs to do a wakeup.
2700	 */
2701
2702	if (bp->b_flags & B_ASYNC) {
2703		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2704			brelse(bp);
2705		else
2706			bqrelse(bp);
2707	} else {
2708		wakeup(bp);
2709	}
2710	splx(s);
2711}
2712
2713/*
2714 * This routine is called in lieu of iodone in the case of
2715 * incomplete I/O.  This keeps the busy status for pages
2716 * consistant.
2717 */
2718void
2719vfs_unbusy_pages(struct buf * bp)
2720{
2721	int i;
2722
2723	if (bp->b_flags & B_VMIO) {
2724		struct vnode *vp = bp->b_vp;
2725		vm_object_t obj = vp->v_object;
2726
2727		for (i = 0; i < bp->b_npages; i++) {
2728			vm_page_t m = bp->b_pages[i];
2729
2730			if (m == bogus_page) {
2731				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2732#if !defined(MAX_PERF)
2733				if (!m) {
2734					panic("vfs_unbusy_pages: page missing\n");
2735				}
2736#endif
2737				bp->b_pages[i] = m;
2738				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2739			}
2740			vm_object_pip_subtract(obj, 1);
2741			vm_page_flag_clear(m, PG_ZERO);
2742			vm_page_io_finish(m);
2743		}
2744		vm_object_pip_wakeupn(obj, 0);
2745	}
2746}
2747
2748/*
2749 * vfs_page_set_valid:
2750 *
2751 *	Set the valid bits in a page based on the supplied offset.   The
2752 *	range is restricted to the buffer's size.
2753 *
2754 *	This routine is typically called after a read completes.
2755 */
2756static void
2757vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2758{
2759	vm_ooffset_t soff, eoff;
2760
2761	/*
2762	 * Start and end offsets in buffer.  eoff - soff may not cross a
2763	 * page boundry or cross the end of the buffer.  The end of the
2764	 * buffer, in this case, is our file EOF, not the allocation size
2765	 * of the buffer.
2766	 */
2767	soff = off;
2768	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2769	if (eoff > bp->b_offset + bp->b_bcount)
2770		eoff = bp->b_offset + bp->b_bcount;
2771
2772	/*
2773	 * Set valid range.  This is typically the entire buffer and thus the
2774	 * entire page.
2775	 */
2776	if (eoff > soff) {
2777		vm_page_set_validclean(
2778		    m,
2779		   (vm_offset_t) (soff & PAGE_MASK),
2780		   (vm_offset_t) (eoff - soff)
2781		);
2782	}
2783}
2784
2785/*
2786 * This routine is called before a device strategy routine.
2787 * It is used to tell the VM system that paging I/O is in
2788 * progress, and treat the pages associated with the buffer
2789 * almost as being PG_BUSY.  Also the object paging_in_progress
2790 * flag is handled to make sure that the object doesn't become
2791 * inconsistant.
2792 *
2793 * Since I/O has not been initiated yet, certain buffer flags
2794 * such as B_ERROR or B_INVAL may be in an inconsistant state
2795 * and should be ignored.
2796 */
2797void
2798vfs_busy_pages(struct buf * bp, int clear_modify)
2799{
2800	int i, bogus;
2801
2802	if (bp->b_flags & B_VMIO) {
2803		struct vnode *vp = bp->b_vp;
2804		vm_object_t obj = vp->v_object;
2805		vm_ooffset_t foff;
2806
2807		foff = bp->b_offset;
2808		KASSERT(bp->b_offset != NOOFFSET,
2809		    ("vfs_busy_pages: no buffer offset"));
2810		vfs_setdirty(bp);
2811
2812retry:
2813		for (i = 0; i < bp->b_npages; i++) {
2814			vm_page_t m = bp->b_pages[i];
2815			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2816				goto retry;
2817		}
2818
2819		bogus = 0;
2820		for (i = 0; i < bp->b_npages; i++) {
2821			vm_page_t m = bp->b_pages[i];
2822
2823			vm_page_flag_clear(m, PG_ZERO);
2824			if ((bp->b_flags & B_CLUSTER) == 0) {
2825				vm_object_pip_add(obj, 1);
2826				vm_page_io_start(m);
2827			}
2828
2829			/*
2830			 * When readying a buffer for a read ( i.e
2831			 * clear_modify == 0 ), it is important to do
2832			 * bogus_page replacement for valid pages in
2833			 * partially instantiated buffers.  Partially
2834			 * instantiated buffers can, in turn, occur when
2835			 * reconstituting a buffer from its VM backing store
2836			 * base.  We only have to do this if B_CACHE is
2837			 * clear ( which causes the I/O to occur in the
2838			 * first place ).  The replacement prevents the read
2839			 * I/O from overwriting potentially dirty VM-backed
2840			 * pages.  XXX bogus page replacement is, uh, bogus.
2841			 * It may not work properly with small-block devices.
2842			 * We need to find a better way.
2843			 */
2844
2845			vm_page_protect(m, VM_PROT_NONE);
2846			if (clear_modify)
2847				vfs_page_set_valid(bp, foff, i, m);
2848			else if (m->valid == VM_PAGE_BITS_ALL &&
2849				(bp->b_flags & B_CACHE) == 0) {
2850				bp->b_pages[i] = bogus_page;
2851				bogus++;
2852			}
2853			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2854		}
2855		if (bogus)
2856			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2857	}
2858}
2859
2860/*
2861 * Tell the VM system that the pages associated with this buffer
2862 * are clean.  This is used for delayed writes where the data is
2863 * going to go to disk eventually without additional VM intevention.
2864 *
2865 * Note that while we only really need to clean through to b_bcount, we
2866 * just go ahead and clean through to b_bufsize.
2867 */
2868static void
2869vfs_clean_pages(struct buf * bp)
2870{
2871	int i;
2872
2873	if (bp->b_flags & B_VMIO) {
2874		vm_ooffset_t foff;
2875
2876		foff = bp->b_offset;
2877		KASSERT(bp->b_offset != NOOFFSET,
2878		    ("vfs_clean_pages: no buffer offset"));
2879		for (i = 0; i < bp->b_npages; i++) {
2880			vm_page_t m = bp->b_pages[i];
2881			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2882			vm_ooffset_t eoff = noff;
2883
2884			if (eoff > bp->b_offset + bp->b_bufsize)
2885				eoff = bp->b_offset + bp->b_bufsize;
2886			vfs_page_set_valid(bp, foff, i, m);
2887			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2888			foff = noff;
2889		}
2890	}
2891}
2892
2893/*
2894 *	vfs_bio_set_validclean:
2895 *
2896 *	Set the range within the buffer to valid and clean.  The range is
2897 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2898 *	itself may be offset from the beginning of the first page.
2899 */
2900
2901void
2902vfs_bio_set_validclean(struct buf *bp, int base, int size)
2903{
2904	if (bp->b_flags & B_VMIO) {
2905		int i;
2906		int n;
2907
2908		/*
2909		 * Fixup base to be relative to beginning of first page.
2910		 * Set initial n to be the maximum number of bytes in the
2911		 * first page that can be validated.
2912		 */
2913
2914		base += (bp->b_offset & PAGE_MASK);
2915		n = PAGE_SIZE - (base & PAGE_MASK);
2916
2917		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2918			vm_page_t m = bp->b_pages[i];
2919
2920			if (n > size)
2921				n = size;
2922
2923			vm_page_set_validclean(m, base & PAGE_MASK, n);
2924			base += n;
2925			size -= n;
2926			n = PAGE_SIZE;
2927		}
2928	}
2929}
2930
2931/*
2932 *	vfs_bio_clrbuf:
2933 *
2934 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2935 *	to clear B_ERROR and B_INVAL.
2936 *
2937 *	Note that while we only theoretically need to clear through b_bcount,
2938 *	we go ahead and clear through b_bufsize.
2939 */
2940
2941void
2942vfs_bio_clrbuf(struct buf *bp) {
2943	int i, mask = 0;
2944	caddr_t sa, ea;
2945	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2946		bp->b_flags &= ~(B_INVAL|B_ERROR);
2947		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2948		    (bp->b_offset & PAGE_MASK) == 0) {
2949			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2950			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2951			    ((bp->b_pages[0]->valid & mask) != mask)) {
2952				bzero(bp->b_data, bp->b_bufsize);
2953			}
2954			bp->b_pages[0]->valid |= mask;
2955			bp->b_resid = 0;
2956			return;
2957		}
2958		ea = sa = bp->b_data;
2959		for(i=0;i<bp->b_npages;i++,sa=ea) {
2960			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
2961			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2962			ea = (caddr_t)(vm_offset_t)ulmin(
2963			    (u_long)(vm_offset_t)ea,
2964			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
2965			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2966			if ((bp->b_pages[i]->valid & mask) == mask)
2967				continue;
2968			if ((bp->b_pages[i]->valid & mask) == 0) {
2969				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2970					bzero(sa, ea - sa);
2971				}
2972			} else {
2973				for (; sa < ea; sa += DEV_BSIZE, j++) {
2974					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2975						(bp->b_pages[i]->valid & (1<<j)) == 0)
2976						bzero(sa, DEV_BSIZE);
2977				}
2978			}
2979			bp->b_pages[i]->valid |= mask;
2980			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2981		}
2982		bp->b_resid = 0;
2983	} else {
2984		clrbuf(bp);
2985	}
2986}
2987
2988/*
2989 * vm_hold_load_pages and vm_hold_unload pages get pages into
2990 * a buffers address space.  The pages are anonymous and are
2991 * not associated with a file object.
2992 */
2993void
2994vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2995{
2996	vm_offset_t pg;
2997	vm_page_t p;
2998	int index;
2999
3000	to = round_page(to);
3001	from = round_page(from);
3002	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3003
3004	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3005
3006tryagain:
3007
3008		p = vm_page_alloc(kernel_object,
3009			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3010		    VM_ALLOC_NORMAL);
3011		if (!p) {
3012			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3013			VM_WAIT;
3014			goto tryagain;
3015		}
3016		vm_page_wire(p);
3017		p->valid = VM_PAGE_BITS_ALL;
3018		vm_page_flag_clear(p, PG_ZERO);
3019		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3020		bp->b_pages[index] = p;
3021		vm_page_wakeup(p);
3022	}
3023	bp->b_npages = index;
3024}
3025
3026void
3027vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3028{
3029	vm_offset_t pg;
3030	vm_page_t p;
3031	int index, newnpages;
3032
3033	from = round_page(from);
3034	to = round_page(to);
3035	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3036
3037	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3038		p = bp->b_pages[index];
3039		if (p && (index < bp->b_npages)) {
3040#if !defined(MAX_PERF)
3041			if (p->busy) {
3042				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3043					bp->b_blkno, bp->b_lblkno);
3044			}
3045#endif
3046			bp->b_pages[index] = NULL;
3047			pmap_kremove(pg);
3048			vm_page_busy(p);
3049			vm_page_unwire(p, 0);
3050			vm_page_free(p);
3051		}
3052	}
3053	bp->b_npages = newnpages;
3054}
3055
3056
3057#include "opt_ddb.h"
3058#ifdef DDB
3059#include <ddb/ddb.h>
3060
3061DB_SHOW_COMMAND(buffer, db_show_buffer)
3062{
3063	/* get args */
3064	struct buf *bp = (struct buf *)addr;
3065
3066	if (!have_addr) {
3067		db_printf("usage: show buffer <addr>\n");
3068		return;
3069	}
3070
3071	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3072	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3073		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3074		  "b_blkno = %d, b_pblkno = %d\n",
3075		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3076		  major(bp->b_dev), minor(bp->b_dev),
3077		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3078	if (bp->b_npages) {
3079		int i;
3080		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3081		for (i = 0; i < bp->b_npages; i++) {
3082			vm_page_t m;
3083			m = bp->b_pages[i];
3084			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3085			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3086			if ((i + 1) < bp->b_npages)
3087				db_printf(",");
3088		}
3089		db_printf("\n");
3090	}
3091}
3092#endif /* DDB */
3093